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1 Introduction

In 1919, Rademacher proved that Lipschitz mappings between Euclidean spaces are
differentiable almost everywhere [33]. As the Lipschitz condition is global, while
differentiability is local, Stepanov considered the set
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S( f ) := {x ∈ R
n : Lip f (x) < ∞},

where

Lip f (x) := lim sup
r→0

supy∈B(x,r) | f (y) − f (x)|
r

.

His arguments resulted in the following generalization of Rademacher’s theorem: A
function f : R

n → R is differentiable almost everywhere in S( f ) [38]. A second
strengthening of Rademacher’s theorem states that if p > n, then Sobolev functions
in W 1,p

loc (Rn) have representatives that are differentiable almost everywhere; this is
due to Cesari [6] when n = 2. Calderón [5] and later Stein [39] generalized and
sharpened this result: If the weak gradient of a function on R

n is in the Lorentz
space Ln,1, then the function has a continuous representative that is differentiable
almost everywhere. Moreover, Ln,1 is the largest of the Lorentz spaces {Ln,q : 1 ≤
q ≤ n} to have this property. In fact, Calderón considered Orlicz spaces; the relation
between these spaces and the Lorentz spaces is clarified in [23] and [31]. Heuristically,
a function on R

n with a weak gradient in Ln,1 shares properties with absolutely
continuous functions of a single variable. This principle has been extended to include
various higher-dimensional notions of absolute continuity [23,29], and to apply in
more general settings [34,35,41].
Yet another generalization of Rademacher’s theorem was explored by Balogh and

Csörnyei, who considered the lower local Lipschitz constant

lip f (x) := lim inf
r→0

supy∈B(x,r) | f (y) − f (x)|
r

instead of Lip f [2]. They observed that Stepanov’s theorem with Lip f replaced by
lip f does not hold in general, and provided two examples highlighting the obstruc-
tions. The first showed that control on the integrability of lip f is needed, and the
second showed that an upper bound on the size of the set where lip f is infinite is
required. On the other hand, they gave the following positive result, which, when
combined with the n-dimensional version of Cesari’s differentiability result, can be
considered to be of “Stepanov-type”.

Theorem 1.1 (Balogh–Csörnyei) Let � ⊆ R
n be a domain, and let f : � → R be

a continuous function. Assume that lip f (x) < ∞ for x ∈ �\E, where the set E has
σ -finite (n − 1)-dimensional Hausdorff measure, and that lip f ∈ L p

loc(�) for some

1 ≤ p ≤ ∞. Then f ∈ W 1,p
loc (�).

In the foundational work [7], Cheeger generalized Rademacher’s theorem to the set-
ting of Lipschitz functions onmetricmeasure spaces that support a Poincaré inequality
using the notion of ameasurable differentiable structure. Important work of Keith [22]
and other generalizations in this setting followed [3,9,42].
The first result of this paper sharpens the theorem of Balogh and Csörnyei to the

Lorentz scale, in the spirit of Stein. Our result is in the setting of mappings between
metric measure spaces, although it is new even for functions on Euclidean space.
The assumptions are standard for this setting, and can be heuristically understood to
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mean that the domain space (X, d, μ) is of dimension Q and contains a large-enough
collection of rectifiable curves to support “first-order calculus”. For more details on
these definitions, as well as the usual generalization of Lip and lip to the setting of
mappings between metric spaces, see Sect. 2 below.

Theorem 1.2 Let Q ≥ 1 and 1 ≤ q ≤ Q. Let (X, d, μ) be a complete and Ahlfors
Q-regular metric space that supports a q-Poincaré inequality, and let Y be any metric
space. Consider a continuous mapping f : X → Y , and set

E = {x ∈ X : lip f (x) = ∞}.

If lip f ∈ L Q,1(X) and either

• q = 1 and E has σ finite (Q − 1)-dimensional Hausdorff measure, or
• q > 1 and E has Hausdorff dimension at most (Q − q),

then f has an upper gradient in the Lorentz space L Q,1(X).

We note that a similar result at the Lebesgue scale for real-valued functions was
proven by the second author in [42]. The main additional ingredient needed for the
proof of Theorem 1.2 is an interpolation result that implies the boundedness of a
suitable maximal function operator on the relevant Lorentz space.
As in the Euclidean setting, the assumption that an upper gradient of the mapping

f is in the Lorentz space L Q,1(X) implies that f shares many properties with an
absolutely continuous function onR; see Theorem 6.3, Proposition 6.4, Corollary 6.7,
and Lemma 6.8 in [41].We record some of these properties in the following statement.

Corollary 1.3 Assume the notation and hypotheses of Theorem 1.2. If N ⊆ X is a
set of zero Q-dimensional Hausdorff measure, then so is f (N ). Moreover, the image
f (X) is the countable union of Lipschitz images of X and a set of zero Q dimensional
Hausdorff measure. In particular, if X = R

n, then f (X) is a countably n-rectifiable
subset of Y .

Hanson has recently given an example showing that Theorem 1.2 is quite sharp
with respect to the size of the exceptional set [14, Theorem 2.3]. Here we provide an
example that shows sharpness with respect to the integrability of lip. Our construction
draws on ideas of Hanson, Malý [30], and our previous work on the capacity of points
[41]. It is substantially different from the corresponding example in [2].

Theorem 1.4 Let n ≥ 2 be an integer, and let S be a rearrangement invariant Banach
function space containing a compactly supported function g /∈ Ln,1(Rn). Then there
exists a compactly supported continuous function f : R

n → R with the following
properties:

• lip f (x) < ∞ for all x ∈ R
n,

• lip f (x) ∈ S,
• the set of points at which f fails to be differentiable has positive n-dimensional

Hausdorff measure.
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A reader unfamiliar with the notion of a rearrangement invariant Banach function
space may consult [4]. As an example, we point out that for any 1 < q ≤ n, the
Lorentz space Ln,q(Rn) satisfies the hypotheses of the above theorem.
In the case that the target of the mapping in Theorem 1.2 is a Banach space with the

Radon–Nikodym property, in Theorem 4.2 belowwe provide a differentiation result in
the spirit of Stein. Here differentiability is meant in the sense of Cheeger and Kleiner
[7,9], i.e., in terms of a measurable differentiable structure. See Sect. 2.3 below for
more details and definitions.

Theorem 1.5 Let Q ≥ 1. Let (X, d, μ) be a complete and Ahlfors Q-regular metric
space that supports a Q-Poincaré inequality, and let V be a Banach space with the
Radon–Nikodym property. Let f : X → V be a continuous mapping with an upper
gradient in the Lorentz space L Q,1(X). Then f is differentiable almost everywhere
with respect to any measurable differentiable structure on X.

Theorem 1.5, when combined with Theorem 1.2, provides a “Stepanov–Stein”
result for lip.
Expanding on Keith’s results of [22], recent work of Gong [13] has further clarified

the connection between the existence of a measurable differentiable structure and the
relationship between Lip and lip for Lipschitz functions (see also [36]). In particular,
it follows from [13] that a complete and doubling metric measure space X supports a
measurable differentiable structure if and only if X can be countably partitioned, up
to a null set, into sets on which Lip and lip are uniformly comparable for all Lipschitz
functions. It would be interesting to know if this comparability extends to mappings
with an upper gradient in the Lorentz space L Q,1. Such comparability need not be true
even for mappings with the property that lip vanishes almost everywhere, as shown
by Balogh and Csörnyei [2, Theorem 1.4].
As discussed in [9], differentiability theorems in the setting of metric measure

spaces lead to corresponding non-embedding theorems. In certain cases, these non-
embedding results have important applications in theoretical computer science [10].
The differentiability of Lipschitz mappings into a Banach space with the Radon–

Nikodym property leads to a bi-Lipschitz non-embedding theorem.Our differentiation
result Theorem 1.5 leads to a non-embedding theorem for a larger class of mappings.
For a mapping f : X → Y of metric spaces, we denote

S f = {x ∈ X : Lip f (x) < ∞}.
We say that f is an embedding if it is a homeomorphism of X onto f (X).

Theorem 1.6 Let Q ≥ 1. Let (X, d, μ) be a complete and Ahlfors Q-regular metric
space that supports a Q-Poincaré inequality, and let V be a Banach space with the
Radon–Nikodym property. Let ι : X → V be an embedding with an upper gradient in
the Lorentz space L Q,1(X). If

(i) HQ
V (ι(X)\Sι−1) = 0,

(ii) HQ
X (X\ι−1(Sι−1)) = 0,

then for any coordinate chart (Xα, ϕα) of any measurable differentiable structure on
X, it holds that Q ≤ N (α).
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CombiningTheorem1.2withTheorem1.6 produces a non-embedding result for lip.
We note that in the setting of Theorem 1.6, the existence of an upper gradient of ι in

L Q,1(X) implies that Lip ι(x) < ∞ atHQ-almost every point, andmoreover it implies
that ιmapsHQ

X -null sets toHQ
V -null sets [41, Sect. 6]. Hence, if it is also known that the

image of ι is an Ahlfors Q-regular metric space supporting a Q-Poincaré inequality,
then conditions (i) and (ii) above could be replaced by the symmetric requirement that
ι−1 have an upper gradient in L Q,1(ι(X)).
Let us consider the concrete example of the Heisenberg group H, which is an

Ahlfors 4-regular metricmeasure space, is homeomorphic toR
3, supports a 1 Poincaré

inequality, and has ameasurable differentiable structure inwhich each chart has dimen-
sion 2 [19,24,32]. Hence, in the language of Theorem 1.6, Q > N (α) for each α.
The differentiability theorem for Lipschitz mappings into a Banach space V with the
Radon–Nikodym property given in [9] allows one to prove that there is no bi-Lipschitz
embedding ι : H → V . Our result states that there is not even an embedding ι : H → V
satisfying the hypotheses of Theorem1.6,which aremuchweaker than the bi-Lipschitz
condition.We point out that the identitymapping fromH toR

3 is Lipschitz on compact
sets, and so some metric condition on the inverse of the embedding is needed.
The standard assumptions of Ahlfors regularity and a Poincaré inequality in the

above theorems place conditions on large scales that are not natural for the conclusions,
which are local in nature. However, the theorems still hold for arbitrary domains in
Euclidean space, as can be seen by restriction to a sufficiently small closed ball.
Moreover, it appears that Theorems 1.2, 1.5, and 1.6 remain valid when small scale
and localized versions of these assumptions, as well as a local Lorentz integrability
condition, are used instead. We have used global assumptions only for clarity of
exposition, and we leave the aforementioned generalizations, which we expect can
be proven in the same fashion, to the reader; see [41, Remark 6.11].
This paper is organized as follows. In Sect. 2 we establish notation and definitions

regarding metric measure spaces, Lorentz integrability, and measurable differentiable
structures. We then prove Theorem 1.2 in Sect. 3. This is followed in Sect. 4 by a proof
of the differentiation result Theorem 1.5. Section 5 discusses the basic properties of
weak tangents and weak tangent mappings at points of differentiability, which leads
to a proof of the non-embedding result Theorem 1.6. Finally, we give the example
described in Theorem 1.4 in Sect. 6.
We wish to thank Jeff Cheeger, Amiran Gogatishvili, Bruce Hanson, and Pekka

Koskela for helpful comments. Further thanks goes to Mathematical Institute of the
University of Bern, which was the affiliation of both authors at some point during the
period of research for this paper.

2 Notation and Basic Definitions

2.1 Metric Measure Spaces

Given a metric space (X, d), we denote the open ball centered at a point x ∈ X of
radius r > 0 by

BX (x, r) = {y ∈ X : d(x, y) < r}
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and the corresponding closed ball by

B X (x, r) = {y ∈ X : d(x, y) ≤ r}.

When there is no danger of confusion, we often write B(x, r) in place of BX (x, r).
A similar convention will be used for all objects that depend implicitly on the ambient
space. Given a subset A of X and a number ε > 0, we notate the ε-neighborhood of
A by

N (A, ε) = {x ∈ X : dist(A, x) < ε}.

Given an open ball B = B(x, r) and a parameter λ > 0, we set λB = B(x, λr).
Ametric measure space is a triple (X, d, μ)where (X, d) is a metric space andμ is

a measure on X . For our purposes, a measure is a nonnegative countably subadditive
set function defined on all subsets of a measure space that gives the value 0 to the
empty set. We further assume that measures are Borel inner and outer regular, and the
collection of measurable sets is given by the completion of the Borel σ -algebra. We
will often suppress the reference to the metric d and the measure μ when they are
understood.
The metric measure space (X, d, μ) is doubling if balls have finite and positive

measure, and there is a constant C ≥ 1 such μ(2B) ≤ Cμ(B) for any open ball B
in X . If (X, d, μ) is a doubling metric measure space, then the metric space (X, d)

enjoys the following property, also called doubling: there is a number n ∈ N such that
any ball in X of radius r > 0 can be covered by at most n balls of radius r/2. It is easy
to see that a doubling metric space is complete if and only if it is proper, i.e., closed
and bounded sets are compact. Moreover, doubling metric spaces are separable.
The metric measure space (X, d, μ) is called Ahlfors Q-regular if there exists a

constant C ≥ 1 such that for each point a ∈ X and each radius 0 < r < 2 diam X ,

r Q

C
≤ μ(B(a, r)) ≤ Cr Q . (1)

Note that an Ahlfors Q-regular space is doubling, quantitatively.
We denote the Q-dimensional Hausdorff measure on a metric space (X, d) byHQ

X .
If a metric measure space (X, d, μ) is Ahlfors Q-regular, then so is the metric measure
space (X, d,HQ

X ), and so we will often work directly with the Hausdorff measure in
this case.

2.2 Upper Gradients and Poincaré Inequalities

In this paper, the role of the norm of a gradient of a function on Euclidean space
will be filled by the following notion more suited to the metric space setting. Let
f : (X, dX , μ) → (Y, dY ) be a mapping from a metric measure space to a metric
space. An upper gradient of f is a Borel function g : X → [0,∞] such that for each
rectifiable path γ : [0, 1] → X ,
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dY ( f (γ (0)), f (γ (1))) ≤
∫

γ

g ds. (2)

Here and below ds refers to integrationwith respect to arc-length. It is often difficult
to verify equation (2) for every rectifiable path. A collection 
 of rectifiable paths in
X is said to have zero p-modulus if there exists a Borel function ρ ∈ L p(X, μ) with
arbitrarily small L p-norm such that∫

γ

ρds ≥ 1

for all γ ∈ 
. If inequality (2) is only assumed to hold except on a path family of zero
p-modulus, then we say that g is a p-weak upper gradient of f .
If f is locally Lipschitz, then the upper local Lipschitz constant of f , defined by

Lip ( f )(x) = lim sup
r→0

sup
y∈B(x,r)

dY ( f (x), f (y))

r
,

is an upper gradient of f [7, Proposition 1.11]. In fact, in this case, a slightly more
delicate argument shows that the lower local Lipschitz constant of f , defined by

lip ( f )(x) = lim inf
r→0 sup

y∈B(x,r)

dY ( f (x), f (y))

r
,

is an upper gradient of f . Both statements may fail if f is not assumed to be locally
Lipschitz.
We next briefly discuss integration of metric space valued mappings. See [18,

Sect. 2] and [41, Sect. 3.3] for amore detailed account, and in particular for a discussion
of Bochner integrability. The following notion of local integrability of metric space
valued mappings is perhaps not yet standard.

Definition 2.1 (locally integrable) Amapping f : X → Y is in the class L1loc(X; Y ),
i.e., it is said to be locally integrable, if it is Bochner measurable and there exists a
point z ∈ Y such that the function x �→ dY ( f (x), z) is in the space L1loc(X).

In the case that Y is a Banach space, Definition 2.1 is equivalent to the condition
that the mapping in question is locally Bochner integrable (see [18, Sect. 2]). For
our purposes, it will be sufficient to note that if X is a separable metric space, any
continuous mapping from (X, dX , μ) to another metric space is locally integrable.
Given a measurable subset E of X of finite and positive measure, a Banach space

V , and a locally integrable mapping f : X → V , we define the average value of f on
E using the Bochner integral:

fE = −
∫

E
f dμ = 1

μ(E)

∫
E

f dμ.

Fundamental work of Heinonen and Koskela has resulted in an analytic condition
which guarantees the presence of “many” rectifiable curves in a metric space [16]. Fix
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p ≥ 1. Let V be a Banach space, let f : X → V be a locally integrable mapping, and
let g : X → [0,∞] be a measurable function. The pair ( f, g) satisfies a p-Poincaré
inequality with constant C > 0 and dilation factor σ > 0 if for each ball B in X ,

−
∫

B
| f − fB | dμ ≤ C(diam B)

(
−
∫

σ B
g p dμ

) 1
p

. (3)

The space (X, d, μ) supports a p-Poincaré inequality if there is a constant C > 0
and a dilation factor σ > 0 such that for any locally integrable function f : X → R

and each p-weak upper gradient g of f , the pair ( f, g) satisfies a p-Poincaré inequality
with constant C and dilation factor σ .
By [18, Theorem 4.3] and [21, Theorem 2], if X is complete, doubling and supports

a p-Poincaré inequality, then for any metric space Y , any locally integrable mapping
f : X → Y , any p-weakupper gradient g of f , and any isometric embedding ιofY into
a Banach space V , the pair (ι ◦ f, g) supports a p-Poincaré inequality, quantitatively.

2.3 Measurable Differential Structures

We briefly outline the theory of differentiation in metric spaces developed by Cheeger
[7]. The interested reader could also see the work of Keith [22] and the primer of
Kleiner and Mackay [24].

Definition 2.2 (measurable differentiable structure) A measurable differentiable
structure on a complete metric measure space (X, d, μ) is a countable collection of
pairs {(Xα, ϕα)}α∈I , called coordinate patches, that satisfy the following conditions:

• for each α ∈ I , the set Xα is a measurable subset of X of positive measure,
• the union⋃α Xα is pairwise disjoint and has full measure in X ,
• each ϕα is an N (α)-tuple of Lipschitz functions on X , for some N (α) ∈ N that is
bounded above independently of α,

• for every Lipschitz function f : X → R, there exists a collection of measurable
functions {∂ f/∂ϕα

n : Xα → R}α∈I,n∈{1,...,N (α)} such that

lim
y→x

y∈X\{x}

∣∣∣ f (y) − f (x) −∑N (α)
n=1 (ϕα

n (y) − ϕα
n (x))

∂ f
∂ϕα

n
(x)

∣∣∣
d(y, x)

= 0 (4)

for each α ∈ I and for μ-almost-every point x ∈ Xα , and moreover that this
condition determines the collection {∂ f/∂ϕα

n } uniquely up to sets of measure zero.

Definition 2.3 (differentiability) Let {(Xα, ϕα)}α∈I be a measurable differentiable
structure on a metric measure space (X, d, μ) and let V be a Banach space. Given a
measurable subset S of X , a Bochnermeasurablemapping f : X → V is differentiable
at μ-almost-every point of S if there exists a collection of measurable functions
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{∂ f/∂ϕα
n : Xα ∩ S → V }α∈I,n∈{1,...,N (α)} such that

lim
y→x

y∈X\{x}

∥∥∥ f (y) − f (x) −∑N (α)
n=1 (ϕα

n (y) − ϕα
n (x))

∂ f
∂ϕα

n
(x)

∥∥∥
V

d(y, x)
= 0 (5)

for each α ∈ I and for μ almost-every point x ∈ S ∩ Xα , and moreover that this
condition determines the collection {∂ f/∂ϕα

n } uniquely up to sets of measure zero in
S.

We recall that a Banach space V has theRadon–Nikodym property if every Lipschitz
function f : R → V is differentiable almost everywhere with respect to Lebesgue
measure. The following theorem can be viewed as a Rademacher theorem for Banach
space-valued mappings on metric spaces [9].

Theorem 2.4 (Cheeger–Kleiner) Let (X, d, μ) be a complete and doubling metric
measure space that supports a p-Poincaré inequality for some 1 ≤ p < ∞, and
let {(Xα, ϕα)}α∈I be a measurable differentiable structure on (X, d, μ). Then every
Lipschitz mapping from X to a Banach space with the Radon–Nikodym property is
differentiable almost everywhere in X.

2.4 Lorentz Spaces

We now introduce the Lorentz spaces, which refine the Lebesgue spaces.
Given a measure space (X, μ) and a Banach space (V, ‖ · ‖V ), we denote byM0

the following class of functions:

M0 :=
{
‖ f ‖V ∈ M : f is μ-measurable and finite μ-almost everywhere

}
.

Given f ∈ M0, we define the distribution function ω f : [0,∞) → [0,∞] and the
nonincreasing rearrangement f ∗ : [0,∞) → [0,∞] by

ω f (α) := μ({x ∈ X : ‖ f (x)‖V > α}),
f ∗(t) := inf{α ≥ 0 : ω f (α) ≤ t}.

Let 1 ≤ Q ≤ ∞ and 0 < q ≤ ∞. The (Q, q) Lorentz class consists of those
functions f ∈ M0(X) such that the quantity

‖ f ‖Q,q :=

⎧⎪⎨
⎪⎩
(∫∞
0 (t1/Q f ∗(t))q dt

t

)1/q
, 0 < q < ∞,

sup0<t<∞{t1/Q f ∗(t)}, Q < ∞ and q = ∞,

f ∗(0), q = Q = ∞

is finite. If 1 ≤ q ≤ Q, then ‖ · ‖Q,q defines a semi-norm on the (Q, q) Lorentz class,
and the corresponding normed space (L Q,q(X), ‖ · ‖Q,q) is a Banach space. We refer
to it as the (Q, q) Lorentz space.
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3 The Proof of Theorem 1.2

In this section, we assume the hypotheses of Theorem 1.2. Namely, we fix Q ≥ 1
and 1 ≤ q ≤ Q, and let (X, d, μ) be a complete and Ahlfors Q-regular metric space
that supports a q-Poincaré inequality, and let Y be any metric space. We consider a
continuous and locally integrable function f : X → Y and the set

E = {x ∈ X : lip f (x) = ∞}.
Let us consider the case Q = 1, which implies that q = 1. We assume that lip f ∈

L1,1(X) = L1(X), and that E is countable. An easy extension of [42, Lemma 3.9]
to include metric space valued mappings shows that lip f is a 1 weak upper gradient
of f under precisely our assumptions. As shown in [25, Lemma 2.4], a 1-weak upper
gradient can be approximated in L1(X) by a (non-weak) upper gradient. Hence there is
an upper gradient of f in every L1(X) neighborhood of lip f . Since L1(X)= L1,1(X),
this suffices.
We now assume that Q > 1. In the case that q > 1, the open-endedness result of

Keith and Zhong [26, Theorem 1.0.1] states that X actually supports a q ′ Poincaré
inequality for some q ′ < q , quantitatively. Since a set that has Hausdorff dimension at
most (Q − q) has zero (Q − q ′)-dimensional Hausdorff measure, we assume without
loss of generality that 1 ≤ q < Q, that lip f ∈ L Q,1(X), and that the set E has
σ -finite (Q − q)-dimensional Hausdorff measure. We wish to show that f has an
upper gradient in the space L Q,1(X). Again, [42, Lemma 3.9] implies that lip f is
a q-weak upper gradient of f , and hence the pair ( f, lip f ) satisfies the q-Poincaré
inequality.
It is a well-known principle that if a function-gradient pair ( f, g) satisfies the q-

Poincaré inequality, then the perturbed maximal function

Mq(g)(x) :=
(
sup
r>0

−
∫

B(x,r)

gq dμ

)1/q

provides a pointwise bound almost everywhere on the oscillation of f , i.e., Mq(g)

is a Hajłasz upper gradient of f . See [17, Theorem 3.2] and [18, Proposition 4.6].
Accordingly, there is a constant C ≥ 1, depending only on the data, and a set N of
μ-measure zero such that for each pair of points x, y ∈ X\N ,

dY ( f (x), f (y)) ≤ CdX (x, y)(Mq(lip f )(x) + Mq(lip f )(y)). (6)

The Hardy–Littlewood maximal function theorem [15, Theorem 2.2] and the
Marcinkiewicz Interpolation Theorem [4, Theorem IV.4.13] can be shown to imply the
boundedness of the operator Mq : L Q,1(X) → L Q,1(X). This was essentially stated
in [35] and proven in detail in [40, Sect. 4].
Define g : X → [0,∞] by

g(x) =
{

C Mq(lip f )(x) x /∈ N ,

∞ x ∈ N .
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Then

||g||Q,1 � ||Mq(lip f )||Q,1 � || lip f ||Q,1,

and the inequality (6) implies that for every pair of points x and y in X ,

dY ( f (x), f (y)) ≤ dX (x, y)(g(x) + g(y)). (7)

A short argument, given in [37, Lemmas 4.6 and 4.7], now shows that 4g is an
upper gradient of f .

4 The Proof of Theorem 1.5

In order to prove Theorem 1.5, we first show that the mapping f in question satisfies
Lip f (x) < ∞ for almost every x ∈ X , and then apply a Stepanov-type theorem in
the spirit of Cheeger and Kleiner. The first step follows from [41]. The second step
is based on the Cheeger–Kleiner generalization of Rademacher’s theorem (Theorem
2.4 above), and the usual method of proving Stepanov’s theorem from Rademacher’s
theorem (see, for example, [12, 3.1.9]).A key tool is an extension theorem for Lipschitz
functions from a doubling metric space to a Banach space. Such results can already be
deduced from the arguments in [20], and are certainly implied by the much stronger
results of [27] and [28].
For a mapping f : X → Y between metric spaces, we denote

S f = {x ∈ X : Lip f (x) < ∞}.

See [12, 3.1.9] for a proof of the following standard lemma:

Lemma 4.1 Let (X, d, μ) be a separable metric measure space, (Y, dY ) be any metric
space, and f : X → Y be a mapping. Then there is a sequence {Ck}k∈N of closed
subsets of X with S f = ⋃

k∈N
Ck, such that for each k ∈ N, there are numbers rk > 0

and Lk ≥ 1 such that

• the restriction f |Ck is Lk-Lipschitz, and
• if x ∈ Ck and y ∈ B(x, rk), then

d( f (x), f (y)) ≤ Lkd(x, y).

Theorem 4.2 Let (X, d, μ) be a complete and doubling metric measure space satis-
fying a p-Poincaré inequality for some 1 ≤ p < ∞, and let V be a Banach space
with the Radon–Nikodym property. Then each measurable function f : X → V is
differentiable at almost every point of the set S f = {x ∈ X : Lip f (x) < ∞} with
respect to any measurable differentiable structure on X.

Proof Let {Ck}k∈N be the sequence of closed sets provided by Lemma 4.1, and let
{rk}k∈N and {Lk}k∈N be the associated sequences of radii and constants. Applying
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a suitable Lipschitz extension theorem (for example, [28, Theorem 1.5]), there is a
Lipschitz mapping Fk : X → V such that the restriction of Fk to Ck agrees with f ;
after possibly increasing Lk , we may assume that Fk is also Lk-Lipschitz.
Let {(Xα, ϕα)}α∈I be a measurable differential structure on X . By the Cheeger–

Kleiner generalization of Rademacher’s theorem [9, Theorem 1.5] (see Theorem 2.4),
themapping Fk is differentiable at almost every point of X with respect to this structure.
Let

{∂ Fk/∂ϕα
n : Xα → V }α∈I,n=1,...,N (α) (8)

be the collection of partial derivatives of Fk over all coordinate patches.
In order to show the differentiability of f almost everywhere in the set S f , we will

show that the countable collection

{(∂ Fk/∂ϕα
n

) |S f : S f ∩ Xα → V }α∈I,n=1,...,N (α) (9)

consists of Borel measurable functions satisfying

lim sup
m→∞

∥∥∥ f (ym) − f (x0) −∑N (α)
n=1 (ϕα

n (ym) − ϕα
n (x0))

∂ Fk
∂ϕα

n
(x0)

∥∥∥
V

d(ym, x0)
= 0, (10)

for each α ∈ I , almost every point x0 in S f ∩ Xα , any sequence {ym}m∈N of points in
X\{x0} that converges to x0, and moreover that up to a set of measure zero in S f , the
collection (9) is the only such collection satisfying (10).
The Borel measurability of the functions in (9) follows from the corresponding

statement for the functions in (8) and the decomposition of S f into a countable union
of closed sets. By this decomposition, the Lebesgue differentiation theorem [15, The-
orem 1.8], and the almost everywhere differentiability of the functions {Fk}, we need
only show (10) for a point x0 that is both a density point of Ck ∩ Xα and a point of
differentiability of Fk , for some k ∈ N and α ∈ I .
Let {ym}m∈N ⊆ X \ {x0} be a sequence converging to x0, and fix 0 < ε < 1.

Using the argument from [3, Page 409] and Lemma 4.1, since x0 is a density point
for Ck ∩ Xα , we may find a radius r0 > 0 such that if ym ∈ B(x0, r0), then there is a
point xm ∈ Ck ∩ Xα satisfying

d(ym, xm) ≤ εd(ym, x0), and (11)

|| f (ym) − f (xm)||V ≤ Lkd(xm, ym). (12)

For each m ∈ N, define

L1(m) =
∥∥∥ f (ym) − f (xm) −∑N (α)

n=1 (ϕα
n (ym) − ϕα

n (xm))
∂ Fk
∂ϕα

n
(x0)

∥∥∥
V

d(ym, x0)
,

L2(m) =
∥∥∥ f (xm) − f (x0) −∑N (α)

n=1 (ϕα
n (xm) − ϕα

n (x0))
∂ Fk
∂ϕα

n
(x0)

∥∥∥
V

d(ym, x0)
.
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We claim that
lim sup
m→∞

(L1(m) + L2(m)) = 0, (13)

which implies (10) by the triangle inequality. Again increasing Lk if needed, we may
assume that each chart mapping ϕα

n is also Lk-Lipschitz. By the triangle inequality,
(11), (12), and the fact that xm ∈ Ck ,

L1(m) ≤ ε

⎛
⎜⎝ || f (ym) − f (xm)||V

d(ym, xm)
+
(∑N (α)

n=1 |ϕα
n (ym) − ϕα

n (xm)|
) ∥∥∥ ∂ Fk

∂ϕα
n
(x0)

∥∥∥
V

d(ym, xm)

⎞
⎟⎠

≤ ε

⎛
⎝Lk +

N (α)∑
n=1

Lk

∥∥∥∥ ∂ Fk

∂ϕα
n

(x0)

∥∥∥∥
V

⎞
⎠ ,

whenever ym ∈ B(x0, r0), i.e., for all sufficiently large m. Since the final quantity
above tends to zero as ε tends to zero, this shows that lim supm→∞ L1(m) = 0.
A similar argument using the triangle inequality, (11), and the fact that xm and x0

are points of Ck imply that

L2(m) ≤
∥∥∥ f (xm) − f (x0) −∑N (α)

n=1 (ϕα
n (xm) − ϕα

n (x0))
∂ Fk
∂ϕα

n
(x0)

∥∥∥
V

d(xm, x0)

· d(xm, ym) + d(ym, x0)

d(ym, x0)

≤
∥∥∥Fk(xm) − Fk(x0) −∑N (α)

n=1 (ϕα
n (xm) − ϕα

n (x0))
∂ Fk
∂ϕα

n
(x0)

∥∥∥
V

d(xm, x0)
· (1+ ε).

Since Fk is differentiable at x0, the above quantity tends to zero as m tends to
infinity. This completes the proof of (13) and hence of (10).
We now show that the collection (9) is unique up to a set of measure zero in S f .

By the uniqueness of the collection (8), it suffices to show that if x0 is a point of
density of some Ck ∩ Xα , and {gn}N (α)

n=1 is a collection of Borel measurable functions
satisfying the following implication: If {ym} ⊆ X is a sequence converging to x0, then
the validity of

lim sup
m→∞

∥∥∥ f (ym) − f (x0) −∑N (α)
n=1 (ϕα

n (ym) − ϕα
n (x0))gn(x0)

∥∥∥
V

d(ym, x0)
= 0, (14)

implies the validity of

lim sup
m→∞

∥∥∥Fk(ym) − Fk(x0) −∑N (α)
n=1 (ϕα

n (ym) − ϕα
n (x0))gn(x0)

∥∥∥
V

d(ym, x0)
= 0. (15)

The proof of this is analogous to the proof of (10) and is left to the reader. ��

13

ht
tp

://
do

c.
re

ro
.c

h



Proof of Theorem 1.5 We fix Q ≥ 1, and let (X, d, μ) be a complete and Ahlfors
Q-regular metric space that supports a Q-Poincaré inequality. Moreover, let V be
a Banach space that has the Radon–Nikodym property, i.e., every Lipschitz function
fromR to V is differentiable almost everywhere with respect to the Lebesgue measure
onR. We consider a continuous f : X → V that is assumed to have an upper gradient
in the Lorentz space L Q,1.
It follows from [41, Corollary 6.7] (taking f (X) as target space) that f satisfies

the Q-Rado–Reichelderfer condition, meaning that there is a number σ > 0 and a
non-negative function � ∈ L1(X) such that for any ball B in X ,

diam( f (B))Q ≤
∫

σ B
� dμ.

An easy computation now shows that Lip f (x) < ∞ for almost every x ∈ X [41,
Proposition 6.4]. Theorem 4.2 completes the proof. ��

5 Non-embedding Results

We now apply the results of the previous sections to prove a non-embedding result,
Theorem 1.6. The material in the preparatory first two subsections might be familiar
to experts.

5.1 Existence and Basic Properties of Weak Tangent Mappings

We beginwith the existence and properties of aweak tangentmapping of a bi-Lipschitz
embedding. This construction is standard and can be accomplished in several differ-
ent but equivalent ways; see, for example, [7] or [1]. We include it for convenience
and because we will later refer to specific parts of the construction. We follow the
method of David and Semmes [11]. This approach has the advantage of being con-
crete although somewhat cumbersome in notation; it uses the Assouad embedding
theorem to transfer the abstract notion of pointed Gromov–Hausdorff convergence to
the Euclidean setting. In Euclidean space, the relevant notions of convergence are as
follows.
A sequence {Fj } j∈N of non-empty closed subsets of RN converges to a non-empty

closed subset F of RN if for all r > 0,

lim
j→∞ sup{dist(x, F) : x ∈ Fj ∩ B(0, r)} = 0, and
lim

j→∞ sup{dist(x, Fj ) : x ∈ F ∩ B(0, r)} = 0,

where we use the convention sup ∅ = 0.
A sequence of functions { f j : Fj → R

N } j∈N converges to a function f : F → R
N

if the sequence of sets {Fj } j∈N converges to the set F and for every convergent
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sequence {x j ∈ Fj } j∈N,

f

(
lim

j→∞ x j

)
= lim

j→∞ f j (x j ).

We recall that a pointed metric space is a triple consisting of a set, a metric on the
set, and a point in the set (called the base point). We abuse notation by denoting, for
N ∈ N, the pointed metric space (RN , || · ||RN , 0) byR

N . A pointed mapping package
is a triple (A, B, f ) where A and B are pointed metric spaces, and f is a function
between the sets underlying A and B that respects the base point.
We now assume that (X, dX , x0) is a complete and doubling pointed metric space,

and that C ⊆ X is a closed set containing x0. We denote by (V, || · ||V ) a Banach
space. We consider an embedding ι : X ↪→ V , and we assume that there is a number
A ≥ 1 such that the restriction ι|C is an A-bi-Lipschitz embedding of C into V .
Take any sequence of scales {r j } j∈N tending to zero. For each j ∈ N, define pointed

metric spaces

C j = (C, dX/r j , x0),

ι(C) j = (ι(C), || · ||V /r j , ι(x0)).

Note that these spaces are again complete and doubling with a uniform constant.
Gromov’s compactness theorem, Lemma 8.13 in [11], implies that for some subse-
quence of the scales {r j } j∈N (which we do not relabel) the corresponding sequences
of pointed metric spaces converge, and we denote the limit spaces by

Cx0 = (C∞, d∞, x∞) and ι(C)ι(x0) = (ι(C)∞, ρ∞, y∞),

respectively. The space Cx0 is called a weak tangent to C at x0, and ι(C)ι(x0) is named
analogously.
After passing to another subsequence of {r j } j∈N (again, without relabeling), we

may assume that pointed mapping packages {(C j , ι(C) j , ι)} j∈N converge to a pointed
mapping package (Cx0 , ι(C)ι(x0), ι∞); see Lemma 8.22 in [11].
The meaning of the above convergence is the following:

• there are dimensions N , M ∈ N, exponents α, β ∈ (0, 1], constants K , L ≥ 1,
sequences of pointed mapping packages

{(C j , R
N , f j )} j∈N, {(ι(C) j , R

M , g j )} j∈N,

and “limit” pointed mapping packages

(Cx0 , R
N , f ), (ι(C)ι(x0), R

M , g),

where each of { f j } j∈N and f is (α, K )-bi-Hölder, and each of {g j } j∈N and g is
(β, L)-bi-Hölder.
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• the sequences of subsets { f j (C j )} j∈N and {g j (ι(C j ))} j∈N converge to f (Cx0) and
g(ι(C)ι(x0)), respectively,

• the maps

dX ( f −1
j (·), f −1

j (·))
r j

: f j (C j ) × f j (C j ) → R,

||g−1
j (·) − g−1

j (·)||V
r j

: g j (ι(C) j ) × g j (ι(C) j ) → R,

g j ◦ ι ◦ f −1
j : f j (C) → g j (ι(C)),

converge to

d∞( f −1(·), f −1(·)) : f (Cx0) × f (Cx0) → R,

ρ∞(g−1(·), g−1(·)) : g(ι(C)ι(x0)) × g(ι(C)ι(x0)) → R,

g ◦ ι∞ ◦ f −1 : f (Cx0) → g(ι(C)ι(x0)),

respectively.

It can easily be seen that the limit map ι∞ : Cx0 → ι(C)ι(x0) is also an A-bi-
Lipschitz embedding. Moreover, the doubling condition on X , and hence C , persists
in the limit: Cx0 and thus ι(C)ι(x0) are also doubling.

5.2 Properties of Weak Tangent Mappings at Points of Differentiability

We now additionally assume the existence of a measure μ on (X, dX ) so that the
resulting metric measure space (X, dX , μ) has a measurable differentiable structure
{(Xα, ϕα)}α∈I , and that the embedding ι : X ↪→ V is differentiable almost everywhere
in C , with differentials { ∂ι

∂ϕα
n

: (C ∩ Xα) → V }α∈I,n∈{1,...,N (α)}. Recall that this means
that for each α ∈ I and μ-almost every point x0 ∈ C ∩ Xα ,

lim
x→x0

x∈X\{x0}

∣∣∣ι(x) − ι(x0) −∑N (α)
n=1 (ϕα

n (x) − ϕα
n (x0))

∂ι
∂ϕα

n
(x0)

∣∣∣
d(x, x0)

= 0, (16)

and moreover that this condition determines the collection { ∂ι
∂ϕα

n
}n=1,...,N (α) uniquely

up to sets of measure zero in C ∩ Xα .
The following proposition, which follows immediately from the definitions, says

that given a point x0 ∈ C ∩ Xα at which (16) holds, the image ι(C) is contained up to
first order in the span of the differentials of ι at x0, a concept analogous to definitions
introduced by Cheeger and Kleiner [8]. We denote by Fx0 the span in V of the vectors
{ ∂ι
∂ϕα

n
(x0)}n=1,...,N (α).
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Proposition 5.1 Let x0 ∈ C ∩ Xα be a point at which (16) holds. Then

lim sup
r→0

sup
x∈BX (x0,r)∩C

distV (ι(x) − ι(x0), Fx0)

r
= 0.

We now use this information to bound the dimension of the tangent spaces to C by
the dimension of the differentiable structure on X . When C = X this type of result
can be found in [7, Sect. 14] and is also mentioned in [8], although we have not been
able to find an explicit proof of the proposition below in the literature.

Proposition 5.2 Let x0 ∈ C ∩ Xα be a point at which (16) holds. Then the weak
tangent space ι(C)ι(x0) isometrically embeds into Fx0 .

Proof Let y be a point in the weak tangent space ι(C)ι(x0). By definition, we may
find a sequence of points x j ∈ C such that lim j→∞ g j (ι(x j )) = g(y) ∈ R

M . As the
mapping in a pointed mapping package respects base points, g j (ι(x0)) = 0 ∈ R

M for
all j ∈ N. This implies that

||g(y)||RM = lim
j→∞ ||g j (ι(x j )) − g j (ι(x0))||RM ≥ lim

j→∞
1

L

( ||ι(x j ) − ι(x0)||V
r j

)β

.

This shows that the sequence
{

ι(x j )−ι(x0)
r j

}
j∈N
is bounded in (V, || · ||V ). Moreover,

there is a quantity c = c(A, L , β, y), such that for all j ∈ N,

dX (x j , x0) ≤ cr j .

Let k ∈ N. Proposition 5.1 now implies the existence of a positive integer J (k)

such that for all j ≥ J (k), there is a point y j ∈ Fx0 satisfying

‖ι(x j ) − ι(x0) − y j‖V ≤ 1
k

r j . (17)

Without loss of generality, we may assume that J (k) < J (k + 1) for all k ∈ N.
By passing to a subsequence, we may further assume that r j = rJ ( j). The triangle
inequality now implies that the sequence {y j/r j } j∈N is bounded. As each element of
the sequence is in the finite-dimensional subspace Fx0 , after passing to a subsequence
we may assume that {y j/r j } j∈N converges to a point y ∈ Fx0 . It now follows from
(17) that

lim
j→∞

ι(x j ) − ι(x0)

r j
= y ∈ Fx0

as well.
We wish to define a map G : ι(C)ι(x0) → Fx0 by G(y) = y. Unfortunately, given

points y andw in ι(C)ι(x), the subsequences of the scales {r j } j∈N used to define y and
w might not coincide. We overcome this using the separability of the doubling space
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ι(C)ι(x0). Let {zi }i∈N be a countable dense set in ι(C)ι(x0). As argued above, we may
find an infinite subset S1 ⊆ N, a sequence {x1j } j∈S1 ⊆ C , and a point z1 ∈ Fx0 such
that

g(z1) = lim
j→∞
j∈S1

g j (ι(x1j )) and limj→∞
j∈S1

ι(x1j ) − ι(x1)

r j
= z1 ∈ Fx0 . (18)

We now define G(z1) = z1. We continue inductively, defining G(zi+1) similarly
but requiring that Si+1 ⊆ Si .
We now check that G is an isometric embedding of the set {zi }i∈N into Fx0 . Choose

i < k in N, and let {xi
j } j∈Si and {xk

j } j∈Sk be the sequences in C used to define G(zi )

and G(zk) respectively. Since Sk ⊆ Si , we have

g(zi ) = lim
j→∞
j∈Sk

g j (ι(xi
j )) and G(zi ) = lim

j→∞
j∈Sk

ι(xi
j ) − ι(x0)

r j
,

g(zk) = lim
j→∞
j∈Sk

g j (ι(xk
j )) and G(zk) = lim

j→∞
j∈Sk

ι(xk
j ) − ι(x0)

r j
.

Since the functions{ ||g−1
j (·) − g−1

j (·)||V
r j

: g j (ι(C) j ) × g j (ι(C) j ) → R

}
j∈N

converge to the function

ρ∞(g−1(·), g−1(·)) : g(ι(C)ι(x0)) × g(ι(C)ι(x0)) → R,

we see that

ρ∞(zi , zk) = lim
j→∞
j∈Sk

||ι(xi
j ) − ι(xk

j )||V
r j

= ||G(zi ) − G(zk)||V ,

showing thatG is an isometric embedding. Since {zi }i∈N is dense in ι(C)ι(x0), the map
G extends uniquely to an isometric embedding of ι(C)ι(x0) into the complete space
Fx0 . ��
Since the tangent mapping ι∞ : Cx0 → ι(C)ι(x0) induced by ι : C ↪→ V is bi-

Lipschitz, we may record the following corollary.

Corollary 5.3 Let x0 ∈ C ∩ Xα be a point at which (16) holds. Then the weak tangent
space Cx0 admits a bi-Lipschitz embedding into Fx0 .

We note that in fact the crucial property of ι used in proving Proposition 5.2 and
Corollary 5.3 was not the differentiability (16) at the point x0, but rather the fact that
the image ι(C) is contained up to first order at x0 in a finite-dimensional space.
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5.3 The Proof of Theorem 1.6

We consider a complete and Ahlfors Q-regular metric space (X, d, μ) that supports a
Q-Poincaré inequality, Q ≥ 1, and a Banach space V with the Radon–Nikodym prop-
erty. We equip (X, d, μ) with a measurable differentiable structure {(Xα, ϕα)})α∈I .
Let ι : X → V be an embedding with an upper gradient in the Lorentz space

L Q,1(X). As discussed in the proof of Theorem 1.5, results in [41, Sect. 6] imply that

HQ
X (X\Sι) = 0 andHQ

V (ι(X)\ι(Sι)) = 0. (19)

In addition, the hypotheses of Theorem 1.6 state that

HQ
V (ι(X)\Sι−1) = 0 andHQ

X (X\ι−1(Sι−1)) = 0. (20)

By Lemma 4.1, we may find a countable collection of closed sets {Ck}k∈N in X
such that ι|Ck is Lipschitz and

Sι =
⋃
k∈N

Ck .

Since X is doubling and hence separable, the space ι(X) is also separable. Again
using Lemma 4.1, we find a countable collection of closed sets {Dl}l∈N in Y such that
ι−1|Dl is Lipschitz and

Sι−1 =
⋃
l∈N

Dl .

Fix k ∈ N. We note that ι(Ck) is closed in the separable space ι(X), as ι is an
embedding. For each l ∈ N, set

Dk,l = ι(Ck) ∩ Dl and Ck,l = ι−1(Dk,l).

Then, for each pair k, l ∈ N, the set Ck,l is closed and ι|Ck,l is bi-Lipschitz. Moreover,
(19) and (20) imply that

HQ
X

⎛
⎝X\

⋃
k,l∈N

Ck,l

⎞
⎠ = 0.

Let (Xα, ϕα) be a coordinate patch of minimal dimension N (α) = N . Then we
may find k, l ∈ N so that

HQ
X (Ck,l ∩ Xα) > 0.

Theorem 4.2 implies that ι is differentiable at almost every point Sι, and so we
may find a point x0 ∈ Ck,l ∩ Xα that is both a density point of Ck,l and a point of
differentiability of ι.
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From the discussion in Sect. 5.1, we may find some sequence of scales {r j } tending
to zero such that the pointed metric spaces

X j = (X, dX/r j , x0)

converge in the sense described in Sect. 5.1 to a weak tangent which we denote by
Xx0 . Since X is Ahlfors Q-regular, it follows that Xx0 , when equipped with the Q-
dimensional Hausdorff measure, is Ahlfors Q-regular as well [11, Lemma 9.7].
For ease of notation, we denote Ck,l simply by C . Define pointed metric spaces

C j = (C, dX/r j , x0),

ι(C) j = (ι(C), || · ||V /r j , ι(x0)).

As discussed in Sect. 5.1, after passing to a subsequence of the scales {r j } (which
we do not re-label), the pointed mapping packages {(C j , ι(C) j , ι)} j∈N converge to
a pointed mapping package (Cx0 , ι(C)ι(x0), ι∞). Moreover, the mapping ι∞ is bi-
Lipschitz. By [11, Lemmas 9.12 and 9.13], the fact that x0 is a density point of C
implies that Cx0 and Xx0 are isometric. Hence, Cx0 is also Ahlfors Q-regular when
equipped with the Q-dimensional Hausdorff measure. Corollary 5.3 now implies that
Cx0 isometrically embeds into the span of the differentials of ι at x0, which is a vector
space of dimension at most N . This implies that Q ≤ N , as desired.

6 The Sharpness of Theorem 1.2

In this section we prove Theorem 1.4. For ease of notation we denote the dimension
of the ambient cube by N ≥ 2, and instead use n ∈ N as an iterative index.
Our construction requires a preliminary result regarding the capacity of a point.

Proposition 6.1 Let S be a rearrangement invariant Banach function space on R
N

containing a compactly supported function g /∈ L N ,1(RN ). Then for all points a ∈ R
N ,

ε > 0 and all τ ∈ [0, 1], there is a Lipschitz function φ : R
N → [0, τ ] satisfying

• the support of φ is a compact subset of B(a, ε),
• φ is constant with value τ on a neighborhood of the point a,
• ||Lipφ||S ≤ ε.

Proof It suffices to consider the case that τ = 1 and a = 0. Let g : R
N → R be a

compactly supported function in S\L N ,1(RN ); denote the support of g by K . Then

||g||L N ,1 =
∫ LN (K )

0
t
1
N −1g∗(t) dt = ∞. (21)

Define u : [0,LN (K )] → R by

u(r) =
∫ LN (K )

r
t
1
N −1g∗(t) dt.
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Since g ∈ S, the axioms of a Banach function space imply that it is finite μ-almost
everywhere. Hence g∗(r) < ∞ for each r > 0, and so the non-increasing property of
g∗ implies that

u(0) − u(r) = ∞ (22)

for every r > 0.
Fix ε > 0, and denote the volume of the unit ball in R

N by �N . For 0 < δ < ε/2,
define φε,δ : B(0, ε) → [0, 1] by

φε,δ(x) =

⎧⎪⎨
⎪⎩
1 0 ≤ |x | ≤ δ,

λu(�N |x |N ) − � δ ≤ |x | ≤ ε/2,

0 |x | > ε/2,

where λ,� ≥ 0 are chosen to make φε,δ continuous, i.e.,

λ = (u(�N δN ) − u(�N (ε/2)N ))−1, and � = λu(�N (ε/2)N ).

Acalculation shows thatφε,δ is Lipschitz, and that there is a constantC > 0 depending
only on N such that for almost every x ∈ R

N ,

Lip φε,δ(x) ≤
{

Cλg∗(�N |x |N ) δ ≤ |x | ≤ ε/2,

0 otherwise.

Another calculation shows that the functions x ∈ R
N �→ g∗(�N |x |N ) and

t ∈ [0,∞) �→ g∗(t) have the same distribution functions. Since S is rearrangement
invariant, it follows that the function x ∈ R

N �→ g∗(�N |x |N ) has finite S-norm, and
so

||Lip φε,δ||S ≤ Cλ||g∗(�N | · |N )||S .

By (21) and (22), the quantity λ tends to 0 as δ tends to 0. Thus, for sufficiently
small δ, the function φε,δ satisfies the stated requirements. ��
We also require one elementary lemma for the proof of Theorem 1.4.

Lemma 6.2 There exists a sequence {an}n∈N of positive real numbers such that

∞∏
n=0

(
(1− an)N − (2an)N

)
> 0.

Proof Noting that

lim
x→0+

(1− x)N − (2x)N = 1
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we may choose the sequence {an} so that for each n ∈ N

(1− an)N − (2an)N > e−2−n
.

The desired inequality now follows from the calculation that

log

( ∞∏
n=0

(
(1− an)N − (2an)N

))
=

∞∑
n=0
log

(
(1− an)N − (2an)N

)

> −
∞∑

n=0
2−n > −∞.

Proof of Theorem 1.4 Let { jn}n∈N be a sequence of positive integers satisfying

j0 = 0, jn ≡ 0 mod 3, and jn+1 ≥ 9( jn + 1).

Set

kn = 2 jn
3
and ln = jn+1

3
+ 2 jn
3

+ 1.

By choosing the sequence { jn} to grow fast enough, we may assume that for each
n ∈ N,

2 jn−ln = 2− 13 ( jn+1− jn)−1 ≤ an, (23)

where {an}n∈N is the sequence from Lemma 6.2.
We use these parameters to define a sequence of collections of dyadic cubes in

[−1, 1]N . Let

Q0 = [−1, 1]N and Q0 = {Q0}.

Fix n ∈ N, and assume that the collection of Qn of cubes of side-length 2 · 2− jn

has been defined. Given Q ∈ Qn with center denoted by a, consider the standard
subdivision of Q into essentially disjoint cubes of side-length 2 · 2− jn+1 . We declare
such a sub-cube to be an element of the collection Q(Q) if its center a′ satisfies

2(2−ln ) + 2− jn+1 ≤ ||a − a′||∞ ≤ 2− jn − 2−ln − 2− jn+1 .

The set Q(Q) is non-empty if the difference between the upper and lower bounds
above is at least 21− jn+1 . A calculation using the estimate jn+1 ≥ 9( jn + 1) shows
that this is always the case. We inductively define

Qn+1 = {Q(Q) : Q ∈ Qn}.

Given a cube Q ∈ Qn , we denote the concentric sub-cube of side-length 2 ·2−ln by
IQ . Note that for any Q ∈ Qn , the cube IQ is disjoint from each cube inQn+1. Hence,
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Q

IQ

2−ln

2−jn

2−ln

Fig. 1 A cube Q ∈ Qn , shown with the collection of subcubesQ(Q)

given positive integers n and m and cubes Q ∈ Qn and Q′ ∈ Qm , the set IQ ∩ IQ′ is
empty unless Q = Q′. See Fig. 1.
For each n ∈ N, fix a number εn > 0 so small that

(cardQn) · εn ≤ 2−n .

By Proposition 6.1, for each Q ∈ Qn , there is a Lipschitz function

φQ : R
N → [0, 2−kn ]

with the following properties:

• φQ ≡ 2−kn on a neighborhood of the center of IQ ,
• φQ ≡ 0 on a neighborhood of the boundary of IQ ,
• ||Lip φQ ||S ≤ εn .

We define a function f : R
N → R by declaring that for each n ∈ N and Q ∈ Qn ,

f |IQ = φQ,

and setting f ≡ 0 on the remaining subset of RN .
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We first claim that Lip f (x) < ∞ for every x ∈ R
N . Set

F =
{

x ∈ R
N : there is a largest n ∈ N such that x ∈

⋃
Q∈Qn

Q

}
,

I =
{

x ∈ R
N : x ∈

⋃
Q∈Qn

Q0 for every n ∈ N

}
,

where Q0 denotes the interior of the cube Q. Note that these sets partition R
N by

construction.
If x ∈ F then either f is identically zero in a neighborhood of x or f ≡ φQ′ on a

neighborhood of x , for some Q′ ∈ Qm, m ∈ N. In either case, lip f (x) < ∞.
If x ∈ I, and Q ∈ Qn contains x , then

dist

⎛
⎝x,

n⋃
i=0

⋃
Q∈Qi

IQ

⎞
⎠ ≥ 2−ln .

Thus, if y ∈ R
N satisfies |x − y| < 2−ln , then | f (x) − f (y)| ≤ 2−kn+1 . This

implies that

lip f (x) ≤ lim inf
n→∞

2−kn+1

2−ln
= 0.

From the above discussion, we see that for all x ∈ R
N ,

lip f (x) =
∞∑

n=0

∑
Q∈Qn

lipφQ(x),

and thus, by the choice of the sequence {εn}n∈N,

|| lip f ||S ≤ 2.

We now show that f fails to be differentiable at any point x ∈ I. For each n ∈ N,
we may find a cube Q ∈ Qn containing x in its interior; denote the center of Q by a.
Let b be the point of intersection of the boundary of Q and the ray emanating from a
passing through x . Then

| f (a) − f (b)|
||a − b|| ≥ 2−kn

√
N · 2− jn

= 2
jn/3

√
N

.

The triangle inequality and the collinearity of a, b, and x now imply that there is a
point y ∈ {a, b} satisfying

| f (x) − f (y)|
||x − y|| ≥ 2

jn/3

√
N

.
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It follows that

lip f (x) ≥ lim sup
n→∞

2 jn/3

2
√

N
= ∞.

This implies that f is not differentiable at x .
Finally, we show that I has positive N -dimensional Hausdorff measure. First, note

that for any n ∈ N and Q ∈ Qn ,

HN (Q) = (2 · 2− jn )N andHN

⎛
⎝ ⋃

Q′∈Q(Q)

Q′
⎞
⎠

= (2 · 2− jn − 2 · 2−ln )N − (4 · 2−ln )N .

Thus

HN
(⋃

Q′∈Q(Q) Q′
)

HN (Q)
= (1− 2 jn−ln )N − (2 · 2 jn−ln )N .

Note that
HN (I) = lim

n→∞ HN (∪Q′∈Qn Q′).

Further, for n ≥ 1,

HN

⎛
⎝ ⋃

Q′∈Qn

Q′
⎞
⎠ = HN

⎛
⎝ ⋃

Q∈Qn−1

⋃
Q′∈Q(Q)

Q′
⎞
⎠ =

∑
Q∈Qn−1

HN

⎛
⎝ ⋃

Q′∈Q(Q)

Q′
⎞
⎠

=
∑

Q∈Qn−1

HN
(⋃

Q′∈Q(Q) Q′
)

HN (Q)
· HN (Q)

=
(
(1− 2 jn−1−ln−1)N − (2 · 2 jn−1−ln−1)N

)
HN

⎛
⎝ ⋃

Q∈Qn−1

Q

⎞
⎠ .

Thus

HN (I) = HN ((−1, 1)N ) ·
∞∏

n=0

(
(1− 2 jn−ln )N − (2 · 2 jn−ln )N

)
.

Inequality (23) and Lemma 6.2 now complete the proof. ��
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