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Networks play a prominent role in the study of complex systems of interacting

entities in biology, sociology, and economics. Despite this diversity, we

demonstrate here that a statistical model decomposing networks intomatching
and centrality components provides a comprehensive and unifying quantifi-

cation of their architecture. The matching term quantifies the assortative

structure in which node makes links with which other node, whereas the

centrality term quantifies the number of links that nodes make. We show, for

a diverse set of networks, that this decomposition can provide a tight fit to

observed networks. Then we provide three applications. First, we show that

the model allows very accurate prediction of missing links in partially

known networks. Second, when node characteristics are known, we show

how the matching–centrality decomposition can be related to this external

information. Consequently, it offers us a simple and versatile tool to explore

how node characteristics explain network architecture. Finally, we demon-

strate the efficiency and flexibility of the model to forecast the links that a

novel node would create if it were to join an existing network.

1. Introduction
The modern world is an increasingly connected place, through transport, social,

and economic networks, and via our knowledge of interactions at the ecological

or molecular level [1–3]. It is increasingly recognized that such systems should be

studied globally, and networks of interacting entities provide us a powerful rep-

resentation of their structure and function. Research on network theory parallels

this growth [3]. A first body of research concentrates on the fact that observed net-

works are often considered to be only partially known. Thiswould be the case in a

food web, for instance, in which some real interactions may have yet to be

observed, or a protein interaction network where not all pairwise combinations

had been tested in the laboratory. Thus, observed links are typically considered

as certain, whereas an absence of a link between a pair of nodes may reflect an

absence of information rather than a real absence of interaction. Models have

been devised to predict these ‘missing links’ and thus correct a network dataset

for this incomplete sampling or direct future research towards these candidate

interactions [4,5].

A second domain aims to determine if the structure of these networks exhibits

basic generalities, and to uncover the processes that may generate these patterns.

This aspect has been tackled with a variety of mostly comparative approaches,

such as those treating the classification of networks [6,7], motifs [8], or stochastic

models [9]. Progress in this undertaking could be achieved if there were general

methods to relate network structure to characteristics of the nodes. For example,

body size has been related to patterns in food webs [10], or country politics and

trade to the organization of military conflict networks [11].

A third potential application of research is network forecasting, which aims

to predict the links made by new nodes joining a network. Many current issues

facing human society would benefit from the ability to forecast networks,

such as for the ecological interactions of invasive species [12], the molecular
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interactions of a newly discovered protein [13], or the links

of a subversive social group [14]. However, there exists no

general framework for this forecasting. Here we provide a

general model that can be applied to all three domains of

network research.

The key feature of ourmethodology is the development of a

model for the probability of interaction between nodes based

on the decomposition of network architecture into matching
and centrality terms. The matching term aims to quantify assor-

tative structure in who makes links with whom [15–17],

whereas the centrality term captures variation in the number

of links that nodes make. Typically, research on network struc-

ture has focused on patterns in either assortativeness or

centrality. However, the architecture of empirical networks is

usually a product of both features simultaneously [18]. Here,

we take into consideration both patterns. Specifically, the

decomposition is implemented at the node level, with each

node characterized by latent traits of matching and centrality.
Latent traits are variables whose values are unknown a priori,
but can be estimated a posteriori from the network adjacency

matrix itself [19,20]. The model, called the matching–centrality
model, is implemented in such a way that the closer the

matching traits of two nodes, the greater the probability that

they are linked, and the higher the centrality trait of a node,

the greater the probability that this node makes links. This

model belongs to the general class of ‘hidden’ variables

models [5,19–24], for which some variables are unknown

a priori, but can be estimated from the data a posteriori. In our

model, these ‘hidden’ variables are the latent traits of matching
and centrality.

Based on a dataset of 86 networks from disparate fields, we

show that this decomposition intomatching and centrality terms

can provide a precise fit to observed networks. Then, we pro-

vide three applications of the matching–centrality model.

First, we show that the model can be used to accurately predict

missing links. Second, we show that the latent traits ofmatching
and centrality are not just abstract traits, but can be linked to

external information about the nodes and thus provide a

means to study network organization. For example, in a

food web, the latent traits are related to the body size and

phylogeny of the interacting species. Finally, by placing

latent traits as intermediates between the network structure

and characteristics of the nodes, themodel offers the possibility

to forecast the interactions made by novel nodes when joining

the network. For example, in a spatial network of mammal

communities on mountains, we show that we can accurately

predict the mammal fauna of unsampled mountains, or in a

food web the trophic links for a new incoming species.

2. Methods
We formulate our matching–centralitymodel for undirected bipar-

tite networks, but it can be applied to any kind of undirected or

directed network, as explained below. Bipartite networks are

made of two sets of nodes (S1 and S2) with connections only

between them and not within; plant–pollinator networks provide

a classical example. Let A be the adjacency matrix of the network,

i.e. aij ¼ 1 if there is a link between nodes i and j, and zero other-

wise. The model characterizes each node i in set S1 by a latent

trait of centrality denoted c1,i, and by d � 1 latent traits ofmatching
denoted m1

1,i, . . . , m
d
1,i [15–17], and similarly, each node j in set S2

by a centrality trait c2,j and matching traits m1
2,j, . . . , m

d
2,j: The value

of d gives the number of matching space dimensions and can be

tuned to improve the goodness of fit of the model. We take a stat-

istical approach, in which the probability of existence of a link

between a pair of nodes i and j (hereafter the linking probability

Pðaij ¼ 1Þ) is modelled through its logit [24]. Ourmodel is given by

log
Pðaij ¼ 1Þ

1� Pðaij ¼ 1Þ
� �

¼ �
Xd
k¼1

lkðmk
1,i �mk

2,jÞ
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
matching term

þ d1c1,i þ d2c2,j|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
centrality term

þm,

ð2:1Þ
where d1, d2, l1, . . . , ld are positive constants that scale the rela-

tive importance of the matching and centrality terms and m the

common intercept. Figure 1 depicts patterns in interaction net-

works that the model is able to capture. When only the matching
term is present, the model is perfectly tailored to fit a modular

structure (figure 1a) [3,25,26]. In turn, the centrality term can per-

fectly fit highly nested networks [29] (figure 1c), because it

captures the variation in node degree [3,9,27,28]. The latent traits

of centrality are usually highly correlated to node degree. There-

fore, when both the matching and the centrality terms are present,

the model can fit simultaneously the modular and nested

components of network structure (figure 1b).
For a given dimension d, the model parameters and latent

trait values for each node can be estimated using a simulated

matching term only matching and centrality term  centrality term only

m2

m1 m1

m2 c2 c2

c1 c1

d1 = d2 = 0 d1, d2, l > 0 l = 0

(a) (b) (c)

Figure 1. The matching–centrality model. The probability of a link between two nodes is decomposed into a matching term, quantifying assortative structure in
who makes links with whom (a), and a centrality term, capturing the fact that nodes can vary considerably in their degree (c). The aim is to simultaneously quantify
latent traits of the nodes that are responsible for the matching (m1, m2) and centrality (c1, c2) in the network (b). Panels (a–c) show adjacency matrices of three
simulated networks, where a black dot represents a link and colours, from yellow to red, represent increasing linking probability computed with the model. The
nodes of the matrices are ordered according to their matching or centrality traits. If a network exhibits a modular structure [3,25,26], this will be captured by the
matching term, whereas variation in node degree [3,9,27,28] is captured by the centrality traits (see also figure 3).

2

ht
tp

://
do

c.
re

ro
.c

h



annealing algorithm [30]. The likelihood of the model is

computed by

L ¼
Y
i,j

Pðaij ¼ 1Þaij ð1� Pðaij ¼ 1ÞÞð1�aijÞ, ð2:2Þ

i.e. we assume the presence/absence of links follows a multi-

Bernoulli distribution and that the probabilities are conditionally

independent given the parameters and the latent traits. More-

over, to make the parameters and the latent traits of the model

uniquely defined, we have to impose some constraints

(1) All vectors of latent traits mk
1, m

k
2, c1, and c2 are orthogonal

to the unit vector,

(2) All vectors of matching traits mk
1ðk ¼ 1, � � � , dÞ are pairwise

orthogonal, and similarly for the vectors mk
2, and

(3) The length of the vectors mk
1, c1 is set to

ffiffiffiffiffiffiffi
nS1

p
, where nS1 is

the number of nodes in set S1: Similarly for set S2, the

length of the vectors mk
2, c2 is set to

ffiffiffiffiffiffiffi
nS2

p
:

Application to other types of network requires simple modifi-

cations: for directed unipartite networks, e.g. food web or military

conflict networks, the two sets of nodes reflect the function of the

nodes (consumer and resource species, initiator and target nations,

respectively); thus, a node can appear in both sets. For undirected

unipartite networks such as social networks, the adjacency matrix

is symmetric; we have to impose mk
1,i ¼ mk

2,i, c1,i ¼ c2,i, d1 ¼ d2,

and Pðaii ¼ 1Þ ¼ 0 (the probability of a self-link is equal to zero).

For more complex networks like directed or undirected multi-

partite networks, linking probabilities must be set to 0 for pairs

of nodes that, by definition, cannot be linked. Note that our

model is designed here for qualitative networks; its application

to weighted networks would require modifying the likelihood

function (equation (2.2)) to include the probability density for

the weights of the links, in a similar way as in zero-inflated

models [31].

3. Results
(a) Performance of the model
We illustrate the ability of the matching–centrality model to

capture network architecture using a set of 86 examples

from disparate fields: social interactions in Zachary’s karate

club network [32], co-appearance of characters in the novel

Les Misérables [33], United States college football (USCF)

games of the USCF teams [34], social networks of long-lasting

association between 62 dolphins [35], associations between the

terrorists involved in the September 11 attacks [14], military

conflicts between countries [11], a subset of the network of

physical interactions between the nuclear proteins in Saccharo-
myces cerevisiae [2,36], the neural network of Caenorhabditis
elegans [37], 18 food webs, 59 mutualistic ecological networks

[38], and the presence/absence of data of mammal species on

peakswithin the southernRockyMountains [39] (see electronic

supplementary material for details; data can be downloaded

from Dryad [40]). Once fitted, the model provides a new

visual representation of the network in the latent trait space

(see electronic supplementary material, figures S1–S11).

We fit the model for one and two dimensions of matching
traits, and calculate the fraction of correctly fitted links and

the McFadden’s pseudo-R-squared [41] as metrics for its per-

formance. The fraction of correctly fitted links is defined as

the true positive rate after having classified the presence/

absence of the links in the following way. We choose a

cut-off point in linking probability and then classify a link

to be present between a given pair of nodes if its linking

probability is higher than the cut-off point; otherwise, the

link is classified as absent. The level of the cut-off point is

chosen so that the false-positive rate is equal to the false-

negative rate. The McFadden’s pseudo-R-squared is given

by R2 ¼ 1� lnðLÞ=lnðLnÞ, where L is the likelihood of the

model (equation (2.2)) and Ln is the likelihood of the model

without the latent traits, i.e. only with the intercept m.

Figure 2 shows the performance of the model as a function

of the number of nodes for one and two matching dimensions.

We observed that the performance of the model decreases with

the number of links, whereas it increases with the number of

matching dimensions. This behaviour is expected, as increas-

ing the number of nodes leads usually to more complex

networks, and more matching dimensions are needed to

reach a high level of fit. This is somewhat akin to a principal

component analysis where increasing the number of dimen-

sions leads to a higher fraction of explained variance.

Theoretically, by increasing the number of matching
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Figure 2. Performance of the matching–centrality model in inferring a dataset of 86 networks. Panels (a) and (b) show the fraction of correctly fitted links and the
R-squared as a function of the number of nodes in the network, respectively. The figure shows that the higher the number of matching dimensions, the better the
quality of fit of the model. As it can be expected, both the fraction of correctly fitted links and R-squared decrease with the number of nodes in the network. (Online
version in colour.)
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dimensions d, it would be possible to obtain a fraction of cor-

rectly fitted links and R-squared equal to 1. However, an

increase in the number ofmatching dimensions has drawbacks.

First, it will lengthen computation time. More fundamentally,

it can lead to an overfitting of the network. In such a situation,

the prediction of missing links becomes meaningless, in a way

analogous to increasing the degree of the polynomial for

interpolation in a regression context. Ultimately, the choice

of the number of matching dimensions d must be made in

accordance with the application of the model.

(b) Relation between the matching–centrality model
and network architecture

We explore how the relative importance of the matching term

(for d ¼ 1) over the centrality term (i.e. l1=d; d ¼ d1 ¼ d2)

affects the architecture of the network. We simulated bipartite

networks of nS1 ¼ 20 and nS2 ¼ 30 nodes, with a connectance

of 0.15, along a gradient of relative importance of the match-
ing term. For each sampled network, we computed its level of

nestedness [29] and modularity [3,26]. Figure 3 shows that,

with greater importance of the matching term, modularity,

indeed, increases, while nestedness decreases. Moreover,

increasing the clustering in the matching traits (from a uni-

form distribution to four clusters) also increases the level of

modularity (figure 3a). This result is qualitatively robust to

change in network connectance and size (results not shown).

4. Applications of the matching–centrality
model

(a) Prediction of missing links
The matching–centrality model can be used for the prediction

of ‘missing’ links in partially known networks, where the

absence of an interaction may in fact reflect an absence of

information [4,5,42]. Here, we demonstrate its performance

by simulating missing links in a subset of eight networks

(figure 4). We simulate missing links by removing a given

percentage of links and attempting to recover them.

Specifically, we simulated networks with missing links

by setting a given fraction of 1 s to 0 s in the adjacency matrix.

We removed at random 2, 5, 15, 30, 50, 75, and 90% of the 1 s,

replicated 100 times for each fraction. Then, the matching–
centrality model was fitted to the incompletely observed

networks, and latent traits were estimated for each node. We

fitted the model with only one dimension of matching. These
matching and centrality traits were then used to estimate linking

probabilities for each pair of nodes (equation (2.1)). We judge

the performance by comparing the matrix of estimated linking

probabilities and the true network using the area under the

receiver operating characteristic curve (AUC) criterion. Here,

the AUC can be interpreted as the probability that missing or

observed links are given higher linking probabilities than real

absences. For comparison, we give the performance of four

other methods: the stochastic block model [5] with its extension

to directed and bipartite networks [44–46], the Jaccard index,

the common neighbours, and the degree product [42].

Note that some methods were not designed for directed or

bipartite networks, and were not applied in these specific

cases. In practical applications, the absent links (aij ¼ 0) with

the highest predicted linking probabilities are considered to

be missing links. These are the candidate interactions that

should come under the scrutiny of researchers, thus serving

as a guide for cost-effective analysis of complex systems.

Figure 4 shows that the matching–centrality model per-

forms very well in recovering missing links. There is one

notable exception for the football game network, for which

the stochastic block model performs better (figure 4c). This
is not surprising given that this specific network exhibits a

strong block structure (see electronic supplementary material,

figure S3). Note that we also tested the method with two

matching dimensions. We encountered overfitting with

increasing percentages of removed links, and therefore, a

decrease in the ability to recover missing links (results not

shown). For larger networks, however, more than one match-
ing dimension may be needed.
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Figure 3. Relationship between network architecture and the matching and centrality terms. Panels (a,b) show the effect of the relative importance of the matching
term on the modularity and nestedness metric, respectively, for 800 simulated networks. Increasing the importance of the matching term in the simulated networks
results in higher modularity and lower nestedness. Moreover, increased clustering of the matching traits results in increased modularity for a high relative importance
of matching.
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(b) Linking latent traits to node characteristics
As shown above, the model can be fitted and used for predic-

tion simply based on the network itself. However, it also

offers an intuitive tool to gain insights into possible processes

underlying network structure, as the matching and centrality
traits of nodes can be related to independent information

about the nodes, using standard analyses such as linear

models or Mantel tests.

For example, in the food web of Tuesday Lake [43,47],

both the matching and centrality traits of predators and prey

can be related to their body size and phylogeny. Specifically,

we used phylogenetic regression [48] to relate the matching
and centrality traits to species’ body size and phylogeny.

Therefore, we assume that the latent traits follow a multi-

variate normal distribution (MVN), where the linear term

is given by the logarithm of the body size and where the

correlation structure is induced by the phylogeny, i.e.

m1
1, m

2
1, m

1
2, m

2
2, c1, c2 � MVN(aþ b logðbsÞ, SðlÞÞ, ð4:1Þ

wherem1
1, m

2
1, m

1
2, m

2
2, c1, c2 denote the vectors of thematching

and centrality traits of resources and consumers, respectively,

bs the body sizes, SðlÞ is the variance–covariance matrix

induced by the phylogeny, and a, b, and l are the parameters

of the phylogenetic regression. We use Pagel’s-l [49] structure

for the variance–covariance matrix, i.e.

SðlÞij ¼ s2 � tij � l if i = j
s2 if i ¼ j

�
, ð4:2Þ

where s2 is the common variance, tij is the proportion of time

that species i and j spent in common before speciation on the

phylogenetic tree, and l is the control parameter for the

strength of the phylogenetic correlation (l ¼ 0 is equivalent

to no correlation). The p-values of the parameters a and b are

computedwith the usual z-test, whereas the p-value associated
with the correlation structure is computed using a log-

likelihood ratio test between models with and without corre-

lation. The analyses were done in R [50] with the libraries

ape [51] and nlme [52].

For this specific network, the result shows that both the

matching and centrality traits are related to the species’ body

size and phylogeny (electronic supplementary material,

table S2). Although in this specific example we used only

phylogeny and body size, any other relevant ecological and

behavioural traits, or environmental conditions, could be

used [53–56]. The latent traits are thus not just an abstract

characterization of the nodes, but provide a versatile

method to unravel factors underlying the different aspects

of network structure.

(c) Forecasting the links of new nodes
Finally, a significant feature of the matching–centrality model

is the possibility to forecast the links that new nodes would

create when joining an existing network. This might be

applied, for example, to forecast the interactions of an inva-

sive species entering a food web or pollination network, the

contacts of a non-surveyed individual in a terrorist network,

or the biota of an unsampled mountain. The procedure is as

follows: from the adjacency matrix, we first estimate the

latent traits of matching and centrality for each node in the

existing network, and verify that our model provides an accu-

rate fit. Then, using appropriate statistical models, we relate

the latent traits of the nodes to external information about

them (as done in the previous section), and ensure that the

model provides a good fit to the data. If both conditions

are met, we can forecast the matching and centrality traits of

the new node(s) using the external information, and finally

their linking probability with each of the existing nodes.

In the following, we illustrate the method using the net-

work describing the presence/absence of mammal species
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Figure 4. Prediction of missing links in eight partially known networks. We present the performance of the matching–centrality model (with one dimension) in
predicting missing links for: (a) terrorists’ associations [14], (b) character co-appearance in the novel Les Misérables [33], (c) United States college football games
[34], (d ) association between 62 dolphins [35], (e) military conflicts [37], ( f ) presence/absence data of mammal species [39], (g) seed dispersal [38], (h) trophic
interaction in Tuesday Lake [43]. We compared the matching–centrality model to several alternative methods [5,42]. The average AUC statistic (the probability that
an existing or missing link is given a higher linking probability than a true negative) is represented as a function of the fraction of simulated missing links created by
removing links in the observed network.
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on mountains within the Rocky Mountains [39], and the food

web of Tuesday Lake [43]. The model fits these two networks

perfectly, with a fraction of correctly fitted links equal to 1 for

two dimensions of matching. We first present the technique of

forecasting applied to the presence/absence network of the

Rocky Mountains. Then we give the modifications that have

to be made to apply this technique to the food web of Tues-

day Lake. The latent traits of the mountains (m1
1, m2

1, and c1)
can be related to their area, elevation, and geographical pos-

ition using a generalized least-squares linear model with a

spatial correlation structure [31]. Specifically, we assume

that the matching and centrality traits follow an MVN, where

the linear part is given by the longitude, latitude, area, and

elevation of the mountains, and that the spatial correlation

structure follows an exponential law, i.e.

m1
1, m

2
1, c1 � MVNðaþ b1 � areaþ b2 � elevation

þ b3 � latitudeþ b4 � longitude, SðrÞÞ, ð4:3Þ

with the elements of the variance–covariance matrix given by

SðrÞij ¼ s2e�dij=r: ð4:4Þ

The parameters a, b1, b2, b3, b4 are the intercept and slope; r
is a parameter tuning the exponential decay of the spatial cor-

relation; s2 is the common variance; and dij is the distance

between mountains i and j. For the matching traits, we

found that only the spatial correlation structure was signifi-

cant, whereas for the centrality traits, area, elevation, and

latitude were significant (electronic supplementary material,

table S3). Note that the matching and centrality traits for the

mammals could not be accurately related to species traits

(electronic supplementary material, table S3).

Because the matching and centrality traits of the mountains

are significantly related to several covariates and to the corre-

lation structure given by the between-mountain distances, it

should be possible to forecast the mammal communities in

unsampled mountains for which the covariates are known,

given the informationprovidedby the covariates of the sampled

mountains and the observed presence/absence network. We

test the forecasting performance of the matching–centrality
model by removing, one-by-one and bysets of four, eachmoun-

tain from the dataset and attempting to recover its mammal

community. This yields the following out-of-sample test

(1) We remove one or four mountains, denoted by k, from
the network and then estimate the matching and centrality
traits of the mammals and of the remaining mountains

using the matching–centrality model,

(2) We fit the statistical model (4.3) on the estimated matching
and centrality traits of step 1,

(3) Using the fitted parameters from step 2, we compute the

conditional expectation for the matching and centrality
traits of mountain(s) k; for the centrality trait, this value

is given by

ĉ1,k ¼ â þ b̂1 � areaþ b̂2 � elevationþ b̂3 � latitude, ð4:5Þ
where â , b̂1, b̂2, b̂3, r̂ are the fitted parameters from

step 2. The conditional expectation for the matching trait

is given by

m̂1,k ¼ â þSðr̂Þ�kkSðr̂Þ�1
kk ðm1,�k �m1,�kÞ, ð4:6Þ

where Sðr̂Þ�kk is the kth column(s) without the kth row(s)

(indicated by subscript 2k) of the variance–covariance

matrix estimated using equation (4.4); Sðr̂Þkk is the ðk, kÞ
element(s) of the estimated variance–covariance matrix;

ðm1,�k �m1,�kÞ is the row vector of residuals obtained

from step 2. The last term of equation (4.6) represents the

deviation from the linear prediction that is introduced by

knowledge of the spatial correlation structure,

(4) With the predicted matching and centrality traits, we can

predict the linkingprobabilities (equation (2.1)) between the

removed mountain(s) and the mammals. The presence/

absence of the mammals is determined from these linking

probabilities and the cut-off point obtained with the fit of

step 1. The cut-off point is defined as the linking probability

chosen such that the number of false-positives is equal to

the number of false-negatives, and

(5) We repeat steps 1–4 for all mountains in turn.

AUC accuracy

1 4 1 4
0.5

0.6

0.7

0.8

0.9

1.0

no. removed mountains

AUC accuracy

Res. Cons. Res. Cons.

(b)(a)

Figure 5. Performance of the matching–centrality model in forecasting (a) the mammal communities on unsampled mountains [39] and (b) trophic interactions of
new species in the Tuesday Lake food web [43]. We illustrate the performance of the model using an out-of-sample test, removing mountains singly and in groups
of four, and species in groups of three, respectively. After fitting the model to the known network, we use a statistical analysis to predict the latent traits of the
unsampled mountains and removed species, based on their geographical characteristics and on their body size and phylogeny, respectively. Then, we use these
predicted traits in the matching–centrality model to forecast mammal communities and trophic links, respectively. Graphs show box-plots for the AUC and for the
accuracy of the forecasts (i.e. the percentage of correctly forecasted 0 s and 1 s). Res., resource; Cons., consumer species.

6

ht
tp

://
do

c.
re

ro
.c

h



We applied the same procedure for the food web of

Tuesday Lake, but we used the phylogenetic regression

given by equation (4.1) to relate the matching and centrality
traits to the covariables. The model performs remarkably

well: on average, 87% of the data were correctly forecasted

for the Rocky Mountain network (figure 5a). For the food

web of Tuesday Lake, recall that the matching and centrality
traits are closely related to the body size and phylogeny of

the species (electronic supplementary material, table S2).

Based on these predictors, on average, 86% of the trophic

links were correctly forecasted (figure 5b).
In a real-case situation for the forecasting of unsampled

nodes, the first condition for application is that the matching–
centrality model provides a good fit to the sampled network.

Second, there must exist a strong relationship between the

matching and centrality traits and the independent information

on the nodes; in our first example, forecasting the mountains

occupied by a new mammal would not be possible. Once

these conditions are met, one can proceed to the forecasting

of the links connected to the unsampled nodes. We note

three final technical points. First, as validation, we recommend

performing a complete out-of-sample test as applied above.

Second, the new nodes have to belong to the same statistical

population as the original ones (it would obviously make no

sense to forecast the mammal community present in a comple-

tely different region). Third, in our examples, we related the

matching and centrality traits to the characteristics of the

nodes using linear models; however, models of any form can

be applied at this stage.

To the best of our knowledge, only one other method has

been devised to forecast the links made by a new node in a

network, for host–parasitoid networks based on the phylo-

genies of the species [57]. Our approach has two decisive

advantages that make it extremely versatile: first, it is not

necessary to include information about both sets of nodes

of the bipartite network to make the forecast; second, by pla-

cing latent traits as intermediates between the network

adjacency matrix and node characteristics, we provide an

entirely flexible way to incorporate external information

about nodes, for any conceivable statistical model could be

used to relate the latent traits to external variables. Both

features are perfectly illustrated in the above examples.

5. Conclusion
By translating an adjacency matrix into a set of quantitative

traits for the nodes, the matching–centrality model represents

a powerful and general tool for network analysis. It allows

the reconstruction of missing information and forecasting of

the links of entirely novel nodes, and opens the door to com-

parative analyses to shed light on the factors underlying

network structure across disciplines.
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44. Guimerá R, Llorente A, Moro E, Sales-Pardo M.
2012 Predicting human preferences using the
block structure of complex social networks.
PLoS ONE 7, e44620. (doi:10.1371/journal.pone.
0044620)

45. Rovira-Asenjo N, Gumi T, Sales-Pardo M, Guimerá,
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1 Data summary and goodness-of-fit

Table S1: Properties of the 86 studied networks and results of model fitting. For each network or group of

networks, we provide the type, the number of nodes (N), the number of links (L), the connectance (C, the fraction of

realised links), and, for matching-centrality models with one and two matching dimensions, the fraction of correctly

fitted links Ω, and the pseudo R2 (see Main text for details).
Network Type N L C model with d = 1 model with d = 2

Ω pseudo R2 Ω pseudo R2

Zachary karate club [1] undirected 34 78 0.14 0.82 0.72 0.96 0.94
Characters coapperance [2] undirected 77 508 0.086 0.76 0.64 0.94 0.84
American football game [3] undirected 115 1226 0.093 0.39 0.24 0.67 0.41
Association between dolphins [4] undirected 62 318 0.083 0.63 0.49 0.79 0.69
Terrorist association [5] undirected 62 152 0.080 0.72 0.60 0.91 0.88
Protein [6] undirected 159 310 0.012 0.80 0.82 1 1
International conflict [7] directed 130 203 0.012 0.68 0.66 0.89 0.87
18 food webs1 directed 9 to 351 68 to 3313 0.028 to 0.60 0.32 to 1 0.30 to 1 0.67 to 1 0.64 to 1
59 mutualistic networks[8] bipartite 5 to 678 30 to 2930 0.020 to 0.69 0.41 to 0.98 0.36 to 0.96 0.50 to 1 0.46 to 1
Mammals-mountains [9] bipartite 54 275 0.38 0.96 0.89 1 1
C. Elegans neural network [10] directed 297 2345 0.027 0.35 0.34 0.37 0.35

1 List of the 18 food-webs: Benguela [11], Bridge Brook Lake [12], Broadstone Stream [13], Canton Creek [14],

Caribbean [15], Celtic Sea [16], Chesapeake Bay [17], Little Rock Lake [18], Mill Stream [19], Mulgrave River [19],

Sheffield [19], Sierra Lakes [20], St Mark’s Estuary [21], Stony Stream [14], Tuesday Lake [22], Eastern Weddell Sea

[19], Ythan Estuary [23].
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2 Zachary karate club

The Zachary karate club network describes the friendship between the 34 members of a

university karate club in the period 1970-1972. The representation of the network in the

latent trait space exhibits two members that have high centrality and divergent matching

traits (Fig. S1a).

Shortly after the observations, there was an internal dispute and the club split into

two factions, denoted “Mr. Hi”and “Officers”. The latent traits could have been used

to predict the fault line of this fission: the two groups that formed around these two

members can be predicted almost perfectly. The Ward’s hierarchical clustering, based on

the matching and centrality traits, clearly shows two distinct groups (Fig. S1b), which

matches almost perfectly (except for one member) the factions formed when the club split

after the dispute.

The dendrogram is based in the following distance dij between two nodes i and j:

dij =

√∑d
k=1 λk(mk

1,i −mk
1,j)

2

δ1c1,i + δ1c1,j − 2minl(δc1,l)
(S1)

with the parameters coming from the model (equation 1 in Main Text). Note that the

numerator is the classical Euclidian distance in a d-dimensional matching trait space; the

denominator is a correction term that weights distances according to the centrality of

the nodes i and j compared to the minimum centrality of the l nodes in the network.

The greater the value of the centrality trait of a node, the greater the compression of the

distances; this reflects the fact that the probability of attachment is proportional to the

degree of a node (captured by the centrality term).
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Figure S1: Two-dimensional matching traits space representation of Zachary’s karate-club
network [1] (a). The size of the nodes (club members linked by friendship) is proportional
to their centrality trait value. The nodes are displayed in blue or red representing the
factions after the split of the club around two members with high centrality. Panel (b)
shows the Ward’s clustering of the nodes based on the matching and centrality traits.
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3 Character coappearance in the novel Les Miser-

ables

This network describes the coappearance of the 77 characters in the novel Les Miserables

[2]. Two characters are linked when they coappear in at least one chapter of the book.

(Fig. S2).
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Figure S2: Matching traits space representation of a network of character coappearance
in the novel Les Miserables. The size of each node is proportional to its centrality trait
value.
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4 American football game

This network describes the links between the Division IA colleges of the American football

game during the regular season Fall 2000 (Fig. S3).
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Figure S3: Matching traits space representation of a network of american football game
[3]. The size of each node is proportional to its centrality trait value.
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5 Association between 62 dolphins

This network describes the social links between 62 dolphins in a community living in

Doubtful Sound, New Zealand (Fig. S4).
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Figure S4: Matching traits space representation of a social network of dolphins [3, 4] .
The size of each node is proportional to its centrality trait value.
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6 Association between terrorists

This network describes the links between 62 individuals that were directly and indirectly

involved in the September 11 2001 terrorist attacks in the US. It is an expanded version

of the network shown in Fig. 4 in Krebs [5], available in [24]. The two-dimensional

latent space representation clearly exhibits two clusters of nodes, which are connected by

a central terrorists that was on flights AA11 (Fig. S5).
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Figure S5: Matching traits space representation of a network of associations between
terrorists involved in the September 11 2001 terrorist attacks in the US. The size of each
node is proportional to its centrality trait value. Labels next to the nodes give the flight
hijacked by the terrorist.
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7 International conflicts between countries

This dataset consists of 203 international military conflicts between 130 countries during

the period 1990-2000. It forms a directed network, where the adjacency matrix is given by

aij = 1 if country i initiates conflict with country j. The latent traits space representation

(Fig. S6) clearly exhibits a large clusters of nodes and some unconnected clusters made

of few countries.
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Figure S6: Matching traits space representation of the international conflict network
between countries for the period 1990-2000. The size of each node is proportional to its
centrality trait value. Each country is represented twice, as initiator and as target.
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8 Protein interactions

This data is a subset of the protein interaction network in Saccharomyces cerevisiae,

involving proteins that are localized within the nucleus and that interact with at least

one other nuclear protein [25] (Fig. S7).
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Figure S7: Matching traits space representation of a protein network [25]. The size of
each node is proportional to its centrality trait value.
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9 Food web of Tuesday Lake

From the 18 food webs analysed in Table S1, we show the network describing the trophic

links (who eats whom) between 66 species in Tuesday Lake (Michigan, USA) [22]. It

forms a directed network, where the adjacency matrix is given by aij = 1 if species i is

eaten by species j. We remark that one matching dimension is able to fit correctly 92%

of the links, while two dimensions explain perfectly the network (Table S1, Fig. S8). We

first provide the results of the regression analyses for the estimated latent traits explained

by the external information on the nodes (body size and phylogeny of the species).

Table S2: Results of the phylogenetic regressions for the Tuesday Lake food
web. We provide the results of the phylogenetic regressions for the centrality and match-
ing traits. For the body size covariate, we give the estimated slope (β) and its p-value
computed by the z-test. For the phylogeny, we give Pagel’s λ (i.e., the strength of the
phylogenetic signal) and its p-value computed using a log-likelihood ratio test between
models with and without the phylogenetic correlation. Response variables and the body-
size covariate were standardized.

Body size Phylogeny
Parameter (β) p-value Parameter (λ) p-value

Resources
First matching dimension -0.066 0.026 0.438 0.001
Second matching dimension 0.095 0.010 0.694 <0.001
Centrality traits -0.009 0.008 0.560 0.001

Consumers
First matching dimension -0.137 0.049 0.802 <0.001
Second matching dimension 0.222 0.039 0.844 0.001
Centrality traits 0.014 0.054 0.923 <0.001
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Figure S8: Matching traits space representation of the Tuesday Lake food web [22]. Each
species is represented twice, once in its role as consumer, and once in its role as resource.
The size of each node is proportional to its centrality trait value.
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10 Mutualistic seed-dispersal network

From the dataset of 59 ecological mutualistic networks in [8], we represent the network

describing the mutualistic links between 25 plant and 33 bird species of Nava de las

Correhuelas (Sierra de Cazorla, southern Spain). It is a bipartite network, with the two

sets of nodes formed by plants and birds. The adjacency matrix is given by aij = 1 if bird

i feeds on the fruits, and then disperses the seeds of plant j (Fig. S9).
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Figure S9: Matching traits space representation of the mutualistic seed-dispersal web of
Nava de las Correhuelas [8]. The size of each node is proportional to its centrality trait
value.
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11 Presence-absence data of mammal communities

on mountains

This dataset describes the distribution of 26 mammal species on 28 mountains within the

southern Rocky Mountains (USA) [9]. It can be considered as a bipartite network, with

nodes in set S1 representing the mountains and those in set S2 the mammal species, and

the adjacency matrix is then given by aij = 1 if species j is present on mountain i (Fig.

S10). We first present the results of regression analyses for the estimated latent traits

explained by characteristics of the nodes (body size and phylogeny for the mammals;

longitude, latitude, area, elevation and pairwise distances for the mountains)

Table S3: Results of phylogenetic regression and regression with spatial corre-
lation on the latent traits from the mammals-mountains network. We provide
the results of the phylogenetic regression for the mammals, and of the generalized least
squares regression with spatial correlation structure for the mountains. For the mammals,
we estimated the slope and its p-value from a z-test for the body size covariate; for the
phylogenetic relatedness, we estimated Pagel’s λ (i.e., the strength of the phylogenetic
signal) and its p-value using a log-likelihood ratio test between models with and without
the phylogenetic correlation. For the mountains, we estimated the slopes and their p-
value for the four first covariates and, for the pairwise distances between the mountains,
the parameter r of Equation 6 in the Main text, which quantifies the exponential decay of
the spatial correlation; for the latter parameter, the p-value was again obtained by a log-
likelihood ratio test. Response variables and the body-size covariate were standardized.
Only statistically significant parameters are given.

Covariate Centrality traits First matching dimension Second matching dimension
Parameter p-value Parameter p-value Parameter p-value

For mammals
Body-size - n.s. 0.399 0.044 - n.s.
Phylogeny - n.s. - n.s. - n.s.

For mountains
Longitude - n.s. - n.s. - n.s.
Latitude 0.4955 <0.001 - n.s. - n.s.
Area 0.2147 0.016 - n.s. - n.s.
Elevation 0.4360 <0.001 - n.s. - n.s.
Distance - n.s. 0.013 <0.001 0.0079 <0.001
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Figure S10: Matching traits space representation of the mammals-mountains network [9].
The size of each node is proportional to its centrality trait value.
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12 Neural network of C. Elegans

This network represents the neural network of C. Elegans (Fig. S11).
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Figure S11: Matching traits space representation of a the neural network of C. Elegans
[10] . The size of each node is proportional to its centrality trait value.
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