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The stability analysis of socioeconomic systems has been centred on answering

whether small perturbations when a system is in a given quantitative statewill

push the system permanently to a different quantitative state. However, typi-

cally the quantitative state of socioeconomic systems is subject to constant

change. Therefore, a key stability question that has been under-investigated

is how strongly the conditions of a system itself can change before the

system moves to a qualitatively different behaviour, i.e. how structurally

stable the systems is. Here, we introduce a framework to investigate the struc-

tural stability of socioeconomic systems formed by a network of interactions

among agents competing for resources. We measure the structural stability

of the system as the range of conditions in the distribution and availability

of resources compatible with the qualitative behaviour in which all the con-

stituent agents can be self-sustained across time. To illustrate our

framework, we study an empirical representation of the global socioeconomic

system formed by countries sharing and competing for multinational compa-

nies used as proxy for resources.We demonstrate that the structural stability of

the system is inversely associatedwith the level of competition and the level of

heterogeneity in the distribution of resources. Importantly, we show that the

qualitative behaviour of the observed global socioeconomic system is highly

sensitive to changes in the distribution of resources. We believe that this

work provides a methodological basis to develop sustainable strategies for

socioeconomic systems subject to constantly changing conditions.

1. Introduction
The stability of socioeconomic systems is repeatedly challenged as a consequence

of the rapidly varying environmental, socioeconomic and technological con-

ditions [1–3]. Financial crises, national bailouts and job losses are just a few

examples of instability in these systems [1,3]. The stability analysis of socioeco-

nomic systems has been centred on understanding whether small perturbations

when a system is in a given quantitative state will push the system permanently

to a different quantitative state [3–7]. This analysis is known as dynamical stab-

ility [8]. Importantly, dynamical stability has increased our understanding of the

susceptibility of socioeconomic systems to propagate specific perturbations [3–7].

However, as the quantitative state of socioeconomic systems is coevolving with

the rapidly changing distribution and availability of resources, economists are

not only interested in a particular steady state, but also in whether there is a

family of quantitative states that can guarantee the sustainability of these systems

[9–13]. This indicates that a yet prevailing question about socioeconomic sys-

tems is how much variation can a system stand without being pushed out of a

qualitative stable behaviour [2,14,15].

To address the above question, we apply the concept of structural stability to

socioeconomic systems. We adopt a modified definition of structural stabi-

lity [14,16,17], in which a system is more structurally stable if it has a larger range

of conditions compatible with a given qualitative stable state. Here, we explore
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the structural stability of a general resource–competition system

by considering a qualitative behaviour in which all its constitu-

ent agents have a positive and stable steady state. We choose a

positive stable steady state as a potential indicator of an agent

that can be self-sustained across time without the need of exter-

nal inputs. Therefore, the question is: how big is the parameter

space in the system compatible with this positive stable steady

state? The larger the range of parameter space compatible with

apositive stable steadystate of all agents, the larger the structural

stability of the system will be.

To illustrate our framework, we study an empirical represen-

tation of the global socioeconomic system formedby the network

of interactions among countries (agents) competing for multi-

national companies (as proxy for resources such as investment,

technological innovations and employment). We investigate the

rangeof conditions leading to thepreferredqualitative behaviour

and the mechanisms modulating that range.

2. Material and methods
2.1. Competition network
Our global socioeconomic system is represented by the network of

interactions among countries competing for resources. Following

economic theory [9–13], we focus on three main resources for

economic growth: private investment, technological innovations

and employment. We use the 50 richest multinational companies

in the world as proxy for these resources. We acknowledge that

there can be other representations of these resources that might

be important or useful. The list of these companies is taken

from the 2013 Fortune Global 500 list. The total revenue of these

companies is about 30% of the world’s gross domestic product

(GDP). We consider that a country uses a resource (multinational

company) only when the company has employees in that country.

Note that we do not have quantitative data on the number of

employees. This information is collected from each official com-

pany’s website in 2013. We focus on 150 countries with at least

one million inhabitants. This dataset is provided in the electronic

supplementary material.

The competition dynamics of socioeconomic systems have

been studied using either static equilibrium models [11,13]

or exponential growth models [12,18,19] with no explicit inter-

actions among agents. This has precluded the analysis of

socioeconomic systems as potential systems with nonlinear

dynamics emerging from collective phenomena and regulated by

the network of interactions among their individual agents

[8,20,21]. To incorporate these interactions, we propose to model

the socioeconomic system as an inter-agent resource–competition

network. To define our competition network, first we generate a

resource–agent system composed of N agents (countries) and R
resources (companies). This system is represented as a bipartite

network made of two set of nodes, the agents and their resources.

A binary link is drawn between an agent i and a resource k if the
agent uses the given resource (see figure 1a for a graphical rep-

resentation). Second, we transform the previously generated

resource–agent system into an inter-agent resource–competition

network. This competition network is characterized by a sym-

metric matrix b of size N � N, called the competition matrix. The

elements of the competition matrix bij are a function of the

number of shared resources between agents (see figure 1b for a

graphical representation).

2.2. Dynamics of the competition network
Formally, we describe the dynamics of our inter-agent resource–

competition network by a general Lotka–Volterra model given

by the following set of ordinary differential equations [22,23]:

dNi

dt
¼ ri

Ki
Ni Ki �

X
j

bijNj

0
@

1
A, (2:1)

whereNi � 0 denotes the abundance of the agent i (e.g. thewealth

of a country), ri . 0 is the growth rate of the agent i and Ki . 0 is

the carrying capacity of agent i. The elements bij correspond to

the per capita effect of agent j on the abundance of agent i. These
elements are given by the values extracted from the competition

matrix. By convention and without loss of generality, we set the

intra-agent resource–competition to one (bii ¼ 1). The off-diagonal

elements are set to bij ¼ m � cij (i= j ), where cij is the number of

shared resources between agents i and j, and m is the general

level of global competition in the system (m � 0). This model

description emulates current economic thinking on the existence

of limited resources and nonlinear dynamics of socioeconomic

systems [20,21].

In the simple scenario where agents do not compete

among themselves, i.e. when the inter-agent competition is set

to zero (bij ¼ 0 for i= j ), the carrying capacity alone dictates

the steady state of the system N�
i ¼ Ki. Moreover, under the con-

dition that Ki . 0, it can be mathematically proved that this

steady state is globally stable, and that the growth rate of

C

C O M P A N Y

O U N T R Y

(b)

(a)

Figure 1. Network representation of a global socioeconomic system. The
global socioeconomic network is represented by the inter-agent resource–
competition network extracted from the resource–agent system. (a) The
resource–agent system is given by the interactions between agents
(countries, represented by circles) and resources (companies, represented
by squares). (b) The inter-agent resource–competition network is formed
by the interactions among agents competing/sharing resources and weighted
by their corresponding number of shared resources. Countries are represented
by their administrative capital (blue symbols), and the darker/reddish the
interaction the larger the number of companies shared. For the sake of clarity,
we do not show interactions between countries that share less than 10 com-
panies. Azimuthal equidistant projection of the Earth centred in longitude
108 and latitude 208.
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agents only modulates the velocity at which each agent reaches

its own carrying capacity. This means that the qualitative behav-

iour in which all agents have a positive and constant abundance

(N�
i . 0)—what we refer to as the positive stable steady state—

can only be possible if the carrying capacity of all agents is

also positive (Ki . 0). See appendix A for mathematical details.

In the more complex scenario where agents do compete

among themselves for resources, the steady state of the system

is the function of both the carrying capacity and the competition

matrix. It can be mathematically proved that if all eigenvalues of

the competition matrix b are positive (they are real because this

matrix is symmetric) and if there exists a positive steady state for

all agents (N�
i . 0), then this positive steady state is a global

attractor in the strictly positive quadrant of the state space [24].

Moreover, it can also be mathematically proved that for any

vector of carrying capacity Ki . 0 (keeping the positive eigen-

value condition on the competition matrix), the dynamical

system will converge to a unique equilibrium point N�
i � 0,

where the state of either all or only a few of the agents is positive.

See appendix A for mathematical details.

The condition of global stability (i.e. eigenvalues of the com-

petition matrix b are all positive) only holds when m is below a

critical value m̂ at which one eigenvalue of the competition

matrix is equal to zero (see appendix A for further details). A

limitation of the level of global competition m is that it has the

same units as the competition elements bij, and it is not possible

to compare this level across different competition matrices. To

address this problem, we recast this level by a unit-free indicator

of the level of global competition (r). It is defined as

r ¼ (l1 � 1)=(N � 1), where N is the number of agents and l1
is the dominant eigenvalue of the competition matrix b.

To find a positive and globally stable steady state of our

system, we have to solve the linear equation K ¼ b �N� under

the constraint that N�
i . 0. Importantly, not all vectors K lead to

a positive steady state. However, if we set the vector K* equal to
the leading eigenvector of the competition matrix b—what we

call the structural vector of carrying capacity—we obtain a non-

trivial solution. Indeed, following the Perron–Frobenius theorem,

the corresponding equilibrium point of the structural vector is

non-trivial and given by N�
i ¼ (1=l1)K�

i . 0, where l1 is the

leading eigenvalue of b.

2.3. Structural stability of the competition network
We study the structural stability of our global socioeconomic

system by measuring how much variation the resource–

competition system can stand without being pushed out of the

positive stable steady state. We explore the range in the parameter

space of carrying capacities that leads the system to the global stable

equilibrium point of equation (2.1) in which all agents have a posi-

tive steady state (N�
i . 0). To quantify this range, we measure how

big the deviations are from the structural vector compatible with a

positive stable steady state of all agents. These deviations are quan-

tified by h ¼ (1� cos 2(u))= cos 2(u), where u is the angle between

the structural vector K* and any other parametrization—vector

K—that can be used as proxy for different conditions in the

system, such as different availability of resources.

Indeed, the range of conditions compatible with our defi-

nition of positive stable steady state is centred on the structural

vector K*. This is shown by the following derivation. To find a

non-trivial equilibrium point N�
i . 0, we can link the deviation

h with the indicator of global competition r by satisfying the

inequality h , (1� r)=((N � 1)rþ 1) [25]. From this inequality,

we can see that the lower the level of global competition r, the

lower the collinearity between the structural vector and any

other vector and, in turn, the wider the conditions for having

the solution N�
i . 0. This provides a good indication that the

structural vector is the symmetry axis of the hyper volume of

the range, where the stable solution N�
i . 0 is positive.

3. Results
3.1. Validation of model parametrization
Tovalidate ourmodel parametrization,we investigatewhether

the positive and globally stable steady state N�
i . 0 (given by

the structural vector of carrying capacities) is aligned with

key macroeconomic indicators of our global socioeconomic

system. Recall that the steady state defined by the structural

vector is computed asN�
i ¼ (1=l1)K�

i . 0, where l1 is the lead-

ing eigenvalue ofb. Interestingly, we find a strong and positive

Spearman rank correlation (r ¼ 0.88, p, 0.001) between the

equilibrium point and countries’ GDP (figure 2a). The same

positive correlation is observed between the number of

resources and the GDP of a country, suggesting that wealth

is strongly associated with the distribution of resources in

our system.

We further test the alignment between the observed

resource–competition network and model parametrization

by generating new equilibrium points calculated using the

structural vector of alternative competition networks. These

alternative networks are extracted from randomly generated

resource–agent systems (see appendix B). If these alternative

resource–agent systems preserve, in expectation, the observed

distribution of resources per agent, the positive correlation

between GDP and new equilibrium points is also preserved.

By contrast, if the alternative resource–agent systems do not

preserve the observed distribution of resources, there are neg-

ligible correlations between GDP and the new equilibrium

points (e.g. figure 2b). These results reveal that both our compe-

tition network and parametrization of carrying capacities are

indeed capturing important characteristics of the distribution

and availability of resources, respectively.

3.2. Structural stability
To study whether inter-agent competition increases or

decreases the structural stability of the system, we study the

effect of the global competition on the range of parameter

space of carrying capacities leading to the positive stable

steady state of all countries. We quantify this effect by the

extent to which the deviations from the structural vector

(given by the observed competition network) affect the fraction

of countries that remain in a positive stable steady state

(N�
i . 0), and whether these deviations are modulated by the

level of global competition. The larger the range of parameter

space compatible with a positive stable steady state of all

countries, the larger the structural stability of the systemwill be.

We generate the deviations (range of parameters) by intro-

ducing random proportional perturbations to the structural

vector K*, and quantify the deviation between the structu-

ral and the perturbed vectors of carrying capacity using the

previously defined measure of deviation h. The proportional

perturbations are generated by multiplying each element of

the carrying capacity vector by a random number sampled

from a lognormal distribution with mean zero and variance

sampled uniformly within the range [0, . . . ,0.9]. To find the

corresponding fraction of countries that remain in a positive

stable steady state, we simulate our dynamical model using

the perturbed vectors as initial parameters K. Simulations to
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find the equilibrium points are performed by integrating

the system of ordinary differential equations using the

Runge–Kutta method of Matlab routine ode45.

Figure 3 shows that when the deviation h from the struc-

tural vector is small (negative on a log scale), all countries

remain in a positive stable steady state (yellow/light region).
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Figure 2. Model-generated wealth and empirical GDP. The figure shows the model-generated wealth at a stable equilibrium N�i . 0 for each country (agent) and
its empirical GDP in 2013. Panel (a) shows that wealth at equilibrium and GDP are significantly and positively correlated (r ¼ 0.88, Spearman rank correlation) when
the dynamical model is parametrized with the structural vector of the observed resource–competition network. Panel (b) shows a non-significant correlation (r ¼
0.003, Spearman rank correlation) when the dynamical model is parametrized by the structural vector of an alternative competition network where interactions are
randomized in a similar fashion to an Erdó́s–Rényi model (appendix B). Here, we show the results for the dynamical model using a half of the boundary of
maximum global competition; however, all levels of global competition that satisfy the global stability condition yield similar results.
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Figure 3. Structural stability of a global socioeconomic system. The figure presents the fraction of countries (agents) that remain in a positive stable steady state as a
function of both the level of deviation h (on a log scale) from the structural vector and the level of global competition (standardized to the boundary of maximum
global competition). The system is structurally stable within the parameter space compatible with all countries in a positive stable steady state (N�i . 0, yellow/
light region). The higher the level of global competition (black dashed line), the smaller the structural stability of the system (e.g. see brackets). For each level of
global competition, we simulate different equilibrium points N�i by initializing the model with different random proportional perturbations to the structural vector of
carrying capacities.
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However, the larger the deviation, the lower the fraction of

countries that remain in this steady state. This confirms

numerically that the structural vector is the centre of the

range of parameter space compatible with the positive stable

steady state of all countries. Importantly, figure 3 also reveals

that the closer the system is to the boundary of maximum

global competition (r̂), the narrower the parameter space lead-

ing to a positive stable steady state of all countries, and in turn

the lower the structural stability of the system. This reveals that

the structural stability of the system decreases as the level of

global competition among countries increases.

Because the level of global competition (r) is a function of

the resources shared among countries, it is important to

know whether a redistribution of resources may increase or

decrease the level of global competition and, in turn, affect

the structural stability of the system. To capture these effects,

we quantify the level of global competition (r) in alternative

inter-agent resource–competition networks (extracted from

randomly generated resource–agent systems; see appendix

B for further details) relative to the level of global competition

computed from the observed inter-agent competition net-

work (r*). This means that an alternative competition

network increases the level of competition when r=r� . 1,

and vice versa when r=r� , 1.

In the casewhen alternative competition networks preserve,

in expectation, the observed distribution of resources per

countries, we find that the level of global competition increases

relative to the observed network (see black symbols in figure 4).

These findings support standard macroeconomic theory

[10,12,13] which suggests that the observed characteristics of

socioeconomic systems should be optimizing the present econ-

omic constraints. However, in the case when the distribution of

resources per countries is not preserved, we find that the lower

the heterogeneity among countries (measured by the standard

deviation of resources per countries), the lower the level of com-

petition r=r� , 1 and, in turn, the higher the structural stability

of the system (figure 4). These results reveal that the inter-agent

resource–competition network is a significant factor modu-

lating the range of conditions compatible with the positive

stable steady state of all countries in the system. Moreover,

our findings reveal that the structural stability of the system is

inversely associated with the level of competition for resources

and the heterogeneity in the distribution of resources.

3.3. Risk assessment
To provide further insights into the factors shaping the struc-

tural stability of the observed global socioeconomic system,

we explore the risk associated with individual countries

under rapid changes in the distribution and availability of

resources. Following economic theory [10,12,13], we refer to

rapid changes as the perturbations that can occur faster than

the adaptation of the system to the new socioeconomic con-

ditions. Specifically, we use a Monte Carlo approach to

quantify the probability that a country remains in a positive

stable steady state (N�
i . 0) when the system is subject to
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Figure 4. Association between distribution of resources and level of global competition. The figure shows that the higher the heterogeneity (standard deviation) in
the distribution of resources, the higher the level of global competition in the inter-agent resource–competition system. The x-axis corresponds to the family of
distribution of resources calculated from alternative resource–competition networks, which are extracted from randomly generated resource–agent systems (see
appendix B). The y-axis corresponds to the relative change (r=r�) between the level of competition in an alternative competition network r and the level of
competition in the observed competition network r* (red symbol). The black symbols correspond to alternative competition networks generated by preserving the
expected distribution of resources per agent (appendix B).
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different types of perturbations. Specifically, perturbations are

generated by random deviations from the structural vector of

carrying capacities, different levels of global competition and

changes in the inter-agent resource–competition network.

To explore the risk associated with rapid changes in the

availability of resources, as before we introduce proportional

random perturbations to the structural vector of carrying

capacities, simulate the dynamical model on the observed

competition network using the perturbed vectors as initial

parameters K and investigate the fraction of times a country

remains under a positive stable steady state as function of

its number of resources. Interestingly, figure 5a shows that

the probability of remaining in a positive stable steady state

is almost the same for all countries regardless of their

number of resources. However, this probability decreases as

the level of global competition in the system increases

(figure 5a), echoing our previous results at the network level.

Additionally, we explore the risk associated with rapid

changes in the distribution of resources by randomly chan-

ging the inter-agent resource–competition network via the

resource–agent system (see appendix B). These changes are

investigated both alone and in combination with changes in

the availability of resources (i.e. perturbations to the struc-

tural vector). In general, we find that the lower the number

of initial resources a country has, the lower its probability

of remaining in a positive stable steady state (figure 5b,c).
Overall, there seems to be a saturation point in the number

of initial resources after which countries cannot increase

any more their chances of remaining under a positive stable

steady state. Importantly, these findings reveal that the quali-

tative behaviour of the system is highly sensitive to rapid

changes in the distribution of resources.

4. Discussion
In this paper, we have used a parsimoniousmodel and network

representation of a resource–competition system to investigate

the structural stability of global socioeconomic systems. How-

ever, the striking similarities found between model-generated

and empirical characteristics suggest that this could be a pro-

mising starting point to answer how structurally stable global

socioeconomic systems are. We have used the notion of struc-

tural stability to study the range of conditions compatible with

the stability of a qualitative behaviour in which all the constitu-

ent agents can be self-sustained across time. Because of the lack

of detailed information about the empirical parameter values in

the model, our results do not reveal the actual range of con-

ditions tolerated by the observed global socioeconomic system.

Yet, our results show that independently of parameter values,

the higher the level of competition or the higher the inequality

of resources among countries, the lower the structural stability

of the system. Importantly, our findings suggest that multina-

tional companies can be used as proxy for resources, and the

sustainable behaviour of global socioeconomic systems can be

highly sensitive to changes in country–company interactions.

We believe our framework provides a new direction to

increase our understanding of the capacity of a socioeconomic

system to change and adapt. For instance, while the human

population might be exponentially growing, we live constrained

to a finite number of resources [21]. At present, wemight be able

to see an equally growing economic development simply

because we have not reached our total carrying capacity,

i.e. new resources are continuously being exploredandexploited.

If agents increase their carrying capacities by number or magni-

tude, they may also increase their total abundance or wealth.

However, the positive stable steady state of all agents will

depend on whether the new conditions in the system will be

aligned or close enough to the corresponding structural vector

of carrying capacities. The new challenges will be on how to

deal with a limited number of resources under the constraints

imposed by the structural vector and how to provide a desirable

distribution of wealth among agents.

Our framework can also be applied to other domains such

as biological systems. Indeed, ecological systems are constantly

changing in response to both their internal and external press-

ures. For instance, the concept of structural stability has been

applied to mutualistic systems to investigate whether there

are some network characteristics that can increase the likeli-

hood of species coexistence [17]. The resource–competition

system used in this work has been intensively used in ecology

to describe the competition for resources among species [22].

This suggests that our findings can also shed new light into

the factors shaping the competition among predators that
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Figure 5. Risk assessment of changes in the global socioeconomic system. For high (squares), medium (triangles) and low (circles) levels of global competition, the
figure shows as a function of the number of resources the fraction of times each country (agent) remains in a positive stable steady state after (a) a large gradient of
proportional random perturbations to the structural vector of carrying capacities ( perturbations to growth rates), (b) changes in the resource–competition network
( perturbations to competition network) and (c) a combination of (a) and (b) (combined perturbations). Each point corresponds to a country. In each scenario, we
simulate 100 000 different cases.
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forage on a common set of prey, or the competition among

plants for minerals, water and sunlight.
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Appendix A. Mathematical derivations
of the dynamical competition model
In this appendix, we give analytical results for the dynamical

system described by the set of ordinary differential equations

(2.1). Specifically, we study the existence of steady states,

their feasibility (i.e. all agents having a strictly positive

state) and their global stability. First, we prove that if the

initial conditions of the dynamical system are in the positive

quadrant (Rn
�0), then their trajectories also remain in the

positive quadrant. This implies that we have to focus on the

existence and stability of steady states in the positive

quadrant only.

Lemma A.1. Consider a dynamical system given by the set of
ordinary differential equations (2.1) with initial conditions in the
positive quadrant (Rn

�0), i.e. Ni(t ¼ 0) � 0. Then the trajectory of
the system remains in the positive quadrant, i.e. Ni(t) � 0 for all
time t � 0.

Proof. Consider that there exists an agent k and a time T1 such
that Nk(t ¼ T1) , 0. Then as the trajectories of our dynamical

system (2.1) are continuous, there exists T0 , T1 such that

Nk(t ¼ T0) ¼ 0. This implies that at the time T0 the derivative

of Nk vanishes, i.e. dNk=dtjt¼T0
¼ 0. Moreover, this equality is

independent of the values of Ni for all i= k. Therefore, we

have that Nk(t � T0) ¼ 0, and in particular that

Nk(t ¼ T1) ¼ 0. This contradiction proves the lemma. B

Recall that a steady state N* is called positive if N�
i . 0 for

all agents i. Any positive steady state is by definition the sol-

ution of the linear equation K ¼ bN*. Therefore, for a positive
steady state to be well defined, we need to assume the

competition matrix b to be non-singular, i.e. det(b)=0.

Next, we prove that a positive steady state is globally

stable if and only if the eigenvalues of the competition

matrix b are strictly positive. Note that by definition our com-

petition matrix b is symmetric, then the condition of having

all eigenvalues strictly positive is equivalent to being stric-

tly positive-definite. Recall that a steady state N* is called

positive if N�
i . 0 for all agents i.

Lemma A.2. Consider that there exists a positive steady state, i.e.
there exists N* such that N�

i . 0 and K ¼ b �N�, and that the
competition matrix is non-singular. Then this steady state is
asymptotically globally stable in the strictly positive quadrant
Rn

.0 if and only if the symmetric competition matrix b is strictly
positive-definite.

Proof. In [24], Goh introduced a Lyapunov function that

proves the global asymptotic stability in the domain Rn
.0 of

any positive steady state N�
i . 0 under the condition that

the matrix b is Lyapunov diagonal stable. A matrix b is

said to be Lyapunov diagonal stable when there exists a

strictly positive diagonal matrix D such that Dbþ bTD is

strictly positive-definite. As in our case b is already strictly

positive-definite, then it is also Lyapunov diagonal stable.

Thus, any positive steady state is globally stable. This

proves the lemma from the right to the left.

Consider that the positive steady state N�
i . 0 is asympto-

tically globally stable. This implies that the eigenvalues of the

Jacobian matrix have strictly negative real parts under the

assumption that det(b) = 0. The Jacobian at the positive

steady state is given by the matrix J ¼ 2D(a)b, where D(a)
is the diagonal matrix formed by the elements of the vector

a. The elements of a are strictly positive and given by

ai ¼ ri=KiN�
i . By similarity transformation the signature

(also called the inertia) of the matrix D(a)b is equal to the sig-

nature of the matrix D(a)1=2bD(a)1=2. Indeed, by similarity

transformations we have the following equalities:

signature(D(a)b) ¼ signature(D(a)bD(a)1=2D(a)�1=2)

¼ signature(D(a)1=2bD(a)1=2):

Moreover, as b is symmetric, Sylvester’s law implies

signature(D(a)1=2bD(a)1=2) ¼ signature(b):

Therefore, the eigenvalues of b are all strictly positive, and

this proves the lemma from the right to the left. B

Lemma A.2 implies that if we want the global asymptotic

stability of a positive steady state we have to limit the level of

global competition m such that all eigenvalues of the matrix b

are strictly positive. Indeed, for m ¼ 0 the eigenvalues of the

matrix b are all equal to one. As the eigenvalues are a con-

tinuous function of m, there exists a critical level m̂ at which

the lowest eigenvalue is equal to zero. Thus, for a level of

global competition in the interval 0 � m , m̂ , a positive

steady state is asymptotically globally stable.

The previous lemma establishes the global asymptotic

stability condition of a positive steady state. However, a posi-

tive steady state does not exist for all vectors of carrying

capacity K [ Rn. There is in fact a subset of carrying capacity

vectors compatible with a positive steady state. This subset is

by definition FD ¼ {K [ Rnj there exist N�
i . 0 such that

Ki ¼
P

j bijN�
j }. That subset can simply be expressed as the

strictly positive linear combination of the vectors vk ¼ bek
(ek are the vectors of the standard orthonormal basis of

Rn), FD ¼ {l1v1 þ � � � þ lnvnjl1, . . . , ln . 0}. As the elements

of the matrix b are all positive, this implies that the vectors vk
have all their elements positive, and in turn this also implies

that the vectors of carrying capacity leading to a positive

steady state have all their elements positive, i.e. FD , Rn
�0.

In the next lemma, we study the existence and stability of

steady states in the positive quadrantRn
�0 for any vector of car-

rying capacity K. First, let us remark that, without loss of

generality, we can always assume that a steady state has the

following form: N� ¼ (0, . . . , 0, N�
mþ1, . . . , N

�
n|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

.0

)T. Indeed,

this form can always be achieved by renumbering the agents

such that the first m’s are the non-positive ones and the last

n2m are the positive ones.
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Lemma A.3. Consider that the symmetric competition matrix b is
strictly positive-definite. Then, for all vectors of carrying capacity
K [ Rn, there exists one and only one steady state, written without

loss of generality in the form N� ¼ (0, . . . , 0, N�
mþ1, . . . , N

�
n|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

.0

)T,

that is globally asymptotically stable in the domain
V ¼ Rm

�0 < Rn�m
.0 . Moreover, all other steady states in the positive

quadrant Rn
�0 are unstable. Finally, the value of this stable steady

state is only determined by the competition matrix b and the
carrying capacity vector K.

Proof. 1. Consider N� ¼ (0, . . . , 0, N�
mþ1, . . . , N

�
n|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

.0

)T to be a

steady state. The Jacobian evaluated at this steady

state is then given by the following 2 � 2 block

matrix:

J ¼ �D(b)

P
j b1jN�

j � K1 . . . 0 0 . . . 0

..

. . .
. ..

. ..
. . .

. ..
.

0 . . .
P

j bmjN�
j � Km 0 . . . 0

N�
mþ1bmþ1,1 . . . N�

mþ1bmþ1,m N�
mþ1bmþ1,mþ1 . . . N�

mþ1bmþ1,n

..

. . .
. ..

. ..
. . .

. ..
.

N�
nbn,1 . . . N�

nbn,m N�
nbn,mþ1 . . . N�

nbn,n

0
BBBBBBBBB@

1
CCCCCCCCCA
:

The elements of the vector b are strictly positive and given

by bi ¼ ri=Ki, and the matrix D(b) is a diagonal matrix

formed by the elements of the vector b. The steady state

N * is locally stable if and only if
P

j bijN�
j � Ki . 0 for all

i [ {1, � � � , m}, and the real parts of the eigenvalues of

the sub-matrix

bmþ1N�
mþ1bmþ1,mþ1 . . . bmþ1N�

mþ1bmþ1,n

..

. . .
. ..

.

bnN�
nbn,mþ1 . . . bnN�

nbn,n

0
B@

1
CA

are strictly positive. The latter condition is automatically

satisfied as the matrix b is symmetric and strictly posi-

tive-definite. Then, the conditions of existence and local

stability of N * can be summarized by

N�
i � 0,

X
j

bijN
�
j � Ki � 0

and N�
i

X
j

bijN
�
j � Ki

0
@

1
A ¼ 0,

for all agents i, with the second inequality being strict if

Ni ¼ 0.

2. We recall that a vector N * is the solution of a linear comple-

mentarity problem [26] defined by the competition matrix

b and the carrying capacity vector K if it satisfies the

following inequalities:

N�
i � 0,

X
j

bijN
�
j � Ki � 0

and N�
i

X
j

bijN
�
j � Ki

0
@

1
A ¼ 0:

Moreover, as in our case, the competition matrix b is

strictly positive-definite, and there exists one and only

one solution to that linear complementarity problem [27].

3. We prove that the steady state, which is the solution

of the linear complementarity problem defined by

the competition matrix b and the carrying capacity

vector K, is asymptotically globally stable in the domain

V ¼ Rm
�0 < Rn�m

.0 . The proof is based on the following

Lyapunov function introduced by Goh [28]:

V(N) ¼
Xm
i¼1

diNi þ
Xn

i¼mþ1

di Ni �N�
i þ

1

N�
i
log

Ni

N�
i

� �� �
,

with di some strictly positive numbers. Clearly, we have

V(N) � 0, as N�
i � 0, and Ni�N�

i þ (1=N�
i ) log (Ni=N�

i ) � 0

for all i [ {mþ 1, . . . , n}. Moreover, V(N) ¼ 0 if and only

if N ¼ N*. Let us compute its derivative as a function of

time. We obtain

dV
dt

¼
Xm
i¼1

di
ri
Ki

Ni fi þ
Xn

i¼mþ1

di
ri
Ki

(Ni �N�
i ) fi,

where fi ¼ Ki �
Pn

j¼1 bijNj. For i [ {mþ 1, . . . , n}, con-

sider the fact that Ki ¼
Pn

i¼1 bijN�
j , then we can write fi

as: fi ¼ �Pn
j¼1 bij(Nj �N�

j ). For i [ {1, � � � , m}, we rewrite

fi as: fi ¼ Ki �
Pn

j¼1 bijN�
j �

Pn
i¼j bij(Nj �N�

j ). Substituting

these two expressions into the derivative of the Lyapunov

function, we obtain

dV
dt

¼
Xm
i¼1

di
ri
Ki

diNi Ki �
Xn
j¼1

bijN
�
j

0
@

1
A

�
Xn
i¼1

ri
Ki

diNi(Ni �N�
i )bij(Nj �N�

j ):

The first term of the right-hand side is always nega-

tive, indeed, Ni � 0 and for i [ {1, . . . , m} we have

Ki �
Pn

j¼1 bijN�
j � 0. The second term of the right-hand

side is always strictly positive. Indeed, if we set

di ¼ Ki=ri, then it is a quadratic form defined by the strictly

positive-definite matrix competition matrix b. Therefore, in

the domain V, we have that dV=dt , 0. Thus, the steady

state, which is the solution of the linear complementarity

problem, is asymptotically globally stable in the domain V.

4. Consider thatwehaveanother steadystate, theonegivenby the

solution of the linear complementarity problem. Then, by the

uniqueness of the solution of the linear complementarity pro-

blem, there is an agent k for which N�
k ¼ 0 and at the same

time
P

j bijN�
j � Ki , 0. This implies that one eigenvalue of

the Jacobian is strictlypositive, thus this steadystate isunstable.

Therefore, there exists one and only one globally stable steady

state, which is given by the solution of the linear
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complementarityproblemdefinedby thecompetitionmatrixb

and the carrying capacity vector K. This proves the two first

assertions of the lemma. For the last assertion, it is enough to

remark that the solution of the linear complementarity is

only a function of b and vector K. Therefore, the value of the
stable steady state is also only a function of b and vector K. B

All these lemmas together imply that under the condition

that all eigenvalues of b are strictly positive, i.e. b is a strictly

positive-definite matrix, the trajectories of the dynamical

system (2.1) starting in the strictly positive quadrant converge

to a unique steady state. Moreover, for a given competition

matrix b, the value of that steady state is only a function of

the carrying capacity K; the growth rate r only dictates the vel-

ocity at which the trajectory converges to the stable steady state.

Appendix B. Alternative inter-agent resource–
competition networks
We use a resampling procedure that is able to generate a large

gradient of inter-agent resource–competition networks while

preserving the total number of interactions in the network [29].

First, we randomize the resource–agent system (i.e. the

bipartite network) between agents (countries) and resources

(companies). Note that two agents interact if they share a

resource, and the strength of the interaction is equal to the

number of shared resources. This randomization is per-

formed by inferring the probability of an interaction

between an agent i and a resource k using the model

logit(p(T)ik) ¼
1

T
(�k(vi � fk)

2 þ f1v
�
k þ f2f

�
k )þm(T): (B 1)

The term v�i quantifies the variability innumberof resources, the

term f�k quantifies the assortative structure of the system, and the

temperature Tmodulates the level of stochasticity in the model.

Since v�i and f�k are a priori unknown, they can be estimated from

the observed resource–agent system itself. The parameters k,f1

and f2 are positive scaling parameters that give the importance

of the contributions of the terms. Then, based on their esti-

mation, the probability of an interaction between all pairs of

agents and resources is inferred. Thus, an alternative

resource–agent system can simply be generated by drawing

randomly the interactions based on those estimated interaction

probabilities. The intercept m(T ) is adjusted for each tempera-

ture value such that the expected number of interactions is

equal to the observed one. When the temperature goes to infi-

nite, our model converges to the Erdó́s–Rényi model, when

the temperature goes to zero, the system freezes in the most

probable configuration predicted by our model, and when

T ¼ 1 we recover the expected distribution of resources.

Second, we transform the previously generated resource–

agent system into an inter-agent resource–competition

network. This competition network is characterized by a sym-

metric matrix b of size N � N, called the competition matrix.

The elements of the competition matrix bij are a function of

the number of shared resources between agents.
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