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Abstract

The foundational concepts behind the persistence of ecological communities

have been based on two ecological properties: dynamical stability and feasibility.

The former is typically regarded as the capacity of a community to return to an

original equilibrium state after a perturbation in species abundances and is usu-

ally linked to the strength of interspecific interactions. The latter is the capacity

to sustain positive abundances on all its constituent species and is linked to

both interspecific interactions and species demographic characteristics. Over the

last 40 years, theoretical research in ecology has emphasized the search for con-

ditions leading to the dynamical stability of ecological communities, while the

conditions leading to feasibility have been overlooked. However, thus far, we

have no evidence of whether species interactions are more conditioned by the

community’s need to be stable or feasible. Here, we introduce novel quantita-

tive methods and use empirical data to investigate the consequences of species

interactions on the dynamical stability and feasibility of mutualistic communi-

ties. First, we demonstrate that the more nested the species interactions in a

community are, the lower the mutualistic strength that the community can tol-

erate without losing dynamical stability. Second, we show that high feasibility

in a community can be reached either with high mutualistic strength or with

highly nested species interactions. Third, we find that during the assembly pro-

cess of a seasonal pollinator community located at The Zackenberg Research

Station (northeastern Greenland), a high feasibility is reached through the

nested species interactions established between newcomer and resident species.

Our findings imply that nested mutualistic communities promote feasibility

over stability, which may suggest that the former can be key for community

persistence.

Introduction

How can ecological communities sustain a large number

of species? This is a major question that has greatly intri-

gued ecologists since the 1920s (Elton 1927, 1958; Odum

1953; MacArthur 1955; Margalef 1968). Two ecological

properties have been considered the foundational concepts

behind the persistence of ecological communities: dynami-

cal stability and feasibility (MacArthur 1955; Gardner and

Ashby 1970; Vandermeer 1970, 1975; May 1972; Roberts

1974; De Angelis 1975; Goh 1979; Yodzis 1980; Svirezhev

and Logofet 1983; Logofet 1993). Dynamical stability

(hereafter stability) asks whether a community will return

to an assumed equilibrium state after a perturbation in

species abundances, and it is linked to the strength of

interspecific interactions (Svirezhev and Logofet 1983;

Logofet 1993). Feasibility corresponds to the range of

tolerated combinations of species demographic character-

istics (intrinsic growth rates or carrying capacities)

under which all species can have positive abundances

(Vandermeer 1970, 1975; Svirezhev and Logofet 1983;

Logofet 1993; Bastolla et al. 2009; Nattrass et al. 2012;

Rohr et al. 2014; Saavedra et al. 2014). Importantly, the

conditions leading to the stability of a community do not
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automatically imply its feasibility and vice versa (Vander-

meer 1970, 1975; Roberts 1974; Svirezhev and Logofet

1983; Stone 1988; Logofet 1993; Rohr et al. 2014).

Over the last 40 years, theoretical research in ecology

has emphasized the search for conditions leading to the

stability of ecological communities (May 1972; De Angelis

1975; Goh 1979; Yodzis 1980; Svirezhev and Logofet

1983; Logofet 1993; Staniczenko et al. 2013), while the

conditions leading to feasibility have received considerably

less attention (Vandermeer 1970, 1975; Roberts 1974;

Svirezhev and Logofet 1983; Logofet 1993; Hofbauer and

Sigmund 1998; Nattrass et al. 2012; Rohr et al. 2014).

However, theoretical and empirical studies have shown

that the sequence of community assembly cannot be

understood without feasibility conditions (Drake 1991;

Law and Morton 1996; Weatherby et al. 2002; Saavedra

et al. 2009). Yet, the extent to which species interactions

are more conditioned by the community’s need to be

stable or feasible is still unclear. This is important in

order to better understand the link between community

structure and dynamics, especially as global environmen-

tal change is accelerating the rate at which species are

removed and introduced into new habitats (Sala et al.

2000; Tylianakis et al. 2008).

To answer the above question, we introduce general

quantitative methods to investigate the role of stability

and feasibility in shaping mutualistic communities.

Because stability and feasibility are linked and condi-

tioned by species interactions, we study the general asso-

ciation between stability and feasibility in mutualistic

communities and how this association is modulated by

species interaction networks. We then move to an empiri-

cal case by studying how the association between stability

and feasibility acts on the assembly of a seasonal Arctic

pollinator community located at The Zackenberg

Research Station, northeastern Greenland (748300N,

218000W). Finally, we discuss the implications of our

findings.

Methods

Mutualistic model

To study the conditions compatible with stability and fea-

sibility in mutualistic communities, we used a generalized

Lotka–Volterra model of the form:

dPi
dt

¼ Pi r
ðPÞ
i �

X
j

aðPÞij Pj þ
X
j

cðPÞij Aj

 !

dAi

dt
¼ Ai r

ðAÞ
i �

X
j

aðAÞij Aj þ
X
j

cðAÞij Pj

 !
8>>>>><
>>>>>:

;

where the variables Pi and Ai denote the abundance of

plant and animal species i, respectively. The parameters of

this mutualistic model correspond to the values describ-

ing intrinsic growth rates (ri), intraguild competition

(aij), and the benefit received via mutualistic interactions

(cij). The mutualistic benefit is parameterized by

cij ¼ c0yij=d
d
i , where yij = 1 if species i and j interact and

zero otherwise; di is the number of interactions of species

i; d corresponds to the mutualistic trade-off (Saavedra

et al. 2013); and c0 represents the overall level of mutual-

istic strength. We used a mean field approximation for

the competition parameters, where we set aðPÞii ¼ aðAÞii ¼ 1

and aðPÞij ¼ aðAÞij ¼ qði 6¼ jÞ. We analyzed two important

cases of this model, where the interspecific competition is

zero (q = 0, 0 < d < 0.5) and where the mutualistic

trade-off is zero (0 < q < 0.01, d = 0). These two

extreme cases allowed us to focus on the effects of mutu-

alistic interactions (the cornerstone of pollinator net-

works) on the conditions for species coexistence. We used

a linear version of a mutualistic model (i.e., there is no

density saturation as the strength of mutualism increases)

because, as opposed to a nonlinear version, results can be

analytically tractable (Rohr et al. 2014). Importantly,

under the explored parameterization, the dynamical

behavior of the community remains general in a nonlin-

ear version of this model (Saavedra et al. 2013; Rohr

et al. 2014). Further details are given below.

Stability conditions

Traditionally, the stability of a community has been

investigated by looking at its local asymptotic stability

(May 1972). This type of stability asks whether a commu-

nity will return to an equilibrium point after an infinitesi-

mal perturbation in species abundances. An equilibrium

point is the state of species abundances (Ai
* and Pi

*) at

which the community does not change anymore. Impor-

tantly, for the studied mutualistic model, it is possible to

conclude more than only the local behavior of the abun-

dance trajectories of a community. For instance, if certain

conditions are satisfied, the community can have only

one globally stable equilibrium point, meaning that all

the abundance trajectories, regardless of their initial posi-

tion (as long as the initial abundances are strictly posi-

tive), converge to that unique equilibrium point.

Otherwise, the community may have alternative stable

states or unbounded abundance trajectories.

In particular, in the studied mutualistic model, the

conditions determining the convergence of the commu-

nity to only one globally stable equilibrium point depend

on the interaction strength matrix a ¼ aðPÞ � cðPÞ

�cðAÞ aðAÞ

� �
,
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embedding all the competition (aij) and mutualistic (cij)
interactions between species i and j (Rohr et al. 2014).

Importantly, within our parameterization of interaction

strengths, as long as the real parts of all eigenvalues of a

are positive, the matrix is Volterra dissipative, and there-

fore, there exists only one globally stable equilibrium

point (Volterra 1931; Takeuchi et al. 1978; Goh 1979;

Svirezhev and Logofet 1983; Logofet 1993; Hofbauer and

Sigmund 1998; Rohr et al. 2014). In the case where the

interspecific competition is zero (q = 0, 0 < d < 0.5), the

proof of global stability is achieved using M-matrix the-

ory (Goh 1979; Svirezhev and Logofet 1983; Logofet 1993;

Hofbauer and Sigmund 1998), while in the case where

the mutualistic trade-off is zero (0 < q < 0.01, d = 0),

the proof is based on the symmetry of the interaction

matrix (Svirezhev and Logofet 1983; Logofet 1993; Rohr

et al. 2014).

The above statement implies that in the studied

model, there is an upper limit to the mean mutualistic

strength in the community 〈cij〉 below which the abun-

dance trajectories converge to a unique globally stable

equilibrium point (Goh 1979; Rohr et al. 2014). This

upper limit ĉ can be calculated by finding the mean

mutualistic strength 〈cij〉 at which the real part of one

of the eigenvalues of the corresponding matrix a reaches

zero (see Fig. 1A). This upper limit of tolerated mutual-

istic strength is what we called the stability condition.

The higher the value of ĉ, the larger the mutualistic

strength that can be tolerated in the community without

losing global stability. Importantly, this upper limit is

approximately equivalent to the upper limit condition-

ing the global stability in the nonlinear version of the

model (Goh 1979; Saavedra et al. 2013; Rohr et al.

2014).

Unfortunately, even global stability does not guarantee

that all species will survive in the community (Vander-

meer 1970; Roberts 1974; Svirezhev and Logofet 1983;

Logofet 1993; Rohr et al. 2014; Saavedra et al. in press).

At the unique equilibrium point, some species may have

an abundance of zero. This means that the abundance

trajectories of the dynamical system can go toward the

border (i.e., where at least one of the species abundances

goes to zero), and consequently, some species go extinct.

To have survival of all species, we need a second condi-

tion to constrain that at the unique globally stable equi-

librium point, all species have strictly positive

abundances. This second condition is called feasibility

(Vandermeer 1970; Roberts 1974; Svirezhev and Logofet

1983; Logofet 1993; Hofbauer and Sigmund 1998; Rohr

et al. 2014; Saavedra et al. in press).

Figure 1. Stability and feasibility conditions. Panel A shows the real part of each of the eigenvalues (lines) of the interaction strength matrix a of

a randomly generated community (with 24 animals, 17 plants, and 140 interactions) as a function of the mean mutualistic strength 〈cij〉. The
point at which one of the eigenvalues is lower or equal to zero (dashed line) becomes the maximum level of mutualistic strength at which

the community can be globally stable. This point is what we called the stability condition ĉ. The larger the value of ĉ is, the larger the stability of

the community is. Panel B shows an illustration of the algebraic cone of feasibility for 3 species (two plants and one pollinator). The coordinates

correspond to the intrinsic growth rates of the species. The cone (dark region) represents the hypervolume under which the community can

sustain positive abundances for all species. This hypervolume is delimited by the column vector of the interaction strength matrix a (blue solid

lines). The sphere corresponds to the normalization of the cone. The normalized size of the cone (i.e., relative to the sphere) is what we called

the feasibility condition O. The larger the value of O is, the larger the feasibility of the community.
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Feasibility conditions

The feasibility of an equilibrium point corresponds to the

conditions leading to positive species abundances

(A�
i [ 0 and P�

i [ 0). As opposed to stability, the condi-

tions determining feasibility are determined by both the

interaction strength matrix a and the vector of intrinsic

growth rates r (Rohr et al. 2014). Therefore, if the inter-

action strength matrix of a community is known, the fea-

sibility of that community only depends on the domain

of intrinsic growth rate vectors r leading to positive abun-

dances. This implies that a community can be globally

stable by virtue of its interaction strength matrix a, but

either feasible (A�
i [ 0 and P�

i [ 0) or not (one or more

of the species abundances are equal or lower than zero)

depending on the vector of intrinsic growth rates r.

As shown in Figure 1B, the domain of intrinsic growth

rate vectors leading to positive species abundances is geo-

metrically described by an algebraic cone, where the bor-

ders are established by the column vectors of the

corresponding interaction strength matrix a (Svirezhev

and Logofet 1983; Logofet 1993; Saavedra et al. in press).

The solid angle of that cone (O) generated by the matrix

a can be interpreted (given the right normalization) as

the probability of sampling randomly a vector of intrinsic

growth rates that fall inside that cone (Svirezhev and

Logofet 1983; Logofet 1993; Saavedra et al. in press). The

normalization can be performed without loss of general-

ization by sampling the vectors of intrinsic growth rates

uniformly on the sphere using the following integration

(Ribando 2006):

X ¼ jdetðaÞj
ps=2

Z
� � �
Z
RS

� 0

e�xTaTaxdx:

Moreover, by setting aTa ¼ 1
2R

�1, the above integration

transforms into:

X ¼ 1

ð2pÞS=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijdetðRÞjp Z
� � �
Z
RS

� 0

e�
1
2x

TR�1xdx;

which is then the cumulative distribution function of a

multivariate normal distribution of mean zero and vari-

ance–covariance matrix Σ. Such a function can be evalu-

ated efficiently by a quasi-Monte Carlo method (Genz

and Bretz 2009; Genz et al. 2014). This normalized solid

angle O is what we called the feasibility condition (i.e.,

the domain of intrinsic growth rates leading to positive

abundances for all species). This solid angle is computed

and represented on a log scale. The higher the value of O,
the larger the likelihood of finding feasibility in the sys-

tem (Svirezhev and Logofet 1983; Logofet 1993; Saavedra

et al. in press). In general, the size of the cone increases

with the overall level of mutualism (Rohr et al. 2014).

Finally, it is worth noting that, in our model, if at least

one eigenvalue derived from the interaction strength

matrix has negative real part, then even if there exists an

equilibrium point with strictly positive abundances for all

species, this feasible equilibrium point is unstable. In that

case, the abundance trajectories of the dynamical system

will go toward the border, and at least one of the species

will eventually go extinct (Goh 1979; Hofbauer and Sig-

mund 1998). Only when both the stability and feasibility

conditions are satisfied, the abundance trajectories will

not go toward the border and will allow species coexis-

tence in the long run.

Nestedness

As mentioned before, stability and feasibility are linked to

and conditioned by species interactions, specifically by the

mutualistic interaction strengths cij ¼ c0yij=d
d
i . Therefore,

it becomes necessary to understand how these species

interaction networks impact both stability and feasibility.

Research in mutualistic networks has shown that a highly

nested pattern of interactions can minimize the competi-

tive effects between species (Bastolla et al. 2009), mini-

mize local stability (Staniczenko et al. 2013), and increase

the likelihood of community persistence (Rohr et al.

2014). A highly nested pattern can be equivalent to a high

fraction of shared interactions between species (Bas-

compte et al. 2003; Bastolla et al. 2009). Therefore, nest-

edness gives a description of species interaction networks

that can be linked to community dynamics. Following

Bastolla et al. (2009), the nestedness of a network can be

calculated as follows:

n ¼

P
i\j

d
ðAÞ
ij þP

i\j

d
ðPÞ
ijP

i\j

minðdðAÞi ; d
ðAÞ
j Þ þP

i\j

minðdðPÞi ; d
ðPÞ
j Þ

;

where dij corresponds to the number of shared interac-

tions between species i and j, di corresponds to the num-

ber of interactions of species i, the variables A and P

correspond, respectively, to animals and plants, and

minðdðPÞi ; d
ðPÞ
j Þ refers to the smallest of the two values.

This measure takes values between 0 and 1, where the

higher the values, the higher the nestedness of a species

interaction network.

Results

General case

We studied the general association between stability and

feasibility and how this association is modulated by spe-

cies interaction networks—summarized by nestedness. To
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carry out this analysis, we generated several mutualistic

networks with the same number of animals, plants, and

interactions. In each of these networks, species interac-

tions were established randomly between animals and

plants, such that we generate a broad gradient of nested-

ness values with the same number of species and interac-

tions. For each generated network g, we calculated its

stability condition ðĉgÞ, feasibility condition (Og), and

level of nestedness (ng). Stability and nestedness only

depend on the generated network g, while feasibility is

calculated over the interaction strength matrix a, which
depends on both the generated network and the mean

mutualistic strength 〈cij〉. Therefore, we studied how fea-

sibility changes as a function of both nestedness and the

mean mutualistic strength.

First, we find that nestedness is strongly and negatively

associated with stability. Figure 2A,B show that for a

community with 17 plants, 24 animals, and 140 interac-

tions, with and without interspecific competition, the

maximum mutualistic strength ĉg that the community

can tolerate without losing stability decreases with the

level of nestedness ng (Spearman’s rank correlations of

r < �0.98, P < 10�3). Note that the range of nestedness

values is lower than the theoretical range described

between 0 and 1. This is because the actual minimum

and maximum nestedness values in a network are con-

strained by the number of species and interactions (Rohr

et al. 2014).

Second, we find that high feasibility in a community can

be reached either with high mutualistic strength or with

highly nested species interactions. For the same community

used before, Figure 2C,D show the relationship between

nestedness and feasibility for high, medium, and low values

of mean mutualistic strength (the darker the symbol, the
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Figure 2. Nestedness tunes the trade-off between stability and feasibility. Panels A and B show the negative association between nestedness (ng)

and stability (maximum tolerated mean mutualistic strength ĉg) without and with interspecific competition for all the random generated networks

g. Panels C and D show the positive association between nestedness (ng) and feasibility (Og) without and with interspecific competition. The

darker the symbol, the higher the mean mutualistic strength 〈cij〉 used to calculate feasibility. For no competition, we used 〈cij〉 = 0.13,

〈cij〉 = 0.125, and 〈cij〉 = 0.12 for a high, medium, and low mutualistic strength, respectively. For competition, we used 〈cij〉 = 0.133,

〈cij〉 = 0.124, and 〈cij〉 = 0.117 for a high, medium, and low mutualistic strength, respectively. Each symbol corresponds to a generated network

g with 17 plants, 24 animals, and 140 species interactions. Interactions are randomly established in each generated network. The top panels

correspond to the scenario with no interspecific competition (q = 0 and d = 0.25), and the bottom panels correspond to the scenario with

interspecific competition (q = 0.01 and d = 0). All the other explored combinations of parameter values yield the same qualitative results. Note

that the feasibility values are on a log scale.
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higher the mutualistic strength). Note that the higher the

mean mutualistic strength is, the smaller the fraction of

generated networks that can tolerate that strength without

losing stability. Importantly, the figures show that high fea-

sibility values can be reached by generated networks with

either a high mutualistic strength and low nestedness, or a

low mutualistic strength and high nestedness. Indeed, com-

paring generated networks with the same mean mutualistic

strength (dashed lines), there is a strong and positive corre-

lation between nestedness and feasibility (Spearman’s rank

correlations of r > 0.88, P < 10�3). This pattern was found

in any given community with any combination of number

of species and interactions under the explored parameteri-

zation. This reveals a community trade-off between stability

and feasibility tuned by the nested architecture of species

interactions.

Importantly, these findings imply that nested mutualis-

tic communities promote feasibility over stability. There-

fore, a question that remains to be answered is whether

observed species interactions are conditioned by the com-

munity’s need to be stable or feasible. In other words, are

communities reaching a high feasibility? And if so, are

communities reaching this through a high mutualistic

strength or through highly nested interactions?

Empirical case

To answer the above questions, we used empirical data

describing the assembly process of an Arctic pollinator

community located at The Zackenberg Research Station,

northeastern Greenland (748300N, 218000W). In this

community, day by day newcomer species (both flowering

plants and pollinators) join the resident species according

to their own phenophase. Along the observation period,

the community experiences an increase and decrease in

the number of species and interactions from the last snow

melted to the first snowfall in the site (see Fig. 3). Our

study period covers two full seasons (1996 and 1997),

where observations were recorded daily whenever weather

conditions allowed. From a 3-month period in each sea-

son, bad weather reduced the number of observation days

to 23 and 25 for 1996 and 1997, respectively. For each

day, our data record the identity of resident species leav-

ing the community, the identity of newcomer species

joining the community, and the new established interac-

tions between newcomer and resident species (the data

and code are provided on Dryad (Saavedra et al. 2015)).

See Olesen et al. (2008) for full details about the data and

study site.

0
5

10
15
20
25
30
35
40

N
um

be
r o

f s
pe

ci
es

−15

−10

−5

0

5

10

15

E
xi

t/e
nt

ry
 a

ni
m

al
s

−15

−10

−5

0

5

10

15

E
xi

t/e
nt

ry
 p

la
nt

s

0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

Observed day (1996)

C
on

ne
ct

an
ce

0 10 20 30 40 50 60 70

Observed day (1997)

Figure 3. Temporal dynamics of the observed

pollinator network. The top panels illustrate

the total number of animals and plants (red

squares and green circles, respectively) at each

observed day across the two observation

periods (1996 and 1997). The middle panels

correspond to the number of newcomer

species (positive numbers) and resident species

that exit the community (negative numbers)

across the observation periods. The bottom

panels correspond to the observed

connectance in each day. Connectance is

defined as the number of species interactions

divided by the product of number of animals

and plants.
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For each day, to calculate the extent to which the inter-

actions established by the newcomer species modulate the

stability and feasibility conditions, we explored all the dif-

ferent network combinations that could be established by

rewiring the interactions between newcomer and resident

species. Because phenophase length has been reported as

an important correlate of the assembly process (Olesen

et al. 2008), our rewiring procedure always preserves the

identity and number of species observed in each day. This

rewiring procedure also keeps both the observed number

of interactions per day and the interactions between resi-

dent species. For each day k, we calculated the corre-

sponding stability ðĉgkÞ, feasibility ðXg
kÞ, and nestedness n

g
k

from each rewired network g. To calculate Xg
k , we used a

fixed value of hcijigk ¼ ĉk=2, where ĉk corresponds to the

maximum tolerated mutualistic strength of the observed

network in day k. This fixed value was chosen so that all

rewired networks can be stable. This value does not

change qualitatively our results as long as the networks

are stable.

In line with our general results, we find that despite

the constraints imposed by both species phenophase and

the limited number of interactions between newcomer

and resident species that can be rewired, daily interaction

networks also show a trade-off between stability and feasi-

bility tuned by the nested architecture. Figure 4 shows the

Spearman’s rank correlations between nestedness and sta-

bility (open squares) as well as between nestedness and

feasibility (solid circles). The figure shows that in both

years and taking into account or not interspecific compe-

tition, nestedness ðngkÞ is always strongly negatively and

strongly positively correlated with stability ðĉgkÞ and feasi-

bility Xg
k , respectively. This implies that newcomer species

through their established mutualistic interactions can pro-

mote either stability or feasibility during the assembly

process, but not both at the same time.

To investigate the extent to which newcomer species

promote feasibility in each day k, we investigated the

maximum level of feasibility X̂g
k that can be reached by

any given rewired network g and compared it to the max-

imum feasibility X̂k that can be reached by the observed

network in each day. Because feasibility increases with

mutualistic strength, the maximum feasibility in each net-

work was calculated using the maximum tolerated mutu-

alistic strength ðĉgkÞ. The comparison then was evaluated

using the scaled maximum feasibility Xs
k ¼ ðX̂k�

minðX̂g
kÞÞ=(maxðX̂g

kÞ �minðX̂g
kÞÞ, where X̂k is the

observed maximum feasibility condition in day k, and

maxðX̂g
kÞ and minðX̂g

kÞ are the maximum and minimum

values of the maximum feasibility conditions found in the

rewired networks in day k, respectively. These scaled val-

ues range between 0 and 1, where the higher the values,

the more the observed interactions established by new-

comer species approach the maximum possible feasibility

conditions that can be reached by the community in a

given day. As these scaled values explicitly consider each

possible rewiring scenario, they have advantages over pre-

vious relative measures (e.g., P-values) that are sensitive
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Figure 4. Association of nestedness with stability and feasibility in rewired networks. The figure shows the Spearman’s rank correlations between

nestedness ngk and stability ĉgk (open squares) and nestedness ngk and feasibility Xg
k (closed circles). Each symbol corresponds to the correlation

observed in each day k across the two periods (1996 and 1997). These correlations are extracted from the rewired networks g of the empirical

communities in each day. The top panels correspond to the scenario with no interspecific competition (q = 0 and d = 0.25), and the bottom

panels correspond to the scenario with interspecific competition (q = 0.01 and d = 0). All the other explored combinations of parameter values

yield the same qualitative results.
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to the specific choice of null model and community size

(Saavedra and Stouffer 2013). Our results are qualitatively

the same when using ranked values instead of scaled val-

ues (i.e., ranked position of the observed value within the

generated values), which confirms that our results are also

robust to the variance in the distribution of values. Recall

that the feasibility values were log-transformed.

We find that in both years and taking into account or

not interspecific competition, the observed species inter-

actions can reach feasibility conditions that are close to

the maximum possible in each day. Figure 5 shows that

the majority of scaled feasibility values (88 of 96, bino-

mial test P < 10�3) have values larger than 0.5, revealing

that the observed interactions established by newcomer

species are lying in the upper half of the potential range

of feasibility conditions in any given day.

Finally, to see whether these high feasibility conditions

are due to a high mutualistic strength or nested species

interactions, we investigated the extent to which the max-

imum tolerated mutualistic strength and nestedness are

promoted by the observed networks in each single day.

The analysis was carried out using the scaled stability and

scaled nestedness values. The scaled stability is calculated

by csk ¼ ðĉk �minðĉgkÞÞ=ðmaxðĉgkÞ �minðĉgkÞÞ, where ĉk is

the observed maximum tolerated mutualistic strength in

day k, and maxðĉ
g
kÞ and minðĉ

g
kÞ are the maximum and

minimum values of maximum tolerated mutualistic

strength found in the rewired networks g in day k, respec-

tively. Similarly, the scaled nestedness is calculated by

nsk ¼ ðnk �minðngkÞÞ=ðmaxðngkÞ �minðngkÞÞ, where nk is

the observed nestedness value in day k, and maxðngkÞ and

minðngkÞ are the maximum and minimum values of nest-
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Figure 5. Species interactions promote

feasibility. The figure shows the scaled

feasibility values in each of the observed days

across the two periods (1996 and 1997). Each

symbol corresponds to the scaled value in a

day and represents the position of the

empirical network within the range of values

generated from the rewired networks g. The

top panels correspond to the scenario with no

interspecific competition (q = 0 and d = 0.25),

and the bottom panels correspond to the

scenario with interspecific competition

(q = 0.01 and d = 0). All the other explored

combinations of parameter values yield the

same qualitative results.
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Figure 6. Species interactions promote

feasibility via nested species interaction at the

expense of stability. The figure shows the

scaled stability values (open squares) and the

scaled nestedness values (closed triangles) in

each of the observed days across the two

periods (1996 and 1997). Each symbol

corresponds to the scaled value in a day and

represents the position of the empirical

network within the range of values generated

from the rewired networks g. The top panels

correspond to the scenario with no

interspecific competition (q = 0 and d = 0.25),

and the bottom panels correspond to the

scenario with interspecific competition

(q = 0.01 and d = 0). All the other explored

combinations of parameter values yield the

same qualitative results.
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edness found in the rewired networks g in day k, respec-

tively. Again, these scaled values take values between 0

and 1, where the higher the values, the more the observed

interactions established by newcomer species approach

the maximum possible mutualistic strength (nestedness)

that can be reached by the community in a given day.

Therefore, the higher (lower) the scaled stability values

are relative to the scaled nestedness values, the more (less)

the scaled feasibility value depends on the mutualistic

strength and less (more) on the nested species interac-

tions.

We find that in these communities, feasibility does not

depend on mutualistic strength as much as it does on the

nested species interactions. Figure 6 shows that in both

years and taking into account or not interspecific compe-

tition, in the majority of observed days (80 of 96, paired

t-test P < 10�3) the scaled nestedness values (closed

triangles) are larger than the scaled stability values (open

squares). Moreover, the figure shows that the majority of

the scaled nestedness values (90 of 96, binomial test

P < 10�3) are larger than 0.5, revealing that the observed

interactions established by newcomer species are lying in

the upper half of the potential range of nestedness values

in any given day. In contrast, the figure also shows that

the minority of the scaled stability values (20 of 96, bino-

mial test P < 10�3) are larger than 0.5, revealing that the

observed interactions established by newcomer species are

lying in the lower half of the potential range of stability

values in any given day. Importantly, these findings con-

firm that within the assembly possibilities of the observed

mutualistic community, feasibility is promoted over sta-

bility, and this is linked to the nested species interactions

established between newcomer and resident species.

Discussion

The above findings have a series of interesting implica-

tions. First, the fact that nestedness tunes a trade-off

between feasibility and stability may imply that different

ecosystem services in mutualistic systems are not in the

same direction (Loreau 2010; Turnbull et al. 2013). This

means that it is not guaranteed that one component of

community dynamics could always be used as a proxy for

another component. While previous studies have empha-

sized the high level of nestedness in mutualistic commu-

nities, less attention has been given to why observed

nestedness is not even higher. Our results on the trade-off

between stability and feasibility may explain why there

might be a limit to nestedness: A further increase of an

already high feasibility can be counterbalanced by a

strong decrease in stability.

Second, the finding that feasibility is increased via

nested—as opposed as through an increase in mutualistic

strength—in the empirical community may be explained

by dynamical and biologic constraints. The dynamical

constraints may be imposed by the theoretical observation

that high mutualistic strengths can push the community

to shift from a weak to a strong mutualistic regime,

which can easily take the community to rather unpre-

dictable dynamics (Bastolla et al. 2009; Saavedra et al.

2013; Rohr et al. 2014). The biologic constraints may

originate from the empirical observation that mutualisms

among free living species are of low specificity, which is

compatible with the combination of coevolutionary con-

vergence and complementarity (Thompson 2005). In both

cases, communities, especially under short-term dynamics,

may have a higher opportunity to increase feasibility by

changing the organization of their interactions rather than

by increasing the overall mutualistic strength.

Third, the finding that feasibility is being promoted

over stability may confirm that under short-term dynam-

ics, the community may not need to be highly dynamically

stable in order for species to coexist. For instance, other

studies have suggested that asynchronous dynamics,

reducing the amplification of perturbations, or reducing

the variability of the total abundance may have more bio-

logic relevance for the community than the capacity to

return to an equilibrium point (Loreau 2010). Impor-

tantly, these findings reveal that feasibility is an important

condition for species coexistence even under short-term

dynamics and requires further exploration.

Finally, it is noteworthy that over more than 40 years,

many studies in theoretical ecology have been focused on

the dynamical stability of ecological communities, in par-

ticular on local asymptotic stability. Indeed, one of the

long-standing questions in ecology has been whether large

ecological communities will be more locally stable (May

1972). However, empirically and theoretically, there has

been no evidence demonstrating that dynamical stability

should be the most important ecological property leading

to community persistence. In fact, our results show that

dynamical stability might not be as relevant as feasibility

for species coexistence in seasonal communities. This calls

for a stronger research program on the factors modulat-

ing feasibility and alternative stability conditions in spe-

cies interaction networks, as they can hold the key for a

general theory of community persistence.
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