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Relevance decay
Node group C α D
kin > 100 61.31 1.09 0.50
kin ∈ [10, 100] 25.00 0.99 0.46
kin < 10 1.85 0.76 0.12

Activity decay
Node group C α D
kout > 100 1.1 · 10−3 0.38 −6.0 · 10−5

kout ∈ [10, 100] 2.2 · 10−4 0.44 −1.86 · 10−5

kout < 10 1.4 · 10−5 0.44 −1.38 · 10−6

Table 1: Parameter estimation results for the average relevance and activity decay in the Digg.com
data.

Relevance decay
Node group C α D
kin > 100 217.5 1.40 0.19
kin ∈ [10, 100] 250.8 1.51 0
kin < 10 177.2 1.51 0

Table 2: Parameter estimation results for the average relevance decay in the APS data.

Supplementary notes

S1 Analysis of empirical relevance and activity in the Digg.com
dataset

As explained in the main text, the empirical relevance ri(t) of node i at time t is defined as

ri(t) =
ni(t)

nPAi (t)
(S1)

where ni(t) = ∆kini (t,∆t)/L(t,∆t) is the ratio between the number ∆kini (t,∆t) of incoming links
received by node i in a suitably chosen time window [t, t+ ∆t) and the total number L(t,∆t) of links
created within the same time window, whereas nPAi (t) = kini (t)/

∑
j k

in
j (t) is the expected value of

ni(t) according to preferential attachment alone [1]. The activity ai(t) of node i at time t has been
defined in [2] as

ai(t) =
∆kouti (t,∆t)

L(t,∆t)
(S2)

where ∆kouti (t,∆t) is the number of outgoing links created by node i in the time window [t, t+ ∆t).
We use ∆t = 1 week to compute relevance and activity in the Digg.com dataset.

Figure S1 shows the average temporal decay of relevance and activity in the Digg.com dataset
(see MM section of the main text for a description of the dataset). We fit both decay profiles with a
power-law function f(t) = C t−α+D with three parameters (C, α, D) using the least-squares method.
While other and perhaps more accurate patameter estimation procedures exist, the present results are
sufficient for our analysis. We only consider the first 100 weeks after the first link received/created
by the respective node. Parameter estimates are summarized in Table 1 separately for nodes of high,
medium and low in-degree and out-degree, respectively. One may note here that activity decays slower
(with a lower exponent) than relevance.

S2 Analysis of empirical relevance in the APS dataset

We use ∆t = 91 days to calculate empirical relevance of nodes in the APS dataset (see MM section of
the main text for a description of the dataset). Figure S2 shows the average relevance decay in the
APS dataset; it is analogous to Figure 1 in [1]. Similarly as for the Digg.com dataset, we fit the results
with the power law dependence f(t) = C t−α + D. To avoid the non-monotonous initial behavior of
relevance (which is due to, for example, the time needed to carry out and publish research building
on a given paper), we ignore the first 5 years (10 years for low indegree nodes) after publication. The
estimation results are reported in Table 2.
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S3 Simulations calibrated on real data

When calibrating the numerical simulations on the Digg.com and APS datasets, we focus only on the
datasets’ temporal patterns that constitute the main motivation of our study and are the principal
reason for the reported failure of PageRank. While more accurate calibration of models to the real
data is possible, we do not find it necessary because our calibrated simulations capture some basic
temporal patterns of indegree and PageRank scores (see Figure S3).

The artificial dataset calibrated on the Digg.com data is grown using the relevance model (RM)
with ρ(η) = exp(−η) and power-law decay of relevance (αR = 1) and activity (αA = 0.4); the other
simulations details are the same described in the MM section of the main text. The artificial dataset
calibrated on the APS data is grown using the RM with ρ(η) = exp(−η) and power law decay of
relevance (αR = 1.4); all outgoing links of a node are created when the node enters the system and
the outdegree distribution is ρ(k) = 8.33 exp(−0.12 k) as in the APS data (see Figure S4).

S4 Measuring empirical relevance in real and artificial data

Since fitness values are not known in real data, we use the total relevance defined by Eq. (3) as an
estimator of node fitness. As shown for the RM in [1], total relevance and fitness are closely connected
and both provide information about the perceived importance of a node. However, the direct use of
Eq. (3) poses a problem in artificial data. In our numerical simulations, a constant number of link are
added to the system at each time step. The factor

∑
j k

in
j (t) on the right side of Eq. (3) consequently

grows linearly with simulation time and, as a result, the total relevance computed with Eq. (3) is
biased towards recent nodes. This issue does not occur in real data where both L(t,∆t) and

∑
j k

in
j

grow with time. To avoid this bias, we omit the factor
∑
j k

in
j when computing relevance in real data

and use the following definition

r̃i(t; ∆t) =
ni(t; ∆t)

kini (t; ∆t)
. (S3)

The corresponding definition of total relevance for model data is Ti(t; ∆t) :=
∑
t r̃i(t; ∆t); we use

∆t = 20. This quantity is used in Figure 5 in the main text to compare the rankings by indegree and
PageRank on calibrated artificial data. In these simulations, we find r(T, η) = 0.71 and r(T, η) = 0.65
for the RM calibrated on the Digg.com and APS dataset, respectively. High values of the correlation
between T and η confirm that total relevance is a suitable estimator of a node’s intrinsic fitness.

S5 Production of Figure 1 in the main text

To produce Figure 1, we start from a network with two nodes: node 0 and node 1, and one link
between them (from 1 to 0). The final network consists of N = 40 nodes and is grown up according
to the RM. Node fitness is drawn from the exponentia distribution ρ(η) = exp(−η). Node relevance
decays exponentially with fR(t) = (0.4)t. At each simulation step, a new node is added to the system
and connected to an existing node according to Eq. 1 in the main text. Consequently, one new link
is created among the existing nodes (so-called internal link). While the target node is again chosen
according to Eq. 1, the starting node is chosen at random from the existing nodes which corresponds
to constant node activity.

S6 Assessing the uncertainty of results

Non-parametric bootstrap is a statistical method to estimate the error on quantities measured in
real data [?, 3]. To estimate the errors of the correlation coefficients r(kin, T ) and r(p, T ) for a
real dataset, we create new datasets by resampling with repetition from the given dataset. Since
a resampled dataset can in principle contain multiple links between a pair of nodes, we compute
PageRank on the resampled data using the generalized formula

p
(t+1)
i = c

∑
j

Mji

p
(t)
j

koutj

+
1− c
N

, (S4)
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where Mji is the number of directed links from j to i (and correspondingly koutj =
∑
iMji). The

correlation values of interest can be computed for resampled dataset. The standard deviation of these
results over datasets then characterizes the uncertainty of the original correlation values. For the
Digg.com data, we obtain r(kin, T ) = 0.330 ± 0.003 and r(p, T ) = 0.224 ± 0.003 which means that
the uncertainty is small and insignificant in comparison with the absolute differences between the
correlation values. Results for the APS data lead to the same conclusion.

For the results obtained with calibrated simulations, we estimate their uncertainty by analyzing
several model realizations and evaluating the standard error of the mean for a quantity of interest.
Using 50 model realisations, we find r(kin, T ) = 0.444± 0.002 and r(p, T ) = 0.411± 0.002 which has
the same implications as before: the results’ uncertainties are substantially smaller than the absolute
difference and thus unsignificant. Results for the APS data lead to the same conclusion.

S7 Relation between outdegree and activity

Eq. (2), which governs the creation of outgoing links, does not contain the preferential attachment
mechanism and as a consequence the final outdegree is determined only by node activity Ai. When ac-
tivity decay fA is sufficiently fast to allow the normalisation factor of Πout to converge, the asymptotic
solution in the continuum approximation [4] reads

kouti (t) = 1 +mAi

∫ t
τi
dt′ fA(t′ − τi)

Ωout∞
, (S5)

where τi is the time at which node i has entered the system and Ωout∞ = limt→∞
∑
iAi fA(t−τi) <∞.

When activity decay is absent, this has an asymptotic solution

kouti (t) = 1 +m
Ai
a

log

(
t

τi

)
(S6)

where a is the average node activity. The outdegree distribution is consequently determined mainly
by the activity distribution ρ(A).
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S8 Supplementary figures: Analysis of real data
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Figure S1: Temporal decay of the average relevance r(t) (left panel) and activity a(t) (right
panel) in Digg.com social network (2006-2008, ∆t = 1 week, color online). Symbols represent
the average relevance and activity of nodes belonging to the same age group, error bars represent the
errors of the mean, lines represent the fits described in Section S1.
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Figure S2: Temporal decay of the average relevance r(t) in the APS dataset (1893-2009,
∆t = 91 days, color online). Symbols represent the average relevance of nodes belonging to the same
age group, error bars represent the error of the mean, lines represent the fits described in Section S2.
The initial non-monotonous part of the relavance profile is ignored by the fitting procedure and
consequently the fitted curves do not match the points corresponding to the first few years after
publication.
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Figure S3: Age distribution of the top 1% nodes in the ranking, in the APS data (left
panel) and in the corresponding calibrated simulation (right panel) (color online). On the
x-axis, nodes are ordered by age (oldest on the left, youngest on the right). We see that PageRank is
more biased towards old nodes than indegree. Results obtained on the calibrated model (see Table 2
for model parameters) agree well with those obtained on the real data.
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Figure S4: Outdegree distribution in the APS dataset. The distribution is narrow and is well
approximated by ρ(kout) ∼ exp(−0.12 kout) for kout > 5 (black line). We use this distribution to
generate the number of outgoing links created by a new node in the simulations calibrated on the
APS dataset.
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S9 Supplementary figures: Numerical simulations

For the following figures, unless stated otherwise, the models’ settings are:

� RM: N = 10, 000, ρ(η) = exp (−η), fR(t) = exp (−t/θR), fA(t) = exp (−t/θA).

� EFM: N = 10, 000, H = 250, fR(t) = exp (−t/θR), fA(t) = exp (−t/θA).
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Figure S5: Linking pattern in the extended fitness model (EFM). Each symbol corresponds
to a link from a start node whose rank according to fitness is shown on the horizontal axis to a target
node whose rank according to fitness is shown on the vertical axis. The EFM parameters used to
generate the network are N = 10, 000, θR = 500, θA = 10000, H = 250. The dotted lines mark the
rank position 250 that separates high-fitness nodes (whose fitness η is uniformly distributed in the
range [10−5, 1]) and low-fitness nodes (whose η is uniformly distributed in the range [0, 10−5)). We
see that the EFM model produces networks where high-fitness nodes are typically pointed by other
high-fitness nodes, thus creating a suitable setting for the PageRank algorithm.
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Figure S6: Average birth time τ of the top 1% of nodes as ranked by PageRank in the RM
(left) and in the EFM (right), color online. When relevance decay is faster than activity decay
(upper-left corners of the plots), PageRank is biased towards recent nodes (blue-shaded areas) in both
models. When the opposite is true (lower-right corners of the plots), PageRank is biased towards old
nodes (red-shaded areas). Between the two biased regions, there is a nearly-diagonal contour (marked
with the dotted line) where the average age of top 100 nodes is N/2 = 5000 which means that the top
100 PageRank positions show no bias towards recent or old nodes. We can conclude that PageRank
is not biased only when the timescales of relevance and activity decay are in accord. Results are
averaged over 6 model realizations.
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Figure S7: Indegree-PageRank correlation in the RM (left) and EFM (right). The dotted
lines represent the zero-bias contours from Figure S6. When the timescales of relevance and activity
decay mismatch (upper-left and lower-right corners of the heatmaps), indegree-PageRank correlation
is weak due to the time bias of PageRank. This correlation is maximal near the contour where
PageRank is not biased.
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Figure S8: Fitness-PageRank correlation in the RM (left) and EFM (right). The dotted
lines represent the zero-bias contours from Figure S6. When the timescales of relevance and activity
decay mismatch (upper-left and lower-right corners of the heatmaps), fitness-PageRank correlation is
weak due to the time bias of PageRank. PageRank performs best along the zero-bias contour. Note
that while the global maximum of PageRank’s performance for the RM occurs when both θA and θR
are small (lower-left corner), the global maximum for the EFM is located in the center area. This
happens because in the EFM, only a small fraction (5%) of nodes are sensitive to fitness; as a result,
when activity and relevance decays are too fast, fluctuations damage the capability of indegree and
PageRank to efficiently detect fitness. By contrast, in the RM all nodes are sensitive to fitness; for
this reason, θR = 10 and θA = 10 are large enough to allow the system to significantly perceive fitness.
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Figure S9: Comparison between PageRank and indegree in the RM with uniform fitness
distribution (color online). Panels show the correlation r(kin, p) (left) and the correlation ratio
r(p, η)/r(kin, η) (right) in the RM with node fitness η distributed uniformly in [0, 1] (as opposed to
the original exponential distribution). The dotted lines represent the PageRank’s zero-bias contour for
this model (bias is again evaluated on the basis of the average age in top 100 positions of the Pagerank
ranking). Results show no significant differences from the results on the RM with an exponential fitness
distribution (see the left panel in Figure S7 and the right panel in Figure 3 in the main text).
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Figure S10: Comparison between PageRank and indegree in the RM (left) and EFM
(right) with power-law aging (color online). We see here qualitatively the same behaviour as
reported in Figures 3 and 4 in the main text where exponential aging is assumed. Two regions where
PageRank fails are again present: one in which relevance decays faster than activity (lower-right
corner) and one where the opposite is true (upper-left corner). In both the RM and the EFM, the
regions where PageRank is not heavily outperformed by indegree include also the (αR, αA) values
found in Digg.com data analysis (see Table 1). For simplicity, we focus on the parameter values
(αR, αA) = (1, 0.4), even if values in Table 1 are slightly different and dependent node degree group.
In the RM, PageRank performance in ranking nodes by fitness is not far from that of indegree [(1, 0.4)
lies in the white-shaded area of left panel], which explains why indegree and PageRank performances
in ranking nodes by relevance are close to each other in Digg.com dataset (see Fig. 5 of the main
text). In the EFM, PageRank even outperforms indegree for these parameter values [(1, 0.4) lies in
the blue-shaded area of right panel], which illustrates the main difference between the favorable and
unfavorable parameter regions for PageRank: when PageRank is biased because of temporal effects, it
fails both in the RM and in the EFM; by contrast, when PageRank is not biased, then its performance
with respect to indegree depends on the growth rule of the system and can benefit from a suitable
model such as the EFM.
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Figure S11: Comparison between PageRank and indegree in the RM (left) and EFM
(right) using precision (color online). Precision PX(s) of the ranking by score s is the average
number of nodes that are among the top X places of the fitness ranking that are at the same time at the
top X places of the ranking by score s. The dotted lines represent the zero-bias contours from Figure
S6. As for the score comparison on the basis of correlation with node fitness, PageRank’s performance
is again optimal along the contour of its zero time bias. In comparison with the correlation-based
results, PageRank now lags less behind indegree in the region where relevance decays slowly and
activity decays quickly (lower-right corner). However, both scores perform badly in this region (for
the EFM, for example, P250(p) = 0.16 in the lower-right corner as opposed to the best-achieved
precision P250(p) = 0.69 when θR = 183 and θA = 263).
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Figure S12: Comparison between PageRank and indegree in the RM with accelerated
growth (color online). We grow networks according to the RM with the same parameters as before
except that in simulation step t, m(t) = 20 t/N existing nodes are sequentially chosen and create
one link each. In this way, the rate at which links are created in the network grows linearly with
network size. This aims to represent real systems where the total node activity is not normalized but
rather grows with the number of existing nodes. At the same time, the resulting number of links in
the network is the same as before when m = 10 nodes were chosen and created one link each which
makes the present model comparable with the original one. Panels show the correlation r(kin, p) (left)
and the correlation ratio r(p, η)/r(kin, η) (right). The behaviour is again qualitatively similar to that
found for uniform growth (see Figures 3 and S7) except that the lower-right region where PageRank
fails is not even more pronounced. This further demonstrates the generality of our observations.
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Figure S13: Comparison of total relevance with indegree (left) and PageRank (right)
in the RM (color online). Total relevance outperforms indegree kin and PageRank p in ranking
nodes by fitness η for a broad range of model parameter. The performance ratios are particularly
large for slow decay of relevance: for instance, the maximum value of r(T, η)/r(kin, η) is found for
(θR, θA) = (4832, 14) [r(T, η)/r(kin, η) = 2.83], and the maximum value of r(T, η)/r(p, η) is found
for (θR, θA) = (3359, 10) [r(T, η)/r(p, η) = 12.49]. These findings show that total relevance is highly
informative on node fitness and might motivate the study of the ranking by total relevance in real
data.
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Figure S14: Comparison of total relevance with indegree (left) and PageRank (right) in the
EFM (color online). In the data produced by the EFM, the parameter region where total relevance T
outperforms indegree kin and PageRank p in ranking nodes by fitness is smaller with respect to that
observed for the RM. The performance ratio r(T, η)/r(kin, η) becomes large when relevance decay
is slow and, as a consequence, indegree is heavily biased towards old nodes; the maximum value of
r(T, η)/r(kin, η) is found for (θR, θA) = (10000, 10) [r(T, η)/r(kin, η) = 3.77]. The maximum value of
r(T, η)/r(p, η) is found for (θR, θA) = (10000, 10) [r(T, η)/r(p, η) = 142.57, with r(T, η) = 0.172 and
r(p, η) = 0.001]. On the other hand, there are broad regions of parameter values where total relevance
is outperformed by indegree and PageRank, which leaves the following question open: to what extent
this failure of total relevance is due to the details of the model, such as the choice of ρ(η) and the
functional form of Πin? Answering this question goes beyond the scope of this work.
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