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Abstract. We report on extensive studies on the intrinsic sensitivity of a combined 3He/Cs magnetometer.
The magnetometer relies on the detection of the free spin precession of nuclear spin polarized 3He by
optically pumped cesium magnetometers. We characterize the relevant processes involved in the detection
and quantify their impact on the total sensitivity of the magnetometer. An expression is derived that
predicts the sensitivity of this magnetometer scheme and the results are compared to experiments. Excellent
agreement is found between theory and experiments, and implications for an application of a 3He/Cs
magnetometer in an experiment searching for a permanent neutron electric dipole moment are discussed.

1 Introduction

Many fundamental physics experiments require the pre-
cision knowledge and control of an applied magnetic
field. The searches for permanent electric dipole moments
(EDM) of elementary particles, atoms or molecules are
among such experiments. A high precision experiment,
currently conducted at Paul Scherrer Institute (PSI),
Switzerland, searches for the existence of a neutron EDM
(nEDM) [1]. The existence of a finite-valued nEDM is
closely tied to long persisting questions of cosmology, such
as the baryon asymmetry of the universe [2]. In the exper-
iment the spin precession frequency of stored ultracold
neutrons in homogeneous parallel and anti-parallel elec-
tric and magnetic fields is measured using Ramsey’s tech-
nique of separated oscillatory fields [3]. A next generation
nEDM experiment is currently being developed at PSI
(n2EDM) and is expected to further constrain the value
of the nEDM. In order to suppress and control systematic
effects the experiment requires the precise measurement of
an applied magnetic field of ∼1 μT and the tuning of field
gradients. For this task we plan to integrate in the appara-
tus a 3He magnetometer recording the free spin precession
(FSP) frequency of nuclear spin polarized 3He gas. During
the FSP the 3He magnetization precesses at the Larmor
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frequency

ωL,He = |B| γHe (1)

which will be measured by detecting the associated rotat-
ing magnetic field with optically pumped Cesium magne-
tometers (CsOPMs). Compared to superconducting quan-
tum interference devices, which are widely used to de-
tect nuclear magnetic resonance, CsOPMs offer the ad-
vantage of operating at room temperature, thus easing
the spatially-distributed positioning of a large number of
individual sensors.
In a recent publication we have described the design

and performance of a 3He/Cs magnetometer prototype
built to investigate this magnetometric scheme [4]. We
have demonstrated that CsOPMs provide a convenient
way to detect the 3He FSP, permitting Cramér-Rao lower
bound (CRLB) limited measurements of a 1 μT magnetic
field that yield sensitivities as low as ΔB ∼ 50 fT with
a 100 s integration time. In this paper we report on an
extended study of the intrinsic sensitivity of the com-
bined 3He/Cs magnetometer concept. We have developed
a semi-empirical formula which predicts the CRLB and
shotnoise-limited magnetometric sensitivity of a 3He/Cs
magnetometer based on specific experimental parameters.
The predictions are compared to experimental results ob-
tained at the magnetically shielded room (BMSR-2) of
Physikalisch Technische Bundesanstalt (PTB) in Berlin [5]
and find excellent agreement with model estimations.
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2 Magnetometer principle

The 3He/Cs magnetometer concept is based on detecting
(by CsOPMs) the weak rotating magnetic field accompa-
nying the precessing of nuclear spin polarized 3He atoms.
The CsOPMs build on an optically-detected magnetic res-
onance effect. The sensor proper is an evacuated, paraffin-
coated glass cell of 30 mm diameter that holds a droplet
of cesium in an appendix which is connected to the main
volume by a capillary to reduce depolarizing collisions of
Cs vapor atoms with the bulk Cs [6]. The Cs vapor is op-
tically pumped using circularly-polarized laser radiation
resonant with the D1 transition, λ ∼ 895 nm. The cell
is enclosed in a pair of Helmholtz coils used to drive the
magnetic resonance transitions by a weak rf field, Brf(t),
oscillating at the Cs Larmor frequency ωrf ≈ ωL,Cs that is
related to the modulus of the total magnetic field B via

ωL,Cs = γCs |B| (2)

where γCs/2π ≈ 3.5 kHz/μT is the cesium atom’s gyro-
magnetic ratio. The magnetometers are operated in the so-
calledMx configuration [7] with the rf field along the laser
beam, B̂rf ‖ k̂Cs. The light power transmitted by the Cs
cell is detected by a photodiode and the transimpedance
amplified photocurrent signal demodulated by a lock-in
amplifier referenced to ωrf. Analytical expressions describ-
ing the lineshapes of theMx magnetometer can be derived
from the Bloch equations in the rotating wave approxima-
tion, yielding

SR =
√

S2
IP + S2

QU =
G0

√
Γ 2

2 + δω2ω1Γ1√
2(2Γ1(Γ 2

2 + δω2) + Γ2ω2
1)

(3)

tan
(π

2
+ φ

)
=

SQU

SIP
= −δω

Γ2
(4)

for the amplitude (SR)-phase (φ) parametrization of the
demodulated signal [8]. Here, SIP and SQU denote the in-
phase and quadrature components of the signal, respec-
tively. G0 is a saturation parameter that depends on the
laser power and Γ1, Γ2 are the longitudinal and trans-
verse relaxation rates of the Cs polarization, respectively.
We have also introduced the detuning of the rf frequency
from resonance

δω = ωL,Cs − ωrf (5)

and expressed the rf field strength in terms of its associ-
ated Larmor frequency ω1 = γCsBrf.
The magnetic dipole field produced by a spherical vol-

ume of polarized 3He at the magnetometer position r with
respect to the sphere center is given by:

BHe =
3r̂(μ̂ · r̂)− μ̂

r3

NHepμHeμ0

4π
. (6)

Here p and μHe are the nuclear spin polarization and mag-
netic moment of the 3He, while μ̂ represents the spatial
orientation of the 3He magnetization. Assuming a (room
temperature) pressure of ∼1 mbar, the ∼70 mm diameter
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Fig. 1. (a) Schematic sketch of experiment and processing
electronics. If the switch is set to position S1, the phase de-
tector, PID controller and numerically controlled oscillator
form a phase feedback loop and the CsOPM is operated in
PS-mode. If set to S2 position the CsOPM can be operated
in FF-mode (function generator supplies constant output) or
frequency sweep measurements as shown in Figure 2 can be
recorded (function generator supplies ramp). In the experi-
ments described here, phase detector, PID controller, function
generator and numerically controlled oscillator are all digitally
implemented in a single device. (b) Left: geometry of the ex-
periment. The 3He magnetization μHe is precessing in a plane
perpendicular to B0, the kCs of the CsOPM readout laser is
at 45◦. Right: geometry of the combined magnetometer. The
large(orange) sphere in the center is the 3He cell. The sur-
rounding smaller spheres are the CsOPMs with the gray planes
indicating the orientation of the printed circuit boards holding
the individual rf coils. The (yellow) arrow denotes the direction
of the B0 field.

3He cell contains NHe ≈ 3×1018 atoms following the ideal
gas law. Evaluating equation (6) shows that the magnetic
field of interest is on the order of pico-Tesla in the vicinity
of the cell. In the experiments described in this work we
have B0 ∼ 1 μT � BHe, in which case equation (2) re-
duces to ωL,Cs(t) ∝ |B| = |B0+BHe| ≈ |B0|+B̂0 ·BHe(t).
Under this condition the CsOPM is to first order only sen-
sitive to the component of the 3He field along B0. The
precession of the 3He magnetization can be expressed by
a time dependent μ̂(t) in equation (6). Assuming B̂0 = ẑ
and μ rotating in an orthogonal plane (cf. Fig. 1b, left),
the relevant component of the oscillating magnetic field is
given by:

BHe,z =
NHepμHeμ0

4πr3
3 cos(ωL,Het − φ) cos(θ) sin(θ) (7)
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introducing standard spherical coordinates. The field com-
ponent given by equation (7) will thus be maximized for
θ = 45◦, so that the loci of optimal CsOPM positions are
represented by two symmetric cones around B̂0 with tips
centered at the 3He cell center. The CsOPMs should thus
be placed on these cones at a minimal distance |r| from
the 3He cell.

3 The experimental apparatus

The measurements presented below were performed in
the magnetically shielded room BMSR-2 of Physikalisch
Technische Bundesanstalt in Berlin using the combined
3He/Cs magnetometer prototype described in detail in
reference [4]. It consists of a 70 mm diameter spherical
3He cell mounted in a structure that holds eight CsOPMs
in the optimal detection geometry discussed above (cf.
Fig. 1b, right). Nuclear spin polarization is created in
the 3He gas by metastable exchange optical pumping
with 1.08 μm laser radiation traversing a plasma discharge
in the 3He cell. The maximal amplitude of the field oscil-
lation created by the 3He FSP that can be expected at
the Cs cell centers can be calculated from equation (7).
Inserting the dimensions of the 3He cell (69–72 mm diam-
eter, 2 mm wall thickness) and the CsOPMs (30 mm di-
ameter) the calculation yields

∣∣∣B(max)
He

∣∣∣ = 34 pTrms. Each
CsOPM has an individual rf coil pair. In order to avoid
that the magnetic resonance in a given CsOPM is driven
by the parasitic rf field from a neighboring sensor, an ef-
fect known as rf cross-talk, all magnetometers are driven
at the same ωrf.
Two different modes of operation were investigated,

viz., the fixed-frequency mode (FF-mode) and the phase-
stabilized mode (PS-mode). Figure 1a shows a schematic
drawing of the data processing electronics for both modes
of operation. In the FF-mode of operation the frequency
ωrf is kept constant, and magnetic field changes are de-
tected via corresponding phase changes, following equa-
tion (4). If the magnetic field gradients are sufficiently
small ωrf can be chosen to have good overlap with the res-
onances of all CsOPMs and they can all be driven by the
same rf. In the PS-mode of operation one CsOPM (mas-
ter) is operated in a phase feedback loop. An error signal
is derived from the phase difference between the magne-
tometer signal and the output of a numerically-controlled
oscillator (NCO) that supplies the rf frequency for the
CsOPM [9]. A PID controller minimizes this error signal
by adjusting the frequency of the NCO. Under ideal con-
ditions the CsOPM is thus always driven on resonance
ωrf=ωL,Cs. This dynamically controlled ωrf is then also
used to drive the remaining CsOPMs (slaves). In the pres-
ence of (fluctuating) gradients this implies that the slaves
are in general not driven exactly on resonance. Further-
more, due to the dependence of the 3He FSP signal’s phase
on the relative position of the CsOPM (cf. Eq. (7)), the
signals from the slaves will be qualitatively different and
all depending on the master’s performance. Such effects
can be exploited in gradiometric measurements [10].

4 The measurement parameters

The sensitivity of the combined magnetometer depends on
a set of parameters describing the properties of the opti-
cally detected magnetic resonance (ODMR) process in the
CsOPM and the FSP of the 3He gas. A detailed account
of all effects affecting the CsOPM sensitivity is given in
reference [6]. In the following we will separately address
the most relevant effects and quantify their contribution
to the total sensitivity.

4.1 Bandwidth limitation of CsOPM

As evidenced by the expressions describing the magne-
tometer signal lineshapes (Eqs. (3) and (4)), the CsOPM
in Mx configuration can be considered as a driven har-
monic oscillator with resonance frequency ωL,Cs periodi-
cally excitated at ωrf. In general, the excitation frequency
ωrf is detuned from the resonance frequency ωL,Cs by an
amount δω given by equation (5). The detuning is affected
both by variations of the magnetic field and of the ex-
citation frequency. Following a change of the detuning,
the ODMR process in the CsOPM undergoes a transient
phase (and frequency) change during which the Cs spin
precession adapts to the changed conditions. The settling
time of this process depends on the lifetime τ=Γ−1

2 of
the Cs polarization in the cell, where Γ2 is the transverse
spin relaxation rate. In perfect analogy with mechanical
or electronic driven oscillators, the settling time can be
related to the resonance’s quality factor Q via

Q =
ωL,Cs

2Γ2
. (8)

Periodic changes of the detuning δω ∼ cos(ωmodt) are
of particular interest for the present discussion. In that
case, the settling process implies a frequency-dependent
response of the system with a first-order low pass charac-
teristic [11] TCs(f) = T (1)(f), where

T (n)(f) =
[

1
1 + (2πf τ)2

]n/2

, (9)

is the generalized transfer function of an nth order filter.
TCs(f) describes the response of the photodiode signal to
a change of the detuning. The relaxation rate in the Cs
cell will in general depend on different parameters, e.g.,
the quality of the coating, the size of the cell and the
power of the resonant pump and readout light. It can be
conveniently measured by recording the response of the
magnetometer to a sweep of the rf frequency. The result
of such a measurement is shown in Figure 2.
As described in Section 3, the CsOPMs can be oper-

ated in two different modes of operation. In the FF-mode,
where ωrf is being kept constant, any change of the de-
tuning induced by a change of the magnetic field at the
CsOPM’s position will change the local Larmor frequency
ωL,Cs. The oscillating field produced by the 3He-FSP in-
troduces a periodic change of the detuning, and the fre-
quency dependence of the CsOPM’s response will be given
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Fig. 2. SR- and φ-signal of CsOPM when the rf frequency is tuned across the magnetic resonance. Graphs shown for Γ2/2π =
6.1 Hz, equivalent to 1.7 nT.

by the transfer function T
(1)
Cs (f). Since the typical life-

time of the Cs polarization in the paraffin coated cells is
τ ∼ 26 ms, the low pass described by equation (9) has a
−3dB cutoff frequency of typically f-3dB ≈ 6 Hz. This rep-
resents a severe bandwidth limitation for measurements
performed in the FF-mode. An additional bandwidth lim-
itation arises from the low-pass filter in the lock-in am-
plifier’s demodulator used to extract the phase signal, an
effect that can be characterized by a second transfer func-
tion, TLIA(f). Assuming only small variations of the mag-
netic field γCsδB�Γ2 and using equation (4) the response
of the CsOPM’s phase signal to a change of the magnetic
field can be expressed as:

δφ =
δω

Γ2
Ttot =

γCs δB

Γ2
Ttot, (10)

where

Ttot = TLIA TCs (11)

is the combined transfer function of the system caused by
the two processes mentioned above. This assumption can
be verified experimentally by measuring the response of
the CsOPM to small periodic variations applied to the
holding field B0. The results of such a measurement in
which the field modulation frequency fmod is changed (at
constant modulation amplitude) are shown in Figure 3.
For each value of fmod, the amplitude δφ of the cor-
responding phase oscillation was inferred from the FFT
spectrum of the time dependent phase signal. The exper-
imental results are in excellent agreement with the theo-
retical predictions.
In the PS-mode of operation the phase-stabilized loop

dynamically readjusts ωrf to track changes of the Larmor
frequency. In the ideal case one has ωL,Cs = ωrf at all
times, so that the CsOPM is always driven at resonance
and no change of detuning occurs. In this mode of op-
eration, the CsOPM is free from the bandwidth limita-
tion imposed by the ‘free-running’ FF-mode. In reality
the bandwidth is limited by the frequency characteristics
of the feedback loop whose bandwidth, however, can be
considerably larger than the one imposed by TLIATCs un-
der free-running conditions. In Section 7 implications for
the magnetometric sensitivity in this mode of operation
will be discussed.
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Fig. 3. Experimental and theoretical frequency response of
two CsOPMs driven in FF-mode. (a) Transfer function TLIA =
T (4) of the used 4th order (−24 dB/oct) lock-in amplifier de-
modulation filter calculated according to equation (9) with
τ = 1.16 ms. (b,c) dashed lines: Transfer functions TCs=T (1)

of two CsOPMs, corresponding to a 1st order filter with τ =
1/ΓCs. The lifetimes are τ ≈ 17 ms for the blue curve and
τ ≈ 24 ms for the red curve, respectively. (b,c) Solid lines:
Combined transfer functions TLIATCs for the two CsOPMs.
The dots represent experimentally measured points.

4.2 Sensitivity loss due to permanent detuning

An additional effect has to be considered when operat-
ing multiple CsOPMs at an identical fixed frequency. Due
to unavoidable inhomogeneities of the magnetic field, the
Larmor frequencies of the individual CsOPMs will in gen-
eral differ ω

(i)
L,Cs 	= ω

(j)
L,Cs. This results in some, or all

CsOPMs being effectively driven at a finite detuning, even
in a perfectly stable field. We consider two effects that
are caused by such a permanent detuning. On one hand,
the spread of Larmor frequencies will reduce the ampli-
tude aCs(δω) of the demodulated signal. On the other
hand, the spread will affect the effective slope of the phase
curve. Both effects can be experimentally quantified by
measurements of the frequency sweep response functions,
such as shown in Figure 2. Based on equation (4), the off-
resonance value of the phase slope for a constant detuning
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δω′ is given by:

m(δω′)=
∂φ

∂δω

∣∣∣∣
δω′
=

∂

∂δω
arctan

(−Γ2

δω

) ∣∣∣∣
δω′
=

Γ2

Γ 2
2 + δω′2 .

(12)
The on-resonance slope m(δω′ = 0) = 1/Γ2 will be re-
duced for detunings δω′ 	= 0. A permanently detuned
CsOPM will thus produce a smaller response signal to
a given magnetic perturbation. The response reduction is
given by:

εφ(δω′) =
m(δω′)

m(δω′=0)
=

Γ 2
2

Γ 2
2 + δω′2 . (13)

As noted above, the amplitude SR also depends on the de-
tuning and will be maximal for δω = 0. The consequences
for the signal/noise ratio arising from this will be discussed
in Section 5.

5 Signal to noise ratio and sensitivity

Even under optimal experimental conditions the mag-
netometer signal will exhibit a fundamental noise level
caused by processes inherent to the detection mechanism.
The most prominent of such processes is the photocurrent
shotnoise (PSN), a fluctuation of the current produced by
the photodiode due to the corpuscular nature of light and
electric current. Since the relatively weak (IAC < 0.1 μA)
oscillatory current carrying the magnetometric informa-
tion is superimposed on a much larger (IDC ∼ 3 μA) DC
current, it is reasonable to assume that the PSN is dom-
inated by fluctuations of IDC, whose spectral density is
given by:

ρI,PSN =
√
2 e IDC, (14)

where e is the elementary charge. Other sources of noise,
such as fluctuations of the magnetic field (magnetic field
noise, MN) or electronic pick-up by the signal cables that
may be present will add quadratically to this fundamental
noise floor. The optimal case, in which the PSN is the only
source of noise is referred to as the shotnoise limit.
It is important to understand that different noise pro-

cesses, such as the PSN and MN affect the phase signal
in qualitatively different manners. Let us first consider
the case of purely magnetic field noise. MN affects the
magnetic resonance process and its effect on the phase
signal – evaluated using equation (10) – is subject to the
bandwidth-limiting atomic filtering of the magnetic reso-
nance process. Since the signal of interest (magnetic field
oscillation) and the signal noise (magnetic field fluctua-
tions) are equally bandwidth limited, e.g., undergo the
same filtering by Ttot, the signal to noise-density ratio
(SNDR) is independent of this bandwidth limitation. This
independence also holds under the assumption of a per-
manently detuned magnetometer, as introduced in Sec-
tion 4.2. In order to illustrate this we consider a peri-
odic magnetic field fluctuation, e.g., the oscillating field
δB = bHe created by the 3He-FSP at the position of the
CsOPM and assume a Gaussian magnetic noise spectral

SIP

SQU

Φ

SR

ΡR

ΡΦ

Fig. 4. Phasor plot of a signal with amplitude SR and phase
φ affected by Gaussian amplitude noise. The noise densi-
ties on the in-phase (SIP ) and quadrature (SQU ) compo-
nents are statistically independent and of equal magnitude.
They can thus be visualized by a circle, and it follows that

ρR =
√

ρ2
IP + ρ2

QU . The root power spectral density of the

corresponding phase noise ρφ = ρR/SR follows from simple
geometrical considerations.

density ρB. The SNDRB for the magnetic quantities and
the SNDRφ on the phase signal are

SNDRB =
bHe

ρB
=

δφ

ρφ
= SNDRφ. (15)

A different situation occurs with PSN-produced signal
fluctuations. This case is particularly interesting since it is
often encountered with magnetically well shielded experi-
mental conditions where the PSN is by far the dominant
noise process of the measurement. Starting from equa-
tion (14) we can calculate the impact of the PSN on the
phase signal. We first consider that the photodiode cur-
rent is converted to a voltage signal by a transimpedance
amplifier (TA) with frequency dependent gain gV/A(f).
Since the lock-in amplifier in the subsequent step of the
processing chain extracts only the signal close to the ref-
erence frequency ωrf ≈ ωL,Cs, and assuming again that the
noise is mainly caused by the fluctuating DC component
of the photocurrent we can approximate the voltage noise
spectral density after the TA as:

ρV,PSN = ρI,PSNgV/A(ωL,Cs) = ρI,PSNgAC. (16)

Here we have defined gV/A(ωL,Cs) = gAC = 2.53×107 V/A
as the AC gain of the TA at the Cs Larmor frequency. The
PSN will thus translate into noise of the in-phase and
quadrature components of the lock-in detection process,
so that the resulting effect on the phase signal can be
deduced from Figure 4 to be given by:

ρφ,PSN =
ρV,PSN

SR
, (17)
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where SR =
√

S2
IP + S2

QU is the (detuning-dependent)
amplitude of the lock-in signal. One can define a noise
equivalent magnetic field NEM , i.e., the magnetic field
fluctuation that leads to a signal noise identical to the
PSN, by scaling the phase noise to magnetic field units.
Using equation (10) one finds

NEM = ρB,PSN =
ρφ,PSN Γ2

γCs
=

ρI,PSN gAC Γ2

SR γCs
. (18)

We now discuss the implications for the SNDR assuming
a 3He-FSP signal bHe which is detected by a CsOPM in
the shotnoise limit. Due to the filtering processes intro-
duced above, the CsOPM will effectively detect a smaller
oscillation amplitude

b′He = Ttot(ωL,He) bHe. (19)

The NEM, on the other hand, is only subject to the LIA
filter, so that

ρ′B,PSN = ρB,PSNTLIA. (20)

Combining the last two equations we find for the effective
SNDR

SNDR′ =
b′He

ρ′B,PSN

=
TCs(fHe)TLIA(fHe) bHe

TLIA(fHe) ρB,PSN
(21)

=
aCs γCs bHe

ρV,PSN

√
Γ 2

2 + ω2
He

, (22)

where we used equations (9) and (18) in the last line.
The important conclusion of equation (22) is that in the
shotnoise limit the SNDR depends on the linewidth of the
CsOPM and the frequency of the signal to be measured.
The considerations presented so far were restricted to

a CsOPM with a zero permanent detuning. We will now
address the case δω′ 	= 0. Equation (13) describes the de-
pendence of the phase response to magnetic perturbations
in that case. If we consider again a situation in which the
dominant measurement noise is the PSN, we find that –
due to the reduced value of SR – the resulting phase noise
of the detuned magnetometer will be larger than the cor-
responding noise in the δω = 0 case. Replacing SR by
a′

Cs(δω
′) in equation (17) we can relate the phase noise

of the detuned CsOPM to the PSN, and the ratio of the
noise densities for both cases is found to be

ερ(δω) =
ρ′φ
ρφ
=

aCs(δω = 0)
a′

Cs(δω′)
. (23)

The effect of the permanent detuning can thus be ex-
pressed by the factor

c(Csi) =
εφ(Csi)
ερ(Csi)

(24)

for each individual CsOPM. Figure 5 shows a plot of this
factor for a CsOPM under real measurement conditions. It
can be seen that the effect stays negligibly small for small
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Fig. 5. Plot of c(Cs1) = εφ(Cs1)/ερ(Cs). The values were
obtained as described in the text. The shaded red vertical
band illustrates the linewidth Γ2/2π = 6.1 Hz of this mag-
netometer. The solid vertical line denotes the actual detuning
δω′/2π = 1.06 Hz of the CsOPM during operation, leading to a
sensitivity reduction by c = 0.96 as indicated by the horizontal
line.

detunings but becomes considerable when the detuning
approaches the linewidth of the CsOPM.
Finally, we combine the effects of bandwidth limitation

and permanent detuning to derive the following expression
for the detection SNDR

SNDR′′ = SNDR′ ερ

εφ
=

aCs bHeγCs

ρV,PSN

√
Γ 2

2 + ω2
He

ερ

εφ
. (25)

6 Sensitivity of the combined magnetometer

Using the results derived above we are now able to predict
the sensitivity of a 3He/Cs magnetometer consisting of a
3He cell and a single CsOPM. The precision with which
the magnetic field can be determined depends on the pre-
cision with which the average frequency of the 3He FSP
can be measured in a given integration time TM . Informa-
tion theory sets a fundamental limit to this precision, the
so called Cramér-Rao lower bound (CRLB) [12,13], which
states that the variance of frequency estimation from a
discrete-sample signal [14] is bound to obey

σ2
f ≥ 6

(2π)2 SNDR2 T 3
M

, (26)

which implies

σ2
B ≥ 6

SNDR2 T 3
Mγ2

He

. (27)

for the measurement of the magnetic field.
We note that in general we are dealing with a slightly

more complicated situation because the amplitude of the
3He-FSP signal decays over time due to relaxation. This
is taken into account by introducing an additional factor
C ≥ 1 in equations (26) and (27) that takes the damping
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into account [15]. However, under homogeneous magnetic
field conditions, the 3He polarization decays very slowly
so that for sufficiently short measurement times TM�Γ−1

the FSP amplitude can be considered constant, so that
C ≈ 1. For the measurements presented in the following
section the decay time of 3He was Γ−1 ∼ 13 000 s which
allows this simplified treatment for measurement times up
to several hundreds of seconds. Following the notation in
reference [4], we parametrize the performance of the com-
bined magnetometer by a sensitivity parameter η which
absorbs the SNDR dependence of the detection,

η = σBT
3/2
M =

√
6

SNDR γHe
. (28)

Evaluating this expression for the effective SNDR of each
individual CsOPM yields a corresponding (sensor-specific)
sensitivity parameter.
As a last step we assume the effects of a partially po-

larized 3He sample, or an imperfect π/2 spin-flip. Both
imperfections lead to a decrease of the FSP amplitude ac-
cording to

beff = p sin(θflip) bmax,He = peff bmax,He (29)

where we have introduced an effective polarization peff≤1.
Merging the results of equations (25), (28) and (29) we
find

ηtheor
B =

√
6 ρV,PSN

√
Γ 2

2 + ω2
He(Γ

2
2 + δω′2)

a′
Cs(δω′)Γ 2

2 peff bmax,He γHe γCs
. (30)

7 CsOPMs driven in PS mode

As we have seen, the FF-mode of operation, although very
convenient and transparent, introduces a severe band-
width limitation. This degrades the performance of the
combined magnetometer at high fields in conditions where
the PSN is the dominant noise source. In the PS-mode the
measurement bandwidth is defined by the characteristics
of the feedback loop [11]. In this mode of operation much
higher bandwidths can be achieved which will lead to in-
creased amplitudes of the 3He oscillation in the measure-
ment signal. The question arises if this goes hand in hand
with an increase of SNDR and thus improved sensitivities
can be expected in this mode of operation.
Let us assume a constant magnetic field B0 and loop

adjusted such that the CsOPM’s phase is φ = 0 on reso-
nance ωrf = ωL,Cs = γCsB0. A change of the magnetic field
δB leads to a change of the CsOPMs phase δφ = δBγCs

Γ2

(in the absence of any bandwidth limitations). The loop
reacts to this phase change by an adjustment of the loop
frequency δωPS thereby minimizing the error signal

δφPS = δφ − δωPS

Γ2
. (31)

In case of the 3He FSP detection we deal with a periodic
magnetic perturbation at frequency f . The minimization

will only work properly if the feedback loop’s bandwidth
fBW is larger than the oscillation frequency fBW � f .
Even at sufficient bandwidth, a finite phase error (error
signal) δφPS is maintained the magnitude of which de-
pends on the gain characteristics of the loop via

δωPS = δφPSκ(f), (32)

where κ(f) is a gain factor at the oscillation frequency
f . From equation (31) we see that for a properly working
feedback loop the full magnetic oscillation amplitude is
given by:

δB =
Γ2δφPS + δωPS

γCs
. (33)

Combining this with equation (32), we obtain

δB =
δωPS

γCs

(
Γ2

κ(f)
+ 1

)
. (34)

To investigate the achievable SNDR in the PS mode we
again have to make a separate case for the PSN which
causes fluctuations of the CsOPM’s phase signal that are
not related to magnetic field fluctuations. The feedback
loop will equally react to these fluctuations by adjust-
ments of the drive frequency ωrf = ω̃PS thereby actually
detuning the CsOPM from resonance, ω̃PS 	= ωL,Cs. As a
result the response of the magnetometer to these adjust-
ments of the drive frequency becomes again bandwidth
limited by the lifetime of the Cs polarization. We can ex-
press this detuning in magnetic units by a relation similar
to equation (33),

δB̃ =
Γ2δφPS + TCs(f)δω̃PS

γCs
=

δω̃PS

γCs

(
Γ2

κ(f)
+ TCs(f)

)
,

(35)
where in the last step equation (32) was used. We assume
now a measurement signal originating from an oscillating
magnetic field, e.g., the 3He FSP δB = bHe and signal
noise being caused by PSN δB̃ = ρB,PSN = NEM. The
SNDR of the loop frequency signal can be written as

SNDRPS =
δωPS

δω̃PS
=

δB

δB̃

TCs(f) + Γ2/κ(f)
1 + Γ2/κ(f)

(36)

=
bHe

ρB,PSN
× TCs(f) + Γ2/κ(f)

1 + Γ2/κ(f)
. (37)

Inspection of equation (37) in the high gain limit
(κ (f)� Γ2) shows that the maximum achievable SNDR
is

lim
κ→∞ SNDRPS =

bHe

ρB,PSN
TCs(f), (38)

which is equal to the SNDR for a CsOPM with zero
permanent detuning driven in FF-mode derived in equa-
tion (21). The frequency dependence of the SNDR in both
modes of operation is thus identical.
Finally we visualize the frequency dependence of the

sensitivity (for both modes of CsOPM operation) by a
plot of η as a function of the signal frequency. We as-
sume a CsOPM with given linewidth and NEM driven at
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Fig. 6. Dependence of the magnetometric sensitivity on the
frequency of the FSP signal, e.g., the magnitude of the holding
field. The upper (red) curve corresponds to parameters ob-
tained for Cs1 during the measurements presented here. The
lower curve assumes the parameters of the best Cs cell reported
in reference [6] (Γ2/2π = 4.75 Hz, NEM = 7 fT/

√
Hz). Both

cases assume |B(max)
He | = 34 pTrms, see text for details.

zero permanent detuning. We further assume a 100% po-
larized cell and ideal spin flip, meaning a maximal FSP
amplitude

∣∣∣B(max)
He

∣∣∣ = 34 pTrms (cf. Sect. 3). Under these
assumptions equation (30) reduces to

ηtheo
B = NEM

√
6

√
Γ 2

2 + ω2
L,He

γHeΓ2

∣∣∣B(max)
He

∣∣∣ . (39)

A plot of this function for two different Cs cells is shown
in Figure 6, see figure caption for details.

8 Measurements

We have checked the validity of equation (30) by compar-
ing the predicted sensitivity parameters to experimental
values. The experimental sensitivity parameters were ob-
tained by recording simultaneously the phase signals of
all CsOPMs detecting the 3He-FSP. The CsOPMs were
driven in the FF-mode of operation at a common fre-
quency chosen to have good overlap with the magnetic
resonances in all individual sensors. In an offline analysis,
a sinusoidal function

s(t) = a0 + a cos(ωL,Het − φ0) (40)

was fit to the data in order to extract the FSP frequency
ωL,He. The Allan standard deviations (ASD) [16] of the
resulting seven frequency estimates (the signals from one
of the sensors could not be used because of DAQ problems)
are shown in Figure 7. As expected for a CRLB limited
estimation process they exhibit the characteristic T

−3/2
M

10 20 40 60 80 100 200 300

0.2

0.5

1.0

2.0

5.0

10.0

Integration time �s�

A
S
D
�p
T�

Fig. 7. ASDs of seven CsOPMs simultaneously detecting the
3He-FSP. The gray regions around the curves represent the 1σ
confidence band. The relative vertical position of the individual
curves depends on the individual SNDR. For short integration

times the characteristic T
−3/2
M dependence for a CRLB-limited

estimation is visible. For longer times the ASD becomes limited
by the stability of the applied magnetic field. For the lowest
curve the fit by equation (41) is also shown.

dependence for short integration times TM < 100 s while
for longer times the ASD grows due to instabilities of the
magnetic field. A function

ASD = ηmeas
B T

−3/2
M (41)

was fit to the CRLB limited part of the data shown in
Figure 7 to extract the experimental sensitivity parame-
ter ηmeas

B , the fitted function is shown for the lowest-lying
curve. The results of these fits are summarized in Table 1
together with the theoretically predicted values derived
by equation (30). The effective polarization which enters
in the calculations of the ηtheo

B was calculated from inde-
pendent measurements of p and θflip. Details of the θflip

measurement can be found in reference [8] and will be
published in a later paper. The flipping angle was found
to be θflip = 68.0(6)◦. The determination of the spin po-
larization has to be taken with some caution since it is
based on comparing the measured FSP amplitudes to the-
oretical expectations. This requires a precise knowledge
of the pressure and size of the sample cell. The ampli-
tudes may also be affected by mechanical imperfections
such as slightly different distances of the CsOPMs from
the 3He cell due to imperfect sphericity. The calculation
assumes furthermore the validity of the bandwidth- and
detuning-dependent CsOPM responses presented in Sec-
tions 4.2 and 4.1. The procedure yields p = 0.71(6) where
the large error is caused by the mechanical imperfections
mainly. This is also the major cause for the rather large
error on ηtheo

B in Table 1.
An additional systematic uncertainty is connected to

the measurement of the PSN through IDC . Although this
was done rather shortly before the measurements which
went into the analysis of the sensitivity, it can not be
excluded that the actual light power of each sensor was
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Table 1. Measured and predicted sensitivity parameters ηB

for different CsOPMs. The sensor Cs7 suffered from a DAQ
problem and produced no reliable signals. The large errors on
the predicted values are due to the uncertainty of the degree of
polarization. Note that Cs2 and Cs7 were handled by a different
DAQ system and are thus not directly comparable.

CsOPM ηtheo
B (pT · s3/2) ηmeas

B (pT · s3/2)

Cs1 118(11) 106(1)

Cs8 313(28) 324(2)

Cs4 161(15) 175(1)

Cs5 196(18) 196(2)

Cs6 241(22) 226(2)

Cs3 156(14) 147(1)

Cs2 181(17) 258(2)

Cs7 254(23) –

�

�

�
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Fig. 8. Measured versus predicted sensitivity parameters.
The dependence is given by ηmeas

B = 1.11(10)ηtheo
B −

21.4(17.3) pT s3/2. The vertical errors are too small to be vis-
ible. The data point depicted by the open square belongs to
Cs2. Since this CsOPM was handled on a different DAQ sys-
tem, this point was not included in the analysis.

slightly different during data taking due to a drift of the
laser output power.
The predicted and measured sensitivities are plotted

against each other in Figure 8. A linear regression was
performed to extract the dependence. It can be seen that
the predictions agree with the measured values within the
uncertainties of the measurement. We thus conclude that
equation (30) adequately describes the sensitivity in the
FF-mode of operation and that our measurements were
indeed shotnoise- and CRLB-limited since equation (30)
predicts the sensitivity under these assumptions.

9 Implications for the n2EDM experiment

As discussed in reference [4] and elsewhere [17] the cur-
rent design of the n2EDM experiment foresees two large,
flat cylindrical 3He magnetometer cells installed symmet-
rically above and below the cylindrical neutron preces-
sion chambers. In the experiment a homogeneous mag-
netic field B0 ≈ 1 μT will be applied along the cylinder

0 50 100 150 200 250 300 350

20

40

60

80

100

x �mm�

z
�m
m
� 39pTrms

3He gas

cell lid

ring

bHe�pTrms�

10.4

20.8

31.2

41.6

52

Fig. 9. Simulation of the 3He FSP amplitude for a possi-
ble n2EDM geometry as a function of the CsOPM position,
only one quadrant is shown. A cylindrical 3He cell of inner
height 60 mm and radius 250 mm filled with 100 % polarized
gas at 1 mbar was assumed. The cell walls are denoted by the
filled gray region, the black circle identifies the optimal position
for a CsOPM.

axis ẑ. Based on our studies we can estimate the achiev-
able sensitivity of a 3He/Cs magnetometer in the n2EDM
experiment at PSI. Since design details are still under dis-
cussion, we make some reasonable assumptions about a
likely geometry. For safety reasons the 3He cells have to
withstand the large forces that may arise in case the mag-
netometer is to be operated in atmospheric pressure. We
chose a cylindrical cell of 60 mm inner height and 250 mm
radius filled with 100% polarized 3He gas at 1 mbar for the
example in Figure 9. The cells will be made from borosil-
icate glass and consist of a ring of radial width 25 mm
and height 60 mm and two lid plates of thickness 15 mm.
Figure 9 visualizes the results of a simulation in terms
of a contour plot of the 3He FSP amplitude in the x̂-
ẑ plane (the 3He magnetization is precessing in the x̂-ŷ
plane). It can be seen that in this geometry a maximum
3He FSP amplitude of Bmax,n2EDM

He = 39 pTrms can be ex-
pected which compares well to the Bmax,proto

He = 34 pTrms

found for the prototype magnetometer. We can thus es-
timate the ultimate achievable magnetometric sensitivity
per CsOPM in the n2EDM experiment by scaling the val-
ues from Figure 6 by Bmax,proto

He /Bmax,n2EDM
He ≈ 0.87. Con-

sidering typical neutron storage times used in the current
nEDM experiment this translates into a statistical mea-
surement uncertainty of ΔB ≈ 16 fT in 100 s (ΔB ≈ 6 fT
@ 200 s) measurement time per CsOPM. Because of the
large size of the 3He cell a large number (NCs > 25) of
readout CsOPMs can be envisioned. The error of the si-
multaneous measurement of the 3He Larmor Frequency
by all these CsOPMs will scale as N

−1/2
Cs as was shown in

reference [4].
In addition, the magnetic field readings of the two 3He

magnetometer cells will yield information about magnetic
field gradients which represent a major cause of systematic
errors in the nEDMmeasurement [18]. While the measure-
ment of longitudinal gradients ∂B0/∂z is straightforward,
the combined magnetometer will also give a potential ac-
cess to transverse gradients ∂B0/∂r. The 3He will be nu-
clear spin polarized and filled into the cells by a dedicated
external compressor unit [19]. Since this technique allows
to fill the 3He cells at different pressures, the magnetome-
ter can be operated in different dynamic regimes. Exploit-
ing the pressure- and gradient-dependence of the volume
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averaged Larmor frequency change ΔΩ0 investigated by
Cates et al. [20],

ΔΩ0 ≈ R2
cell

10Ω0

(|∇Ω1,x|2 + |∇Ω1,y|2
)

(42)

may open ways to infer these gradients1.

10 Conclusion

We have performed an extensive study of the sensitivity of
a combined 3He/Cs magnetometer. We analyzed the per-
formance of two different CsOPM modes of operation and
found them to be identical in terms of magnetometric sen-
sitivity. We have presented an expression which permits to
predict the achievable sensitivity as a function of the sig-
nal frequency. The calculation is based on experimentally
accessible parameters and thus provides a useful tool to
judge the actual performance of a magnetometer system.
The predictions were compared to measurements and an
excellent agreement was found. Our results suggest that a
deeper study of the laser power dependent effects in the
ODMR process (power broadening of the magnetic reso-
nance) might bring interesting insights, potentially lead-
ing to a selection criterion for Cs cells to be used in this
application. The investigations of the PS-mode of oper-
ation suggest that a more elaborate driving scheme for
the CsOPMs might lead to significantly improved sensi-
tivity. We have estimated the expected sensitivity for the
n2EDM geometry and found it to be compatible with the
values reported in our experiments. Possible techniques
to measure magnetic field gradients, which are a major
source of systematic error in the n2EDM experiment, were
discussed.
An additional option which is currently discussed is

the installation of several small 3He/Cs magnetometers
inside the n2EDM apparatus. These magnetometers could
be similar in design to the prototype described here and
would yield measurements of the magnetic field at their
respective position which could also be used to infer mag-
netic field gradients.
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