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Abstract
Allocentric spatial memory, the memory for locations coded in relation to objects comprising our environment, is a fundamental
component of episodic memory and is dependent on the integrity of the hippocampal formation in adulthood. Previous research
from different laboratories reported that basic allocentric spatial memory abilities are reliably observed in children after 2 years of
age. Based on work performed in monkeys and rats, we had proposed that the functional maturation of direct entorhinal cortex
projections to the CA1 field of the hippocampus might underlie the emergence of basic allocentric spatial memory. We also
proposed that the protracted development of the dentate gyrus and its projections to the CA3 field of the hippocampus might
underlie the development of high-resolution allocentric spatial memory capacities, based on the essential contribution of these
structures to the process known as pattern separation. Here, we present an experiment designed to assess the development of
spatial pattern separation capacities and its impact on allocentric spatial memory performance in children from 18 to 48 months of
age. We found that: (1) allocentric spatial memory performance improved with age, (2) as compared to younger children, a greater
number of children older than 36 months advanced to the final stage requiring the highest degree of spatial resolution, and (3)
children that failed at different stages exhibited difficulties in discriminating locations that required higher spatial resolution abilities.
These results are consistent with the hypothesis that improvements in human spatial memory performance might be linked to
improvements in pattern separation capacities.
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Allocentric spatial memory, the memory for locations coded in

relation to the objects comprising our surrounding environment,

is a fundamental component of episodic memory: the ‘‘where’’

component of the defining ‘‘what, where and when’’ of episodic

memories (Tulving, 2002). An allocentric spatial representation

of one’s environment, which is also described as a viewpoint-

independent representation, is distinct from an egocentric spatial

representation where the locations of objects are coded in relation

to one’s own body, in a viewpoint-dependent manner (Nadel &

Hardt, 2004). Allocentric spatial memory has been shown to be

dependent on the integrity of the hippocampal formation (a brain

structure described in more detail below) in adult rodents (Morris,

Garrud, Rawlins, & O’Keefe, 1982; Morris, 2007; O’Keefe &

Nadel, 1978), monkeys (Banta Lavenex, Amaral, & Lavenex,

2006), and humans (Abrahams, Pickering, Polkey, & Morris,

1997; Banta Lavenex, Colombo, Ribordy Lambert, & Lavenex,

2014; Holdstock et al., 2000; Spiers, Burgess, Hartley, Vargha-

Khadem, & O’Keefe, 2001). In contrast, egocentric spatial mem-

ory is sensitive to lesions of the parietal and parahippocampal cor-

tices, but persists following lesion of the hippocampal formation

(Eichenbaum, Stewart, & Morris, 1990; Rogers & Kesner, 2006;

Weniger & Irle, 2006; Weniger, Ruhleder, Wolf, Lange, & Irle,

2009).

We previously reported the emergence of basic allocentric spa-

tial memory abilities in children at 2 years of age (Ribordy, Jabès,

Banta Lavenex, & Lavenex, 2013), when children were able to

discriminate one goal location among four locations, 220 cm

apart, in a 4 m � 4 m open-field arena closed off by curtains on

three sides. This finding was consistent with previous findings

from Newcombe and colleagues (Newcombe, Huttenlocher,

Bullock Drummey, & Wiley, 1998; Sluzenski, Newcombe, &

Satlow, 2004), who described the emergence of allocentric spatial

capacities in children around 22 months of age. Furthermore, we

found that by 3.5 years of age, children exhibited high-resolution

allocentric spatial memory capacities allowing them to learn and

remember three rewarded locations among 18 closely-apposed

locations, 80 cm apart, in the same 4 m � 4 m open-field arena

(Ribordy et al., 2013). Neuroanatomical data in monkeys sug-

gests that the emergence of allocentric spatial memory capacities

coincides with the development of particular hippocampal cir-

cuits (Jabès, Banta Lavenex, Amaral, & Lavenex, 2011; Lavenex

& Banta Lavenex, 2013; Ribordy et al., 2013). The hippocampal

formation, a serially- and parallely-organized memory structure,

is at the apex of a hierarchy of associational networks, and acts to

ultimately integrate much of the processing that takes place within

the neocortex and a number of subcortical brain areas (Lavenex &

Amaral, 2000). The predominant trisynaptic hippocampal pathway
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treats afferent information coming from the cortex to the entorhinal

cortex, to the dentate gyrus, to CA3, to CA1. However, parallel

pathways send afferent information from the entorhinal cortex

directly to CA3, CA1 and the subiculum (see Graphical Abstract and

Figure 1 of Lavenex & Banta Lavenex, 2013). Evidence from lesion

and neuroimaging studies suggests that discrete hippocampal sub-

structures carry out discrete functions. For example, CA1 is pro-

posed to act as a comparator, detecting mismatch between

previously stored memory traces and currently perceived stimuli

(Chen, Olsen, Preston, Glover, & Wagner, 2011; Duncan, Ketz,

Inati, & Davachi, 2012). The dentate gyrus and CA3 are thought

to subserve two complementary processes: pattern separation, the

process of transforming neural representations that code our mem-

ories of related events, items or locations into more dissimilar,

non-overlapping neural representations; and pattern completion

which facilitates recall when a memory is cued by a noisy or incom-

plete set of cues (Bakker, Kirwan, Miller, & Stark, 2008; Gilbert,

Kesner, & DeCoteau, 1998; Gold & Kesner, 2005; Leutgeb,

Leutgeb, Moser, & Moser, 2007; Nakazawa et al., 2002; Neunuebel

& Knierim, 2014). We previously proposed that the early functional

maturation of direct projections from the entorhinal cortex to CA1

might underlie the emergence of basic allocentric spatial memory

(Jabès et al., 2011; Lavenex & Banta Lavenex, 2013; Ribordy

et al., 2013), allowing young children to learn and remember loca-

tions based on allocentric topological relations with environmental

cues. We also proposed that the protracted development of the den-

tate gyrus and its projections to CA3 might underlie the emergence

of more elaborate, high-resolution allocentric spatial memory capa-

cities (Jabès et al., 2011; Lavenex & Banta Lavenex, 2013; Ribordy

et al., 2013), based on the essential contribution of these structures to

the process of pattern separation.

Although pattern separation is thought to be a common feature

of many neuronal ensembles, it is believed to be an especially pro-

minent and important feature of the dentate gyrus. Indeed, compu-

tational models and imaging studies in humans (Bakker et al., 2008;

Treves & Rolls, 1994; Yassa et al., 2011; Yassa & Stark, 2011), as

Figure 1. Experimental setup. A. Picture of a participant in the arena in the local cue (LC) condition of Stage 1. B. Picture of a participant in the arena in the

allocentric spatial (AS) condition of Stage 1. C. Schematic representation of all 12 locations and their actual positions in the arena. D. Schematic

representation of Stage 1, with 1 rewarded location (either 2 or 4) among 4 potential locations (1–4) on the outer array. E. Schematic representation of Stage

2, with 1 rewarded location (either 6 or 8) among 4 potential locations (5–8) on the inner array. F. Schematic representation of Stage 3, with two rewarded

locations: location 7 on the inner array, and location 9 on the middle array (locations 9–12). G. Schematic representation of Stage 4, with three rewarded

locations: location 2 on the outer array, location 5 on the inner array, and location 12 on the middle array.
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well as lesion/inactivation studies in rodents (Gilbert & Kesner,

2006; Gilbert et al., 1998; Gilbert, Kesner, & Lee, 2001), highlight

the role of the dentate gyrus and its projections to CA3, as being

particularly important for pattern separation. In rodents, for exam-

ple, although lesion of the dentate gyrus does not entirely disrupt

allocentric spatial memory capacities (lesioned animals are still

able to find one goal location in the Morris water maze; Brun

et al., 2002; Nakashiba, Young, McHugh, Buhl, & Tonegawa,

2008), it does disrupt the animals’ ability to distinguish closely-

apposed locations in allocentric spatial memory tasks (Gilbert &

Kesner, 2006; Gilbert et al., 1998, 2001).

Here, we present the results of a multi-stage study designed to

assess the development of spatial pattern separation capacities and

its impact on allocentric spatial memory performance in children

from 18 to 48 months of age.

Methods

Participants

Participants were 59 children between 1.5 and 4 years of age (26

males: 19.7–47.1 months; 33 females: 17.9–48.3 months). Partici-

pants were tested one to four times (in one to four separate stages),

dependent on their successful performance at each stage. Testing at

each stage consisted of two sessions of approximately 45 minutes,

which took place in general on 2 consecutive days, but may have

been separated by up to 3 days depending on the participant’s avail-

ability. Testing took place Monday through Saturday, between 8

a.m. and 6:30 p.m. Human subjects research was approved by the

Intercantonal Ethics Committee for Jura, Neuchatel, Fribourg (pro-

tocol no. 10/2007), and the Ethical Commission for Clinical

Research in Vaud (protocol no. 38/08), and was in accordance with

the NIH guidelines for the use of human subjects in research. The

parents of all participants gave informed written consent.

Testing facility

We had testing facilities at two different sites in Switzerland; 9 chil-

dren were tested in the canton of Vaud, and 50 in the canton of Fri-

bourg. We found no differences in the behaviour or performance of

the children tested in these two locations, and therefore data gath-

ered at these two sites was grouped for analysis and presentation.

The main features of the testing facilities were consistent between

the two sites. Testing took place within large rectangular rooms

(Vaud: 9 m � 6 m; Fribourg: 7 m � 6 m) containing many polariz-

ing features such as doors, obscured windows, tables, chairs, wall

posters (Ribordy et al., 2013). Within the room, we placed a 4 m

� 4 m testing arena (Figure 1) that consisted of three walls made

of suspended, opaque plastic curtains (2 m high). Whereas the cur-

tain on the back wall was 4 m wide, the curtains on the side walls

extended only 3 m, so that there was a 50 cm gap at the front and the

back of the wall, thus creating four entry points through which par-

ticipants passed in order to enter and exit the arena. The fourth

(front) boundary of the arena was delineated by a rope attached

to the two opposing sides of the arena, and suspended 30 cm off the

ground. Exterior to the two side walls, the inter-trial waiting area

was a corridor (1 m � 4 m) that contained two chairs with their

backs to the arena, and various items including a trash can,

occluded windows, doors, child-oriented posters, none of which

could be viewed from within the arena. Importantly, from within

the arena, and from the inter-trial waiting area, participants had

access to distant visual cues in front of the arena.

The arena’s floor was uniform and the testing arena was empty,

except for symmetrically arranged white paper plates (18 cm in

diameter; Figure 1C–G). An inverted opaque plastic cup (7.5 cm

in diameter, 6.5 cm high) was placed on each plate. A reward was

placed under the inverted cup at the goal location, for example

location 2 or 4 for Stage 1 (Figure 1D), or locations 2, 5 and 12

for Stage 4 (Figure 1G). Participants had to lift or turn over the

plastic cups to obtain the reward. Rewards were referred to as

‘‘treats’’ and were usually Smarties1, Goldfish1 crackers, pieces

of breakfast cereal or pretzels. Occasionally, small stickers served

as rewards for children that were not interested in food rewards.

All parents were queried with respect to alimentary allergies prior

to any testing. All testing was videotaped with a video camera

located in front of the testing arena.

Testing procedure

General description. All testing involved a team of two experi-

menters. Experimenter 1 (E1) would stay with the child through-

out testing and would enter the arena with the child, encourage

the child to search for the hidden rewards, verbally praise the

child when a reward was found, pick up cups that had been

searched by the child and place them in a plastic bucket that she

carried, direct the child to the correct exit at the end of the trial,

and occupy the child during the inter-trial interval by reading or

talking. Experimenter 2 (E2) was responsible for replacing the

reward(s) between trials, recording the data, and announcing the

entry and exit doors.

Before testing began, children were free to view the arena with

the arranged plates (no cups present), from in front of the arena. E1

then showed the child a reward item on a paper plate that she held in

her hand. While the child was watching, E1 would lower a white

plastic cup over the treat to hide it. The child would then be asked

‘‘Where is the treat? Can you show me where it is?’’ When the child

lifted the cup to expose the treat, they would be verbally praised and

told that the treat was theirs to eat or keep in a bag for later. Once

the child had been shown that treats could be found underneath the

plastic cup, the child and E1 would go to the predetermined side of

the arena where testing would begin. If the child was reluctant to go

alone with E1, the child’s accompanying parent would be asked to

join E1 and the child. Once the child was behind the curtain and

occupied, E2 would hide a treat in the predetermined rewarded

location(s). For Stage 1, location 2 was the designated goal for half

of the children and location 4 was the designated goal for the other

half. Children completed two different types of trials: Local Cue

trials and Allocentric Spatial trials. On Local Cue (LC) trials, a

local cue, a red cup, covered the reward(s) (Figure 1A), whereas

non-rewarded locations were covered with white cups. This condi-

tion allowed us to gauge children’s motivation to participate, as

well as to test each child’s ability to find rewards at spatially fixed

locations marked by a local cue. In this condition, children could

find and remember the reward location either by associating the

presence of the local cue with the reward, or by remembering the

allocentric spatial location of the reward based on its relations to

distal environmental objects (Lavenex & Schenk, 1995, 1997;

Lavenex, Shiflett, Lee, & Jacobs, 1998). Although some may con-

sider unlikely that children would use allocentric memory in the

presence of the local cues, because both the local cue and the
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absolute spatial position of the rewarded location are coherent,

children may rely on either source of information to determine the

reward location. Indeed, we have previously shown that both adults

and children can learn and remember rewarded locations following

a single experience in the local cue condition (Banta Lavenex &

Lavenex, 2010; Ribordy et al., 2013), thus supporting the theory

that allocentric information is continuously and automatically

encoded during exploration and navigation (Andrade & Meudell,

1993; Ellis, 1991; Wang & Morris, 2010). On Allocentric Spatial

(AS) trials, no local cues marked the reward location, as white cups

covered all locations. In this case, children could not discriminate

between rewarded and never-rewarded locations based on local

features. Instead, children had to rely on an allocentric spatial rep-

resentation of the environment to discriminate these locations, that

is, they had to code the goal location in relation to distal environ-

mental objects. Local cue and allocentric spatial trials alternated

(LC1, AS1, LC2, AS2, . . . , LC10, AS10). At each stage, each parti-

cipant had a total of 20 trials (10 LC and 10 AS trials) distributed

over two sessions. Detailed information regarding age-dependent

verbal instructions and conditions ensuring task specificity were

described previously (Ribordy et al., 2013).

Four stages. The goal and decoy locations were located at the

corners of a matrix of up to three nested squares (Figure 1C), and

children were tested on up to four successive stages. For Stage 1,

there was one goal among four locations distributed in a large

square pattern rotated 45 degrees relative to the orientation of the

arena (Figure 1D); we refer to this array as the outer array. Adja-

cent corners were separated by 220 cm, opposite corners separated

by 310 cm, and each corner located 40 cm from the nearest wall of

the arena. For half of the participants, location 2 was rewarded, for

the other half, location 4 was rewarded (locations 1 and 3 were

never rewarded). For Stage 2, there was one goal among four loca-

tions distributed in a small square pattern rotated 45 degrees, the

inner array (Figure 1E). For each participant, the location on the

opposite side from the location that was rewarded in Stage 1 was

rewarded (thus, for half of the participants, location 6 was

rewarded, and for half, location 8). For Stage 3, there were two

goals among eight locations distributed on two nested squares

(maintaining a 1:3 ratio between rewarded and non-rewarded

locations): the inner array with location 7 rewarded, and a middle

array, which consisted of a mid-size square aligned with the are-

na’s walls, on which location 9 was rewarded (Figure 1F). For

Stage 4, rewarded locations were found on all three of the nested

squares: location 2 on the outer array, location 5 on the inner

array, and location 12 on the middle array (maintaining a 1:3 ratio

between rewarded and non-rewarded locations, Figure 1G).

All participants were tested in Stage 1 (n ¼ 59). In Stage 2, the

potential goal locations were closer to each other than in Stage 1,

and optimal performance was supposed to require increased spatial

resolution abilities as compared to Stage 1. Therefore, only the par-

ticipants that performed above chance level in Stage 1 (at least 5

errorless trials within the last 8 trials in the AS condition: unilateral

paired t test, p < .05) continued with testing on Stage 2. The same

criterion was used at each consecutive stage, as the task design

required increased spatial resolution abilities at each stage. How-

ever, some children who succeeded on Stage 1 were unable to par-

ticipate in the rest of the experiment for reasons unrelated to their

performance. For each stage, we report the number of participants,

their sex and age (see also Supplementary Table 1). Usually 6 days

(but no less than 2) elapsed between stages. At the beginning of

each stage, E1 explained to the child that E2 chose (a) new loca-

tion(s) to hide the treats that the child should discover and remem-

ber, because these new locations would now remain the same.

Data analysis

For each stage, we first analysed the number of correct choices

made before erring (CBE), as a proxy to estimate memory capac-

ity (Banta Lavenex, Boujon, Ndarugendamwo, & Lavenex, 2015;

Banta Lavenex et al., 2014), and calculated an average value per

child for the last 8 trials in the AS condition (omitting the first 2

trials). We also determined the average of the total number of

locations visited (TNV) in order to find the reward for the last 8

trials in the AS condition. These two measures provide different

kinds of information about task performance and thus more spe-

cific clues about memory processes: CBE requires perfect mem-

ory performance in order to get the maximal score, whereas

TNV allows us to discriminate between a child making one error

before finding the reward(s), no matter when the child makes the

error in the sequence of visits, and a child finding the reward(s)

after making several errors. We did not include the first two trials

in the AS condition, because performance during these initial

trials is strongly influenced by the drive to explore the environ-

ment following a change in the task, and are thus not representa-

tive of the subjects’ optimal performance.

Statistics

First, we performed regression analyses on the number of correct

choices before erring (CBE), and on the number of visits to find the

reward (TNV), with the age of children (in months) as a predictor.

Second, we split children into two groups: 45 children younger than

35.7 months of age (20 boys and 25 girls: average ¼ 26.2 months,

range 17.9–35.6 months) and 14 children older than 35.7 months of

age (6 boys and 8 girls: average ¼ 48.3 months, range: 35.8–48.3

months). This age corresponded to the age at which task perfor-

mance reached a stable and maximum level in Stage 1, as well as

to the median-split age of the children who performed above criter-

ion in Stage 1 and were able to continue with Stage 2. Third, we

analysed the types of locations chosen by children upon entering the

arena: whether it was a rewarded location and the position of unre-

warded choices in relation to the goal. For Stages 1 and 2, we ana-

lysed the first choice (since there was only one rewarded location)

for each of the first four trials in the AS condition, that is only dur-

ing the learning phase when children still made a sufficient number

of errors for this analysis to be informative with respect to the type

of information guiding their choices (children made too few errors

thereafter). For Stage 3, we analysed the first choice and the first

two choices (since there were two rewarded locations) for each of

the last 8 trials in the AS condition (once performance was stable).

In contrast to Stages 1 and 2, for Stage 3 we focused the data anal-

ysis on the trials following the initial exploration phase triggered by

the change in configuration of rewarded locations (once children

had explored and became familiar with the new configuration of

locations in the arena). For Stage 4, we analysed the first choice and

the first three choices (since there were three rewarded locations)

for each of the last 8 trials in the AS condition, again once perfor-

mance was stable and children had a chance to explore and become

familiar with the new configuration of locations in the arena. For

these analyses, we normalized the number of choices based on the
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probability to make those choices. The number of choices of the

rewarded location on any array was divided by one, and the number

of choices of unrewarded locations on the same array (inner, middle

or outer array) was divided by three. We performed analyses of var-

iance (ANOVA) with age as a factor (younger versus older) and the

types of choices as repeated measures. Significance level was set at

p < .05 for all analyses. All statistical analyses were performed with

SPSS 18.0 statistical software.

Results

Overall performance

The number of children performing the task above chance level

decreased at each successive stage (Figure 2; note that this graph

represents only the children who passed Stage 1 and were available

to participate in the multi-stage study over several weeks, n ¼ 26).

Older (> 35.7 months) children successfully passed a greater num-

ber of stages than younger (< 35.7 months) children (Supplemen-

tary Table 1: > 35.7 months: 3.08 + 0.29 stages; < 35.7 months:

2.31 + 0.24 stages: one-tail t test: t(24) ¼ 23.151, p ¼ .0251). Ele-

ven of 13 younger children (85%) and 12 of 13 older children (92%)

passed Stage 2; five of 11 younger children (45%) and nine of 12

older children (75%) passed Stage 3 (Chi2 analyses were not signif-

icant). At Stage 4, six older children performed above chance level

(of 13 who started in Stage 1), whereas only one younger child did

(of 13 who started in Stage 1; Chi2 ¼ 4.887, p < .05).

Stage 1

Participants were 59 children between 1.5 and 4 years of age (26

males, range: 19.7–47.1 months; 33 females, range: 17.9–48.3

months). Although we previously showed that basic allocentric spa-

tial memory abilities emerge around 24 months of age (Ribordy

et al., 2013), here we found that allocentric spatial memory perfor-

mance for one location among four locations further improves after

24 months of age. Specifically, we found that for children from 17.9

to 48.3 months of age, the number of correct choices made before

an error increased with age (CBE ¼ � 0.0009 age2 þ 0.0811 age

� 0.8906; R2¼ 0.49657; p < .0001; Figure 3A), and the total number

of visited locations to find the reward decreased with age (TNV ¼
0.002 age2 � 0.174 age þ 4.8185; R2 ¼ 0.48296; p < .0001; Figure

3B). Nevertheless, in Stage 1, we observed a ceiling effect with a

maximal performance being reached at about 36 months of age.

In order to characterize the factors that might contribute to this

gradual improvement in memory performance and determine what

might be guiding their choices when they did not respond cor-

rectly, we analysed the errors made by children in their first choice

upon entering the arena. We analysed the children’s choices in the

first four trials in the AS condition of Stage 1, that is, during the

early learning phase. Of the 59 children included in the study, only

44 children were included in this analysis: nine children did not

make any errors (four younger and five older children), and six

younger children were excluded because they failed the task in the

LC condition. Therefore, the group of younger children comprised

35 children (15 boys and 20 girls: average age: 26.4 months,

range: 18.0–35.2 months); the group of older children comprised

9 children (6 boys and 3 girls: average age: 43.7 months, range:

39.3–48.3 months).

When they did not choose the goal location as their first choice

upon entering the arena, both groups of children made the same

types of errors, Figure 3D; age: F(1, 42) ¼ 0.52, p ¼ .48; choices:

F(2, 84) ¼ 26.85, p ¼ .0001; interaction: F(2, 42) ¼ 1.53, p ¼ .22.

Both younger and older children chose more often the location that

was directly in front of them when entering the arena (Adjacent

front: location 3 if entering from door 1 or 4; location 1 if entering

from door 2 or 3; Figure 3C) than both the location opposite to the

goal (location 4 if location 2 was rewarded, or location 2 if location

4 was rewarded; p ¼ .0001), as well as the location adjacent to the

goal that required crossing the arena (location 1 if entering from

door 1 or 4; location 3 if entering from door 2 or 3; p¼ .0001). They

also chose the location opposite to the goal more than the location

adjacent to the goal that required crossing the arena (i.e., location 1

or 3, depending on the entrance; p ¼ .003). We found the same pat-

tern of results when considering only the children performing at

least 5 errorless trials in the last 8 AS trials, who therefore contin-

ued on to Stage 2, or the children that failed to perform 5 errorless

trials in the last 8 AS trials, who therefore did not continue on to

Stage 2 (data not shown).

Stage 2

Since Stage 2 was supposed to require higher spatial resolution abil-

ities, we only tested participants who performed above chance level

in Stage 1. Thus, for Stage 2, only 13 younger children (9 girls, 4

boys: average age: 29.09 months, range: 21.2–35.6 months) and

13 older children (7 girls, 6 boys: average age: 42.76 months, range:

35.8–48.3 months) participated. Following this selection procedure,

and in contrast to what was observed for Stage 1 which included all

participants, the number of correct choices made before an error did

not increase with age in Stage 2, Figure 4A; CBE ¼ 0.668 þ 0.005

� age; R2 ¼ 0.040; p¼ .328. Similarly, the total number of visits to

find the reward did not decrease with age in Stage 2, Figure 4B;

TNV ¼ 1.672 � 0.012 � age; R2 ¼ 0.084, p ¼ .151.

We also analysed the children’s choices for the first four trials in

the AS condition (Figure 4D). When they did not choose the goal

location as their first choice upon entering the arena, children did

not choose significantly more any particular type of unrewarded

Figure 2. Numbers of children who performed above chance level at each

experimental stage. Approximately the same number of younger (<35.7

months) and older (>35.7 months) children passed Stages 1 and 2, whereas

fewer younger children who passed Stage 1 performed above chance level in

Stage 4. See main text and Supplementary Table 1 for more information.
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locations; age: F(1, 11) ¼ 0.408, p ¼ .536; choices: F(2, 22) ¼
0.645, p ¼ .160; interaction: F(2, 22) ¼ 0.645, p ¼ .534.

Stage 3

For Stage 3, 11 younger children (8 girls, 3 boys: average age: 28.6

months, range: 21.2–35.3 months) and 12 older children (7 girls, 5

boys: average age: 42.7 months, range: 35.8–48.3 months) partici-

pated. The number of correct choices made before an error

increased with age, Figure 5A; CBE ¼ 0.012 þ 0.037 � age;

R2¼ 0.219; p¼ .025. Accordingly, the total number of visits to find

the reward decreased with age, Figure 5B; TNV¼ 6.683� 0.094�
age; R2 ¼ 0.222; p ¼ .023. Younger children made fewer correct

choices before erring than older children, Figure 5A; Mann-

Whitney U ¼ 28.00, p ¼ .019; they also visited more locations to

find the reward than older children, Figure 5B; Mann-Whitney

U ¼ 25.50, p ¼ .012.

First choice. In order to determine what might contribute to this

differential performance, we analysed the first location children

visited upon entering the arena, in the last eight trials in the AS

condition, once task performance was stable. The two groups of

children did not differ in their choice of the first visited location,

Figure 5C; age: F(1, 21) ¼ 2.89, p ¼ .104; locations: F(3, 63) ¼
33.84, p ¼ .0001; interaction: F(3, 63) ¼ 2.24, p ¼ .093. Children

chose more often the rewarded location on the middle array

(location 9) than the rewarded location on the inner array (location

7); they also chose the two rewarded locations more often than the

unrewarded locations, Figure 5C; regardless of whether these

locations were located on the inner or middle array; all p < .05.

Interestingly, younger children chose the rewarded location on the

inner array less often than older children did (p ¼ .039).

In order to characterize the behaviour of children who passed

Stage 3 (n ¼ 14; 9 older and 5 younger children) and those who

did not (n ¼ 9; 3 older and 6 younger children), we grouped the

children based on whether they passed or failed, rather than

according to their age. For the first choice, the two groups of chil-

dren did not choose the two rewarded locations with similar fre-

quency, Figure 5E; Pass/Fail: F(1, 21) ¼ 20.842, p < .001;

locations: F(3 ,63) ¼ 33.134, p < .001; interaction: F(3, 63) ¼
7.385, p < .001. Whereas children who passed chose the two

rewarded locations (on the middle and inner arrays) equally and

more often than the unrewarded locations (location 9 ¼ location

7 > Other middle ¼ Other inner; all p < .05), children who failed

chose the rewarded location on the middle array more than all

other locations but they did not choose the rewarded location on

the inner array more than unrewarded locations (location 9 > loca-

tion 7 ¼ Other middle ¼ Other inner; all p < .05).

First two choices. In contrast to what was observed for the first

choice, younger and older children differed in the types of locations

visited in their first two choices upon entering the arena, Figure 5D;

Figure 3. Results for children who participated in Stage 1 (n ¼ 59), with one rewarded location among four potential locations. A. Number of correct

choices made before making an error (CBE): CBE ¼ � 0.0009 age2 þ 0.0811 age � 0.8906; R2 ¼ 0.49657; p < .0001. B. Total number of visits to find the

reward (TNV): TNV ¼ 0.002 age2 � 0.174 age þ 4.8185; R2 ¼ 0.48296; p < .0001. C. Schematic representation of the testing arena. D. Types of visited

locations when children (younger <35.7 months; older >35.7 months) made an error in the first four trials in the AS condition. Opposite: opposite to goal

location (i.e., location 2 or 4); Adjacent front: Adjacent to goal location (i.e., location 1 or 3) and in front of entry door; Adjacent cross: adjacent to goal

location (i.e., location 1 or 3) but across the arena from the entry door.
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age: F(1, 21) ¼ 3.825, p ¼ .064; locations: F(3, 63) ¼ 61.88,

p ¼ .0001; interaction: F(3, 63) ¼ 4.80, p ¼ .005). Overall,

children chose more often the rewarded locations than the unre-

warded locations (regardless of whether these locations were

located on the inner or middle arrays; all p < .0001). However, in

contrast to older children’s choices that did not differ between

rewarded locations on the inner and middle arrays (p ¼ .089),

younger children chose more often the rewarded location on the

middle array than the location on the inner array (p ¼ .015). In

addition, younger children chose the goal location on the inner

array less often than older children did (p ¼ .009).

Considering the first two choices of children who either

passed or failed Stage 3, we found that the two groups of children

did not choose the two rewarded locations with similar frequency,

Figure 5F; Pass/Fail: F(1, 21) ¼ 80.929, p < .001; locations: F(3,

63) ¼ 122.890, p < .001; interaction: F(3, 63) ¼ 45.660, p < .001.

Whereas children who passed chose the two rewarded locations

(on the middle and inner arrays) similarly and more often than the

unrewarded locations (location 9 ¼ location 7 > Other middle ¼
Other inner; all p < .05), children who failed chose the rewarded

location on the middle array more than unrewarded locations

but did not choose the rewarded location on the inner array more

than unrewarded locations (location 9 > other mid ¼ other inner;

all p < .05).

In sum, overall task performance in Stage 3 correlated with age

in children from 21.2 to 48.3 months. In addition, choice analyses

revealed that even though younger children discriminated rewarded

locations from unrewarded locations, they were less efficient than

older children at discriminating rewarded location on the inner

array, although in Stage 2 these younger children showed that they

were capable of discriminating the location on the inner array in

absence of decoy locations surrounding it.

Stage 4

For Stage 4, five younger children (3 girls, 2 boys: average age:

31.1 months, range: 24.7–35.3 months) and nine older children

(6 girls, 3 boys: average age: 42.3 months, range: 35.8–48.3

months) participated. For Stage 4, the correlation between the num-

ber of correct choices made before an error and age failed to reach

significance, Figure 6A; CBE ¼ �0.048 þ 0.057 � age; R2 ¼
0.218; p ¼ .092. In contrast, the number of visits to find the reward

decreased significantly with age, Figure 6B; TNV ¼ 9.853 � 0.137

� age; R2 ¼ 0.360, p ¼ .023.

First choice. Younger and older children did not differ in their first

choice upon entering the arena, Figure 6C; age: F(1, 12) ¼ 2.640,

p ¼ .130; locations: F(5, 60) ¼ 14.897, p ¼ .0001, interaction:

F(5, 60) ¼ 0.218, p ¼ .953. All children were more likely to visit

the rewarded location on the outer array (location 2), than either the

rewarded locations on the middle array (location 12) or the inner

array (location 5). In addition, children were more likely to visit the

Figure 4. Results for children who participated in Stage 2, with one rewarded location among four closely-apposed potential locations. A. Number of

correct choices made before making an error (CBE): CBE ¼ 0.668þ 0.005� age; R2 ¼ 0.040; p¼ .328. B. Total number of visits to find the reward (TNV):

TNV ¼ 1.672 � 0.012 � age; R2 ¼ 0.084, p ¼ .151. C. Schematic representation of the testing arena. D. Types of visited locations when children made an

error in the first four trials in the AS condition. Opposite: opposite to goal location (i.e., location 6 or 8); Adjacent close: adjacent to the rewarded location

and closest to the entry door (i.e., location 5 or 7, depending on the entry point); Adjacent far: adjacent to the rewarded location and farther from the entry

door (i.e., location 5 or 7, depending on the entry point).
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rewarded locations on the outer and middle arrays, locations 2 and

12, respectively, than unrewarded locations (all p < .05).

Considering the first choice of children who either passed (6

older and 1 younger children) or failed (3 older and 4 younger

children) Stage 4, we found that children that passed chose more

rewarded locations than children that failed, Figure 6E; Pass/Fail:

F(1, 12) ¼ 5.194, p ¼ .042; locations: F(5, 60) ¼ 17.222, p <

.001; interaction: F(5, 60) ¼ 0.742, p ¼ .595. Overall, children

chose the rewarded location on the outer array more than the

rewarded locations on the middle and inner arrays as well as

unrewarded locations (all p < .05).

First three choices. Younger and older children did not differ in

their first three choices upon entering the arena, Figure 6D; age:

F(1, 12) ¼ 2.35, p ¼ .152; locations: F(5, 60) ¼ 61.43, p ¼
.0001; interaction: F(5, 60) ¼ 1.43, p ¼ .224. Children were more

likely to visit rewarded locations than unrewarded locations (all p <

0.5). In addition, they chose the rewarded location on the outer

array (location 2) more often than the rewarded location on the

inner array (location 5; p ¼ .020).

Considering the first three choices of children who either passed

or failed Stage 4, we found that the two groups of children did not

choose the three rewarded locations with similar frequency, Figure

6F; Pass/Fail: F(1, 12) ¼ 32.56, p < .001; locations: F(5, 60) ¼
105.96, p < .001; interaction: F(5, 60) ¼ 7.97, p < .001). Whereas

children who passed and children who failed chose the rewarded

location on the outer array similarly (p¼ .241), children who failed

chose the rewarded location on the middle array less than children

who passed (p¼ .007); children who failed also chose the rewarded

location on the inner array less than children who passed (p¼ .003).

In sum, in Stage 4, only the total number of visits (TNV), an

overall measure of task performance, exhibited a statistically signif-

icant correlation with age. The first choice upon entering the arena

indicated that all children chose preferentially the rewarded loca-

tion on the outer array as compared to the rewarded locations on the

middle and inner arrays. In addition, for the first three choices,

Figure 5. Results for children who participated in Stage 3, with two rewarded locations among eight potential locations. A. Number of correct choices

made before making an error (CBE): CBE¼ 0.012þ 0.037� age; R2 ¼ 0.219; p¼ .025. B. Total number of visits to find the reward (TNV): TNV¼ 6.683�
0.094 � age; R2 ¼ 0.222; p ¼ .023. C. First location visited by younger and older children in the last eight trials in the AS condition. D. First two locations

visited by younger and older children in the last eight trials in the AS condition. E. First location visited by children that passed and children that failed Stage 3.

F. First two locations visited by children that passed and children that failed Stage 3.
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children who passed Stage 4, irrelevant of age, were able to discri-

minate the rewarded locations on the inner, middle and outer arrays

equally well, F(5, 30) ¼ 267.828, p < .001; location 2 ¼ location

12 ¼ location 5 > unrewarded locations; all p < .05), whereas the

children who did not pass Stage 4 discriminated the location on

the outer array significantly better than they discriminated the

rewarded locations on the inner array, F(5, 30) ¼ 19.654, p <

.001; location 2 > location 5; rewarded locations > unrewarded

locations; all p < .05).

Discussion

Stage 1

We previously reported that basic allocentric spatial memory

abilities are reliably observed in children after 24 months of age

(Ribordy et al., 2013). Here, we found that the youngest child to

perform above statistically-defined chance level was 22.8 months

of age, thus confirming our previous findings (Ribordy et al.,

2013) and those of Newcombe and colleagues (Newcombe et al.,

1998; Sluzenski et al., 2004). In addition, based on two different

measures of memory performance (CBE: the number of correct

choices before erring; TNV: the total number of visited locations

to find the reward), we found that basic allocentric memory abilities

improved from 18 to 36 months of age; performance reached ceil-

ing level at about 36 months of age in this task.

When children made errors, they tended to open the first cup

they encountered when entering the arena. This was true for chil-

dren who succeeded in the task, as well as for children who failed.

Could these errors be due to the fact that children failed to inhibit

their response to unrewarded cups, despite the fact that they knew

which cup was rewarded? If so, the maturation of inhibitory pro-

cesses, rather than developmental changes in the ability to form

spatial memories, might explain these results. However, in both

this study and our previous study (Ribordy, 2013), we found that

when a local cue marked the goal location(s), children older than

20 months were capable of choosing the rewarded location at

above chance level, and thus were capable of inhibiting their

Figure 6. Results for children who participated in Stage 4, with three rewarded locations among 12 potential locations. A. Number of correct choices made

before making an error (CBE): CBE ¼ � 0.048 þ 0.057 � age; R2 ¼ 0.218; p ¼ .092. B. Total number of visits to find the reward (TNV): TNV ¼ 9.853 �
0.137 � age; R2 ¼ 0.360, p ¼ .023. C. First location visited by younger and older children in the last eight trials in the AS condition. D. First three locations

visited by younger and older children in the last eight trials in the AS condition. E. First location visited by children that passed and children that failed Stage 4.

F. First three locations visited by children that passed and children that failed Stage 4.
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responses to unrewarded cups. Corroborating evidence comes

from experiments by Newcombe and colleagues (Newcombe

et al., 1998; Sluzenski et al., 2004), which similarly revealed the

emergence of basic allocentric spatial abilities at around 22

months of age. In their task, children had to find the location of

an object buried in sand. Since no visible decoy locations could

trigger the children’s response, their behavioural results were not

subject to the influence of the maturation of behavioural inhibition

processes. Thus, in our task, children who opened the unrewarded

cup directly in front of the entry door during the first four AS trials

are likely responding to a cup ¼ reward association that they

established before they developed the understanding that it is

absolute location that predicts the presence of a reward. Alto-

gether, these four studies (Newcombe et al., 1998; Ribordy

et al., 2013; Sluzenski et al., 2004; the present study) indicate that:

(1) basic allocentric spatial memory abilities are reliably observed

after 24 months of age; (2) basic, low-resolution spatial memory

performance continues to improve until at least 36 months of age;

and (3) improvement in spatial memory performance after 24

months of age is unlikely to be due to the maturation of beha-

vioural inhibition processes.

Stage 2

Our previous findings that children younger than 43 months of

age could not learn and remember three rewarded locations

among 18 closely-apposed locations, 80 cm apart (Ribordy

et al., 2013), led us to hypothesize that young children failed

because they did not exhibit high-resolution allocentric spatial

memory capacities allowing them to distinguish these closely-

apposed spatial locations. For the current experiment, we there-

fore hypothesized that only older children might be able to per-

form above chance level in Stage 2, when children were asked

to discriminate one goal among four closely-apposed locations,

80 cm apart, placed at the centre of the arena.

In contrast to our hypothesis, our results did not demonstrate a

difference in the performance of younger (< 35.7 months) and

older (> 35.7 months) children in Stage 2 with four closely-

apposed locations: only 2 younger children (of 13) and 1 older

child (of 13) did not perform above chance level (i.e., at least 5

errorless trials on the 8 last trials in the AS condition). Impor-

tantly, however, younger children made twice as many errors as

older children on the first four trials in the AS condition (during

the learning phase), and when children made an error, they almost

always chose a location that was adjacent to the rewarded location

(17 of 20 errors) rather than the location that was opposite to the

rewarded location (3 of 20 errors; Figure 2D). Furthermore, there

was no difference between children’s choices for the adjacent

location that was closest to their point of entry into the arena and

the adjacent location that was farthest from their point of entry,

demonstrating that children often ‘‘passed by’’ two other locations

(either an adjacent and the opposite location or an adjacent and

the rewarded location) in order to choose the adjacent location

farthest from their point of entry. This finding provides further

evidence against the influence of poor behavioural inhibition on

task performance.

Although it seemed logical to predict that immature spatial pat-

tern separation abilities would preclude younger children from

being able to discriminate four closely-apposed locations, this is

not what was observed in Stage 2. However, it is still possible that

children who exhibited relatively poor spatial pattern separation

abilities in Stages 3 and 4 still managed to solve the task in Stage

2 by relying on a topographic representation of the environment

(Poucet, 1993). Using this type of coding, individuals can define

locations in an allocentric manner relative to distal objects in their

environment, but without the precise metric information provided

by distance and angular (a.k.a. directional or bearing) estimations

that are necessary to code locations in high resolution. Thus, a

location in our arena might be defined as ‘‘on the door side’’ or

‘‘on the cabinet side.’’ However, in our experimental design, with

four symmetrically arranged locations and entry points that lead

children to enter equidistant from the two closest locations and

equidistant from the two farthest locations, what is defined as

‘‘on the door side’’ may become ambiguous (both during encoding

and recall), thus leading children to make errors to adjacent, but

not opposite, locations. Accordingly, a basic allocentric represen-

tation of the environment might have been sufficient to support

spatial memory performance in Stage 2.

Stage 3

In Stage 3, participants were required to learn and remember the

location of two goals among eight locations (maintaining the 1:3

ratio of rewarded to unrewarded locations). Both CBE and TNV

correlated with age, and older children performed overall better

than younger children. Although topographic coding may enable

children to encode the rewarded location on the middle array, it will

not be adequate to distinguish rewarded locations on the inner array

from closely-apposed, surrounding decoy locations on the inner and

middle arrays. Accordingly, whereas older children chose rewarded

locations on the middle and inner arrays with similar frequency,

younger children chose locations on the inner array less frequently

than older children, and less frequently than they chose locations on

the middle array. These results suggest that younger children had

difficulty discriminating the locations on the inner array in Stage

3 (even though they demonstrated that they could discriminate the

same locations with a high degree of accuracy in Stage 2), presum-

ably because discriminating the rewarded location on the inner

array from surrounding decoy locations required children to form

high-resolution allocentric spatial representations.

Stage 4

In Stage 4, participants were required to learn and remember the

location of three goals among 12 locations (maintaining a 1:3 ratio

of rewarded to non-rewarded locations). TNV correlated with age,

but CBE did not. In the end, six older children (one male, five

females: 39.3–48.3 months old) passed Stage 4, whereas only one

younger child (male: 30.5 months old) did.

As for Stage 3, topographic coding was insufficient to enable

children to discriminate locations on the inner array. In Stage 4,

however, locations on the middle array were also surrounded by

locations on the outer array, making it more difficult to use topo-

graphic coding, and thus requiring high-resolution spatial repre-

sentation abilities in order to discriminate these locations. In

contrast, topographic coding may enable children to discriminate

rewarded locations from unrewarded locations on the outer array.

Our analyses revealed that children of all ages chose the rewarded

location on the outer array more often than the rewarded location

on the inner array, suggesting that the location on the inner array
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was more difficult to discriminate. Moreover, when we combined

children who failed, regardless of age, and compared their perfor-

mance to that of children who passed, we found that indeed, as

predicted, children who failed chose the goal locations on the

inner and middle arrays less often than children who passed, even

though these children had previously discriminated these loca-

tions in Stages 2 and 3 in absence of surrounding decoy locations.

Importantly, five of the seven children who passed Stage 4 were

older than 42 months of age (the other two were 30.5 and 39.3

months), the age at which children had demonstrated high-

resolution allocentric capacities necessary to learn and remember

three goals among 18 locations in our previous study (Ribordy

et al., 2013).

Altogether, our results suggest that a gradual improvement of

spatial pattern separation abilities in children from 24 to 48 months

of age might underlie the improvement in allocentric spatial mem-

ory performance. Although topographic allocentric coding remains

available in order to solve basic allocentric tasks, as children age,

they might become more competent at using angular and distance

information to compute the precise coordinates of locations in allo-

centric terms (see further discussion below).

Memory load

Since the number of rewarded locations increased from 1 to 2 to 3

across stages, while nevertheless maintaining a reward to decoy

ratio of 1:3, it is possible that increasing memory load could nega-

tively influence children’s performance. However, the fact that in

Stage 3, for example, with two rewarded locations to be learned

over 20 trials, younger children showed that they had more diffi-

culty in demonstrating where, specifically, the reward was located

on the inner array, and not simply that there was a second rewarded

location, argues against a major influence of memory load on per-

formance. Indeed, if memory load were at the root of the problem,

then children should not show a preference for the goal located on

either the middle or inner array; instead, they should remember (or

forget) different locations within the arena with equal frequency. In

contrast, children had greater difficulty discriminating the goal on

the inner array than the goal on the middle array. This suggests that,

in this task, spatial resolution abilities might underlie spatial mem-

ory performance.

Spatial memory in previous studies

Although our model linking the development of specific hippocam-

pal circuits to the emergence of distinct allocentric spatial memory

capacities is novel (Jabès et al., 2011; Lavenex & Banta Lavenex,

2013), the idea that there are distinct, yet integrated topological and

high-resolution spatial encoding systems is not. Huttenlocher and

colleagues previously described spatial processing as consisting

of a system composed of a categorical spatial system and a

fine-grained spatial system (Huttenlocher, Hedges, & Duncan,

1991; Huttenlocher, Newcombe, & Sandberg, 1994). Poucet also

described distinct neurobiological systems for coding topological

versus metric (distances and angles) aspects of space (Poucet,

1993; Poucet & Benhamou, 1997). However, we specifically pro-

pose that a basic allocentric representation of space, which can be

subserved by the CA1 field of the hippocampus without any major

inputs from the dentate gyrus and CA3, encodes the topological or

categorical relations between objects in the environment. In

contrast, the functional maturation of the dentate gyrus and its pro-

jections to CA3 is required in order to process and incorporate the

metric (fine-grained) information necessary to elaborate a high-

resolution allocentric representation of space.

Accordingly, previous studies have shown that children’s pre-

cision in the encoding of spatial location improves with age. Acre-

dolo and colleagues found that 8-year-old children showed greater

precision in remembering where an item had been dropped than

3- and 4-year-old children; they explained children’s improve-

ments in terms of an increasing ability to use metric information

to code locations (Acredolo, Pick, & Olsen, 1975). In an experi-

ment asking children to reconstruct a model town on the floor

of either a room that had objects and landmarks in very close prox-

imity (a classroom with the furniture moved to the sides of the

room) or a room with very distal objects and landmarks (a gymna-

sium), Herman and Siegel found that performance of 5-year-olds

was significantly improved when landmarks were in close prox-

imity, whereas the performance of 7- and 10-year-olds was unaf-

fected by the proximity of objects and landmarks (Herman &

Siegel, 1978). Error that is inherent in the metric coding of loca-

tions comes from both distance and bearing estimation. Distance

errors, for example, increase nearly linearly with the distance to

the object being used as a landmark (Wiest & Bell, 1985); thus,

the closer the landmarks, the more accurate the calculation.

Accordingly, the results of Herman and Siegel (Herman & Siegel,

1978) are consistent with the hypothesis that the spatial resolution

of 7- and 10-year-olds is higher than that of 5-year-olds. Finally,

in a study testing the predictive value of the Dynamic Field The-

ory for spatial working memory in an egocentric A-not-B task,

Schutte and colleagues found that A-not-B biases in a sandbox

task depend both on the distance of target separation and on the

age of the child being tested (Schutte, Spencer, & Schöner,

2003). When the targets A and B were separated by at least 15

cm in the sandbox, 2- and 4-year-olds made A-not-B-type errors,

whereas 6-year-olds did not. However, when the A and B target

locations were separated by only five cm, 6-year-olds made A-

not-B-type errors, whereas 11-year-olds and adults did not. These

findings are consistent with an improvement in spatial pattern

separation and spatial resolution with age. However, our experi-

ment differs from that of Spencer and colleagues in a fundamental

way: Our task was an allocentric spatial memory task, whereas

theirs was an egocentric spatial memory task (Schutte et al.,

2003). Since we proposed that improvements in spatial pattern

separation, brought about by the maturation of the dentate gyrus

and its projection to CA3, underlie improvements in allocentric

spatial memory performance, is it possible that they might also

subserve the improvements in what may be described as an ego-

centric spatial working memory task?

Pattern separation, the orthogonalization of neural informa-

tion, is a general property of neural ensembles (Hunsaker &

Kesner, 2013). Thus, it is possible that brain regions responsible

for processing egocentric spatial information, such as the posterior

parietal cortex or the parahippocampal cortex, also perform pat-

tern separation on egocentrically coded spatial information and

that such processes improve with age. However, an alternative

explanation is also possible. Although the A-not-B task presum-

ably assesses ‘‘where’’ in an egocentric frame of reference, it does

not preclude reliance on an allocentric representation of space to

code the location of the targets in relation to the objects compris-

ing the surrounding environment. In the Schutte et al.’s (2003)

task, in order to accurately find the buried object, participants
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must correctly judge locations that are not necessarily centred

around their own body. A high-resolution, allocentric spatial rep-

resentation coding the locations of the hidden objects based on

both topological relations and metric information derived from the

environment might improve task performance. Accordingly,

improvements in spatial pattern separation in an allocentric frame

of reference might also contribute to the improvements in a spatial

memory task that can be solved with relatively less precision in an

egocentric reference frame alone.

Episodic memory

Infantile amnesia is the term used to describe the phenomenon that

as adults we have no memories for the events or episodes of the

first 2 to 3 years of our life. The period of infantile amnesia is fol-

lowed by a period referred to as childhood amnesia from 3 to 7

years of age, where although as adults we have memories from

that time, we have fewer memories than would be predicted based

on simple forgetting alone (for a review, see Bauer, 2007). Inter-

estingly, the offset of infantile amnesia around 2 years of age

corresponds with the time when basic allocentric spatial memory

emerges in children (Newcombe et al., 1998; Ribordy et al., 2013;

Sluzenski et al., 2004). We have previously proposed that the

emergence of basic allocentric spatial memory, as well as the off-

set of infantile amnesia, are subserved by the maturation of the

direct projections from the entorhinal cortex to CA1 (Jabès

et al., 2011; Lavenex & Banta Lavenex, 2013) which may enable

the relational representation of multiple items that is necessary for

both allocentric spatial and episodic memory. We also proposed

that improvements in allocentric spatial memory after two years

of age were linked to the protracted maturation of the dentate

gyrus (Jabès et al., 2011; Lavenex & Banta Lavenex, 2013;

Ribordy et al., 2013), to which significant numbers of

postnatally-born neurons are added daily for the first several years

of life (Jabès, Banta Lavenex, Amaral, & Lavenex, 2010).

Here, we further suggest that the progressive functional

maturation of the dentate gyrus might similarly underlie improve-

ments in episodic memory performance in children from 3 to 7

years of age, and eventually the offset of childhood amnesia.

Improved coding of episodic memories requires pattern separation

in order to make individual memories as distinct from one another

as possible. Moreover, recalling memories at later time points

likely requires a process known as pattern completion in order

to recall multiple elements of an event, a process thought to be

subserved by CA3 (Hunsaker & Kesner, 2013). Accordingly, the

balance between highly plastic, immature neurons and less plastic,

mature neurons born earlier during development, might not be

optimally tuned to contribute to the separate encoding of distinct

episodes until late postnatal development (Jabès et al., 2011).

Constant remodelling of the dentate gyrus to CA3 pathway due

to high rates of postnatal neurogenesis likely disrupt both pattern

separation processes, as well as the maintenance of established

memory traces (Jabès et al., 2010). A recent study carried out in

rodents supports this view by showing that increasing rates of neu-

rogenesis in the dentate gyrus of adult animals can induce forget-

ting, whereas reducing neurogenesis in immature rodents can

reduce forgetting (Akers et al., 2014). Altogether, these results

provide further credence to the hypothesis that the differential

maturation of distinct hippocampal circuits contributes to the

ontogeny of distinct memory processes in humans.
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