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Tyrosine hydroxylase catalyses the hydroxylation of L-tyrosine to L-DOPA, the rate-limiting step in the synthesis of catechol-

amines. Mutations in the TH gene encoding tyrosine hydroxylase are associated with the autosomal recessive disorder tyrosine

hydroxylase deficiency, which manifests phenotypes varying from infantile parkinsonism and DOPA-responsive dystonia, also

termed type A, to complex encephalopathy with perinatal onset, termed type B. We generated homozygous Th knock-in mice

with the mutation Th-p.R203H, equivalent to the most recurrent human mutation associated with type B tyrosine hydroxylase

deficiency (TH-p.R233H), often unresponsive to L-DOPA treatment. The Th knock-in mice showed normal survival and food

intake, but hypotension, hypokinesia, reduced motor coordination, wide-based gate and catalepsy. This phenotype was associated

with a gradual loss of central catecholamines and the serious manifestations of motor impairment presented diurnal fluctuation but

did not improve with standard L-DOPA treatment. The mutant tyrosine hydroxylase enzyme was unstable and exhibited deficient

stabilization by catecholamines, leading to decline of brain tyrosine hydroxylase-immunoreactivity in the Th knock-in mice. In fact

the substantia nigra presented an almost normal level of mutant tyrosine hydroxylase protein but distinct absence of the enzyme

was observed in the striatum, indicating a mutation-associated mislocalization of tyrosine hydroxylase in the nigrostriatal pathway.

This hypomorphic mouse model thus provides understanding on pathomechanisms in type B tyrosine hydroxylase deficiency and a

platform for the evaluation of novel therapeutics for movement disorders with loss of dopaminergic input to the striatum.
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Introduction
Tyrosine hydroxylase (TH; EC 1.14.16.2) is a homo-

tetrameric enzyme that catalyses the conversion of

L-tyrosine to L-dihydroxyphenylalanine (L-DOPA) by using

molecular oxygen as additional substrate and the cofactor

(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4) (Nagatsu

et al., 1964; Roberts and Fitzpatrick, 2013). This hydrox-

ylation is the rate-limiting step in the synthesis of the cat-

echolamine neurotransmitters dopamine, norepinephrine

and epinephrine (Nagatsu et al., 1964). Dopamine is dis-

tinctively involved in motor control, but also in cognition,

memory and reward and, as a precursor of norepinephrine

and epinephrine, indirectly regulates attention and helps to

maintain normal blood pressure and blood sugar

(Eisenhofer et al., 2004). In the CNS, TH is mainly

expressed in dopaminergic neurons of the substantia

nigra, which project mostly to the striatum and have a

central role in motor control, and in the ventral tegmental

area, which projects to the nucleus accumbens and the pre-

frontal cortex and regulates motivation and reward. TH is

also expressed in noradrenergic neurons of the locus coer-

uleus and lateral tegmental system (Zigmond et al., 1989;

Bjorklund and Dunnett, 2007). Outside the CNS, TH

expression is found in the adrenal medulla, the sympathetic

neurons, and in non-neuronal (renal, intestine, pancreatic

and lymphoid) tissues. The single human TH gene under-

goes alternative mRNA splicing generating four main iso-

forms (hTH1–hTH4), with variations in the length of the

N-terminal, where hTH4 corresponds to the longest, full-

length isoform and hTH1 to the shortest and most abun-

dant one, equivalent to rodent TH (Nagatsu, 1995). TH

activity is tightly controlled by regulatory mechanisms at

the transcriptional, translational and post-translational

levels (Kumer and Vrana, 1996; Tank et al., 2008).

The latter includes phosphorylation at several Ser/Thr resi-

dues at the N-terminal tail (Daubner et al., 2011). Notably,

phosphorylation at Ser40 by cAMP-dependent protein

kinase A activates TH by releasing the feedback inhibition

of catecholamines and decreasing the Km for the cofactor

BH4 (Nagatsu et al., 1964). Binding of the catecholamine

end-products inactivates and stabilizes TH both in vitro

(Okuno and Fujisawa, 1991; Martinez et al., 1996) and

in vivo (Sumi-Ichinose et al., 2001). Another short-term

regulatory mechanism of TH of important biological sig-

nificance is substrate inhibition, that allows steady synthesis

of dopamine despite fluctuations in blood L-tyrosine (Reed

et al., 2010).

Mutations in the TH gene (OMIM *191290) cause TH

deficiency (THD; OMIM #605407), which is a rare dis-

order that comprises a broad phenotypic variation includ-

ing infantile parkinsonism and L-DOPA-responsive dystonia

(DRD). THD manifestations range from a mild progressive

limb dystonia, postural tremor and hypokinetic rigid syn-

drome that is responsive to L-DOPA (termed type A) to a

progressive and complex neonatal or early-infancy onset

encephalopathy with L-DOPA-unresponsive parkinsonism

(termed type B) (Willemsen et al., 2010). A certain geno-

type–phenotype correlation between the clinical subtype

and the genotype of the THD patients through the

in vitro TH activity of the mutant variants has recently

been reported (Fossbakk et al., 2014). Nevertheless, an

accurate clinical diagnosis of THD must be based on

central catecholamine deficiency reflected by normal

5-hydroxyindolacetic acid (5-HIAA) but low homovanillic

acid (HVA), low 3-methoxy-4-hydroxyphenylethylene

glycol (MHPG) and low HVA:5-HIAA ratio in CSF

from lumbar puncture (Willemsen et al., 2010), and by

mutation analysis of the TH gene (Haavik et al., 2008;

Kurian et al., 2011). Peripheral (urinary) concentration of

catecholamines, HVA and MHPG are non-informative

most probably due to dopamine production by residual

TH and tyrosinase activity in non-neuronal tissues

(Willemsen et al., 2010). Elevated serum prolactin may,

however, be used as a peripheral biomarker reflecting cen-

tral neurotransmitter status (Aitkenhead and Heales, 2013).
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The release of this hormone from the pituitary gland is

under control of hypothalamic dopamine, which is the pri-

mary physiological inhibitor of prolactin secretion

(Ben-Jonathan, 1985). Furthermore, galactorrhoea has

been observed in some severely affected hyperprolactinae-

mic patients with THD (Yeung et al., 2006). To date, �70

THD patients have been reported (www.biopku.org/pnddb)

(Willemsen et al., 2010; Fossbakk et al., 2014); the

most recurrent TH mutation, accounting for �30% of all

mutant alleles, is c.698G4A/p.Arg233His in exon 6;

NM_1999292.2 (corresponding to c.605G4A/

p.Arg202His in hTH1). While as a homozygous or com-

pound heterozygous allele this mutation can be associated

with type A or type B THD (Haavik et al., 2008;

Willemsen et al., 2010), about half of the patients with

type B THD are homozygous for variant p.R233H

(Willemsen et al., 2010).

Parkinsonian syndromes, dystonias, and related move-

ment disorders showing a reduction in the levels of TH

activity and dopamine levels are closely associated with

THD (Kurian et al., 2011; Garcia-Cazorla and Duarte,

2014). Although THD is not accompanied by neurodegen-

eration, it shares several traits with Parkinson’s disease

where the motor features actually reflect the loss of striatal

dopamine due to degeneration of dopaminergic neurons in

the midbrain (Obeso et al., 2010). Transgenic mouse

models aiming to mimic THD by inactivating the Th
gene have been generated in the past (Kobayashi et al.,

1995; Zhou et al., 1995; Szczypka et al., 1999). The com-

plete Th knock-out was non-viable, and none of the rescue

mutants fully reproduced the clinical and pathological fea-

tures of THD. They did, however, provide valuable insights

into the importance of dopamine and the other catechol-

amines for mouse foetal development (Kobayashi et al.,

1995; Zhou et al., 1995) and the functional interdepend-

ence of the adrenomedullary and adrenocortical systems

(Bornstein et al., 2000).

To provide novel insights into catecholamine function

and study the pathophysiological mechanisms responsible

for the severe (type B) THD phenotype, we generated a

constitutive Th knock-in mouse with the p.Arg203His

mutation, equivalent to the human TH-p.R233H (hTH1-

p.R202H). This mouse, here termed Th knock-in, was

viable and presented with motor dysfunction due to a

reduced TH activity and gradual loss of catecholamine

metabolites, including dopamine. Measurements in brain

extracts, immunohistochemical analyses and kinetic and

molecular studies of wild-type and mutant human and

mouse enzymes showed the instability of the mutant TH.

Importantly, the mutant enzymes could not be stabilized by

dopamine, highlighting the importance of a functional

regulatory feedback inhibition by catecholamines to main-

tain TH levels and proper localization. Furthermore, the Th

knock-in mouse displays the salient clinical features of

human type B THD phenotype including biochemical mar-

kers, impaired motor function, diurnal fluctuation of symp-

toms and non-responsiveness to L-DOPA treatment, and

thus represents an ideal model for pathomechanistic studies

and for investigations of novel therapeutic approaches,

such as pharmacological chaperones and treatment strate-

gies based on circadian regulation of TH activity and/or

restorative properties of sleep.

Materials and methods

Generation of the Th knock-in mouse
allele

A C57BL/6 mouse carrying a constitutive knock-in of the
point mutation p.Arg203His in the Th gene was custom gen-
erated by TaconicArtemis (NCBI gene ID 21823, transcript
variant Th-1 NM_0093771.1; Ensembl gene ID
ENSMUSG00000000214). Details on the targeting vector for
electroporation, homologous recombination and selection in
mouse embryonic stem cells (Art B6/3.6 background C57BL/6
NTac) are given in Supplementary Fig. 1A–C. Validation of
correct and single targeting was done by Southern blot and
PCR analyses (details on request). For elimination of the
NeoR cassette, mice were crossed with a FLP-deleter strain
[C57BL/6-Tg(CAG-Flpe)1 Arte] for random integration of the
CAGGS-FLPe transgene, and subsequently mice were crossed to
homozygosity.

Genotyping of Th knock-in mice

One primer set was used for testing for the presence of an
additional 85 bp FRT sequence by fragment size analysis (pri-
mers ‘For’ 4601_33: 5’-GAGCTCCCAGAATTGACAGC-3’;
‘Rev’ 4601_34: 5’-GATCACACTCCACCATATCAAGG-3’)
and another set for the presence of the R203H mutation via
Sanger sequencing (primers 4602_35: 5’-TGTCAGAGTTGGA
TAAGTGTCACC-3’ and 4602_36: 5’-TGACAGCTAACCA
GTCACCTCC-3’; see also Supplementary Fig. 1B and C).
Standard PCR conditions were used for DNA amplification.

Mouse husbandry and treatment
studies

Animal experiments were performed in accordance with the
guidelines and policies of the Veterinary Office of the State
of Zurich and Swiss law on animal protection, the Swiss
Federal Act on Animal Protection (1978), and the Swiss
Animal Protection Ordinance (1981). Animal studies received
approval from the Cantonal Veterinary Office, Zurich, and the
Cantonal Committee for Animal Experiments, Zurich,
Switzerland. All mice are generated by back-crossing with
C57BL/6J from the Jackson Laboratory (i.e. C57BL/6J,
�-synuclein positive), and for controls, we exclusively used
the wild-type littermates. Mice were maintained in a humidity
and temperature (21–23�C) controlled environment under a
12-h dark–light cycle. For treatment studies, six tablets con-
taining L-DOPA (levodopa 100mg) and the decarboxylase in-
hibitor carbidopa (25mg) were purchased (Sinemet) and
diluted in 20ml of double distilled H2O. For validation, the
final concentration of L-DOPA was determined by high perfor-
mance liquid chromatography (Blau et al., 1999). Newborn
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homozygous Th knock-in and wild-type control mice were fed
for the chronic experiments daily per os with a solution con-
taining 10mg levodopa plus 2.5mg carbidopa per kg of body
weight and per day for a time period of up to 3 weeks of age.
Elevation of brain 3-OMD (3-O-methyldopa) and HVA con-
trol supported that mice received adequate doses of L-DOPA
(Fig. 7). Treated mice were tested 24 h after the last adminis-
tration for motor behaviour, and at sacrifice, tissue was col-
lected for biochemical analyses. Mock control, independent
groups of Th knock-in and wild-type mice, sex and age-
matched, were given double distilled H2O in parallel. For the
acute L-DOPA treatment experiment, a group of Th knock-in
plus wild-type control mice were first mock fed and tested for
motor function (rotarod and bar test; see below). Following a
resting phase of 2–3 h, all mice were loaded per os with a
single bolus of a solution containing 10mg levodopa plus
2.5mg carbidopa per kg of body weight, before retesting
these mice for motor coordination within 20–45min after
the L-DOPA loading.

Metabolic cage analysis

Locomotion, food and water intake, O2 consumption and CO2

production were determined for single housed mice (females at
the age of 9 months) during a 24-h period in metabolic cages in
an open-circuit indirect calorimetry system as previously
described (Wueest et al., 2014) (PhenoMaster, TSE Systems).
After being adapted to single caging, mice were placed in cages
closed with air-tight lids. Water bottles and food cups were
placed on scales to measure water and food intake continuously.
The measurements were saved on a computer in 20-min intervals
and were used to calculate cumulative food and water intake.
Activity data were measured using an infrared light-beam. To
measure energy expenditure and respiratory exchange ratio
(RER), ambient air was pumped through the cage via a flow
controller. Air entering and leaving each cage was monitored
for its O2 and CO2 concentration. The cages were connected
to two analysers measuring O2/CO2 concentration of each cage
for a period of 2min in 20-min intervals. Energy expenditure
and respiratory exchange ratio were calculated using the manu-
facturer’s software based on the following equation:

energy expenditure ðkcal=hÞ ¼ 3:941� VO2 þ 1:106� VCO2

1000
;

respiratory exchange ratio ¼ VCO2

VO2
:

Behavioural motor testing

Experiments were carried out during the light phase, between
10 am and 5 pm, and always at the same time of the day
within the same group of animals. Experimental batches
were acclimated to the test room for at least 1–2 days before
testing.

Open field test

For the open field test (Bello et al., 2011), Plexiglas activity
boxes monitored by a video tracking system (Ethovision,
Noldus) were used to assess total horizontal activity and
mean velocity of locomotion. Animals were placed in a neutral

position of the acrylic boxes (40� 40� 46 cm) and left to ex-
plore freely and undisturbed for 30min. Boxes were carefully
cleaned between tests to minimize odour cues in the arena.

Bar test

For the Bar test (Noain et al., 2013), spontaneous catalepsy
was determined in Th wild-type and Th knock-in mice using
the horizontal bar test in which the time of immobility (defined
as immobile trunk and limbs) was assessed as described pre-
viously. Briefly, to discard the possibility of confounding freez-
ing behaviour induced by fear/stress with catalepsy, all mice
were habituated to the experimental context by 2min free
exploration over the working bench and experimental setup.
Following this, mice were restrained by the tail, their front
paws placed over the 5-cm elevated bar (1-cm diameter, plexi-
glas) and the back limbs set over the working bench.
Immediately after, the timer was started. A trail was con-
sidered valid when the animal remained grabbing the bar
with the front paws until the timer was running (�2 s).
Usually, 2–4 trials were invalid for each mouse at the begin-
ning of the testing session. The highest immobility score out of
five valid trials was considered for the analysis of both wild-
type and knock-in subjects. The cut-off of the experiment was
set at 180 s.

Rotarod test

For the Rotarod test (Avale et al., 2004), wild-type and Th
knock-in mice were individually placed in a neutral position
on the immobile rotarod treadmill (UgoBasile). Immediately,
the speed was increased to 16 rpm and each mouse was
given a 10-min training session. During the training session
mice were repositioned on the rod after each fall. Mice were
tested 3 h later for 3min at a fixed velocity of 16 rpm, and the
latency to the first fall was recorded for each subject.

Gait analysis

For gait analysis (de Medinaceli et al., 1982; Kunkel-Bagden
et al., 1993; Suresh Babu et al., 2012), both hind and fore
paws of mice were inked with non-toxic blue and red ink.
Animals were immediately placed at one end of a 30-cm
acrylic alley, whose floor was covered in white absorbent
paper, and encouraged to walk to the opposite end. The
paper was then removed and labelled with the animal ID
number for further analysis. The stride length and width
were manually measured and normalized to body weight
(‘size’) of each mouse to obtain short-step and wide-based
gait indices, respectively.

Preparation of whole brain lysates
from mice

Immediately after sacrifice, whole brains were resected and
shock frozen in liquid nitrogen. Frozen brains were grinded
to powder under liquid nitrogen; thereafter, all procedures
were carried out at 4�C. Powdered brains were ‘dissolved’ in
1ml of homogenization buffer containing 50mM Tris-HCl,
pH 7.5, 100mM KCl, 1mM dithiothreitol (DTT), 0.2mM
PMSF (stock 10mg/ml in isopropanol), 1mM leupeptin
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(stock 5mg/ml in H2O) and 1 mM pepstatin (stock 1mg/ml in
methanol). A TissueLyser II (Qiagen; cat. no. 85300) was used
for preparation of lysate following the manufacturer’s
protocol.

Gene (mRNA) expression studies

Total RNA was extracted from powdered mouse brains by the
QIAmp RNA Blood Mini Kit (Ref. 52304; Hombrechtikon)
and cDNA was produced by the Promega reverse transcription
system (Ref. nr. A3500). Mouse Th, Tph1, Tph2 and Igf1
mRNA expression levels were performed using the commer-
cially available ABI assays (Mm.00447546 for Th mRNA;
NCBI RefSeq NM_009377.1; Mm00493798_m1 for Tph1
mRNA, NCBI RefSeq NM_001136084.1; NM 009414.2;
Mm00557717_m1 for Tph2 mRNA, NCBI RefSeq
NM_173391.2; Mm00439560_m1 for Igf1\ mRNA, NCBI
RefSeq NM_001111274.1). The murine glyceraldehyde-3-
phosphate dehydrogenase (Gapdh) mRNA (ABI assay ID:
Mm99999915_g1; NCBI RefSeq NM_008084.2) was used to
normalize the relative Th, Thp1, and Thp2 mRNA levels.
Values were calculated as described (Livak and Schmittgen,
2001).

Determination of protein, neopterin,
biopterin and monoamine neuro-
transmitter metabolites

Protein concentration (in g/l) was determined by using the M-
TP Mikroprotein kit from Beckman Coulter Synchron LX-
System (Beckman Coulter Inc; kit-no. 445860). Biopterin,
neopterin and monoamine neurotransmitter metabolites were
determined in brain tissue following published protocols (Blau
et al., 1999; Elzaouk et al., 2003).

Total thyroxine, thyroid stimulating
hormone and prolactin

Serum IGF1 was determined by radioimmunoassay (RIA)
using a rat IGF1 RIA kit (DSL-2900, Bühlmann
Laboratories) (Elzaouk et al., 2003), total thyroxine from
whole blood dried on filter paper was measured with the
‘GSPTM Neonatal Thyroxine kit’ from PerkinElmer (Life and
Analytical Sciences), serum prolactin was quantified using an
ELISA kit for mouse and rat (GenWay Biotech, Inc), and glu-
cose was measured according to standard methods on a rou-
tine Clinical Chemistry unit on a Beckman Coulter UniCel�

DxC 600 (Nyon) following the manufacturer’s instructions.

Measuring blood pressure in mice

A non-invasive computerized tail-cuff system for measuring
systolic blood pressure in mice was applied as described
(Krege et al., 1995).

Tissue preparation and
immunohistochemistry

Adult mice at the age of 6–7 months were anaesthetized with
sodium pentobarbital and, after exsanguination, transcardially

perfused with 4% paraformaldehyde in phosphate-buffered
saline (PBS, pH 7.4). Brains were immediately removed,
post-fixed, cryoprotected in sucrose ladder and stored at �80
�C until further use. For free-floating immunohistochemistry,
brains were cryostat sectioned in 40 mm slices, incubated for
1 h in 1% H2O2 and then washed. A rabbit polyclonal anti-
TH antiserum was used (1:1000; Millipore, AB152) for spe-
cific immunostainings of TH cells. Sections were incubated
with primary antibody overnight at 4�C together with 2%
normal goat serum. After washing, sections were incubated
for 2 h at room temperature with a solution containing bioti-
nylated goat anti-rabbit IgG (1:400, Vector Laboratories).
After washing, sections were incubated for 1 h at room tem-
perature with avidin/biotin complex (1:200, ABC Vectastain
Elite Kit, Vector) and washed twice. Finally, sections were
exposed to a solution of 0.025% diaminobenzidine, 0.05%
H2O2 in Tris-buffered saline buffer and monitored for colour
development under a microscope (Gelman et al., 2003).
Congo red staining was performed over Th wild-type and

Th knock-in brain tissue to determine the presence of amyloid
deposits indicative of a neurodegenerative process (Bohnen and
Jahn, 2013; Catafau and Bullich, 2015). Briefly, we mounted
40-mm cryostat sections and dried them overnight. A 5-min
wash in deionized water was followed by 20min in alkaline
sodium chloride solution and 20min in Alkaline Congo red
solution (Sigma-Aldrich, Cat# HT60). We then dehydrated the
stained tissue in absolute ethanol and xylene, and finally
mounted them for bright field microscopy. We counted TH-
positive cell bodies in the midbrain using a semiquantitative
method. Briefly, substantia nigra pars compacta/ventral teg-
mental area sections from two Th wild-type and two Th
knock-in were randomly selected from a pull of stained
tissue. Similar anatomical levels were included from each geno-
type, to avoid misrepresentation. All positive TH cell bodies
were counted in one hemi-section from each animal.
Additional methodological information is available in the

online Supplementary material.

Results

Th knock-in mice display moderate
growth retardation and hypotension

A constitutive knock-in containing the Th-p.Arg203His

was generated by homologous recombination in the

C57BL/6 background and bred to homozygosity

(Supplementary Fig. 1 and Supplementary Table 1). The

Th knock-in litter size was normal with an expected

Mendelian ratio and an apparently normal phenotype ini-

tially. After weaning, however, Th knock-in mice exhibited

moderate and continuous growth retardation with 25–34%

less body weight compared to their wild-type or heterozy-

gous littermates (Fig. 1A and B). That this was not due to

feeding abnormalities was confirmed quantitatively by

metabolic cage analyses showing normal food intake and

respiratory exchange ratio. Locomotor activity and energy

expenditure were, however, reduced (Supplementary Fig.

2). Follow-up examinations of mutant mice revealed no
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constipation, and a quantitative analysis of the fat and total

energy contents in faeces also revealed no differences be-

tween wild-type and Th knock-in mice, indicating that

mutant mice had normal absorption and digestion (data

not shown). Th knock-in was normoglycaemic and Igf1

gene expression was normal (mRNA of whole brain ex-

tracts; not shown) as were IGF1 serum levels in adult

mice at the age of 12 weeks (Supplementary Fig. 3A). We

noticed however that Igf1 mRNA was significantly elevated

in whole brain extracts from Th knock-in mice at the age

of 3 weeks (not shown), implying that the IGF system

might be involved in brain growth, as suggested by

others (Delafontaine et al., 2004). We further detected ele-

vation of the total thyroid hormone thyroxine

(Supplementary Fig. 3B) and hypotension (Supplementary

Fig. 3C) while serum thyroid stimulating hormone was not

different between mutant and control mice (not shown).

Both low body weight and reduced blood pressure are

found in patients with type B THD (Grattan-Smith et al.,

2002; Willemsen et al., 2010) and in mice with norepin-

ephrine and epinephrine deficiency (Swoap et al., 2004),

while we found normal levels of catecholamines in the ad-

renals and heart of adult Th knock-in mice (data not

shown), which indicated central regulation for reduced

body weight and hypotension. Normal catecholamine con-

tent in peripheral tissues was also reported for heterozy-

gous Th knock-out mice that present a significant

reduction of TH (Kobayashi et al., 1995).

Gradual loss of brain catecholamines
in Th knock-in mice

Whole brain catecholamine and serotonin metabolites were

measured in newborn (Day 1), juvenile (3 weeks) and adult

Figure 1 Sex-specific differences in body weight between wild-type and Th knock-in mice. (A) Female and (B) male mice fed ad

libitum with standard chow. Growth retardation resulted in reduced body weight, for instance at the age of 12 weeks 25% reduction for females

and 34% reduction for males. Significant differences between Th knock-in (ki) and wild-type (wt) combined with heterozygotes mice are indicated:

**P5 0.01; ***P5 0.001 (Student’s two-tailed t-test).
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mice (12 weeks and 1 year). The values of brain dopamine

and other catecholamines and their metabolites obtained

for adult wild-type mice were in a similar range to those

obtained in previous studies (Thöny et al., 2008; Calvo

et al., 2010). HVA, the major biomarker in CSF for TH

deficiency in patients, was low in Th knock-in mice at all

ages, whereas L-DOPA, dopamine, norepinephrine and

MHPG were initially normal, but fell continuously there-

after in mutant mice (Fig. 2A–D). This decrease appears

specific for the catecholamines and their metabolites, as

serotonin, which is typically not compromised in THD,

remained unchanged both with respect to age and when

compared with the values in wild-type mice, and only

at an advanced age, when mutant mice exhibited a

striking loss of catecholamines, was a reduction of the sero-

tonin precursor 5-hydroxytryptophan (5-HTP) observed

(Fig. 2D). Biopterin (and neopterin) content remained

unchanged at all ages (Supplementary Fig. 4), as was the

case for 5-HIAA, thus leading to a reduced HVA:5-HIAA

ratio in Th knock-in mice compared to wild-type mice at

all ages (Supplementary Table 2), similar to what is found

in the CSF of THD patients (Willemsen et al., 2010).

Furthermore, we measured a consistent elevation of serum

prolactin levels in adult mutant mice reflecting central

dopamine deficiency (Supplementary Fig. 3D) that caused

reduced fertility of Th knock-in females (not shown),

although galactorrhoea was not observed.

Early motor dysfunction and diurnal
fluctuation of the motor deficits in Th
knock-in mice

A moderate reduction of motor activity was observed in

mutant mice during metabolic cage analyses

(Supplementary Fig. 2C). To explore the nature of this

motor dysfunction, we performed a series of behavioural

tests assessing spontaneous catalepsy, motor coordination,

amount and velocity of spontaneous locomotion, and gait

characteristics at different ages. Motor function was tested

in juvenile (3 weeks old), young adult (11 weeks old) and

1-year-old mutant male mice plus sex and age-matched

wild-type controls (Fig. 3A–F). In the bar test, Th knock-

in mice showed increased time of immobility compared to

controls, indicating spontaneous catalepsy, a sign of rigidity

and inability to initiate movements. In addition, when

placed at the bar, Th knock-in mice of all ages, but par-

ticularly older adults, presented an abnormal body posture

and muscle twitching, suggesting the presence of a dystonic

component, while we did not observe clasping of the hind-

limbs by the vertical tail suspension assay as a common test

for a dystonic phenotype in mice (Sato et al., 2008).

Th knock-in male mice challenged in the rotarod test

showed a significantly reduced latency to fall, indicating

impaired motor coordination. In the open field test,

Figure 2 Gradual loss of brain monoamine neurotransmitter metabolites in Th knock-in mice. (A) Newborn mice, 1 day, (B)

juvenile mice, 3 weeks, (C) adult mice, 12 weeks, and (D) adult mice, 1 year. Data for Th wild-type mice are shown in black and Th knock-in in

grey. Monoamine neurotransmitter metabolites are depicted in pmol/mg of total brain protein. 3-OMD = 3-O-methlydopa; 5-HTP = 5-

hydroxytryptophane. Significant difference from the corresponding wild-type value is indicated by asterisks: *P5 0.05; **P5 0.01; ***P5 0.001

(Student’s two-tailed t-test).
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Th knock-in mice showed significantly reduced levels of

horizontal activity (amount and velocity of spontaneous

locomotion), indicating a hypokinetic and bradykinetic

phenotype. Next, we analysed the characteristics of gait

(normalized to body weight to compensate for the size

difference between genotypes). Mutant mice had an

increased stride width per body weight index compared

to normal controls, suggestive of a significant wide-based

gait. This was confirmed by a generalized disorganization

of the gait, including dragging marks, changes in direction

and freezing (data not shown). In contrast, Th knock-in

mice did not show abnormal stride length, as observed by

an unchanged stride length per body weight index

compared to controls. In summary, while the catecholamine

deficiency increased with age (Fig. 2A–D), the severe

motor dysfunction was present from the first measurements

at 3 weeks onwards, and its severity appeared independent

of age.

Figure 3 Motor function tests of mutant (Th knock-in) and wild-type (Th-wild-type) male mice at different ages. (A) Bar test for

assessment of catalepsy. (B) Rotarod test for determination of motor coordination. (C) Total distance travelled in the open field test. (D) Mean

velocity of locomotion in the open field test. (E) Gait analysis to test for stride width normalized to body weight. (F) Gait analysis to test for

short-step disorder (stride length normalized to body weight). Th wild-type mice are shown in black and Th knock-in in grey. Significant difference

from the corresponding wild-type value is indicated: **P5 0.01; ***P5 0.001 (Student’s two-tailed t-test or ANOVA for fluctuation bar test).
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Marked diurnal fluctuation of motor behaviour is a hall-

mark in patients with THD (Willemsen et al., 2010;

Haugarvoll and Bindoff, 2011). To determine whether

the motor performance in mutant mice varied throughout

the day, we performed the bar test at 8 am and 8 pm in the

same set of animals and found that Th knock-in mice

performed significantly better after the resting period (at

8 pm, note the inverted circadian rhythms of mice

compared to humans) than after the activity period (at 8

am), while wild-type controls presented a stable

performance at both times (Willemsen et al., 2010;

Haugarvoll and Bindoff, 2011) (Fig. 4).

Gradual reduction of TH protein and
activity in brain of Th knock-in mice,
with specific loss of TH in striatum

Gene expression of Th, Tph1 and Tph2 (mRNAs) in whole

brain extracts of Th knock-in mice was similar to that in

wild-type mice at different ages, and no particular hetero-

geneity was observed for transcript numbers in either mice.

Th mRNA transcripts (but not Tph1 and Tph2 mRNAs)

showed an increase of �50% from newborn (1 day) to

3 weeks for both wild-type and Th knock-in mice

(Supplementary Table 1). On the other hand, immuno-

quantification of TH protein content in whole brain

extracts showed a remarkable 5-fold increase in TH relative

to total protein from newborn to 3 weeks in normal mice,

but no significant increase in TH protein was measured in

this period for Th knock-in (Fig. 5A and B). For wild-type

mice, TH content was maintained from 3 weeks up to

1 year, but Th knock-in revealed a gradual loss of

TH protein relative to the normal (wild-type) content,

reaching a value as low as �3% of wild-type TH protein

in 1-year-old animals (Fig. 5B, inset). The specific TH

activity in brain extracts under standard conditions,

measured by a sensitive radiochemical assay (Reinhard

et al., 1986), also followed a similar development as

the protein content for the wild-type animals (the activ-

ity increased from 1.6 � 0.6 to 5.3 � 1.0 pmol L-DOPA/

mg/min from Day 1 to 3 weeks, a value that was

maintained up to 1 year). However, the activity in

Th knock-in brain extracts was below the sensitivity thresh-

old and could not be determined accurately by the radio-

chemical assay or other methods tested, including HPLC

and fluorimetric detection of L-DOPA (Haavik and

Flatmark, 1980).

Loss of TH was also observed by immunohistochemical

staining for TH of the substantia nigra pars compacta and

ventral tegmental area region and corpus striatum on cor-

onal brain sections from perfused adult male Th knock-in

and wild-type mice (6–7 months old). As seen in Fig. 5C we

observed a similar expression pattern of TH in Th knock-in

and control mice in the substantia nigra pars compacta/

ventral tegmental area, with some less dense stained pro-

jections, whereas in the corpus striatum we observed an

almost complete lack of immunoreactive processes.

Furthermore, higher magnification photomicrographs

depict a similar soma staining in the midbrain of mutants

and controls whereas reduced staining of processes is again

observed for the mutants (Fig. 5D). A semiquantitative

TH+ cell count performed in the substantia nigra pars

compacta/ventral tegmental area of mutant and control

brains indicated no decrease of immunoreactive TH cells

in the midbrain of the mutants (220.5 � 35.5 and

232.5 � 35.5 for Th knock-in and Th wild-type mice, re-

spectively). Together with the lack of aberrant amyloid de-

position in either midbrain or corpus striatum, as indicated

by Congo red staining in these brain areas (Fig. 5E), the

histological results strongly support lack of neurodegenera-

tion in the midbrain of mutant animals. Rather, our results

support the reduction in the amount of TH protein

measured by immunoquantification and revealed a

marked mislocalization of TH, consistent with a defective

transport of mTH-R203H across the nigrostriatal projec-

tion (see below).

The misfolding loss-of-function
mutations hTH1-R202H and
mTH-R203H are not stabilized by
dopamine

To better understand the TH dysfunction in THD patients

and in Th knock-in mice, we studied the molecular and

kinetic effects of the mutation in the human (h) and

mouse (m) TH enzymes, using purified, tetrameric,

Figure 4 The bar test for catalepsy reveals diurnal fluctu-

ation of motor deficits. Bar test performed at 8 am (black bars)

and 8 pm (grey bars) to explore potential fluctuations in catalepsy

severity. While there was no difference for Th wild-type mice

performance at different day times, Th knock-in mice exhibited a

significant difference between morning and evening (*P5 0.05; two-

way ANOVA for fluctuation bar test). The overall difference

between genotypes confirms the results shown in Fig. 3A (indicated

by the three asterisks; ***P5 0.001; Student’s two-tailed t-test).
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recombinant hTH1-wt, mTH-wt, hTH1-R202H and mTH-

R203H. First we analysed the substrate and cofactor-

dependent activity of each enzyme (Supplementary Fig.

5A and B); the steady state activity constants are summar-

ized in Table 1. Compared with hTH1-wt, mTH-wt

showed reduced specific activity, but a similar Km(BH4),

slightly decreased S0.5(L-Tyr) (higher substrate affinity for

L-Tyr) and reduced substrate inhibition constant (Ksi),

denoting stronger substrate inhibition. The mutants

hTH1-R202H and mTH-R203H showed decreased Vmax

and Km(BH4) and slight increase of S0.5(L-Tyr) compared

with their corresponding wild-type counterparts, indicating

a clear, but not severe kinetic defect. On the other hand, an

evident destabilizing misfolding of the mutant enzymes was

indicated by a 10-fold lower yield of purified tetrameric

mutant enzymes expressed in E. coli, compared with the

wild-type forms. Decreased protein stability of the hTH1-

R202H mutant is also predicted by the FoldX algorithm

Figure 5 TH protein content in brain from Th-wild-type and Th knock-in mice. (A) Representative immunoblots of brain extracts of

mice at the age of 1 day, 3 weeks, 12 weeks and 1 year; kDa, standard; mTH, purified mouse TH; wild-type (Th-wild-type) and ki (Th knock-in)

mice. (B) TH protein content in brain extracts from Th wild-type (black bars) and Th knock-in mice (grey bars), as density of the 59 kDa TH band

relative to the intensity of the GAPDH band. Inset: Percentage of TH protein content (grey bars) in brain extracts of Th knock-in versus Th wild-

type mice. Significant difference between mice at different ages with mice at 1 day is indicated: *P5 0.001 (Student’s two-tailed t-test). (C–E)

Immunohistochemical and Congo red staining of TH in brain of Th-wild-type and Th knock-in mutant mice, at the age of 6–7 months. (C)

Substantia nigra pars compacta (SNpc)/ventral tegmental area (VTA) of Th wild-type and Th knock-in mice present a similar degree of staining

indicating lack of neurodegeneration in the mutant mice, while a striking lack of TH staining was observed in the corpus striatum in Th knock-in

mice compared to wild-type control mice, indicating a largely reduced amount of TH protein in these neuronal processes. (D) Higher magni-

fication view of midbrain TH + cell bodies at different levels (top and middle panels) and inset images depicting the higher density of processes

staining in Th wild-type compared to Th knock-in brains (bottom panel). (E) Congo red staining in mutant and wild-type controls. The scale bars

represent �0.5 mm (C and E left), �1.1 mm (E, right), and �100 mm (D).
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(Schymkowitz et al., 2005), which estimated a destabiliza-

tion energy of 9.96 kcal/mol (��G) based on the tetra-

meric structure of hTH (PDB 2XSN), including the

catalytic and tetramerization domains. To corroborate

that the mutation caused the destabilization, we performed

differential scanning fluorimetry (DSF) analyses. This

method was chosen due to the small amounts of protein

required, as protein was limited for the mutants. The

mutant enzymes showed reduced stability compared with

the respective wild-type forms [2–3�C decreased midpoint

denaturation (Tm)-values; Fig. 6A]. Although significant,

the decreased thermodynamic stability caused by the muta-

tion could not, however, fully explain the relative decay of

TH protein in the Th knock-in compared to the wild-type

mouse (Fig. 5). Additional defects in regulatory stabiliza-

tion of the mutant mTH-R203H enzyme might explain this

relative loss of TH protein in the mutant mouse.

Stabilization of TH by dopamine and other catecholamines

is an important regulatory mechanism, which leads to com-

petitive inhibition of TH activity versus the BH4 cofactor,

and provides a natural chaperone effect that prevents

degradation of the enzyme (Okuno and Fujisawa, 1991;

Sumi-Ichinose et al., 2001; Thöny et al., 2008). In vitro,

this stabilization is manifested by an increase in the

Tm-values and a decrease in its susceptibility to proteolysis

(Martinez et al., 1996; McCulloch and Fitzpatrick, 1999).

As expected, hTH1-wt and mTH-wt were stabilized by

dopamine binding, increasing their Tm-values up to 3�C
(Fig. 6A and B), but the mutants were not stabilized by

dopamine (Fig. 6C and D). In addition, dopamine protected

the wild-type enzymes, but not the mutants, from limited

tryptic proteolysis (shown for hTH1 in Fig. 6E–K).

Non-responsiveness of Th knock-in
mice to L-DOPA treatment

We determined the effect of chronic and acute L-DOPA

treatment on the motor outcome of juvenile or young

adult Th knock-in mice and controls. In the chronic tests,

catalepsy and motor coordination were investigated after

daily L-DOPA (plus carbidopa) or mock treatment from

birth to 3 weeks of age using a high dose according to rec-

ommendations for THD in humans (i.e. 10mg/kg/day of L-

DOPA) (Willemsen et al., 2010). No significant differences

were found either in the bar test or rotarod performance in

Th knock-in mice given L-DOPA or vehicle (Supplementary

Fig. 6A and B). Similar negative results were obtained from

treating adult Th knock-in mice over a period of 12 days

(not shown). Nevertheless, monoamine neurotransmitter

analysis in brain extracts of sacrificed mice showed signifi-

cant metabolite improvement following L-DOPA treatment

(Fig. 7A), although TH protein was not increased (Fig.

7B). Similarly, in an acute test for motor coordination

(rotarod) and catalepsy or rigidity (bar test) upon a single

dose of L-DOPA (10mg per kg body weight plus carbidopa),

Th knock-in mice did not show any differences in perform-

ance before and 20–45min after administration

(Supplementary Fig. 6C and D), corroborating non-respon-

siveness of Th knock-in mice to L-DOPA treatment.

Discussion
The Th knock-in mouse was generated to provide an experi-

mental in vivo model to investigate TH and catecholamine

deficiency both in terms of disease pathogenesis and the

effect of mutations on enzyme function and regulation

in vivo. In the longer term, this model appears valuable to

test treatments aimed at improving diseases related to loss of

dopamine. The model is clinically robust. The Th knock-in

mouse appears normal at birth, but thereafter exhibits mod-

erate failure to thrive, motor abnormalities including abnor-

mal body posture and twitching, i.e. dystonia-like features,

reduced coordination, hypokinesia, ataxia and catalepsy or

rigidity-akinesia. There is also clear diurnal variation of the

motor defects and lowered blood pressure, as found in THD

patients homozygous for p.Arg233His (Willemsen et al.,

2010). The biochemical and other abnormalities in the

Th knock-in mice include an early and persistent decrease

in brain dopamine and noradrenaline to critically low levels,

associated with low brain TH, which together with a

Table 1 Steady-state kinetic parameters for recombinant purified human TH1 (hTH1) and mouse TH (mTH)

wild-type (wt) forms, and the respective mutants hTH1-R202H and R203H

Enzyme BH4 L-Tyr

Vmax Km (BH4) Vmax S0.5(L-Tyr) Ksi
a

(nmol of L-DOPA/min�mg) (mM) (nmol of L-DOPA/min�mg) (mM) (mM)

hTH1-wt 400 � 11 50 � 6 782 � 41 22 � 1 54 � 5

mTH-wt 252 � 14* 47 � 10 583 � 46* 15 � 1* 28 � 4*

hTH1-R202H 162 � 3* 34 � 3* 344 � 50* 28 � 3 60 � 9

mTH-R203H 132 � 3** 21 � 2** 280 � 40** 23 � 5 49 � 6**

For BH4 concentration dependency, data were fit to the Michaelis-Menten model and for L-Tyr concentration dependency to the substrate inhibition model.
aKsi, substrate inhibition constant.

* P5 0.05 with respect to corresponding values for hTH1-wt.

** P5 0.05 with respect to corresponding values for mTH-wt.

See also Supplementary Fig. 5. Results are means � SD for three different experiments.
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reduced body weight and hyperprolactinaemia are character-

istics of THD. Th knock-in mice were notably homogeneous

with respect to all parameters determined in this work,

including motor dysfunction, biochemical phenotype and un-

responsiveness to L-DOPA, which probably reflects the gen-

etic background homogeneity of these inbred strains.

Patients homozygous for p.Arg233His actually show

higher phenotypic variability (Willemsen et al., 2010),

which might point to THD as a complex trait autosomal

recessive disorder where the phenotype might be modulated

at different steps of the catecholaminergic systems, reflecting

a higher complexity in human than mice.

Previous mice models have not mirrored THD to the

same degree as the here presented Th knock-in mouse.

Both the Th-/- and the dopamine b-hydroxylase-deficient
Dbh-/- knock-out mice have a high pre- and perinatal mor-

tality due to cardiovascular failure associated with the lack

of norepinephrine, and confirm the importance of catechol-

amines for foetal development (Kobayashi et al., 1995;

Thomas et al., 1995; Zhou et al., 1995). TH function

and norepinephrine synthesis could be rescued in noradre-

nergic neurons of transgenic Th-/- mice. These dopamine-

deficient mice survive for a short period without treatment

(Willemsen et al., 2010; Garcia-Cazorla and Duarte, 2014),

but have normal norepinephrine levels and are thus imper-

fect models for THD. The aromatic amino acid decarboxyl-

ase knock-out mouse is catecholamine-deficient and shows

a 50% survival, but shows in addition seriously reduced

serotonin levels (Lee et al., 2013) and is also not a model to

investigate the pathogenic mechanisms of specific TH

deficiency.

Newborn Th knock-in mice show normal values of cat-

echolamines and other metabolites, except for a reduction

in HVA. By 3 weeks of age, however, we observed a drop

in brain norepinephrine that, despite its crucial role in

mouse foetal development (Thomas et al., 1995), did not

affect pup survival. Initially, the reduction in norepineph-

rine was not accompanied by any significant decrease in

dopamine, pointing to compensatory mechanisms that

maintain dopamine levels e.g. by downregulation of its

Figure 6 The stability of recombinant purified human TH1 (hTH1) and mouse TH (mTH) and the respective mutants R202H

and R203H, and effect of dopamine. (A–D) Differential scanning fluorimetry profiles (fluorescence at 610 nm versus temperature) for hTH1-

wt (A), mTH-wt (B), hTH1-R202H (C) and mTH-R203 (D), analysed at a concentration of 0.9mM subunit without (solid black line) and with (dotted

line) equimolar amount (0.9 mM) of dopamine. The midpoint denaturation (Tm)-values, determined as maximal temperature in first-derivatives, are

shown in the corresponding plots. (E) SDS-PAGE showing the limited tryptic digestion of hTH1-wt (lanes 1–5) and hTH1-R202H (lanes 6–10) in the

absence (2, 3, 7, 8) and the presence (4,5,9,10) of 50mM dopamine; 1 and 6 are the respective controls in the absence of trypsin. Conditions: 2.5mM

subunit hTH1 or hTH1-R202H were incubated with trypsin for 30 s (2, 4, 7, 9) or 60 s (3, 5, 8, 10) at 25�C, at a TH:trypsin ratio of 200:1. The gels

were stained with Coomassie Brilliant Blue and the raw area of the bands was measured using the Image Lab 3.0.1 software, and represented for lanes

1, 3, 5, 6, 8 and 10 in F, G, H, I, J and K, respectively. At the selected conditions, hTH1-wt (apparent molecular weight of 59 kDa), was trypsinized into

two truncated forms of 57 and 54kDa, both lacking the N-terminal peptide MPTPDATTPQAKGFR (analyses by LC–MS/MS spectroscopy; data not

shown).
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degradation (Tunbridge et al., 2006). Concomitant to their

defective brain noradrenaline content, Th knock-in mice

fail to accomplish the 5-fold increase in TH protein

observed for the Th wild-type mice from newborn to 3

weeks of age (Fig. 5B), despite the presence of normal

(similar to wild-type) levels of Th-mRNA (Supplementary

Table 1). A similar substantial increase in TH in the same

postnatal period has been reported, and this increase

appears critical for the correct development of the dopa-

minergic system and the psychomotor function (Homma

et al., 2011). This finding is supported by our results show-

ing early and persistent motor dysfunction in the Th knock-

in mice. The postnatal increase in TH protein in normal

mice is not only driven by upregulated transcription

(Supplementary Table 1) but through stabilization of the

TH protein, where both the level of BH4 and catechol-

amines themselves have been shown to be implicated in

the stabilization (Homma et al., 2011, 2013). BH4 levels

are similar in Th wild-type and knock-in mice, and the

Km(BH4) for the mutant enzymes indicates a relative high

affinity for the cofactor (Table 1). Catecholamine binding

and feedback inhibition of TH occur in competition with

BH4 (Nagatsu, 1995; Daubner et al., 2011), and thus the

enzyme kinetics data are in accord with a mutation-

associated structural change in TH that leads to opposite

effects for BH4 and dopamine, and to defective stabilization

by dopamine (or norepinephrine; data not shown). Despite

some recent insights on residues important for catechol-

amine binding at the catalytic domain (Briggs et al.,

2014), a structural explanation for the defective stabiliza-

tion by dopamine in the mutants must await the determin-

ation of high resolution structures of full-length TH,

including the regulatory domain, where the determinants

for high affinity binding are located (McCulloch and

Fitzpatrick, 1999; Nakashima et al., 1999). The hTH1-

R202H and mTH-R203 mutants show both kinetic

(Table 1) and stability defects (Fig. 6), but the lack of dopa-

mine stabilization of mutant TH emerges as a deleterious

regulatory deficiency that explains the lack of accumulation

of TH protein in the critical postnatal period in the Th

knock-in mice (Fig. 5A and B). Defective stabilization by

catecholamines may also support the specific deficit of TH

expression in the striatum (Fig. 5C and D) as proper trans-

port of TH to this brain area also requires the stabilization

of the enzyme (Homma et al., 2013). Mutation-associated

defective trafficking and aberrant localization of protein

cargos is a recurrent pathological mechanism in neuro-

logical and neurodegenerative disorders (Hung and Link,

2011; Encalada and Goldstein, 2014). Little is known

about mechanisms of transport of TH and dopamine in

the dopaminergic nigrostriatal pathway projecting from

the substantia nigra pars compacta to the caudate-putamen

(striatum), although it is accepted that at least in adrenergic

neuronal systems, TH is fast transported along the axon in

an anterograde fashion to the terminals (Brimijoin and

Wiermaa, 1977). Accordingly, impaired axonal transport

of TH in dopaminergic projections has recently been

shown to be associated with parkinsonism and drastic

Figure 7 Outcome of L-DOPA treatment of Th knock-in mice on brain monoamine neurotransmitter metabolites and TH

protein. Mutant Th knock-in (ki) and Th wild-type (wt) mice were treated from Day 1 after birth onwards for a period of 3 weeks with L-DOPA

(10 mg/kg/day) plus carbidopa (2.5 mg/kg/day) or vehicle (ddH20 control); inset, L-DOPA in pmol/mg protein. (A) Brain monoamine neuro-

transmitter metabolites. (B) TH protein relative to GAPDH is shown for Th wild-type and Th knock-in mice with or without L-DOPA/carbidopa

treatment. In both A and B, significant difference from the corresponding wild-type value is indicated: *P5 0.05; **P5 0.01; ***P5 0.001

(Student’s two-tailed t-test).
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reduction of TH and dopamine levels in striatal synapses

(Ittner et al., 2008). It is thus very probable that the

observed motor dysfunction in the Th knock-in mice is

caused by defective TH protein transport leading to

scarce TH and dopamine in synaptic terminals to activate

dopamine receptors in the caudate-putamen.

Lack of or poor responsiveness to L-DOPA is manifested

by a large number of patients with THD type B, particu-

larly those with the hTH1-R202H mutation (Grattan-Smith

et al., 2002; Willemsen et al., 2010). One interesting find-

ing of the present study is that the motor dysfunction of the

Th knock-in mice is not improved by standard L-DOPA

supplementation even when treated from the first day of

life. Other mouse models with dopamine deficiency show

a partial recovery with dopamine treatment, especially in

features such as feeding problems. Motor improvement is,

however, often incomplete (Zhou and Palmiter, 1995),

reflecting perhaps the developmental deficiencies in the

foetal and perinatal periods (Zhou and Palmiter, 1995;

Homma et al., 2011). Possible neurodevelopment disorders

associated with defective stabilization by catecholamines

and consequent mislocalization of TH cannot be ruled

out as the reason for the lack of DOPA-responsiveness of

the motor dysfunction in the Th knock-in mice, despite the

apparent correction of L-DOPA levels and increase of dopa-

mine in brain extracts observed after treatment (Fig. 7).

Developing novel non-L-DOPA-based therapeutic strategies

for THD type B may thus be an attractive approach, espe-

cially for patients with the specific hTH-R233H mutation.

In this respect, emerging therapies based on protein stabil-

ization, e.g. pharmacological chaperones, appear promis-

ing, as we have previously shown in in vitro experiments

that the variant hTH1-R202H can be stabilized by com-

pounds with chaperone potential (Calvo et al., 2010; Hole

et al., 2015). Furthermore, the diurnal fluctuation of motor

deficits is definitively an important hallmark of our Th

knock-in mutant mouse and may also be exploited in the

search for novel treatment strategies based on the restora-

tive potential of either circadian regulation of TH activity

and/or restorative properties of sleep.

Finally, the growth retardation measured in the Th

knock-in mutant mouse in combination with normal food

intake, normoglycaemia and apparent reduced energy

expenditure in the metabolic cage deserves explanation.

Surviving mice with selective dopamine deficiency in dopa-

minergic neurons, but not in noradrenergic neurons, exhibit

abnormal feeding behaviour including swallowing difficul-

ties (aphagy) (Zhou and Palmiter, 1995; Szczypka et al.,

1999), symptoms we did not observe in the Th knock-in

mice. On the other hand, growth retardation in combin-

ation with normal food intake has also previously been

found in total and neuron-specific dopamine-receptor

knock-out mice, which shows reduced dopamine signalling

(Baik et al., 1995; Noain et al., 2013). Like these other

surviving TH-deficient mice with reduced noradrenergic

activity, the Th knock-in mice presented here showed low-

ered resting metabolic rate with respect to wild-type mice.

Furthermore, it has become increasingly clear that isolated

dopaminergic abnormalities and parkinsonian syndromes

involve abnormal or increased energy expenditure during

walking and motor tasks which may explain the reduction

in growth of mutant mice despite comparable food intake

with wild-type mice (Molero-Luis et al., 2013; Amano

et al., 2014).

In conclusion, there is a large spectrum of phenotypes in

patients with THD, resulting from diverse deficiencies in

absolute and relative dopamine and norepinephrine levels

with different impact on systemic and motor function

(Willemsen et al., 2010). This variability would depend

on the catalytic, conformational and regulatory defects of

the particular TH mutation. In agreement with severely

affected patients homozygous for the mutation p.R233H,

Th knock-in mice studied in this work present severe motor

deficiencies from a juvenile age onwards, and these

abnormalities are apparently not corrected by classical re-

placement treatment with L-DOPA. The mutant hTH1-

R202H and mTH-R203H proteins are not stabilized by

dopamine, leading to intracellular instability, gradual loss

of TH activity and altered nigro-striatal distribution, aiding

to interpret the biochemical and locomotor phenotype of

Th knock-in. In addition, to contribute to the understand-

ing of the biochemical pathogenesis of catecholamine defi-

ciency, this mouse model offers a useful platform for

designing and evaluating new routes to disease therapies

not only for THD, but also other genetic and idiopathic

dopaminergic deficiencies.
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