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ABSTRACT
The insular cortex is fundamentally involved in the proc-

essing of interoceptive information. It has been postu-

lated that the integrative monitoring of the bodily

responses to environmental stimuli is crucial for the

recognition and experience of emotions. Because emo-

tional arousal is known to be closely coupled to func-

tions of the anterior insula, we suspected laughter to

be associated primarily with neuronal activity in this

region. An anatomically constrained re-analysis of our

imaging data pertaining to ticklish laughter, to inhibited

ticklish laughter, and to voluntary laughter revealed

regional differences in the levels of neuronal activity in

the posterior and mid-/anterior portions of the insula.

Ticklish laughter was associated specifically with right

ventral anterior insular activity, which was not detected

under the other two conditions. Hence, apparently, only

laughter that is evoked as an emotional response bears

the signature of autonomic arousal in the insular cortex.

INDEXING TERMS: insular cortex; anterior insula; laughter; emotional arousal; fMRI; autonomic; positive emotion;

tickle

On the basis of pathological findings and of imaging

data from healthy individuals, information has been

gathered regarding the brain regions that are implicated

in the expression of laughter (Wild et al., 2003; Lauter-

bach et al., 2013), which confirms Wilson’s concept

(1924) that, during this form of vocalization, a voluntar-

ily controlled system inhibits an emotionally mediated

one. The brainstem is critically involved; volitional motor

signals are delivered to the ventral tegmentum via corti-

copontine projections, whereas the periaqueductal gray

(PAG), the dorsal tegmentum, and the brainstem nuclei,

which are essential for the emotional motor system,

receive descending inputs from the orbitofrontal and

insular cortices, the amygdala, and the hypothalamus.

Although evidence favoring an involvement of the PAG

and the hypothalamus in the generation of motor pat-

terns of laughter is convincing (Altafullah et al., 1988;

Davis et al., 1996; Dujardin and J€urgens, 2006; J€urgens,

2009), that implicating the amygdala and the orbitofron-

tal and insular cortices in this process is more ambigu-

ous. Watson and his colleagues (2007) have proposed

that the anterior insula responds to the dynamics of

the emotional changes that accompany the recognition

and the appraisal of a humorous experience. Indeed, an

association has been reported between pathological

laughter and a stroke-impacted insula (Carel et al.,

1997; Osseby et al., 1999), although the resolution of

the images in the afflicted patients did not suffice to

pinpoint the implicated subregions. Hitherto, imaging

studies pertaining to the processing of humor or tickling

have not yielded conclusive data, insofar as the activa-

tion in the insular cortex has not been described in

detail and the effective vocal response has not been

recorded (Carlsson et al., 2000; Wild et al., 2006;

Schwartz et al., 2008). Hence, the present Review

refers mainly to our own fMRI findings on the expres-

sion of ticklish laughter and on the inhibition of ticklish

laughter and of voluntary laughter in healthy individuals

(Wattendorf et al., 2013). The aim of this re-analysis of

our data was to relate neuronal activity in subregions of

the insular cortex to specific functions. The insula is a

cortical lobe that lies hidden within the depth of the lat-

eral sulcus. It can be coarsely subdivided into two

regions: a mid-/anterior portion (gyri breves insulae)
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and a posterior one (gyri longi insulae). In the past, cir-

cuitries and functional aspects of the insular cortex

have been studied not only in rodents but also in prima-

tes, including humans (Mufson and Mesulam, 1982;

Mesulam and Mufson, 1982a,b; Allen et al., 1991;

Dupont et al., 2003). The posterior insula receives pro-

jections from all sensory systems that convey informa-

tion pertaining to the physiological condition of bodily

tissues. In progressive re-representations, the stimuli

are then processed bilaterally in more anterior parts of

the insula, permitting a refinement of the primary inter-

oceptive information (Craig, 2003). For example, mid-

portions of the insula are functionally interconnected

with an array of structures, such as the nucleus accum-

bens, the amygdala, the hypothalamus, and the ventro-

medial prefrontal cortex, and diverse sensory

modalities, which facilitate the integration of concomi-

tant sensory, motor, and limbic-related activities. This

integrative process underlies the emergence of bodily

feelings. The anterior portions of the insula, together

with their connections to the prefrontal, orbitofrontal,

and anterior cingulate cortex, embrace central-network

activity patterns, which afford the basis for emotional

and subjective feelings. The latter are, in turn, associ-

ated with the bodily needs for homeostasis (Craig,

2009). Experiments with rats have revealed the auto-

nomic efferent connections from the anterior insula to

be conveyed primarily via a relay system in the lateral

hypothalamic area (Cechetto and Chen, 1990; Yasui

et al., 1991). Imaging data have disclosed an involve-

ment of the anterior insula in positive and negative

emotional experiences (Damasio et al., 2000; Anders

et al., 2004). Not surprisingly, this region is also acti-

vated during a humorous experience (Moran et al.,

2004; Watson et al., 2007) and during the typical vocal

expression of a positive emotion, namely, laughter (Wat-

tendorf et al., 2013). Here, the anterior insula is

believed to respond to the dynamics of the emotional

changes that accompany the recognition and appraisal

of a humorous experience (Watson et al., 2007).

In humans, laughter can be evoked spontaneously,

as an emotional response, or voluntarily, for a social

purpose, and it can frequently even be suppressed.

Intense amusement or true laughter is accompanied by

immediate sympathetic arousal, whereas the active inhi-

bition of an emotional outburst suppresses this

response (Giuliani et al., 2008; Lackner et al., 2014). Of

particular interest is the concomitant emotional proc-

essing of information in the insular cortex during the

experience of pleasurable feelings with and without

laughter and laughter with and without the correspond-

ing feelings. In a previous report (Wattendorf et al.,

2013), we mapped the fMRI signals in the insula with-

out specifically alluding to their subregional distribution,

and the activity levels under the conditions of ticklish

laughter (T), of inhibited ticklish laughter (I), and of vol-

untary laughter (V) were not compared. In the present

re-analysis of these data, the aim was to distinguish the

regional patterns of activation in the insula, particularly

in its anterior portion, under these three conditions and

to evaluate our findings in light of the data from other

imaging studies pertaining to laughter.

MATERIALS AND METHODS

Our present analysis is based on data that have been

documented in a previous publication (Wattendorf et al.,

2013). In this former investigation, the fMRI-signals that

were generated in 18 individuals under the three condi-

tions of T, I, and V were assessed. During the scanning

session, a friend (for 11 individuals) or the partner (for

seven individuals) of the participant stood in the scanning

room and tickled or touched the right foot according to

the particular stimulus condition. Each of the three

tested conditions was indicated by a specific visual stim-

ulus, consisting of a specific “smiley face” which was pro-

jected on separate screens for the tickler and the tickled

person. Spontaneous laughter was evoked by tickling the

sole of the right foot. Individuals were permitted to

express the response during the condition T but were

requested to suppress it during the condition I. Individu-

als were required to produce laughter on demand during

the condition V. Each of the three conditions was ran-

domly presented 20 times, each lasting 6.2 seconds, and

alternated with the presentation of a cross-signaled

period of rest (11 seconds). Laughter events were

recorded during the entire MRI scanning procedure. It is

worthy of mention here that technical and methodologi-

cal difficulties are frequently encountered when testing a

paradigm that is associated with physical movements. To

prevent head movements and ensuing susceptibility arti-

facts in the fMRI signal, the participants held a wooden

barbecue stick between their teeth during the course of

the experiment, which did not interfere with laughter.

Nevertheless, nine of the originally 27 participants in our

study had to be excluded from the evaluation process

because the amplitude of their head movements consis-

tently exceeded voxel size during the scanning

procedure.

Imaging was performed on a 3-T Scanner (Verio; Sie-

mens, Erlangen, Germany) with a 12-channel head coil.

Functional images were obtained with a T2*-weighted

echo planar imaging (EPI) sequence (repetition time 2.2

seconds, echo time 30 msec, flip angle 908,.resolution 3.0

3 3.0 3 3.0 mm, with a 1-mm gap). To minimize suscep-

tibility artifacts, images were additionally tilted by 308
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relative to the anterior/posterior commissure and

recorded in interleaved mode. Data were analyzed in

SPM5 software (Wellcome Department of Cognitive Neu-

roscience, London, England). To correct for movement

artifacts, each individual scan was aligned to the first

scan. During this procedure, small variations are weighted

highly, and strong variance in signal strength is weighted

less by means of a within-modality rigid registration.

Movement parameters estimated during the realignment

procedure were introduced as covariates into the model

to control for variance resulting from head displacements

in correlative mode. An event-related analysis was used

to identify neural activity following stimulation for T, I, and

V separately. Additional technical details, as well as the

evaluation protocol, have been fully described in a previ-

ous publication (Wattendorf et al., 2013).

In the present study a region-of-interest (ROI) analy-

sis covering the insular cortex of both hemispheres was

conducted with a view to relating regional activation

patterns to spontaneous or voluntary laughter and the

suppression of the affective vocal response to tickling.

The insular cortex was subdivided according to data

Figure 1. Lateral view on the left insular cortex. The primary

interoceptive cortex in the posterior and anterior areas of the

dorsal fundus of the insula (idfp and idfa) are marked in green,

and the dorsal and ventral portions of the anterior insular cortex

(daic, vaic) are labeled in yellow and red, respectively.

Figure 2. Insular activity during ticklish laughter (T), inhibited ticklish laughter (I), and voluntary laughter (V). A: Virtual sagittal slices

through a human brain, revealing heightened levels of activity (main effect; P < 0.001 FWE) in the insula (ROI analysis) during T, I, and V.

R, right hemisphere; L, left hemisphere. Under all three conditions, the slices were aligned according the activation maximum during T in

the posterior insula of each hemisphere separately. B: Virtual sagittal slices revealing significant V> T contrast differences (P< 0.005,

uncorrected) in the insula (ROI analysis). C: Virtual sagittal slice through the right hemisphere (at x5 30), depicting the activation maxi-

mum in the insular cortex during T and the corresponding laughter events (correlation analysis at P< 0.005, uncorrected; ROI analysis).

VAIC, ventral anterior insular cortex. In the correlation, r5 0.65, R25 0.43, P5 0.003.
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that were gleaned from the OASIS-project (http://www.

oasis-brains.org/) and that were furnished by Neuromor-

phometrics, Inc. (http://neuromorphometrics.com/). The

anterior dorsal and anterior ventral insular fields were

defined according to the labeling patterns reported by

Wager and Barrett (2004). In their study, these regions

of the human insular cortex and the overlying operculum

were delineated by digitalized parcellation, for which the

cytoarchitectural and fiber tract-tracing studies of Mesu-

lam and Mufson served as a basis (Mufson and Mesu-

lam, 1982; Mesulam and Mufson, 1982a,b). The cortical

locations of dorsal and ventral anterior parts of the

insula (daic, vaic) are depicted in Figure 1.

RESULTS

Imaging data pertaining to insular activity during tick-

lish laughter, inhibited ticklish laughter, and voluntary

laughter are depicted visually and numerically in Figure 2

and Table 1, respectively. Bilateral activity in both the

posterior and the mid-/anterior portions of the insular

cortex was observed under all three conditions

(P< 0.005, FEW; Fig. 2A). However, during T and I, the

level of activity was higher in the left hemisphere than in

the right one and thus contralateral to the side of the

stimulation, both posteriorly and anteriorly, whereas dur-

ing V the left-side prominence was apparent only anteri-

orly. During T and I, peak activity in the posterior insular

cortex was bilaterally registered in the fundus of the

superior limiting sulcus. The implicated region, namely,

the posterior (idfp) and the anterior (idfa) areas of the

dorsal fundus, correspond to the primary interoceptive

granular cortex (Evrard et al., 2014). For a precise local-

ization of these two brain regions see Figure 1. During

V, posterior insular activity was lower on the left than on

the right, and it was not centered in the primary intero-

ceptive cortex. Compared with the situation during T,

the activity levels in the dorsal mid-/anterior insular cor-

tex were bilaterally higher during V (P< 0.001, uncor-

rected; Fig. 2B, Table 1). Differences in the levels of

activity during T and I were observed only in the poste-

rior portion of the insula (Table 1). The other paired com-

parisons revealed no significant differences in activity-

level bias. Laughter events that were evoked during T

correlated with the corresponding tickling situation

(P< 0.005, uncorrected); the association was most pro-

nounced in the right ventral anterior and the left poste-

rior portions of the insula (Fig. 2C, Table 1). During I, the

degree of ticklish laughter had no bearing on the level of

insular activity. A correlation between head movements

and reported hemodynamic activity during T was calcu-

lated for the right ventral anterior insula (x5 30, y5 21,

z5 –6). Signal changes and realignment regressors for

the translations in the z-direction (which, in each partici-

pant, corresponded to the most important ones) were

computed by SPM5. Correlation of contrast estimates

with interscan movement amplitudes (based on averages

of the three scans following each stimulus onset) was

not relevant (r5 0.13, P5 0.92).

DISCUSSION

At a first sight, the levels of insular activity appeared

to be comparably and bilaterally higher in the posterior

TABLE 1.

Insular Activity During Ticklish Laughter (T), Inhibited Ticklish Laughter (I), and Voluntary Laughter (V)1

Posterior insula Mid/anterior insula

Side Number of voxels MNI coordinates Z-score Side Number of voxels MNI coordinates Z-score

Main effect
T L 40 –33 –21 18 5.24 L 68 –36 12 3 5.34

R 6 36 –18 15 4.64 R 45 39 18 0 5.13
I L 42 –36 –18 6 5.55 L 128 –39 9 0 5.59

R 18 36 –18 15 5.05 R 95 39 12 3 5.37
V L A1 P 238 –33 –12 15 5.10 L A1 P 238 –36 9 0 6.04

R A1 P 189 36 –6 6 5.50 R A1 P 189 39 12 3 5.49
Comparison
V> T — L 28 –36 18 3 3.60

— R 25 39 12 3 3.58
T> I L 3 –33 –24 12 3.15

R 18 36 –21 6 3.45
Correlation of laughter events
With T L 7 –42 –9 0 2.85 L 3 –33 15 –18 2.71

R 1 39 –3 0 2.58 R 11 30 21 –6 2.94
With I — —

1The atlas coordinates are indicated in MNI space and the peak activations as Z-scores. The signals in the reported regions exceeded the threshold

level of P < 0.001 (FWE) in the main effect, that of P < 0.001 (uncorrected) in the comparison and that of P< 0.005 (uncorrected) in the

correlation.
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and anterior portions of the cortex under each of the

tested conditions, T, I, and V (Fig. 2A). However, a more

meticulous analysis revealed the vocal response to the

pleasurable experience during T to differ significantly

from that during either I or V. Most noteworthy is the

higher activity level in the mid-/dorsal anterior portion

during V than during T (Fig. 2B). Furthermore, laughter

events that were evoked during T were associated with

BOLD activity in the right ventral anterior insula (Fig. 2C).

Our findings are discussed below in the context of spe-

cific laughter-related functions and within the general

framework of the functional insular subdivisioning that

underlies the maintenance of organismic homeostasis.

T involves the posterior and anterior insula
In our investigation spontaneous laughter was evoked

by tickling the right foot. As has been formerly reported

for sensual touch (Olausson et al., 2002), the posterior

insula was activated (Fig. 2A). The peak occurred in the

superior limiting sulcus, a finding that accords with the

known specialization of this area as a primary intero-

ceptive cortical one (Evrard et al., 2014). Moreover, this

activity was located contralaterally to the site of stimu-

lation, as is usual for externally triggered responses in

the primary somatosensory cortex. Our image analysis

for T revealed high signal intensities in the posterior

portions of the insula and extensive bilateral activity in

mid-/anterior ones. This latter finding is in accordance

with data that have been documented in another publi-

cation related to tickling (Carlsson et al., 2000). The

emotional feelings that are associated with tickling

appear to involve the full insular activation sequence of

interoceptive processing. On the other hand, in publica-

tions relating to the appreciation of humor, only the

mid-/anterior portions of the insular cortex were acti-

vated (Moran et al., 2004; Watson et al., 2007). Hence,

in these situations, the insular cortex appears to resort

to other sources of emotional information.

T activates the ventral anterior insular
cortex

Our correlation analysis revealed the ventral anterior

portion of the right insular cortex (Fig. 2C) to be specifi-

cally linked with the evocation of T. A functional distinc-

tion between the agranular ventral and the dysgranular

dorsal portions of the anterior insula has been concep-

tualized (Wager and Barrett, 2004). The ventral anterior

insular cortex, which is connected mainly to the orbito-

frontal cortex, is believed to be important in motivational

states that are related to core affect. For instance, previ-

ous imaging studies have revealed an experience of hap-

piness, fear, disgust, sadness, or anger to be consistently

associated with activity in the ventral anterior portions of

the insula (Phillips et al., 1997; Damasio et al., 2000),

pointing to the inherent motivational impact of these

basic emotions. On the other hand, the dorsal anterior

insula, with its proximity to the lateral prefrontal area, is

believed to be crucial for the translation of motivational

states into specific plans of action.

In an earlier report, a specialization of the cells

within the ventral anterior portion of the insular cortex

was discussed in the context of humor processing (Wat-

son et al., 2007). Indeed, the portion of the human

insula that adjoins the frontal operculum (the frontoin-

sular junction) is known to harbor von Economo (VEN)

neurons (von Economo, 1926), which are phylogeneti-

cally of recent date. These neurons were noted for their

distinctive morphology, first in humans and the great

apes (von Economo, 1926; Nimchinsky et al., 1999; All-

man et al., 2010) and later also in elephants (Hakeem

2009) and cetaceans (Butti et al., 2009). In these spe-

cies, high numerical densities of VEN neurons are dis-

tributed selectively in specific regions of the frontal

cortex, namely, in the anterior cingulate, the frontoinsu-

lar, and the frontopolar (dorsolateral prefrontal in homi-

nids) cortices. Likewise, for other large vertebrates,

VEN neurons have been reported to be broadly distrib-

uted throughout the cortex (Butti and Hof, 2010). It has

been suggested that, phylogenetically, the confinement

of VEN neurons to circumscribed regions of the brain

has led to a progressive shaping of highly specialized

neuronal pathways. In circuits involving cognitive, emo-

tional, and social faculties, functions favoring social sur-

vival may have developed (Butti et al., 2013). Ancient,

early branched organisms may have retained the origi-

nal distribution, but any co-option to other functional

pathways has not been ascertained. Investigations in

humans implicate VEN neuron-containing cortical

regions in the processing of salience, playing a role in

the integration of external sensory information with

internal emotional and bodily-state signals (Uddin,

2015). Moreover, VEN neurons are believed to be

involved in the establishment of human awareness

(Evrard et al., 2012) and have been implicated in the

rapid, highly integrated representations of an emotional

experience (Craig, 2009). An appreciation of humor is

based on a reinterpretation of an emotional situation

(Suls, 1972). The initially rapid intuitive interpretation of

such a situation is followed by a slower cognitive updat-

ing process. During the recognition of humor, VEN neu-

rons have been proposed to be “recalibrated according

to the actual appraisal of the situation” (Watson et al.,

2007), an event that may be relevant also during the

processing of tickling: A situation that is intuitively

appraised as being potentially threatening may be
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reappraised as harmless upon the actual contact with it

(Ramachandran, 1998).

During T, activity in the ventral anterior
insular cortex is lateralized to the right

In general, emotional situations that are associated

with a state of higher arousal, viz., those that prepare for

a higher expenditure of energy, activate the right anterior

insular cortex (for review see Craig, 2005). For instance,

activity in the ventral portion of this region has been

observed during the experience of a basic emotion such

as happiness, fear, disgust, sadness, or anger, all of

which can be accompanied by vocalization and/or

intense bodily action (Phillips et al., 1997; Damasio et al.,

2000). Studies that have focused on affective vocal

behavior and/or the associated facial expressions have

systematically revealed an asymmetric representation in

the ventral anterior insular cortex, which was lateralized

to the right when the activity of the vocal cords was tar-

geted, such as during passive listening to laughter or cry-

ing (Sander and Scheich, 2005), or during overt singing

(Riecker et al., 2000) but to the left part during situations

in which facial expressions prevailed, such as during

viewing or producing a smile (Hennenlotter et al., 2005)

and when smiling at cartoons (Schwartz et al., 2008). On

the basis of these findings, the ventral anterior patterns

of neuronal activity are deemed to depend on the overrid-

ing type of behavioral response to the amusing situation;

only during laughter is the pattern of activity believed to

correspond to one of higher emotional arousal. Hence,

our data strengthen the hypothesis that smiling and

laughter not only represent different degrees of pleasant

emotional expression but are fundamentally different

from each other.

Asymmetric activity in the insula during laughter may

also include a specific pattern of autonomic regulation.

Isolated reports on stroke patients (Oppenheimer et al.,

1992; Meyer et al., 2004), as well as imaging data (Lane

2009) and theoretical assumptions (Craig 2005), impli-

cate the right anterior insular cortex in sympathetic effer-

ent functions and the left portion in parasympathetic

ones. As such, heightened right anterior ventral activity

during T would involve a (temporary) change in sympa-

thetic control. However, in situations that elicited amuse-

ment, the sympathetic effects on skin conductance and

heart rate did not yield convincing evidence in support of

this tenet (Kreibig et al., 2013). On the other hand, in sit-

uations of intense amusement (Lackner et al., 2014) or

positive emotional exaggeration (Demaree et al., 2004),

a sympathetic effect could be clearly distinguished. It

may be further speculated that the dynamics of auto-

nomic signaling continue in other centers that are crit-

ically involved in the control of emotional vocalization.

For instance, concomitant activity has been recorded in

the anterior insula and the hypothalamus during auto-

nomic arousal related to positive emotions (Kuniecki

et al., 2003) and, specifically, in the tuberolateral hypo-

thalamic portion during the production of laughter (Wat-

tendorf et al., 2013).

Inhibited ticklish laughter
During I, bilateral activity in the mid-/anterior insular

cortex was at least equivalent to that evoked during T,

indicating that this situation is still associated with

emotional feelings. In contrast, the urge to laugh, the

outcome of which was counted as number of laughter

events during T, did not correlate with any activity that

was evoked during I (Table 1). Hence, there was no evi-

dence of a higher emotional arousal in the right ventral

anterior insular cortex during I. In this situation, neuro-

nal responses that are associated with effective laugh-

ter appear to be suppressed. This finding accords with

evidence that the downregulation of a feeling of amuse-

ment is directly correlated with the downregulation of

autonomic control (Giuliani et al., 2008). At this junc-

ture, we point out that, with a view to minimizing

movement-associated artifacts in humor-, smiling-, and

ticklish-laughter-targeted fMRI studies, the participants

are usually instructed to refrain from laughing during

the monitoring process. This circumstance could explain

why, to the best of our knowledge, activation of the

right ventral anterior insula in response to an amusing

situation has been observed only by us in the context

of spontaneous, overt laughter.

Voluntary laughter
During V, no signs of specific activity in the right ven-

tral anterior insular cortex were detected (Fig. 2A). In

contrast to the situation during T, in which the partici-

pants did not always respond to the stimulus of tickling

with a spontaneous burst of laughter, during V the

burst of laughter was produced on demand. If laughter

on demand were specifically associated with activity in

the right ventral anterior insular cortex, then it would

have been registered. However, instead, a massive

effect was bilaterally observed in the dorsal mid-/ante-

rior portions, which greatly exceeded the activity that

was recorded in these regions during T (Fig. 2B). A vol-

untary reproduction of one’s own bodily signs of emo-

tion involves a re-experience (embodiment) of the

corresponding emotion (Niedenthal, 2007). This finding

is consistent with the essence of the James-Lange

theory, which postulates that emotional feelings arise

from bodily sensations (Lange and James, 1967). In this

sense, the heightened bilateral mid-/anterior insular
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activity could signify that the mechanical activation of

the vocal apparatus involved in laughter on demand

provokes the feelings that are associated with true

laughter. However, other explanations are also legiti-

mate. For instance, activation of the dorsal mid-/ante-

rior portions of the insula is believed to imply a

deliberate control of an emotional state (Wager and

Barrett, 2004). To facilitate the production of laughter

on demand, individuals may actively conjure up a men-

tal picture of the tickling sensation and/or of the asso-

ciated feelings or, alternatively, of another imagined

humorous setup. The former explanation would account

for the observed concomitant activities in the posterior

sensory portion of the insula. The imagined amusing sit-

uation might, in turn, have facilitated the evocation of

true laughter, as was the case in some of our partici-

pants. Hence, although V appears to be associated with

emotional feeling, it lacks the typical characteristics of

emotional arousal.

CONCLUSIONS

Imaging data on laughter-related situations are scarce

and have been garnered primarily in connection with

either the experience of humor (Mobbs et al., 2003; Wat-

son et al., 2007; Schwartz et al., 2008) or passive listen-

ing to laughter (McGettigan et al., 2015). As far as we

are aware, our study is the only one of its kind in which

fMRI activity was recorded during the production of audi-

ble laughter. Available data indicate that spontaneous

and voluntary forms of laughter rely on separate as well

as on shared pathways (Scott et al., 2014). By investigat-

ing the regional activation patterns in the insular cortex

during T, I, and V, we have considered autonomic regula-

tion as an underlying pervasive mechanism. Only laughter

that accompanied real amusement was associated with

activity in the right ventral anterior insular cortex, which

is suggestive of immediate emotional arousal. However,

our conclusions are drawn with some reservations. The

reported lateralization effect was revealed as the out-

come of a correlation analysis and might have been

attributable not only to differences in neuronal activation

but also to methodological or evaluation factors (e.g., the

direction of magnetization or a lack of statistical power).

Additional investigations are now called for to confirm

the laughter-related regulation of emotional arousal. We

would recommend a focus on the activity generated in

the insular cortex and on its regional distribution therein.
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