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A series of computational experiments performed with various methods belonging to wave-function and density functional
theories approaches the issue of bonding regime and exchange coupling in the title compounds. Gd2@C80 is computed with
a very weak exchange coupling, the sign depending on the method, while Gd2@C79N has resulted with a strong coupling
and ferromagnetic ground state, irrespective of the computational approach. The multi-configuration calculation and broken
symmetry estimation are yielding closely coincident coupling constants, of about J ∼ 400 cm−1. No experimental estimation
exists, but the ferromagnetic ground state of Gd2@C79N is confirmed from paramagnetic resonance data. The different
behaviour is due to particularities of electron accommodation in the orbital scheme. The exchange effects localised on
atom lead to preference for parallel alignment of the electrons placed in the 4f and 5d lanthanide shells, determining also a
ferromagnetic inter-centre coupling. The structural insight is completed with a ligand field analysis of the density functional
theory results in the context of frozen density embedding. The energy decomposition analysis of bonding effects is also
discussed. Finally, with the help of home-made codes (named Xatom+Xsphere), a model for the atom encapsulated in a
cage is designed, the exemplified numeric experiments showing relevance for the considered endohedral metallo-fullerene
issues.
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1. Introduction

The fullerenes encapsulating [1] atomic or small molec-
ular moieties are objects of interest for the academic in-
sight in bonding regime and also challenging for appli-
cation perspectives in the line of desiderata for nanoscale
technologies [2]. The encapsulated fragments, whose struc-
tures are enforced by the cage, are often structures without
a standalone identity. In the spirit of structure–property
causal relationships, special manifestations are expected
for guest–fullerene complexes, originating from the guest
or cage sides, or from their particular interaction features.
The theoretical accounts are important [3], complement-
ing the experiment with useful explanatory and prediction
hints, since such compounds are obtained in very small
amounts, often insufficient for full series of instrumental
characterisation.

Recently [4] we considered the case of DySc2N@C80

molecule with special behaviour of single ion magnet [5],
performing calculations in the frame of density functional
theory (DFT) and complete active space self-consistent
field (CASSCF), and subsequent modelling using the
ligand field (LF) concepts. We illuminated bonding mech-
anisms, revealing an organo-metallic regime and explained
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the magnetic anisotropy with the help of an original
methodology, drawing the polar surfaces of state-specific
magnetisation functions. In the DySc2N@C80 case, we
adapted to the metallo-fullerenes procedures of calculation
and analysis proven systematically successful in many case
studies devoted to the molecular magnetism [6] and optical
spectroscopy of lanthanide-based systems [7]. Because
of weakly interacting capabilities of active electrons in
lanthanides, placed in orbitals with small radial extension,
the calculation of lanthanide complexes is not straightfor-
ward, a part of the conceptual difficulties being technically
manifested as severe convergence problems. The approach
implies certain particularised interventions, beyond the
usual routine. The authors claim pioneering advances
in the computational approach of lanthanide complexes,
such as the control of orbital and spin population in DFT
calculations [8], revealing the interaction parameters in the
frame of the so-called ligand field density functional theory
(LFDFT) [9]. In the multi-configuration procedures, an
important methodological clue is the initialisation of self-
consistent cycles with orbitals merged from corresponding
fragments, previously computed separately, namely, the
free lanthanide ions and the rest of the molecule [10]. This
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starting procedure obeys the physical fact of a canonical
space made of almost pure f orbitals, in line with their weak
interaction with the environment. The calculation results
are optimally exploited when filtered by phenomenological
models, the f-type LF approach being a non-trivial issue,
transparently operated with the particular modification of
the angular overlap model (AOM) [11,12].

With such a basket of methodologies, we attempt the
study of lanthanide ion dimers embedded in fullerenes.
There are many examples of Ln2@C78, Ln2@C80,
Ln2@C82 molecules [13], as well as similar varieties [1].
The extremely stable La2@C80 species, owed to the fact
that the C80 cage takes all the outer valence electrons of
the encapsulated La atoms, was firstly isolated and char-
acterised by the group of Nagase and co-workers [14,15].
The La2@C78 and Ce2@C78 di-metallo-fullerene species
with D3h symmetry of the cage were investigated by means
of nuclear magnetic resonance (NMR) spectroscopy and
X-ray diffraction [16]. Similar methods were used to inves-
tigate Er2 and Tm2 couples encapsulated in larger C82 cage
with Cs symmetry [17]. Source of branching out numerous
chemical species resides in the isomerism of the cage, as
well as in the many orientation conformers of the lanthanide
ions with respect of the fullerene skeleton, the energy bar-
riers between the mutation congeners being small.

A point of interest is represented by the interaction
enforced between the two ions, ‘naked’ Ln2

6+ systems ob-
viously not existing, because of high charge repeal. The
nature of lanthanide–fullerene interaction is another aim
of analysis. Though not bonded, the ions of the lanthanide
couple should show magnetic interactions whose nature is
interesting, in circumstances of enforced mutual encounter.
An interesting case, on which we will focus in the follow-
ing, is the Gd2@C79N molecule, reported as a ferromag-
netic coupling between the two gadolinium ions [18]. The
Gd2@C79N di-metallo-heterofullerene is formally derived
from Gd2@C80 with icosahedral symmetry of the cage, a
comparison between the two systems being considered.

Figure 1 illustrates the features of lanthanide ions that
determine the specifics of weakly interacting f shell, namely,
the shrinkage of its radial profile inside the atomic body,
below the ionic radius. The f shell itself cannot contribute
to the bonding in other manner than the ionic interaction,
because of their small radius. In turn, the 5d virtual shell of
the lanthanide is accepting the donor activity of the ligands.

In a study dedicated to the situation of quasi-generalised
ferromagnetism of the Cu(II)–Gd(III) complexes, evi-
denced experimentally [19], we performed the first state of
the art CASSCF calculations on d–f complexes at realistic
scale [10], providing the underlying methodological break-
through of the merged fragment initialisation of iterative
process. The mechanisms were found in line with the quali-
tative guess, namely, a fraction of the spin from the d-centre
arrives, by delocalisation over the ligand bridge, in the 5d
orbitals of the lanthanide, conserving the spin polarisation

Figure 1. The radial electron density carried by the 4f shell in
Gd(III), in comparison to the total atomic density. The 4f shell is
shielded from interaction with the chemical environment, while
the 5d and 6s virtual shells are able to interact with the neigh-
bourhood, ensuring the bonding of lanthanide ions. The results
are obtained with the TZ2P basis set from the ADF code.

along this interaction channel. Given the preference of par-
allel alignment of the spins on the same atom, the fraction
of spin population arrived by weak covalence on the 5d lan-
thanide shell, effectively aligns in the same way the 4f un-
paired electrons. The scheme is, in principle, more general,
implying ferromagnetic-type coupling for virtually any d–f
bridged interactions, beyond the Cu–Gd case. However, for
system other than gadolinium complexes, the orbital mo-
ments resulted from quasi-degeneracy of lanthanide-based
multiplets and the strong spin–orbit coupling interaction
hinder the characterisation in exchange coupling terms. At
the same time, the generality of the above mechanism raises
the question of prerequisites for the opposed case, of anti-
ferromagnetic involvement of the lanthanide ions. For this
issue, we presented relatively recently a case study and a
mechanism [6]. Namely, the d–f antiferromagnetism be-
comes possible when the direct delocalisation of the d-type
orbitals carrying the spin is hindered by symmetry reasons
(for instance, the d unpaired electron is placed in an orbital
with δ overlap features, with respect to a bridge allowing
only π -type interaction). Then, if the symmetry-allowed
channel is used by a doubly occupied d orbital of the tran-
sition metal, it communicates with the 5d virtuals of the
lanthanides in a spin-polarised manner. The opposite spin
polarity (with respect to the d-type site) is transmitted from
the fraction located in the 5d-type orbitals to those of the
f shell, by the one-centre exchange forces that drive the
preference for aligned one-site spins, the whole succession
leading to anti-parallel 3d vs. 4f coupling. The role played
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by the 5d orbitals in exchange is possible because of their
essential implication in the bonding [20].

The situation of the lanthanide dimers embedded in
fullerenes is somewhat different from the regular coordina-
tion complexes. The following study clarifies the basic as-
pects. In the actual numerical experiments, we chose Gd(III)
as lanthanide component, in order to focus on the exchange
effect, free from magnetic anisotropy effects encountered
in other ions.

The bonding regime in metallo-fullerenes without
bridging atoms received special attention [21], given the
rather intriguing situation of detecting binding effects even
in the situation of strong electrostatic repeal between em-
bedded ions. The situation is due to highest occupied molec-
ular carrying bonding features, sometimes combined with a
charge transfer from fullerene cage, producing lanthanides
in lower oxidation states [22], with metal ion components
having the aspect of spd hybrids [23]. However, the bonding
mechanisms were not yet completely revealed and a more
dedicated attention is expected in the respect of exchange
coupling modelling.

To the best of our knowledge, there are no experimental
fit of exchange coupling constants, most probably because
of the limited sample amounts. The known estimations are
due to computation experiments, as is the case of the antifer-
romagnetic parameter J = −1.8 cm−1 between Gd(III) ion
and the paramagnetic cage, for the Gd@C82 mononuclear
system [24].

The reported ferromagnetism of the Gd2@C79N and
other structural features were previously sustained [18]
with thorough experimental investigations, based on elec-
tron paramagnetic resonance. This work [18] also included
state of the art DFT calculations but do not advanced toward
the computation of the exchange coupling, as the experi-
mental data do not afforded its estimation. We give in the
following the complementary account.

2. Calculations

The GAMESS [25] quantum chemistry program was used
for the robustness with respect to the CASSCF cal-
culations, employing the SBKJC (Steven–Bash–Krauss–
Jensen–Cundari) [26] effective core potential and basis for
lanthanide, whereas 6-31G basis set was used for C and
N atoms. Previously studied case of DySc2N@C80 showed
[4] that enhancing the basis on non-metal ions to 6-31G∗

does not bring significant changes to the results and also
the SBKJC performs comparable to full electron basis sets
in problems related to magneto-chemistry. The effective
core potential was proven a good choice in previous studies
of molecular magnetism, leading to a realistic reproduc-
tion of experimental data [6,10]. This is due to the reliable
account of the f-type orbitals, which matters essentially in
such problems. The code ORCA [27] was found particularly
convenient for broken-symmetry density functional theory

(BS-DFT) calculations, because of the user-friendly spin-
flip commands. The Amsterdam density functional (ADF)
[28] package is suited for numeric experiments based on
controlling the orbital population, having appropriate key-
words to impose non-aufbau configurations and fractional
occupation numbers. For the ADF calculations, we used
TZ2P basis sets (triple zeta with polarisation). In the DFT
calculations, performed either with Gaussian-type orbitals
(by GAMESS and ORCA) or by Slater-type orbitals (by
ADF), we used the BP86 Becke–Perdew functional [29].
The results keep their qualitative sense upon changing the
functional, but we avoided to branch out the discussion in
this sense, confining to the semi-quantitative respects and
the conventionally chosen functional.

3. Results and discussion

3.1. Exchange coupling of lanthanide dinuclears
in fullerenes. Multi-configuration and
broken symmetry density functional
(BS-DFT) study

The icosahedral isomer of the C80 has a fourfold degener-
ate highest occupied molecular orbital gg, occupied with
only one pair of electrons [2]. This situation is not conve-
nient for the neutral species, implying instability and distor-
tions. The closed shell structure, (gg)8, is achieved for the
highly negatively charged C80

6− ion, which then becomes
favourable for hosting positive ions, the ensemble being
proven as stable. The C79N has the same skeleton as the
icosahedral C80, but the symmetry is lowered to Cs point
group, having no orbital sets with large degeneracy. How-
ever, the trend for acquiring negative charges is kept because
of a quasi-degenerate sequence, the closed shell configu-
ration being achieved at the five negative anion, (C79N)5−.
In Ln2@C79N compounds, the cage formally charged with
six electrons, (C79N)6−, carries an unpaired electron. Then,
the Ln2@C79N system can be formally considered as a
symmetric trinuclear MXM, with M corresponding to the
Gd(III) ions (SM = 7/2) and X the spin originating from
the cage, with SX = 1/2. In turn, the Ln2@C80 is, from the
magnetic point of view, a genuine dimer, with the fullerene
possibly influencing the magnetic orbitals, but not entering
in the spin count.

For the Gd2@C80, the spin Hamiltonian is ascribed in
the well-known Heisenberg phenomenology:

ĤMM = −2JMMŜM(1) · ŜM(2), (1a)

with JMM as the inter-lanthanide coupling, the spectrum of
states having a simple formula:

EMM(SMM) = −JMMSMM (SMM + 1) , (1b)
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as function of SMM, the total spin quantum number, ranging
from SMM = 0, 1, . . .7.

For the Gd2@C79N, formulated as trimer, the
Hamiltonian is

ĤMXM = −2JMMŜM(1) · ŜM(2) − 2JMXŜX · ŜM(1)

−2JMXŜX · ŜM(2), (2a)

where JMX is the interaction between Gd(III) body and
the orbital carrying the supplementary spin. For symmetric
MXM systems, the energies can be expressed analytically
by the so-called Kambe formulas:

EMXM(SMXM, SMM) = −JMXSMXM (SMXM + 1)

+ (JMX − JMM) SMM (SMM + 1) , (2b)

where SMM is an intermediate count of the Gd2 subsys-
tem, and SMXM is the total spin, organised in series with
SMXM = |SMM ± 1/2| parentage. Equations (1b) and (2b)
originate from the handling of scalar product operator, elim-
inating at the end the constant terms.

The most straightforward result is obtained from
multi-configurational calculations. Briefly exposed, the
CASSCF calculations on Gd2@C79N revealed a ferro-
magnetic ground state, with S = 15/2 maximal spin,
the next gaps, to the respective S = 13/2, 11/2 and 9/2
states being 407.3, 814.5 and 1220.2 cm−1. One ob-
serves the regularity of equal spacing of the energy lev-
els, or, in other words, the approximate 1:2:3 ratio for
the presented values. This is in line with the predom-
inance of a large JMX value over a small JMM cou-
pling. More exactly, the outlined states are in line with
the following levels: EMXM(15/2,7) = 0, EMXM(13/2,6) =
JMX + 14JMM, EMXM(11/2,6) = 2JMX + 26JMM,
EMXM(9/2,6) = 3JMX + 36JMM, obtained from Equation
(2b), after substracting the highest spin as the origin of the
energy scale. The presented sequence clearly illustrates the

pattern of the exchange, based on a large JMX ferromag-
netic coupling, the fitted values being JMX = 407.11 cm−1

and JMM = 0.011 cm−1. Unfortunately, the experimental
data do not allow the fit of the coupling parameters, the
ferromagnetic nature of the ground state being known only
from electron paramagnetic resonance [18].

The calculation on the Gd2@C80, having the regime of
the dimer described by the Hamiltonian (1a), yielded JMM =
0.027 cm−1, namely, a weak ferromagnetic coupling com-
parable to those found in the Gd2@C79N heterofullerene
case. The experiment does not provide sufficient magnetic
data, the Gd2@C80 species being only transiently charac-
terised [30].

A perspective on the mechanism is gained looking at
the canonical orbitals resulted from the CASSCF calcula-
tions with 15 electrons in 15 orbitals. For the Gd2@C79N
case, we prepared the starting orbitals merging the f sets
of the two Gd(III) ions with the singly occupied molecular
orbital (SOMO) of the (C79N)6−, computed in preamble
as separate units. Actually, the SOMO was obtained as
the natural orbital with population close to unity from un-
restricted DFT calculations. The f-type orbitals kept their
almost pure atomic nature, the calculation bringing only the
in-phase and out-of-phase combination in forming orbitals
with a+ b and a−b respective molecular pattern. However,
the orbital initially invested on the cage was changed during
the self-consistent-field procedure, ending with a function
located on the Gd(III)–Gd(III) moiety. Its orbital compo-
sition looks like the in-phase combination of local hybrids
with s–d–f content, leading to a bonding-type molecular
combination, carrying an unpaired electron. At the same
time, examining carefully the shape of the f-type orbital
figured on the left-hand side of Figure 2, consisting in the
in-phase combination of the z3 orbitals, one notes a slight
asymmetry of the lobes at one centre, suggesting the hy-
bridisation with polar components, s and z2. This feature
can be interpreted as a counterpart of the formation of
the canonical orbital represented on the right-hand side,

Figure 2. Components of the canonical orbitals from the CASSCF calculation of the Gd2@C79N system. The orbitals associated with
lowest and highest energies are depicted at left-hand and right-hand sides, respectively. The atomic elements shown in the middle panel,
only for one site, must be conceived as forming in-phase and out-of-phase combinations with similar functions on the mirror site. The
nitrogen atom is figured at the top of the molecule. The system has Cs point group, with the symmetry plane passing through the nitrogen
atom and mirroring the lanthanide ions. The isosurfaces are drawn at 0.05 electrons/Å3.
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Scheme 1. Mechanism of the ferromagnetic coupling in the (Gd2)5 + dimer in Gd2@C79N.

mainly consisting in z2 and s components, with z3-type
traces. Though having lower canonical energies, the f-type
orbitals of the CASSCF run are non-bonding type, as com-
pared to the upper one, having bonding pattern. One has
to point out that the orbital energies of canonical sets do
not have solid physical meaning, being merely objects to
construct the multi-configuration problem. Their alteration
by unitary transformation does not change the eigenvalues.
The discussion in terms of orbital energies has therefore
qualitative purpose. For instance, the mentioned upper or-
bital has a higher canonical energy because it is made of
5d and 6s atomic orbitals, placed above the 4f set in atomic
schemes.

The interaction pattern is represented in simplified man-
ner in Scheme 1. The electron located in the orbital with
upper canonical energy (right-hand side of Figure 1) prac-
tically corresponds to the X centre discussed in the spin
Hamiltonian. This function took the place initially assigned
to the SOMO of the (C79N)6− cage. In the Gd(II) ion, with
(4f)7(5d)1 configuration, the f and d electrons will prefer
parallel alignment. The formation of SOMO bonding-type
upper canonical orbital implies a mixed-valence-alike situ-
ation, the gadolinium site being projected in a Gd(III) +
Gd(II) superposition. The 5d-type fraction of one-half of
electron assigned to each Gd(III) core aligns its spin to
those of seven parallel unpaired electrons from the f shell.
This effect makes the electron placed in the upper 5d-type
bonding molecular orbital to look ferromagnetically cou-
pled with both lanthanide sites. In other words, formally,
the f spin from one centre is forced to be parallel with the
d-type one, when it is placed on the other lanthanide site.
Apparently, in this description, the hetero-fullerene plays a
little role, just hosting the artificial dinuclear. However, if
we draw the canonical orbitals at lower density contours,
the tails located on the cage become visible, so that the
fullerene participates in a spin polarisation mechanism.

In the following, we will switch the analysis tools, meet-
ing the terms of BS-DFT [31]. As well known, the DFT is

a single determinant method, while the magnetic states are,
in general, multi-configuration objects. Although, the DFT
can approach the molecular magnetism by appropriate nu-
meric experiments, the BS states having not a physical re-
ality, but being appropriately tailored to reveal information
on the spin Hamiltonian parameters. In the crudest approx-
imation, the BS states are interpretable with the Ising-type
Hamiltonian, replacing the scalar product of spin opera-
tors with numeric multiplication of the local spin projec-
tions, Sz(A)Sz(B). The Ising terms are actually the diagonal
of a full Heisenberg Hamiltonian. In the BS phenomenol-
ogy, the total switch of the spin at one centre implies that
only the +SASB or −SASB (positive or negative) amounts
are allowed. The Ising interpretation would be valid if the
BS calculation will be based on restricted-type orbitals,
with the same space contours for corresponding α and
β sets. However, the BS calculations are conceived and
carried out in unrestricted spin schemes. In such circum-
stances, one may conceive the |ŜA · ŜB |expectation value
as parameter |〈ŜA · ŜB〉| entering with plus or minus signs,
±|ŜA · ŜB |, in the formulation of the expectation value of
the spin Hamiltonian, if the given configuration records,
respectively, identical or opposite spin polarities on the A
and B centres. For the MXM trimer formulation of the
di-lanthanido-heterofullerene case, there are three distinct
BS configurations: �(HS) = M(1)+ X+ M(2)+ , �(BS1) =
M(1)+ X−M(2)+ and �(BS2) = M(1)+ X+ M(2)−. The
first one corresponds to high spin (HS) ferromagnetic align-
ment of all the spin densities, computed at maximal spin
projection, Sz = 15/2. The expectation value from a BS con-
figuration � of the Hamiltonian in Equation (2a) is ascribed
as follows:

〈�| ĤMXM |�〉 = E0 − 2σ�
M(1)σ

�
M(2)JMM

∣∣〈ŜM(1) · ŜM(2)
〉∣∣

− 2σ�
X σ�

M(1)JMX

∣∣〈ŜX · ŜM
〉∣∣

− 2σ�
X σ�

M(2)JMX

∣∣〈ŜX · ŜM
〉∣∣, (3)
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where the σ coefficients are ±1 factors with respect to
spin up or spin down population of the given centre, in
the considered configuration. In the HS configuration, we
have all the coefficients equal to unity: σ HS

M(1) = 1, σ HS
X = 1,

σ HS
M(2) = 1. For the BS1 configuration, the spin on the X sub-

system is flipped, having therefore: σ BS1
M(1) = 1, σ BS1

X = −1,

σ BS1
M(2) = 1. The BS2 case flips the spin on the second metal

ion: σ BS2
M(1) = 1, σ BS2

X = 1, σ BS2
M(2) = −1. The E0 energy shift

was made explicit in Equation (3) in order to formally ac-
count an absolute value. However, it is sufficient to consider
the relative differences, for instance, with respect to the HS
configuration. In this case, the relative BS state energies of
the trimer are

�EBS1 = EBS1 − EHS = 8JMX|〈ŜX · ŜM〉|, (4a)

�EBS2 = EBS2 − EHS = 4JMM

∣∣〈ŜM(1) · ŜM(2)
〉∣∣

+ 4JMX|〈ŜX · ŜM〉|. (4b)

The expectation values of the squared spin operator can
also be equated with the |ŜA · ŜB| parameters:

〈�| Ŝ2 |�〉 = ct + 2σ�
M(1)σ

�
M(2)

∣∣〈ŜM(1) · ŜM(2)
〉∣∣

+ 2σ�
X σ�

M(1)|〈ŜX · ŜM〉|
+ 2σ�

X σ�
M(2)|〈ŜX · ŜM〉|. (5)

The constant term is, in the case of the considered trimer,
ct = 2SM(SM + 1) + SX(SX + 1), where SM = 7/2 and
SX = 1/2, estimating ct = 129/4 = 32.25. In similitude
to the energy treatment, the relative differences to the HS
configuration can be considered:

�〈S2〉BS1 = −8|〈ŜX · ŜM〉|, (6a)

�〈S2〉BS2 = −4|〈ŜM(1) · ŜM(2)〉| − 4|〈ŜX · ŜM〉|. (6b)

The BS-DFT treatment (with BP86 functional and the
previously mentioned basis sets) gives the following
energy gaps: �EBS1 = 6113.24 cm−1 and �EBS2 =
1927.64 cm−1. The unrestricted DFT calculation prints
out the expectation values for the〈S2〉, which for the
HS, BS1 and BS2 cases are 63.82, 49.79 and 7.8, re-
spectively. Differences of −14.93 and −56.33 corre-
spond to Equations (6a) and (6b). These relative val-
ues determine the parameters |〈ŜX · ŜM〉| = |〈ŜX · ŜM〉| =
1.87 and |〈ŜM(1) · ŜM(2)〉| = |〈ŜM(1) · ŜM(2)〉| = 12.22, quite
close to the simplistic Ising-type limits, SXSM = (1/2)(7/2)
= 1.75 and SMSM = (7/2)(7/2) = 12.25, respectively. The
fitted parameters account also for the absolute computed
〈S2〉 amounts, when replaced in Equation (5) altogether
with the ideal ct = 32.25 shift. The overall fit of formulas
(4) and (6) to the values outlined from the BS compu-

tations yields the exchange coupling parameters: JMX =
409.60 cm−1 and JMM = −23.11 cm−1. One notes the re-
markable closeness of JMX value to those computed in the
CASSCF treatment. In turn, JMM is negative and possi-
bly slightly overestimated. This discrepancy does not affect
the qualitative and semi-quantitative picture, common to
both approaches, namely, a dominating ferromagnetic MX
type of coupling, overriding the direct MM interaction, ir-
respective of its ferromagnetic or antiferromagnetic nature.
Figure 3 shows the spin density maps of the discussed cal-
culations, confirming the BS nature of the configurations
BS1 and BS2. The role of the fullerene cage, involved in
a spin polarisation effect, is illustrated by visible density
tails.

The BS-DFT treatment of the Gd2@C80 leads to a small
antiferromagnetic exchange coupling JMM = −2.66 cm−1.
It is opposite to the CASSCF result, but clearly testifies the
small intensity of the interaction, if compared to the spin
active cage of the mono-nitrogen hetero-fullerene.

As noted in the technical section, the BS calculations
were easily done with the ORCA program [27], that has
an explicit keyword for switching the local spins with
respect to an HS reference, computed in preamble. Without
this facility, the series of BS calculations can be achieved
by operations of orbital localisation and subsequent per-
mutations between and inside α and β subsets, preparing
educated guesses, aimed to prefigure the desired spin po-
larisation scheme. However, the success of BS calculations
is not always guaranteed, being dependent also on some
uncontrolled tacit factors, such as the anatomy of the ba-
sis sets or the canonicalisation scheme of the molecular
orbitals. The ADF suite [28] also has a spin flip facility.
However, we were not able to obtain in ADF results similar
to those performed by ORCA, for Gd2C79N. With ADF,
we catch only the HS and BS1 configurations which show
a gap of 3216.6 cm−1 and a difference of about −14.02
(Equation (6a)) in the expectation value of the squared
spin. This allows the estimation of JMX = 229.5 cm−1,
which is smaller than those found in the previous BS treat-
ment, but yet preserves the range of strong ferromagnetic
coupling. One has to point out that the BS1 configuration
was obtained by ADF in non-aufbau conditions, having the
β spin assigned to the X orbital component placed above the
14 empty f-type β orbitals. This scheme seems to keep, in-
side the β virtuals, the atomic pattern with 5d and 6s above
the 4f levels originating from the two ionic bodies. This
structure possibly appears due the use of Slater-type orbitals
and its technical realisation is due to the ADF capability in
dealing with non-aufbau situations. The partial success of
the ADF in the BS account of exchange effect is reflected in
a spurious mixing of the f-type orbitals with the fullerene
components, obtaining a net polarisation of about 6.4 α

spin on this shell, while the ORCA approach gives the α net
population of 6.95, closer to the idea of weakly interacting
f atomic orbitals.
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Figure 3. Spin density maps for the configurations related to the BS-DFT estimation of exchange parameters. The dark surfaces
correspond to α spin density and while light tones to β spin. The high spin state HS (up) and the broken symmetry states BS1 and BS2
(down) correspond, respectively, to the M(1)+ X+ M(2)+ , M(1)+ X-M(2)+ and M(1)+ X+ M(2)− spin polarisations. The isosurfaces are
drawn at 0.05 electrons/Å3.

Employing other special feature of the ADF, we
performed BS calculations under the conditions of the
so-called frozen density embedding (FDE) [32]. This tech-
nique is a reasonable approximate account of the subsys-
tems with a relatively small hybridisation with a certain
environment, as expected for the f shell of lanthanides.
The (C79N)5− diamagnetic negative cage was defined as
frozen subsystem, with the mixed valence (Gd2)5 + moi-
ety as guest. The dimer HS state has a configuration
ascribed as [Xe]2(σ f)α(σ f

∗)α (π f)2α(π f
∗)2α(δf)2α(δf

∗)2α

(ϕf)2α(ϕf
∗)2α(σ d,s)α , while the BS1 case has the last orbital

switched to the (σ d,s)β opposite spin. The BS2 configura-
tion was successfully produced by reverting the f spins at
one lanthanide centre. The orbital system is much similar
to those resulted in the CASSCF procedure. The fit of the
FDE-BS-DFT results of (Gd2)5 + embedded in the frozen
density of the (C79N)5− yielded JMX = 446.23 cm−1 and
JMM = −2.03 cm−1. The first coupling parameter is close to
those resulted in CASSCF and BS calculations with Gaus-
sian basis sets. The JMM is between the CASSCF and first
discussed BS-DFT results. We cannot decide now whether
there is a weak ferro or antiferro coupling between the Gd
ions, as neither can the experiments enter in such a detail.

Giving the credits to DFT, as better descriptor of dynamic
correlation effects, the real case is probably a weak anti-
ferromagnetism which, however, cannot be discriminated
on the background of the strong ferromagnetic interaction
channels.

3.2. Ligand field modelling and frozen density
embedding density functional theory
calculations

The frozen density embedding (FDE) [32] will be used to
figure out the LF regime, because this computation method
constructs a perturbation in the sense of such phenomenol-
ogy. The results are illustrated by the Kohn–Sham orbitals
in Figure 4. The qualitative representation of the fullerene
proximity altogether with neighbour ion perturbations ex-
erted on a lanthanide site is given in Scheme 2. The Gd–Gd
axis points approximately towards the middle of a couple
of hexagonal faces of the fullerene cage. The nitrogen atom
of the C79N skeleton is distant from the carbon atoms form-
ing the vicinity of the lanthanide ions. Therefore, from the
viewpoint of the fullerene-determined perturbation, the lo-
cal frame follows a six-order pseudo-symmetry axis. This

7

ht
tp

://
do

c.
re

ro
.c

h



Figure 4. Orbitals from FDE calculation of one Gd(III) centre, considering the other lanthanide site and the fullerene cage as environment.
Both the fullerene and the neighbour lanthanide ion exert a perturbation with quasi-linear symmetry to the orbitals originating from 4f, 5d
and 6s shells, closely obeying a classification in σ , π , δ, ϕ labels. The isosurfaces are drawn at 0.04 electrons/Å3.

also can be interpreted as a quasi-linear symmetry, C∞v,
combined with the true linear symmetry, due to the compan-
ion lanthanide ion. Formally, the perturbed orbitals can be
interpreted as A–Ln–B linear system, the proximal hexag-
onal face of the fullerene and the point charge of the other
metal ion playing the ligand A and B, respectively. However,
the energy order is reverted with respect to the customary
conception of the LF from linearly ligating ligands. In usual
LF [33,34], the σ -type orbitals (z3 for the f set, or z2 for the
d ones) are most perturbed, because they ensure, in terms

Scheme 2. Ligand Field effects on a lanthanide ion, exerted by a
hexagonal frame of the fullerene wall (left side) and the neighbour
positive ion (right side), in Gd2@C80 and Gd2@C79N.

of covalence, the strongest metal–ligand overlap. In elec-
trostatic terms, the electron located in fz3 or dz2 orbitals
are closer to the cloud of negatively charged ligand, un-
dergoing the highest destabilisation by Coulomb repulsion.
Let us denote the perturbation in the style of the AOM,
the eλ (with λ = σ , π , δ, ϕ) being the energy shifts of
the metal-based orbitals in an M–L isolated couple, relative
to the free metal ion. The customary order of perturbation
is eσ > eπ > eδ > eϕ , often assuming eδ ∼ 0 and eϕ ∼
0, since the ligand orbitals do not span such symmetries.
Taking the hexagonal face of fullerene as ligand A, we
obtain eϕ

(A) > eδ
(A) > eπ

(A) > eσ
(A). The z3 or z2 lobes

are pointing towards the void of the frame, being less per-
turbed, while orbitals of ϕ type, with six lobes, intercept in
optimal manner the perturbation of the proximal hexagon.
Now considering the opposed axis, one may say that the
neighbour lanthanide ion is in fact an ‘anti-ligand’, having
positive charge, in opposition to the normal case of nega-
tively charged ligands. Then, taking it as ‘ligand B’, it also
determines reversed perturbation scheme, eϕ

(B) > eδ
(B) >

eπ
(B) > eσ

(B), because of the positive charge. In fact, the
B ‘anti-ligand’ exerts a stabilisation of the electron placed
in the f or d shells (negative shift) in contrast to the usual
destabilisation due to negatively charged ligands. By dif-
ferent mechanism, the A and B contributions are aligned
to give the same ordering of the λ = σ , π , δ, ϕ states in
the quasi-axial symmetry and a common series parameters
can be ascribed for their combined action eλ = eλ

(A) +
eλ

(B). In the given model, one cannot discriminate the indi-
vidual eλ

(A) and eλ
(B), but only their eλ sums, ordered like
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eϕ > eδ > eπ > eσ . We tacitly discussed in the above part
the case of f systems. The situation is, in principle, the
same for the d case, after removing from discussion the ϕ

component, non-existent in this set.
The ligand field theories are consecrated for a single-

shell case, either d type for transition metal complexes [33]
or f-type for lanthanide systems [34]. In each situation, the
description is tacitly affected by the so-called holohedri-
sation [35] effect. Namely, irrespective to the even or odd
inversion parity of a given orbital set (e.g. with g label for d
and u symmetry for f, respectively), the d–d and f–f Hamit-
lonian blocks will account only symmetric, g-type, pertur-
bation because of the obvious reason of g × g = g, u × u
= g multiplication rules. This drawback is usually not con-
sidered, because in many cases, the coordination chemistry
and LF analysis concern relatively symmetric systems, e.g.
often octahedral frames, where the caveat is not acting, or
is not severe. The artificial effect of holohedrisation can be
encompassed designing an extended LF scheme with both
odd and even basis components insofar as the off-diagonal
block includes the g × u = u asymmetric components. We
recently presented a two-shell extended LF model based on
d and f orbitals [36], which needs to be called for the ac-
count of the presented case. Indeed, we face a rather visible
polarisation of the electrostatic potential, with fullerene as
a negatively charged A ligand and the companion metal ion
as a positive charge B, acting reversely to the usual ligands.

The orbitals from the FDE-DFT calculation show the
discussed ordering in both 4f and 5d sets. Besides, we in-
cluded an orbital labelled 6s which results actually as a
hybrid s–d–f shape. In the following, we will take the or-
bital energies as approximation for the LF modelling. In
general, the orbital energies are not best objects for this
purpose. Thus, in a restricted scheme, the double, single or
empty functions assignable to the ground-state configura-
tion are subject of different canonicalisation schemes. This
leads to different types of two-electron effective interac-
tion that obscures the one-electron potential corresponding
to the LF. At the same time, using unrestricted orbitals,
thus obtaining different sets of orbitals and energies for the
d- or f-type orbitals, is not in line with current principles
of the LF theories, demanding an unique form of the d-
or f-related molecular functions. Such gaps between the
DFT calculations and the attempts of LF modelling can
be bridged by the average of configuration (AOC) [8] step
enabling the LFDFT subsequent analysis. Aiming for the
description of a complex with dn or fn configuration, the
AOC approach implies the selection of the orbitals with
proper d or f parentage, imposing on each of the five or
seven components n/5 or n/7 fractional occupations, respec-
tively. This computational setting gives an average tacitly
assumed in LF theory as pseudo-spherical reference. The
full LFDFT procedure [8,9] implies then running several
artificial configurations, mimicking the many-determinant
situations, providing state energies from where the LF

parameters can be extracted. This does not mean that DFT
itself has become multi-configurational, but, in a manner
somewhat similar to BS, it is possible to design states repre-
senting numeric experiments containing parameters appro-
priate for a defined goal, the LF frame, in the LFDFT case.
One has to point out that the work with fractional popula-
tions [37] is allowed in the conceptual DFT and technically
possible with the employed ADF suite [28].

However, using the FDE frame [32], the full numeric
experiments of the LFDFT cannot be produced, confining
ourselves to the use of orbital energies. Particularly, because
of half-filled nature of the f7 configuration of Gd(III), the
resulted orbitals are in fact well tempered for LF consider-
ations, having already the AOC regime.

In the given circumstance, the orbital energies seem
a reasonable surrogate for the LF-type ordering. The or-
bital energies (in electron-volt unit) are grouped in a
series corresponding to 4f shell, {−27.576, −27.559,
−27.556, −27.518, −27.516, −27.464, −27.461} spaced
by a large gap from the 5d-type solutions, {−17.302,
−16.399, −16.37, −15.976, −15.965}, which are relatively
close to the eigenvalue assignable to the 6s, at −14.742 eV.
These results are submitted to the analysis in terms of LF
parameters.

The multi-shell LF Hamiltonian can be in this case of
axial symmetry confined to the expansion in Yk,0 spheri-
cal harmonic functions. The diagonal f and d blocks are
expressed in standard manner, defining separate sets of pa-
rameters, Bk

0 (ff ) and Bk
0 (dd), respectively:

Ĥ ff
LF =

∑
k=0,2,4,6

√
4π

2k + 1
Bk

0 (ff )Yk,0, (7a)

Ĥ dd
LF =

∑
k=0,2,4

√
4π

2k + 1
Bk

0 (dd)Yk,0. (7b)

Note that the above expansions involve only even spherical
harmonics sets: k = 0, 2, 4, 6 for the Hamiltonian dedi-
cated to the f block, and k = 0, 2, 4 for the d one. In usual
LF models, dedicated to a single shell, the k = 0 terms
are not expressed, implying an arbitrary shift, but here we
made them explicit, since B0

0 (dd) − B0
0 (ff ) marks the gap

between the lower 4f and upper 5d shells. Actually, in this
circumstance, the relative difference is not an entirely LF
potential element, including the f–d gap, as intrinsic feature
of the ion to which LF shifts are added. The odd compo-
nents (k = 1, 3, 5) are appearing in the f–d diagonal block
that carries the modelling beyond the holohedrisation limits
[36]:

Ĥ fd
LF =

∑
k=1,3,5

√
4π

2k + 1
Bk

0 (fd)Yk,0. (7c)
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Once the orbital component originating from the 6s virtual
of lanthanide ion, close to the 5d orbitals, is included, one
also has the non-diagonal Hamiltonian elements expressing
the d–s and f–s mixing terms:

Ĥ ds
LF =

√
4π

5
B2

0 (ds), (7d)

Ĥ fs
LF =

√
4π

7
B3

0 (fs). (7e)

The whole Hamiltonian matrix is sparse, having non-
diagonal elements only between the components with the
same λ axial symmetry in different shells. Therefore, the
σ -type block involves the f, d and s orbitals. Defined in
the AOM style, one infers different eσ parameters for the
distinct blocks:

hσ
LF =

⎛
⎜⎝

eff
σ efd

σ efs
σ

efd
σ edd

σ eds
σ

efs
σ eds

σ ess
σ

⎞
⎟⎠ , (8)

the matrix elements being defined with respect to the series
of Equations (7):

eff
σ = B0

0 (ff ) + 4

15
B2

0 (ff ) + 2

11
B4

0 (ff ) + 100

429
B6

0 (ff ) ,

(9a)

edd
σ = B0

0 (dd) + 2

7
B2

0 (dd) + 2

7
B4

0 (dd) , (9b)

ess
σ = B0

0 (ss) , (9c)

efd
σ = 3√

35
B1

0 (fd) + 4

3
√

35
B3

0 (fd) + 10

33

√
5

7
B5

0 (fd) ,

(9d)

efs
σ = 1√

7
B3

0 (fs) , (9e)

eds
σ = 1√

5
B2

0 (ds) . (9f)

The matrix blocks dedicated to the π effects are

hπ
LF =

(
eff
π efd

π

efd
π edd

π

)
, (10)

with the following expansions:

eff
π = B0

0 (ff ) + 1

5
B2

0 (ff ) + 1

33
B4

0 (ff ) − 25

143
B6

0 (ff ) ,

(11a)

edd
π = B0

0 (dd) + 1

7
B2

0 (dd) − 4

21
B4

0 (dd) , (11b)

efd
π = 5√

70
B1

0 (fd) + 2

3
√

70
B3

0 (fd) − 5

33

√
10

7
B5

0 (fd) .

(11c)

The δ-type blocks are also 2 × 2 matrices:

hδ
LF =

(
eff
δ efd

δ

efd
δ edd

δ

)
, (12)

with the following elements:

eff
δ = B0

0 (ff ) − 7

33
B2

0 (ff ) + 10

143
B6

0 (ff ) , (13a)

edd
δ = B0

0 (dd) − 2

7
B2

0 (dd) + 1

21
B4

0 (dd) , (13b)

efd
δ = 1√

7
B1

0 (fd) − 2

3
√

7
B3

0 (fd) + 5

33
√

7
B5

0 (fd) .

(13c)

Finally, the ϕ components are matrix elements belong-
ing to the f shell only

h
ϕ
LF ≡ eff

ϕ = B0
0 (ff ) − 1

3
B2

0 (ff ) + 1

11
B4

0 (ff ) − 5

429
B6

0 (ff ) .

(14)

Considering the fit by LF modelling, we take the above-
mentioned orbital energies, relative to the lowest value, ex-
pressed in wavenumber units: ε(4f) = {0, 137.1, 161.3,
467.8, 484.0, 903.4, 927.6} cm−1, ε(5d) = {82870.1,
90153.7, 90387.6, 93565.6, 93654.3} cm−1 and ε(6s) =
103519.0 cm−1. For the f suite, is observed a non-
degenerate lowest level, followed by quasi-degenerate cou-
ples related to the discussed σ < π < δ < ϕ ordering. The
similar σ < π < δ regularity is observed also for the d
set. Relative to the lowest d-type level, the energies of the
set are 0, 7283.6, 7517.5, 10695.5 and 10784.2 cm−1. One
notes the magnitude of the spacing, in the range of hun-
dreds reciprocal centimetres for the f set, while a total gap
of about 10,000 wavenumbers for the LF split of d shell, in
concordance with general expectation for f and d LF cases
[33,34]. The energy ordering can be also corroborated with
the down-to-up depiction of the orbital shapes in Figure 4.
Observing the slight asymmetry of the orbital lobes, lesser
for the f ones and more pronounced for the d cases, one
might understand the need for an extended multi-shell LF
modelling, as sketched here.

With the corresponding eigenvectors, the eigenvalues
are back-transformed to a matrix taking in effectively pure
atomic orbital basis of f, d and s shells, as defined in the
previous LF modelling. In the process, the diagonal and
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Table 1. The ligand field parameters fitting the FDE calculations representing one Gd(III) site in Gd2@C79N (while the other lanthanide
ion and the fullerene cage are taken as frozen density fragments). All values are in cm−1.

(ab) (ff) (dd) (ss) (fd) (fs) (ds)

B0
0 (ab) 454.8 91,008.6 99,006.0 0.0 0.0 0.0

B1
0 (ab) 0.0 0.0 0.0 2937.1 0.0 0.0

B2
0 (ab) −1420.9 −4578.2 0.0 0.0 0 −19,096.9

B3
0 (ab) 0.0 0.0 0.0 853.7 1401.0 0

B4
0 (ab) −156.6 −8240.9 0.0 0.0 0.0 0.0

B5
0 (ab) 0.0 0.0 0.0 −82.2 0.0 0.0

B6
0 (ab) −46.2 0.0 0.0 −82.2 0.0 0.0

non-diagonal matrix elements related to the almost equiv-
alent terms, inside double degeneracy of π , δ and ϕ levels,
were averaged. Their deviation with respect to the aver-
age was comprised within 0.5%–4%, quite close to the
assumed effective symmetry. Then, one may fit the LF pa-
rameters to the computed matrix, obtaining the values out-
lined in Table 1. The B0

0 (ab) values for the different shell
(ab) couples can be arbitrarily shifted, all with the same
value. The actual set puts in zero of the energy scale the
lowest eigenvalue of the whole Hamiltonian. An alterna-
tive convention, with B0

0 (ff ) = 0 would render B0
0 (dd) =

90553.8 cm−1 and B0
0 (ss) =98551.2 cm−1. One may ob-

serve that the fd shell couple holds the odd LF parameters
with k = 1, 3, 5, while the other parameters span the even
inversion symmetry. The approximations included in the
FDE approach are in line with the LF concepts, allowing a
semi-quantitative insight in the LF regime.

3.3. Energy decomposition analysis of bonding
effects in endohedral metallo-fullerenes

In the following, we will examine the bonding regime
of the lanthanide embedded in fullerene, switching the
focus on the Gd2@C80 system. We benefit from the energy
decomposition analysis (EDA) implemented in ADF in ac-
cordance to Ziegler-Rauk scheme [38]. The total bonding
energy is evaluated relative to previously prepared frag-
ments and dichotomised in Pauli repulsion, electrostatic
energy and orbital stabilisation [39]. The Pauli repulsion
considers the exchange effects appearing between closed
shell bodies of the fragments [40], not to be confused with
the electrostatic repeal of the electron clouds. The electro-
static term considers the classical Coulomb part between
the nuclei and clouds of the introduced fragments, at their
initial superposed density distribution. The orbital term ac-
counts all the relaxation of densities from the fragments to
the final molecular consistency.

In the simplest way, the fragments can be the neutral
atoms, but it is interesting to prepare in preamble the Gd3 +

and C80
6− units, using for the cage the optimised geome-

try of the Gd2@C80 complex. The artificial dimer moiety
(Gd2)6 + from the Gd3 + ions is unstable, as expected, with
positive bonding energy, 0.4906 Hartree. The electrostatic

part, 1.2390 Hartree, is very close to the point charge es-
timation, considering the 3.844 Å inter-nuclear distance.
The Pauli repulsion is very small, about 0.0002 Hartree,
in accordance to the point that lanthanides are bodies with
electron density well confined around the nuclei, with small
propensity for long-range interactions, except the ionic ef-
fects. However, surprisingly, the orbital stabilisation is size-
able, about −0.7486 Hartree. The situation is apparently
puzzling, especially considering that the orbital scheme
corresponds to a non-bonding balance, [Xe]2(σ f)α(σ f

∗)α

(π f)2α (π f
∗)2α(δf)2α(δf

∗)2α(ϕf)2α(ϕf
∗)2α , having both the

bonding and antibonding sets occupied. The orbital stabili-
sation can be assigned merely to polarisation effects located
on the fragment, rather than to the direct overlap of the f-
type orbitals. As discussed in previous sections, the atom
in dimer or in the whole molecule undergoes a deformation
based on f–d slight mixing, that brings a certain stabili-
sation. Each orbital from the fourteen functions included
in the previously ascribed configuration brings an amount
of −0.05 Hartree. This uniformity, irrespective of the
λ = σ , π , δ, ϕ axial symmetry contributors, suggests that
the recorded stabilisation is not driven by the nature of the
overlap.

The Gd2@C80 formed from two Gd3 + fragments and
the C80

6− negative cage shows a net bonding stabilisation
of −4.7976 Hartree. The Pauli repulsion is 0.4627 Hartree,
entirely coming from the interference of lanthanide ionic
bodies with the inner walls of the cluster, once previously
showed that the dimer had this component almost negli-
gible. The electrostatic term is −2.1559 Hartree, proving
that the proximity of the fullerene atoms (first environment
of Gd–C contacts with about 2.5 Å distances) carrying
approximately evenly distributed negative charge counter-
balances the mutual repeal of the lanthanide ions. The net
orbital stabilisation, −3.1043 Hartree, is due also to the
weak covalence established with the fullerene, by each lan-
thanide ion. We discard the issue of other structures resulted
from the rotation of the Gd–Gd line inside the cage, since
their conceivable variety can make the subject of a separate
study.

Another numeric experiment follows the EDA in the hy-
pothetical mono-lanthanide system (Gd3 + )@(C80

3−) when
the encapsulated ion moves along the axis traced in the
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dimer, from the centre of the molecule, to one side. This is
a conventional system, meant to detect the bonding capa-
bilities of a single ion against the fullerene cage, using the
frozen optimal geometry of the computed Gd2@C80. The
triply negatively charged fullerene was produced using the
ADF capability to impose fractional occupation numbers,
which is important in keeping the charge uniformity on
the atoms of the cluster. Then, given the quadruple quasi-
degenerate nature of the last occupied orbital sequence of
the C80, the occupation numbers were imposed in C80

3−

as 5/8 fractional value, in each of the functions originating
from the gg set in icosahedral symmetry. The triply charged
anion, instead of six negative charge of the fullerene in
Gd2@C80, conventionally rescales the amount of interac-
tion, when the hypothetical Gd@C80 is taken. The results
are shown in Table 2. The Pauli term has a small value
when the ion is kept in centre or moved towards the side
with distances up to about 1 Å. At larger off centre posi-
tion, the Pauli repulsion grows exponentially, deciding the
formation of the minimum before entering in the fullerene
wall, as the other stabilising term continues to decrease
their values along this shift.

The minimum in the total bonding energy is reached at
about dh = 1.8 Å (in comparison to about the dh = ±1.9 Å
in the case of Gd2@C80). The proximity of fullerene wall
determines a certain covalence component, illustrated by
the orbital term from Table 2. The main bonding effect can
be interpreted as due to donation from the negative charge
of the cage towards the empty 5d and 6s virtuals of the
lanthanide ions. This conclusion is drawn examining popu-
lation analysis results and is also sustained by the modelling
from the following section. The electrostatic term varies a
little, for the reason of a certain resemblance of the fullerene
to an uniformly charged sphere, which keeps the inside po-
tential constant. Of course, because of atomic details on the
surface of the cluster, the sphere approximation does not
completely hold.

Table 2. The energy decomposition analysis of the
(Gd3 + )@(C80

3-) system when the lanthanide ion is moved from
the centre (dh = 0) towards one margin along the Gd–Gd virtual
axis. All the energy amounts are in Hartree.

Pauli Electrostatic Orbital Total
dh (Å) repulsion energy component bonding

0 0.0075 −0.7524 −1.1019 −1.8468
0.25 0.0087 −0.7526 −1.1102 −1.8541
0.5 0.0102 −0.7529 −1.1203 −1.8631
0.75 0.0148 −0.7538 −1.1362 −1.8752
1 0.0257 −0.7560 −1.1619 −1.8922
1.25 0.0464 −0.7602 −1.1985 −1.9124
1.5 0.0929 −0.7705 −1.2559 −1.9335
1.75 0.1914 −0.7940 −1.3398 −1.9423
2 0.3926 −0.8452 −1.4617 −1.9143
2.25 0.6844 −0.9233 −1.5998 −1.8385

3.4. Idealisation of lanthanide-fullerene
interaction as atom-in-sphere model.
The Xatom+Xsphere algorithm

The series of computation modelling will be completed
designing the DFT account of lanthanide atom inside a
sphere. More precisely, the sphere will be considered as an
uniform Z� = 80 positive charge, at radius Z� = 4.12 Å
(the average radius of C80 fullerene), retaining a number
of 83 electrons. This is a heuristic approximation of the
C80

3− negative cluster. The sphere (labelled �) is treated
separately or containing, in centre, a ZLn = 64 nucleus of
Gd(III) (labelled Gd@�). The problem resembles the ra-
dial atomic equation, except that the central potential is en-
hanced by the supplementary account of the positive sphere
crust. Namely, for a radial point placed inside the sphere,
the potential due to the positive crust is constant, U�(r <

R�) = −Z�/R�, while going outside, r > R�, it turns into
a point like form: U�(r > R�) = −Z�/r. The potential due
to the lanthanide is always central: ULn(r) = −ZLn/r.

The Gd@� ensemble is obviously described by the cor-
responding sum, UGd@�(r) =ULn(r) + U�(r). The problem
is completed, in each case (the separate Gd and � pieces
or their ensemble), with the potential due to electrostat-
ics of charge distribution and the exchange functional part:
V(r) = U(r) + VCoul(ρ(r)) + Vxc(ρ(r)). As exchange func-
tional, we simply considered the local density approxima-
tion (LDA) which is conceptually sufficient in the account
of the idealised problem. The dependence on the total den-
sity ρ(r) is resolved iteratively. The equation retains its
spherical nature, being solved for the VLn(r) and V�(r) sep-
arately or for the VGd@�(r) composite. As function of the
general radial potential V(r) the radial equation is:

−1

2

[
∂2(rR(r))

∂r2
− l(l + 1)

r2
(rR(r))

]

+V (r)(rR) = E(rR(r)), (15)

where R(r) is the radial function and l the quantum number
controlling the kinetic moment.

One of the authors has developed previously a very ef-
ficient numerical scheme [41,42] for solving this equation,
by a grid method that replaces the need for a basis set. The
clue is the handling of the differential operator from the
above equation by a finite difference that leads to a sys-
tem with tridiagonal matrices, having the lines defined as
follows:

( −1

(rk+1 − rk−1)(rk − rk−1)
,

1

(rk+1 − rk)(rk − rk−1)

+V (rk) + 1

2

l(l + 1)

r2
k

,
−1

(rk+1 − rk−1)(rk+1 − rk)

)

·
⎛
⎝ rk−1Rk−1

rkRk

rk+1Rk+1

⎞
⎠ = El · (rkRk). (16)
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This can be formulated as an eigenvalues–eigenvectors
problem, leading directly to the radial dependence for a
set of eigenfunctions, the vector set having the same di-
mensionality as the number of defined grid points. In spite
its simplicity, the method is very powerful.

It is not the case to detail here, but it can be verified that
the quasi-totality of commonly used basis sets, including
those acknowledged as rich, show questionable long-range
dependence. It can be tested on the simple hydrogen atom
problem, observing, for instance, a very bad radial shape
of 3s function for many bases (e.g. 6-311G∗, cc-pvnZ), as
compared to the known analytic solution. One may con-
sider that a higher function as 3s will not be important in
quantum chemical practice, but we take this issue as illus-
trative counterpoint to the presented method. The sketched
numeric scheme yields, with a moderate computation cost
(e.g. 100 grid points), almost perfect radial shapes for a
large number of radial functions (e.g. up to 7s), keeping
their quality at long-range radii. Thus, the numeric scheme
is perfectly validated in a problem like the hydrogen atom,
the many-electron atoms being treated in the frame of LDA,
by a code popularised previously as Xatom [41]. The same
scheme can be simply adapted, as we did here, for other
spherical potentials, like the charged sphere or associations
of point charge and sphere, the model being provisionally
called Xatom + Xsphere.

Figure 5 shows an analysis of total density pattern. The
Ln@� complex has the total density almost the sum of the
Gd3 + and � fragments, a slight build up of density being
visible in the panel (a) at distances between the outskirts of
central ion and the wall of the sphere (the peak around 4Å).
The difference density in panel (b) shows variations that
can be interpreted as follows: (1) the withdraw of density
from outside and surface of the sphere towards its inner
part (see the depletion of r > 4 Å against the accumulation
immediately below 4 Å); (2) at smaller extent, a part of the

inner density of the lanthanide core is reinvested towards its
outer region; (3) a donation from the electron population of
the cage towards the lanthanide ion (in principle using its
virtual orbitals as acceptors) determining the density built
up in the vicinity of the r ∼ 2 Å middle point.

For further insight, Figure 6 shows the detailed analy-
sis on orbital components with s, p, d and f symmetries.
The series of panels show that the last occupied orbitals in
each set (5sGd, 5pGd, 4dGd, 4fGd), represented by continuous
line, are practically superposable on the points represent-
ing a corresponding wavefunction in the Gd@� complex
(5sGd, 5pGd@�, 4dGd@�, 4fGd@�). The first virtuals of the
lanthanide ion (6sGd, 6pGd, 5dGd, 5fGd) are shown with light
tone line. The Gd@� assembly shows the built of series
of functions occupied with electrons formally originating
from the cage, having the appearance of hybrids between
the function on the empty sphere and the corresponding
lanthanide virtuals. This trend is most visible for the d case
(see the DGd@� profile showing maxima parallel to both
5dGd and D� lines), sustaining the above statements about
the role of 5d orbitals in the bonding scheme of the lan-
thanide complexes. In turn, the f orbitals show almost no
trace of such a deformation effect, the FGd@� dotted profile
being coincident to F�, with no hybridisation to 5fGd. This
result is consistent with the above considerations on the
f-shell rigidity against changes from outer perturbations.

The changes in P set are relatively small, while for the
S orbitals the displacements at the complex formation are
intermediate between those recorded for the S and D cases.
This suggests, in line with the observations noted in the
LF section, that the 6s component is the next in line, after
5d virtuals in providing binding effects, being acceptor for
electron density provided by the environment. The outlined
simple model provides clear information, in the frame of
considered idealisation, about the bonding capabilities of
lanthanide ions.

Figure 5. The Xatom + Xsphere modelling of density pattern for the Gd3 + lanthanide ion placed in a sphere carrying 86 electrons on
a surface charged with Z� = 80, mimicking the spherical smearing of the C80

3− cluster. The panel (a) shows the density from separate
calculation on lanthanide (left-hand side continuous line) and sphere (right-hand side line), the individual curves being almost superposed
with the ensemble density, figured with line and points. The panel (b) shows the density difference between complex and its components.
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Figure 6. The orbital details of the Xatom+Xsphere, dichotomised on the S, P, D and F spherical symmetries. The calculations shows
the components of separate ion (Gd3 + ) or sphere (�) calculations (continuous curves) and the related profiles in the Gd@� ensemble
(marked with points).

4. Conclusion

Using a palette of different computational methods and
interpretations based on model Hamiltonians, we analysed
the particularities of bonding regime for lanthanide ions
embedded in fullerenes. For the Gd2@C80 and Gd2@C79N
compared examples, the exchange coupling was discussed,
the last system being experimentally evidenced with a
ferromagnetic ground state [18]. The specific difference is
that in the C80 case the hexa-anionic cage is diamagnetic,
while the analogous heterofullerene anion carries an
unpaired spin. The calculations show that, in fact, the
fullerene spin component is transferred on functions
originating from the 5d virtuals of lanthanide ions, this
factor determining the overall ferromagnetic appearance.
The intra-atomic 4f–5d parallel spin coupling determines
a ferromagnetic alignment of the f-shell spins to the
electron placed on the upper orbit of the (Gd2)5 + trapped
dimer moiety. Both the multi-configuration CASSCF
calculation and the BS-DFT approach showed a strong
coupling parameter, of about 400 cm−1, for the Gd2@C79N
system.

The situation of a lanthanide centre, interacting, at one
side with a hexagonal face of the fullerene cluster and,

at other side with the positive charge of its companion in
dimer, is described with an extended version of LF mod-
elling, based on FDE DFT calculations. The current ver-
sions of LF methods, dedicated to f or d shells suffer from a
tacit drawback, the holohedrisation effect, marking the in-
capacity to account correctly the asymmetric environments.
The multi-shell LF developed recently by us [36] is applied
here for the description of the highly polar environment felt
by a lanthanide ion.

The discussion of bonding features was continued with
EDA, performing the dichotomy in Pauli repulsion, elec-
trostatic part and orbital stabilisation contributions.

The situation of the encapsulated lanthanide ion was fur-
ther considered in the frame of a heuristic atom-in-sphere
model, using original codes, for numeric experiments fol-
lowing the deformation of density and orbital profiles in the
sum of unperturbed entities (Gd3 + and a charged sphere
containing it) in comparison to the interacting systems. This
modelling revealed that the bonding of the lanthanide units
is merely realised with the help of 5d virtuals, while the
4f shell is chemically inert, as also was pointed previously
[20] and can be figured from the actual quantum chemical
calculations.
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