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We show that the dynamical screening of the Coulomb interaction among Cu-d electrons in high-Tc cuprates is
strong and that a proper treatment of this effect is essential for a consistent description of the electronic structure.
In particular, we find that ab initio calculations for undoped La2CuO4 in the paramagnetic phase yield an insulator
only if the frequency dependence of the Coulomb interaction and the interatomic interaction between p and d

electrons are taken into account. We also identify a collective excitation in the screened interaction at 9 eV, which
is rather localized on the copper site, and which is responsible for a satellite structure at energy −13 eV, located
below the p bands.
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I. INTRODUCTION

The discovery of superconductivity with high-transition
temperature Tc in iron pnictide compounds [1] has triggered a
reexamination of the basic theoretical assumptions about the
electronic structure of the copper oxide superconductors [2,3],
based on the similarities and differences between the two
classes of materials. The role and strength of electronic correla-
tions in high-temperature superconductors is a much debated,
but still not completely settled issue. One of the fundamental
problems in the theoretical description of a correlated material
is the downfolding of the full many-electron Hamiltonian
into a low-energy model with a few orbitals believed to be
most relevant for the origin of superconductivity. In the case
of the cuprates, it is generally agreed that the most relevant
orbitals are those that span the two-dimensional copper oxide
layers, namely, the Cu dx2−y2 and O px and py orbitals,
although models that include the apical O pz as well as Cu
dz2 orbitals have also been considered [4]. Two prominent
low-energy models are the one-band model consisting of only
the strongly hybridized antibonding combination of Cu dx2−y2

and O px and py orbitals and a three-band model which
also includes the bonding combination of dx2−y2 and px,y

and the nonbonding p orbital, also known as the Emery
model [5]. Since the stoichiometric compounds are usually
classified as charge-transfer insulators, a proper description of
the low-energy properties should involve the Cu dx2−y2 and
two oxygen pσ orbitals.

A physically well-motivated representation of the under-
lying one-particle band structure of these models can be
constructed by a tight-binding fit to the ab initio band structure
calculated from the local density approximation (LDA). Since
the Coulomb interaction among the d electrons is so large that a
nonperturbative treatment of the correlation effects is needed,
an interaction term is then added on top of the one-particle
Hamiltonian leading to the Hubbard model with an effective
interaction U . The material-specific determination of the
Hubbard U is, however, a subtle and complicated task. It can
be shown that a reduction of the Hamiltonian to a low-energy
model necessitates the introduction of a frequency-dependent
U reflecting the retarded electron-electron interaction resulting
from the elimination of the high-energy portion of the original
Hamiltonian. In other words, the frequency-dependent U

incorporates the effects of the high-energy component of the
Hamiltonian, which has been projected out in the low-energy
model.

A large body of theoretical studies on the cuprates can
be found in the literature. Several recent works employed a
combination of density functional calculations in the local
density approximation and dynamical mean field theory
(LDA+DMFT) in order to investigate one-band and three-
band models of undoped cuprates. The issues discussed in
these works are the importance of antiferromagnetism in
opening a gap, or its effect on the gap size [6], the proper
choice of the d-p level splitting [7] and the difference of
the electronic structure of La2CuO4 in the T and T’ crystal
structures [8]. It was also shown that the interatomic interaction
between p and d electrons plays an important role in stabilizing
the charge-transfer insulator state, and therefore needs to be
considered at least at the Hartree level [9]. While some of
these studies used realistic band structures, the interaction
parameters were chosen in an ad hoc fashion and as far as
we know, all low-energy models for the cuprates considered
so far have neglected the effects of the frequency dependence
of U .

The calculation of the Coulomb matrix elements in a
Wannier basis corresponding to the low-energy subspace
(here the one-band or three-band model) is possible using
the constrained random phase approximation (cRPA) [10].
This formalism yields interaction parameters that vary from
a static value of a few eV (significantly smaller than the values
typically adopted in previous studies) to bare interactions of the
order of 20 eV at high frequency. The importance of properly
treating this frequency dependence has been pointed out in
previous papers [11–14], but not for the cuprates. As we will
show, the screening effect in high-Tc cuprates is remarkably
strong. There are even recent experimental studies which
suggest a connection between screening and Tc [15].

Four issues will be addressed in the present work. First,
what is the role of the frequency-dependent U? Second,
is a one-band model sufficient to describe the low-energy
electronic structure of the undoped cuprates? Third, what
is the role of the interaction between the Cu d and O p

electrons, which is usually neglected in most studies? Fourth,
do ab initio calculations support the conventional classification
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of undoped cuprates as charge-transfer insulators? The third
issue has recently been considered in a model study based
on adjustable, static interaction parameters [9]. Here, we
focus on the prototypical high-Tc material La2CuO4, which
has been thoroughly investigated both experimentally and
theoretically [16]. Our strategy is to perform an ab initio
simulation of the electronic structure of La2CuO4 in which
both the band-structure and the interaction parameters are
derived from first principles, and to check if it gives a faithful
representation of the low-energy electronic properties. To take
into account electron correlations, we use the DMFT method
and solve the impurity problem with dynamic U using a
continuous-time quantum Monte Carlo (CT-QMC) algorithm.
The ab initio interaction parameters U corresponding to the
ab initio band structure are calculated by means of the cRPA
method. We find that simulations that neglect the frequency
dependence of this interaction fail to produce an insulating
solution. On the other hand, if the frequency dependence
of the d-d interaction is taken into account, a three-band
simulation based on ab initio interaction parameters pro-
duces an insulator with a gap size in good agreement with
experiment.

The paper is organized as follows. Section II discusses
the methods used to derive the low-energy models (one-band
and three-band) and the LDA+DMFT approach used to
solve these models. Section III shows the spectral functions
obtained for La2CuO4 using either the static values of the
estimated Coulomb interactions, or the frequency-dependent
d-d interaction. Section IV is a summary and conclusion.

II. MODEL AND METHOD

A. LDA band structure

Figure 1 shows the LDA band structure as well as the
band structures of the effective low-energy one- and three-
band models. The LDA band structure was computed with
the full-potential linearized augmented-plane-wave (FLAPW)
code FLEUR [17] and the model subspaces were defined using
symmetry-constrained maximally localized Wannier functions
as implemented in the WANNIER90 library [18–22]. For all
calculations, the body-centered tetragonal lattice structure of
Ref. [23] was used, and the LDA calculations (with 8 × 8 × 8 k

points) included the La 5s and 5p orbitals as local orbitals.
The model subspace was defined using the disentanglement
scheme [24] where the coupling between the model sub-
space, defined by the Wannier functions, and the remaining
states is removed, yielding a block-diagonal Hamiltonian.
The Wannier functions were constructed using 6 × 6 × 6 k

points.
The effective one-band model consists of a single orbital of

dx2−y2 character at each Cu site. For the three-band model, we
increase the model subspace to include also the two in-plane
Wannier orbitals of O px/py character. It should be noted that,
although the conduction bands look very similar in the two
cases the Wannier functions corresponding to the Cu dx2−y2

orbitals are very different. In the one-band case, the Cu-centred
Wannier function is constructed as a linear combination of
only a few bands close to the Fermi energy. This leads to
less variational freedom and hence much more delocalized

FIG. 1. (Color online) LDA band structure (solid lines). In addi-
tion, the left panel shows the Wannier interpolated (disentangled)
band structure for the one-band model and the right panel the
corresponding band structure for the three-band model (thick dashed
lines). The color coding in the right panel indicates the d character of
the bands. The symmetry points are defined as � = (0,0), K = (π,π )
and X = (π,0) and the vertical axis is in eV.

Wannier functions than in the three-band case, where more
states are used to construct the Wannier functions as can be
seen in Table I. Hence, while in the one-band case, there is
a one to one correspondence between the conduction band
and the dx2−y2 -like Wannier function spanning the correlated
subspace, this is not the case for the three-band model. In
the three-band model, the conduction band can be interpreted
as the antibonding combination of the p and d states and
the two valence bands can be interpreted as the bonding and
nonbonding combinations. Therefore, although the main d-
weight is in the conduction band, there is also a small d weight
in the valence bands as can be seen in the right panel of Fig. 1.

B. cRPA calculation

We compute the frequency-dependent interaction parame-
ters for the one-band and three-band model using cRPA [10].
In this scheme, the polarization function P (ω) is calculated
in the random phase approximation, i.e., by considering only

TABLE I. Cu dx2−y2 Wannier spread (Å
2
) for the one-band

and three-band models. The states used to construct the maximally
localized Wannier functions are selected by means of an energy
window and band index. The Fermi energy is chosen at 0 eV. No
inner window was used in these calculations.

Model Spread (Å
2
) Energy Window (eV) Band index

one-band 4.3 −2.5 → 2 13 → 29
three-band 0.49 −8 → 2 13 → 29
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the bubble diagrams with LDA propagators. This polarization
function relates the bare interaction V and the fully screened
Coulomb interaction W (ω) via

W (ω) = V + V P (ω)W (ω).

One then defines a polarization Pl(ω) associated with tran-
sitions between states defined in the low-energy subspace.
Since these transitions will be treated explicitly in the DMFT
calculation, we remove these screening processes in the
calculation of the effective interaction. For this, one computes
Pr (ω) = P (ω) − Pl(ω) and the frequency-dependent U (ω),
which satisfies

W (ω) = U (ω) + U (ω)Pl(ω)W (ω).

Apparently, the screening of U (ω) by Pl(ω) gives the fully
screened interaction W (ω). One thus interprets U (ω) as an
effective frequency-dependent interaction among electrons
residing in the low-energy subspace defining the Hilbert space
of the low-energy model. This so-called Hubbard U can also
be obtained by solving the following equation:

U (r,r′; ω) = V (r,r′) +
∫

d3r1d
3r2V (r,r1)

×Pr (r1,r2; ω)U (r2,r′; ω), (1)

or schematically U (ω) = [1 − V Pr (ω)]−1V . The frequency-
dependent interaction parameters of the model are then given
by the matrix elements of U (ω) in the Wannier basis {ϕm} con-
structed using the procedure of Marzari and Vanderbilt [18]:

〈ϕm1ϕm2 |U (ω)|ϕm3ϕm4〉

=
∫

d3rd3r ′ϕ∗
m1

(r)ϕm2 (r)U (r,r′; ω)ϕm3 (r′)ϕ∗
m4

(r′). (2)

While the application of this procedure to the one-band
model is unambiguous, the three-band case is more subtle.
Here, the subset of screening processes which should be
excluded depends on how the three-band model is solved.
If we were to solve the full three-band model, we would
simply remove all screening processes within the model and no
ambiguity would arise. It would, however, lead to a multi-site
impurity problem involving not only the copper site but also
the oxygen sites and orbital-dependent U (ω). At present it is
not possible to perform DMFT calculations for such a complex
problem. In this work, we will treat the d-d interactions within
DMFT, and the p-p and p-d interactions at the Hartree level
(similar to Ref. [9]). In this case, only the d-d screening
needs to be removed in the calculation of U since we do not
include p-d screening processes in the model. According to
the discussion in the previous section, the main d-weight is in
the conduction band. We therefore remove only the screening
within the conduction band also for the three-band model. The
effective interaction U (r,r′; ω) as defined in Eq. (1) is then
the same as in the one-band model but the matrix elements of
U as defined in Eq. (2) representing the interaction between
d-electrons will nevertheless be different from the one-band
case, because the Wannier orbitals of the three-band model are
significantly more localized.

C. DMFT calculation

The LDA calculation and cRPA downfolding lead to a
low-energy effective model with one or three bands and
dynamically screened (retarded) intra- and interorbital inter-
actions. To solve this model, we use the DMFT method [25].
This approximation maps the lattice problem onto a single-
orbital Anderson impurity model with a dynamical interaction
Udd (ω), i.e., an electron-boson problem with a Holstein-like
coupling to a continuum of bosonic modes [11]. Using
the hybridization-expansion Monte Carlo method [26,27],
this impurity problem can be solved efficiently and without
approximations on the imaginary axis, yielding the impurity
Green’s function Gimp(iωn) and the impurity self-energy
�imp(iωn).

In the one-band model, we approximate the lattice self-
energy �(k,iωn) by �imp(iωn) and compute the local lattice
Green’s function as

Gloc(iωn) =
∫

(dk)[iωn + μ − εk − �imp(iωn)]−1.

Here, the k integral is normalized over the Brillouin zone, and
εk is the conduction band dispersion. The chemical potential
μ is adjusted to ensure one d electron per unit cell, so we do
not need a “double counting term” to remove the Hartree-type
self-energy contribution which is already included at the LDA
level.

The three-band case needs some justification. Let us start
with the Hamiltonian with a static U = U (ω = 0) given by

H = H0 + Udd

∑
i

nid↑nid↓ + Upp

∑
j

njp↑njp↓

+Upd

∑
〈ij〉

nidnjp, (3)

where n = n↑ + n↓, H0 is the tight-binding Hamiltonian for
the three-band model and i and j label the copper and oxygen
sites, respectively. Since the p bands are filled, correlation
effects among p electrons are expected to be small and the
LDA bands should be quite reliable. The impurity problem is
therefore solved only for the copper site and since we do
not consider p to d screening channels in the model, the
effective interaction Udd must include these p-d screening
processes and therefore corresponds to the one-band model,
albeit evaluated with the more localized Wannier functions of
the three-band model, as discussed earlier.

We now take into account the frequency dependence of
Udd and solve the impurity problem with a dynamic Udd

using the CT-QMC method within the action formalism. In
the three-band case, we consider, in addition to the local self-
energy �dd (iωn) = �imp(iωn), the p-p and p-d interactions
at the Hartree level. We thus have to add the double-counting
terms �DC, which as in Ref. [9], we evaluate with the LDA
densities for the Upp and Upd contributions. This amounts to
adjusting the Hartree self-energies (which are included in the
LDA) to the self-consistently computed densities. For �dd , we
use a standard double-counting term [28] evaluated with the
correlated density nd [29]. Specifically, the diagonal matrix
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elements of �̃ = � − �DC are

�̃dd (iωn) = �imp(iωn) − Udd (0)
(
nd − 1

2

)
+ 4Upd (0)

(
np − nLDA

p

)
, (4)

�̃pp(iωn) = Upp(0)
(
np − nLDA

p

)+ 2Upd (0)
(
nd − nLDA

d

)
, (5)

and the off-diagonal elements are set to zero. The factor of
four in the last term of �̃dd is due to the presence of four
nearest oxygen atoms around a copper atom and the factor
of two in the last term of �̃pp is due to the presence of two
nearest copper atoms around an oxygen atom. Note that in the
Hartree-like terms, we use the screened interactions. While
this can be justified in the case of the d-d interaction [12], it
is an approximation for the Upp and Upd terms which should
be considered as a lower bound estimate. At present, it is
unclear how the frequency dependence should be incorporated
into a static description if the screening modes for different
interaction terms are different.

With this approximate self-energy, we then compute the
local lattice Green’s function as

Gloc(iωn) =
∫

(dk)[(iωn + μ)I − Hk − �̃(iωn)]−1,

which is a 3 × 3 matrix, and then extract the d component in
order to define a new hybridization function for the impurity
model. In the self-consistent iteration, the chemical potential
is adjusted such that the total number of p and d electrons is∑3

α=1 Gαα(τ = 0−) = 5.

D. Analytical continuation

In order to compute spectral functions for models with
frequency-dependent interactions, one can use the strategy
proposed in Ref. [30]. We define the bosonic function
exp[−K(τ )], with

K(τ ) = 1

π

∫ ∞

0
dω′ ImU (ω′)

ω′2 [b(ω′,τ ) − b(ω′,0)]

and b(ω′,τ ) = cosh[(τ − β/2)ω′]/ sinh[βω′/2], and compute
the auxiliary Green’s function Gaux(τ )=Gdd (τ )/ exp[−K(τ )].
The spectral function corresponding to Gaux(τ ) is expected to
have no high-frequency components and can be obtained using
the maximum entropy analytical continuation procedure [31].
Finally, the spectral function A for G is obtained from a
convolution of the auxiliary spectral function Aaux and the
exactly computable spectral function of the bosonic factor
exp[−K(τ )] [12,30]. In this convolution, the low-energy
structures of the spectral function are replicated at energies,
which are directly related to the dominant screening modes.

We can employ the same strategy to analytically continue
the self-energy. For this, we first compute a Green’s function
G̃(iωn) = 1/(iωn + μ̃ − �(iωn)) with a suitably chosen μ̃

and apply the above procedure to obtain the corresponding
spectral function Ã(ω) and (using the Kramers-Kronig trans-
formation) the Green’s function G̃(ω). The real-frequency
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FIG. 2. (Color online) Dynamically screened interactions in the
one-band model (top panel) and in the three-band model (bottom
panel). Because only the d orbital is considered in the impurity
calculation, we only remove the d-d screening in the three-orbital
case.

self-energy, including high-energy features, is then given by
�(ω) = ω + μ̃ − 1/G̃(ω).

III. RESULTS

A. Frequency-dependent U

We plot the cRPA results for La2CuO4 in Fig. 2. The top
panel shows Udd (ω) for the one-band model and the bottom
panel shows Udd (ω), Upp(ω), and Upd (ω) for the three-band
model. In the one-band case, the static (screened) interaction
is Udd (ω = 0) = 3.65 eV. The imaginary part of U , which
describes the excitation spectrum of the system excluding
contributions from the model, is characterized by several
collective excitations: a broad peak centered at ω = 30 eV
and a sharp peak at ω = 9 eV, as well as smaller peaks
around ω = 13 and 21 eV. The broad peak corresponds to a
collective plasmon excitation that is coupled to single-particle
excitations providing decaying channels responsible for the
broad feature. The polelike structure around ω = 9 eV may be
interpreted as a collective subplasmon excitation arising from
single-particle transitions from the occupied oxygen p bands
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to the unoccupied part of the antibonding dx2−y2 band. At very
high-energy above the plasmon frequency, screening becomes
ineffective and the interaction approaches the bare Coulomb
interaction value of Udd ≈ 20 eV.

In the three-band case, the structures of the frequency-
dependent Udd interaction look similar to the one-band case
but the static value is Udd (ω = 0) = 7.00 eV, while the
high-frequency limit is about 30 eV. These higher values
result from the more localized Wannier orbitals because, as
explained previously, Udd is calculated as a matrix element
of the U (r,r′; ω) of the one-band model. The static values of
the p-p and p-d interactions are Upp(ω = 0) = 4.64 eV and
Upd (ω = 0) = 1.88 eV. For these interactions, the dominant
low-frequency pole is near 13 eV (the peak at 9 eV is missing).
Since Udd , Upp, and Upd are calculated as matrix elements of
the same U (r,r′; ω), the presence of a strong peak in Im Udd but
not in Im Upp and Im Upd implies that the collective excitation
corresponding to the 9 eV peak is not extended, as in usual
plasmonlike excitations, but rather localized on the copper
site. This suggests that the screening mechanism of a hole or
a test charge created at the copper site will be different from
the screening mechanism at the oxygen sites. An additional
screening charge fluctuation associated with the 9 eV peak is
present in response to a hole created at the copper site but not
at the oxygen sites. For HgBa2CuO4, another high-Tc cuprate
compound, one can identify the same low-frequency features
around 9 eV in Udd , while the corresponding feature is absent
in both Upd and Upp. This indicates that the localized p-d
excitation at 9 eV might be a universal feature of the cuprate
compounds.

A convenient way to quantify the screening effect encoded
in the dynamical Hubbard interaction is to compute the “band
renormalization factor” [14] ZB = exp[ 1

π

∫ ∞
0 ImU (ω)/ω]. In

a one-band model, the low-energy properties of the solution
for a frequency-dependent interaction U (ω) can be reproduced
by a calculation involving the static interaction U (ω = 0) and
hopping parameters renormalized by ZB . Hence this factor
essentially tells us by how much the static limit underestimates
the interaction strength. In the case of La2CuO4, ZB is
remarkably low (see Ref. [14] for ZB values of other transition
metal compounds). For the one-band model, we find ZB =
0.58 and for the three-band model Zdd

B = 0.52. These low
values are primarily due to the strong pole near 9 eV. Indeed, for
Upp and Upd , the renormalization factor is higher: Zpp

B = 0.68
and Z

pd

B = 0.80. ZB is low for La2CuO4 even in comparison
with other cuprate compounds. For HgBa2CuO4, for example,
where the 9-eV pole is less pronounced, the renormalization
factor is ZB = 0.66 in the one-band model.

B. One-band model

We first discuss the results obtained for the one-band model.
Figure 3 shows the local d-electron spectral function obtained
with the frequency-dependent interaction (blue line) and with
the static interaction Udd (0) (dashed black curve). The calcu-
lations have been performed at temperature T = 0.1 (1200 K
� TN = 325 K) in the paramagnetic phase, and we use the
analytical continuation procedure described in Sec. II D. We
see that the static interaction is not enough to open a Mott
gap in the spectral function, whereas the calculation with the
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FIG. 3. (Color online) Local spectral functions for the one-band
model with static and dynamic U (temperature T = 0.1). Results
obtained via analytical continuation of the self-energy.

full Udd (ω) yields a gap. However, the gap size of �1 eV is
too small compared to the experimentally measured optical
gap of 2 eV [32]. Apart from this low-energy region, the
spectra differ mainly at high energies. Here, the dynamic-
U spectrum features satellites at energies of approximately
±(9−13) eV and a broad plasmon peak centered around 30 eV.
They correspond to collective excitations with simultaneous
emission or absorption of quantized density fluctuations with
a frequency given by the dominant modes visible in Fig. 2.
Obviously, this physics is missing in a static-U description.

We have also performed a calculation with a static U but
with the one-particle band renormalized by the Bose factor
ZB , as proposed in Ref. [14]. This calculation also produces a
gap, confirming the importance of the frequency dependence
of U in renormalizing the bandwidth.

C. Three-band model

In the three-band calculations, we also find that static
interactions equal to the static limit of the ab initio estimated
interaction parameters are not enough to open a gap in the
spectral function (upper panel of Fig. 4). However, as shown
in the bottom panel of Fig. 4, if the frequency dependence
of Udd is considered, an insulating solution is found, with
a gap of 1.9 eV. This is in rather good agreement with the
experimentally measured gap. (Our use of the static screened
interactions in the Hartree terms implies that this calculation
yields a lower bound for the gap size.) Furthermore, since the
calculations have been performed in the paramagnetic phase,
the gap opening confirms that the insulating nature of La2CuO4

is of Mott-Hubbard rather than Slater type. We also find, in
agreement with Ref. [9], that the interatomic Hartree potential
is essential: without the corresponding shift in the relative
p-d level splitting, the d-orbital filling would be too high and
the frequency-dependent Udd would not be enough to open a
Mott gap.

In contrast to the one-band result, the d-spectral function
from the three-band calculation is strongly asymmetric, due to
the hybridization with the p-states, which lie below the Fermi
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FIG. 4. (Color online) Local spectral functions for the three-band
model with static U (top panel) and with dynamic U (bottom panel)
at temperature T = 0.1. We have identified the following features in
the d spectral function: upper Hubbard band (UH), lower Hubbard
band (LH), Zhang-Rice singlet band (ZR), and satellites (S). Results
obtained via analytical continuation of the self-energy and using a
Hamiltonian interpolated to 16 × 16 × 16 k points. The zigzag curves
in the top panel are due to the k discretization.

energy. The states near the lower gap edge have a mixed p-d
character (d8 ligand hole) and correspond to the “Zhang-Rice”
singlet band [7,33]. On the unoccupied side, the d density of
states is peaked near the band edge and extends over an energy
range of about 2 eV. This feature may be interpreted as the
upper Hubbard band corresponding to the d10 configuration.

While the upper Hubbard band is rather well defined, there
have been conflicting results concerning the lower Hubbard
band. In view of the discussion in the previous literature about
the correct position of the lower Hubbard band [6,7], we have
to caution that this feature is difficult to identify due to the
dynamical nature of the Coulomb interaction. Especially in
La2CuO4, which has a prominent screening mode at ω ≈ 9 eV
[similar to the screened interaction of Udd (ω = 0) = 7 eV]
structures that may be identified with the lower Hubbard band
can be expected to overlap with satellite features. Furthermore,
due to the self-consistent adjustment of the p-d level splitting
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FIG. 5. (Color online) Local d-electron spectral function for the
three-band model (temperature T = 0.1). Results obtained via an-
alytical continuation of the local Green’s function. The black line
plots the total spectral function, while the pink line shows Areg(ω)
and the blue shaded area the satellite contributions generated by the
convolution of Areg(ω) with the bosonic spectral function.

via the Hartree contribution in Eqs. (4) and (5), which is
affected by the smaller nd in the dynamic-U calculation, the
p-states are pushed down in energy, so that there is a strong
p-d hybridization in the energy range where we expect the
lower Hubbard band.

To shed some light on the satellite issue, we plot in Fig. 5
the d-electron spectral function for the three-band model. In
contrast to Fig. 4, where the density of states has been obtained
via the analytical continuation of the self-energy, we computed
the spectral function shown in Fig. 5 directly from the local
Green’s function, by the procedure explained in Sec. II D.
While the direct continuation of the Green’s function yields
a somewhat poorer resolution of the features in the energy
region dominated by the p states, the agreement between the
two spectral functions is rather good.

The analytical continuation of G by the method of Casula
et al. [30] allows us to identify a “regular” contribution to the
density of states, and a “satellite” contribution, corresponding
to states that can be accessed via the emission or absorption of
bosons. In the regular part, we can identify the upper Hubbard
band in the energy region from 0 to 2 eV, the Zhang-Rice
singlet band responsible for the peak near the lower gap
edge, and a broad feature in the energy range from −3 to
−10 eV. It is this latter feature that should be associated with
the lower Hubbard band. The comparison with Fig. 4 shows
that this Hubbard band (which is somewhat more asymmetric
in the spectrum based on the analytical continuation of �)
overlaps with the p states, so that the lower Hubbard band
is partially masked by the d spectral weight originating from
p-d hybridization. On the other hand, the hump seen in the
energy range from −10 to −15 eV, as well as the peak
centered around +10 eV, should be considered satellite features
that result from the frequency dependence of the Hubbard
U in the effective low-energy model. The position of the
satellite feature around −13 eV is in good agreement with
the experimental photoemission spectra in Ref. [34] shown in
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FIG. 6. Resonance photoemission spectra for La1.8Sr0.2CuO4

taken from Ref. [34]. The satellite feature at about −13 eV (labeled D)
is in good agreement with theoretical calculations in Fig. 4. A
small feature around the Fermi level, which may be related to the
Zhang-Rice singlet, can be seen in the inset but it is not as distinct as
in the theoretical spectra.

Fig. 6 (labeled D). The structure labeled C is considered to be
due to contamination, as confirmed by the absence of such a
feature in a more recent photoemission experiment [35]. The
feature normally associated with the Zhang-Rice singlet [7]
is, however, not clearly observed experimentally. Although
the data in Fig. 6 are for a hole-doped compound, a similar
result is obtained for the undoped case [35]. This situation
is analogous to an Anderson impurity model calculation on
Nd2CuO4, where a Zhang-Rice singlet was found theoretically
but not experimentally [36]. It may well be that the discrepancy
arises from the assumption of a local self-energy in DMFT.
The too low position of the oxygen p band may be due to
the rather crude Hartree approximation for the interatomic
self-energies and may also be responsible for the appearance
of a strong Zhang-Rice singlet, which would otherwise be
masked by the oxygen p band. Comparison between theory
and experiment is further complicated by the presence of other
bands not included in the model lying in the energy range of
the valence band.

To reveal the lower Hubbard band, it is instructive to look
at the momentum resolved spectral function. In Fig. 7, we plot
the p and d spectral functions along the same path as in Fig. 1.
Besides the weakly dispersing upper Hubbard band, we find
a similarly dispersing band in the energy range from −2 to
−6 eV. The states near the band edge, which have a strong
overlap with p states, may be identified with Zhang-Rice
singlets. In the same region of momentum space, one finds
an almost dispersionless band at −7 eV, which also exhibits
a strong overlap with p states. This energy is suggestive
because it corresponds to the screened Udd , and the chemical
potential is at the upper gap edge. However, a comparison
with the LDA band structure in Fig. 1 and the p spectral
function shows that this feature in the d spectral function can
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FIG. 7. (Color online) k-resolved spectral functions for the three
band model at T = 0.1 along the same path as in Fig. 1. (Top)
p-electron spectral function. (Bottom) d-electron spectral function.

be naturally interpreted as originating from the hybridization
with a renormalized p band. Hence it appears that the d states
which may be associated with the lower Hubbard band cover a
broad energy range up to the gap edge, and that the Zhang-Rice
band should be considered a substructure of the lower Hubbard
band. Since the lower Hubbard band covers the same energy
range as the p states, and the structure near −13 eV (visible
as a grey band in the bottom panel of Fig. 7) is a satellite,
our calculation is not consistent with a simple charge-transfer
insulator picture, in which the Hubbard band lies below the p

states.
It is interesting to note that the fully screened interaction

Im Wdd is dominated by two strong peaks at energies 3 and
9 eV, which signal the formation of many-body or collective
states with those binding energies (Fig. 8). The comparison
with Im Udd for the one-band or three-band model allows us
to conclude that the peak at 3 eV in Im Wdd originates from
collective excitations within the dx2−y2 band since the peak is
missing in Im Udd . This energy happens to be close to the size
of the gap. In a weakly-correlated system, structures in Im W

must necessarily be carried over to Im � and in turn inherited
by the spectral function. Structures in the spectral function
must therefore reflect structures in Im W . One interesting but
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FIG. 8. (Color online) Fully screened interaction W (ω) for the
three-band model.

yet unresolved issue is the relation between these peaks in
Im W and the Hubbard bands.

If the screened interaction W were computed fully self-
consistently, and not by cRPA, transitions across the gap would
contribute to the low-energy screening, so that we can expect
a feature in ImWdd at an energy corresponding to this gap.
There is, however, a priori no reason why the cRPA W ,
which is derived from the LDA band structure, should exhibit
these structures. Whether the agreement between the gap size
in Fig. 5 and the sharp peak in ImW in Fig. 8 is a mere
coincidence, or if the corresponding properties of the band
structure (used in the DMFT calculation) play a role in fixing
the size of the Mott or charge transfer gap is an interesting
open question [37].

D. Relationship between the one-band and three-band models

We now consider the long-debated question to what extent
the one-band model is able to represent the electronic structure
of the three-band model and whether the one-band model is
sufficient to describe the low-energy physics. The Wannier
orbitals in the one-band model are extended objects with both
p and d character. Hence the lower Hubbard band in this model
should not be considered as simply a d8 state, but rather as a
representative of the Zhang-Rice and lower Hubbard bands
found in the three-band calculation. Conversely, the upper
Hubbard band in the one-band case is not simply a d10 state,
but an excitation which has no simple correspondence in the
three-band calculation. If we consider the Zhang-Rice singlet
band a substructure of the lower Hubbard band, we should
compare the separation between the Hubbard bands in the
one-band calculation to the separation between upper Hubbard
band and the Zhang-Rice band in the three-orbital model,
rather than to the 7 eV gap between the low-energy hump in the
lower Hubbard band and the upper Hubbard band. In this case,
the agreement between the spectra seems acceptable, given the
difference in localization between the Wannier orbitals.

Of course, the one-band calculation cannot reproduce
the strong asymmetry of the three-orbital model d-spectral
function, which originates from the presence of the oxygen

bands. Also, the gap size is too small, since the calculation
does not take into account the effect of Upd , which is essential
in fixing the p-d level splitting in the three-band calculation.

IV. SUMMARY

We have constructed low-energy one-band and three-band
models for La2CuO4 from first principles. The one-particle
band structure was based on the LDA and the frequency-
dependent effective interaction (dynamic U ) was calculated
using the cRPA method. U (ω) describes the strength of the
electron-electron interaction across the frequency spectrum.
At low energy, screening is effective, resulting in a small
U . In most materials, there is a sudden increase in U in the
region of the plasmon energy, above which screening becomes
less efficient and U approaches the bare Coulomb interaction.
In La2CuO4, however, there is a dominant screening mode
(subplasmon) at relatively low-energy arising from oxygen 2p

to Cu 3d transitions so that the increase from the static value
occurs at a lower energy. This results in a larger effective
interaction strength than what the static value suggests. In
both the one-band and three-band models, LDA+DMFT
calculations using a static U taken as the zero frequency limit
of the dynamic U do not yield the expected insulating gap.
It is necessary to take into account the band renormalization
effect implicitly contained in the frequency-dependent U in
order to open up a gap in the spectrum. This clearly shows the
crucial role of dynamical screening in a correct description of
the insulating state of La2CuO4 and in obtaining a consistent
picture of the low-energy electronic structure. In agreement
with Ref. [9], we have also found that it is important to take
into account the change in the inter-atomic Hartree potential,
which is neglected in most DMFT calculations, to shift the
position of the oxygen p bands relative to the d band and
reduce the p-d hybridization.

We found that the d states, which should be identified with
the lower Hubbard band, cover the same energy range as the p

states, and that the Zhang-Rice band should be considered
a substructure of the lower Hubbard band. In addition,
two pronounced collective excitations embodied in the fully
screened interaction W were observed at ω = 3 and 9 eV. The
peak at 3 eV can be traced back to a collective plasmonlike
excitation arising from particle-hole excitations within the
antibonding d band, whereas the 9-eV peak corresponds to
a collective excitation originating from transitions between
the occupied oxygen p bands and the antibonding d band.
The peak at 9 eV is responsible for the strong screening of
the Hubbard interaction in La2CuO4. It also gives rise to
satellites in the spectral function at −13 and +10 eV. The
peak at −13 eV that may look like the lower Hubbard band
is in fact a subplasmon satellite associated with the p-to-d
transitions. The true lower Hubbard band is partially masked
by the oxygen p bands at a lower binding energy.

Comparison between the spectral functions of the one- and
three-band models reveals that the one-band model is not
sufficient to describe the electronic structure within the energy
range of the gap. The size of the gap of the one-band model is
significantly smaller than that of the three-band model, where
the latter value of 1.9 eV is in very good agreement with the
experimentally measured 2.0 eV. It is also quite evident that the
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one-band model cannot properly describe the true character of
the top of the valence band, which is of the type d8 ligand
hole, rather than a simple lower Hubbard band splitting off the
antibonding d band.

While our calculation is based on the ab initio band
structure, uses ab initio interaction parameters, and takes into
account the p-d interaction (at the Hartree level), one missing
ingredient is the momentum-dependence of the self-energy.
It has been found in recent studies that the strong band
renormalization from the dynamical U is at least partially
compensated by a band widening due to the k dependence
of the self-energy [38–40]. Quantifying these effects for
La2CuO4 requires more advanced schemes, such as cluster
extensions of DMFT (which cannot be easily combined with
the most efficient techniques for treating frequency dependent
U ), or GW+DMFT (which may not properly capture the k

dependence in strongly correlated compounds [41]). Another
important goal is the self-consistent calculation of the inter-

action parameters from the renormalized band structure, if
possible using a polarization function which contains vertex
corrections. For this aspect, the self-consistent combination of
DMFT with many-body perturbation theory approaches such
as GW appears to be promising. Exploring these issues will
be an interesting topic for future studies.
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