
Supporting Information
Mariani et al. 10.1073/pnas.1500125112
Simulation Details
Planting Method.We generate the initial configuration as follows:

• We generate randomly the positions x of the N spheres, with
a uniform probability distribution over the simulation box.

• For each sphere i, we generate its shifts lij with uniform dis-
tribution in the simulation box. Each shift lij is accepted if and
only if

jxi − xj + lijj> 1; [S1]

otherwise it is generated again until condition S1 is satisfied.
It can be shown (1) that in the infinite volume limit this pro-

cedure generates a thermalized initial configuration where the
annealed average of entropy is equal to the quenched one (i.e.,
a configuration in the liquid phase) (1).
We have tested that the procedure works, that the config-

urations that we generate are at equilibrium and their properties
are independent from time (as long as the density remains
constant). The result for the observable gðr; 0Þ for planting
density φ0 = 2:5 is shown in Fig. S1. We can see in the low r
region a behavior compatible with the equilibrium one:

gðx− yÞ= expð−vðx− yÞÞ=
�
0 if  jx− yj<D
1 if  jx− yj>D

[S2]

within 1 or 2 SDs. For example, for the contact point we have
gð1Þ= 0:987± 0:019. We do not study the large r behavior of
gðr; 0Þ, which shows a decay caused by the finite size of the
simulation box and cannot be compared with the infinite-volume
analytical result (Eq. S2).

Monte Carlo Evolution Algorithm and Verlet Lists.We used a Monte
Carlo evolution algorithm. At each step t we propose a dis-
placement ΔxiðtÞ to each sphere i. The proposed displacement is
generated uniformly in a 3D sphere of radius δ, where δ= 0:2 is
a fixed parameter. The proposed displacement is accepted if and
only if the condition

jxi +Δxi − xj + lijj> 1 [S3]

is satisfied for all other spheres j≠ i; otherwise it is rejected. This
stochastic dynamics satisfies the detailed balance property, thus
implying relaxation toward equilibrium. To reduce computa-
tional time we use Verlet lists (see, e.g., ref. 2).

Radial Distribution Function Computation. We denote by ΩΔ;lðr; tÞ
the number of sphere couples such that

jxiðtÞ− xjðtÞ+ lijj∈ ½r; r+Δ�

and we define a fixed time radial distribution function

gΔ; lðr; tÞ= 1
4Nφ

ΩΔ; lðr; tÞ
ðr+ΔrÞ3 − r3

:

The parameter Δ is fixed and corresponds to the histogram bin
length. We choose Δ= 0:05. To gain central processing unit time
we perform measurements at equispaced intervals in time (typ-
ically every 20 Montecarlo sweeps). In our simulation we further
average over the different starting configuration. The number of
configurations is M = 6, a reasonable value for a self-averaging

quantity. The statistical error is estimated from sample-to-
sample fluctuations.

Decompression Protocol. In the following we denote by k the
logarithm in base 2 of the number of Monte Carlo steps per-
formed for each density value. We are interested in a decom-
pression protocol that mimics the physical heating of a glass. We
start from a planted initial configuration at a density φ0 in the
glassy region (φ0 >φd) in the liquid phase (φ0 <φk), equivalent
to the supercooled liquid region in real glass formers. To be safe
we choose φ0 values between 2 and 3. After planting, we de-
compress the system changing the box size, leaving the integer
sphere positions unchanged, causing a jump φ0 →φ1 of density,
with φ1 <φ0. The system evolves for 2k Monte Carlo steps at
density φ1, then density jumps again to a lower value φ2 <φ1, the
system evolves for 2k steps at density φ2, and so on.

Compression Protocol. To compress the system, we increase the
particle radius until the particles touch. When this happens, Monte
Carlo steps are performed to separate the particles; afterward, the
radius is increased again, until the final density is reached.
The procedure is slow and therefore the final system is nearly

thermalized. After the final density is reached, we run a long
simulation for final thermalization and we take measurements
only in the second half of the run.

Mean Square Displacement
For each density value φ we measured the relaxation time by fitting
the plateau escape region of the MSD ΔðtÞ with the power law

ΔðtÞ= a
�
1+ ctb

�
:

We discarded the fast relaxation region. We considered for each
density value only points with t> 211. We defined the relaxation
time using the relation ΔðτRÞ= 1:5 Δð211Þ. The value 1.5 is some-
what arbitrary: It should be neither too small, to reduce noise
effects, nor too large, to allow us to obtain relaxation time values
not too large compared with the typical time scales of our sim-
ulations. Using this procedure we obtained the value of relaxa-
tion time for each value of density. For the highest studied values
of density (i.e., φ= 1:7; 1:68; 1:66), we obtained τR > 222, meaning
that 222 steps were not sufficient to observe relaxation: These are
extrapolated points and we discarded them.

Computation of Isocomplexity Lines
The first step is the computation of the replicated entropy Sðm;φÞ
as a functional of the replicated density. Denoting by x = fxðaÞg
the set of the positions of the m replicas, by ρðxÞ the replicated
density, for the mean-field MK model we have

Sðm;φÞ½ρ�=−
Z

dx  ρ
�
x
�
log
�
ρ
�
x
��

+
1
2

Z
dx   y  ρ

�
x
�
ρ
�
y
�
f
�
x − y

�
+N logðNÞ;

[S4]

where

f
�
x − y

�
= exp

 Xm
a=1

v
�
xðaÞ − yðaÞ + l

�!
−1
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is the replicated Mayer function. In practice, the replicated den-
sity is usually parameterized as

ρ
�
x
�
=
N
V

Z
dX 

Ym
a=1

gA
�
xðaÞ −X

�
; [S5]

where xðaÞ is the position of replica a and gA is the Gaussian
function with variance A. The parameter A represents the aver-
age cage radius and can be also interpreted as the plateau value
of the mean square displacement of particles in the caging re-
gime. For the mean-field MK model of hard spheres, combining
results presented in appendix A of ref. 3 and in section VI of
ref. 4, putting parameterization S5 in S4 we obtain

Sðm;φ;AÞ= logðNÞ− log
�

φ

Vdð1Þ
�

+ Sharmðm; AÞ− 2d−1φð1−Gðm; AÞÞ;
[S6]

where Gðm;AÞ and Sharmðm;AÞ are defined in ref. 4. We stress
that Eq. S6 is the same of a pure hard-sphere system (that is,
without shifts) in infinite dimension. We must then optimize
this with respect to A (4), getting the equation

1
φ̂
=Fðm; Aðm;φÞÞ; [S7]

where φ̂= 2dφ=d and

Fðm;AÞ= A
1−m

∂Gðm;AÞ
∂A

: [S8]

Eq. S16 and the form of the function F (4) imply a first-order
transition at the endpoint of metastable curves, both in the ðm;φÞ
plane and in the pressure-density plane. We discuss this result in
Singularity of Cage Radius and Pressure at the Clustering Line.

We plug the solution Aðm;φÞ of Eq. S16 in Eq. S6, obtaining
Sðm;φÞ. Using then the replica relations

seqðm;φÞ= ∂Sðm;φÞ
∂m

; [S9]

Σeqðm;φÞ=m2∂
	
m−1Sðm;φÞ


∂m
; [S10]

on Eq. S6 we get the following expression for the complexity:

Σðm;φ;AÞ= Sðm;φ;AÞ

−
d
2

ð1+m+m logð2πAÞÞ+ 2d−1φHðm;AÞ;
[S11]

where

Hðm;AÞ=−m ∂Gðm;AÞ
∂m

:

The only remaining task is now to solve the equation

Σðm;φÞ= Σ0 = Σð1;φ0Þ

with respect to m, for various values of φ. Because in the clus-
tering region Σ is a decreasing function of m at fixed φ, the
solution mΣ0ðφÞ of the isocomplexity condition can be found with
a simple bisection algorithm. We start at φ0, then we change the
density of a small amount Δφ, and we use bisection to find the
solution mΣ0 of the equation

ΣðmΣ0;φ0 +ΔφÞ=Σ0: [S12]

Once it has been found, we change the density again and the pro-
cedure is repeated until the clustering line is reached and the so-
lution for A disappears.

In-State Pressure
In principle the ratio pðφÞ between physical pressure PðφÞ of a
state of complexity Σ0 and density φ can be computed using
the relation

pðφÞ= ρ−1PðφÞ=−φ d
dφ

seqðmðφÞ;φÞ; [S13]

where mðφÞ solves Eq. S12 for a given complexity value Σ0.
Eq. S13 is uncomfortable because it involves also the partial de-
rivative with respect to m. Instead of directly using Eq. S13 we
define a modified replicated entropy for each complexity value Σ0:

~Sðm;φÞ= Sðm;φÞ−Σ0 =mseqðm;φÞ+Σeqðm;φÞ−Σ0:

Isocomplexity Eq. S12 is then equivalent to the equation

m2 ∂
∂m
�
m−1~Sðm;φÞ����

m=mðφÞ
= 0: [S14]

Therefore, the pressure of a metastable state can be expressed in
terms of total entropy S:

pðφÞ=− φ

mðφÞ
∂
∂φ
�
~Sðm;φÞ����

m=mðφÞ

=−
φ

mðφÞ
∂
∂φ

ðSðm;φÞÞ
���
m=mðφÞ

:

[S15]

Eq. S15 is all we need to pass from ðm;φÞ plane to the pressure-
density plane. It is also easy to pass to the contact value of radial
distribution function through the relation (5) gð1Þ= ðp− 1Þ=ð4φÞ.
Singularity of Cage Radius and Pressure at the Clustering Line
For each metastable curvemðφÞ the clustering point φd is defined
as the lowest φ value for which equation

1
φ̂
=Fðm;Aðm;φÞÞ [S16]

admits a finite solution AðmðφÞ;φÞ. The corresponding cage ra-
dius Amax is the value of A for which FðmðφdÞ;AÞ has a maximum
(4). Expanding Fðm;AÞ in Taylor power series near φd and re-
arranging terms we obtain from Eq. S16

AðφÞ− Amax =C
ffiffiffiffiffiffiffiffiffiffiffiffiffi
φ̂− φ̂d

p
+ Oðφ−φdÞ; [S17]

where Amax =AðmðφdÞ;φdÞ, φ̂≡ 2d
d φ and the constant C is given by

C=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1
2
∂2FðmðφdÞ; AmaxÞ

∂A2

 
1cφd
2 +

∂FðmðφdÞ; AmaxÞ
∂m

∂mðφdÞ
∂φ̂

!vuut :

Eq. S17 implies that

dAðφÞ
dφ

=−
C=2

ðφ̂− φ̂dÞ1=2
+ regular  terms; [S18]

that is, A′ðφÞ has a square-root singularity at φ=φd.
We show now that this square-root singularity is transmitted to

compressibility. Expanding the expression for the pressure
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pðφÞ= 1
mðφÞ

�
1+ 2d−1φð1−Gðmd;Aðmðφ;Σ0Þ;φÞÞÞ�; [S19]

in φ=φd we obtain

pðφ̂Þ= pðφ̂dÞ−Bðφ̂Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
φ̂− φ̂d

p
+Oðφ̂− φ̂dÞ; [S20]

where we defined the (positive) constant

Bðφ̂Þ=−dð1−mðφ̂ÞÞ
2mðφ̂ÞAmax

φ̂

φ̂d
C:

Deriving Eq. S20 we obtain

dpðφ̂Þ
dφ̂

=−
Bðφ̂dÞ=2

ðφ̂− φ̂dÞ1=2
+ regular  terms; [S21]

that is, the derivative p′ðφ̂Þ of the pressure has a singularity in
φ̂= φ̂d with the same critical exponent of A′ðφ̂Þ. This fact implies
an overshoot in the pressure as the system escapes from the
metastable state. Indeed, the same overshoot can be seen also
in the state-following method (6), not only in the pressure vs.
density plane, but also in the shear stress vs. shear strain plane.
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Fig. S1. Radial distribution function gðrÞ of the planted configuration at density φ0 = 2:5.
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