

Figure S2. 13 C (down) and DEPT (up) NMR spectra of **2**.

Figure S3. ¹H-¹H COSY NMR experiment of **2**.

Figure S4. ¹H-¹H NOESY NMR experiment of **2**.

Figure S5. ¹H-¹³C HSQC NMR experiment of **2**: a) full spectrum; b) aliphatic part.

Figure S6. ¹H-¹³C HMBC NMR experiment of **2**: a) full spectrum; b) aromatic part.

Figure S8. ¹³C (down) and DEPT (up) NMR spectra of **3**.

Figure S9. ¹H-¹H COSY NMR experiment of **3**.

Figure S10. ¹H-¹H NOESY NMR experiment of **3**.

Figure S11. ¹H-¹³C HSQC NMR experiment of **3**.

Figure S12. ¹H-¹³C HMBC NMR experiment of **3**.

Figure S14. ¹³C (down) and DEPT (up) NMR spectra of **4**.

Figure S15. ¹H-¹H COSY NMR experiment of **4**.

Figure S16. ¹H-¹H NOESY NMR experiment of **4**.

Figure S17. ¹H-¹³C HSQC NMR experiment of **4**.

Figure S18. ¹H-¹³C HMBC NMR experiment of **4**.

Figure S20. ¹³C (down) and DEPT (up) NMR spectra of **7-NMe** (contains i-PrOH).

Figure S21. ¹H-¹H COSY NMR experiment of **7-NMe** (contains i-PrOH).

Figure S22. ¹H-¹H NOESY NMR experiment of **7-NMe** (contains i-PrOH).

Figure S23. ¹H-¹³C HSQC NMR experiment of **7-NMe** (contains i-PrOH).

Figure S24. ¹H-¹³C HMBC NMR experiment of **7-NMe** (contains i-PrOH).

Figure S25. Linearity between experimental and predicted long wavelength absorption maxima in acetonitrile. The values are collected in Tables 1 and S2.

Figure S26: Change of the relative energy (M06-2X/def2-TZVP) of the tautomers in gas phase of the parent compound 8 (left), 4 (center) and $4H^+$ (right). The values of ΔE , ΔE +ZPE and $\Delta\Delta G$ are given in kcal/mol units.

Figure S27: Change of the relative energy (M06-2X/def2-TZVP) of the tautomers in acetonitrile (PCM field) of the parent compound 8 (left), 4 (center) and $4H^+$ (right). The values of ΔE , ΔE +ZPE and $\Delta \Delta G$ are given in kcal/mol units.

Compound reference	2	3	4
Chemical formula	$C_{23}H_{25}N_3O_2$	$C_{23}H_{22}N_4O$	$C_{22}H_{22}N_4O_3$
Formula Mass	375.46	370.45	390.44
Crystal system	Monoclinic	Triclinic	Triclinic
a/Å	34.716(8)	5.1014(8)	5.2175(7)
b/Å	5.994(4)	11.5731(17)	10.7215(16)
c/Å	20.442(6)	16.653(3)	17.295(3)
$\alpha/^{\circ}$	90	92.321(12)	82.197(12)
$\beta/^{\circ}$	105.63(2)	93.662(13)	81.572(12)
$\gamma/^{\circ}$	90	101.162(12)	89.056(12)
Unit cell volume/Å ³	4096(3)	961.2(3)	948.1(2)
Temperature/K	290(2)	200(2)	200(2)
Space group	C2/c	<i>P</i> 1	<i>P</i> 1
No. of formula units per unit cell, Z	8	2	2
Radiation type	ΜοΚα	CuKa	ΜοΚα
Absorption coefficient, μ/mm^{-1}	0.079	0.640	0.093
No. of reflections measured	7696	11643	12143
No. of independent reflections	4030	3169	3343
R _{int}	0.0833	0.0763	0.1473
Final R_1 values $(I > 2\sigma(I))$	0.0564	0.0439	0.0605
Final $wR(F^2)$ values $(I > 2\sigma(I))$	0.1167	0.1134	0.1530
Final R_1 values (all data)	0.181	0.0936	0.1476
Final $wR(F^2)$ values (all data)	0.1614	0.1360	0.1832
Goodness of fit on F^2	0.945	0.978	0.842

Table S1: Most importar	t crystal data and	d structure refinement	parameters for 2 - 4 .
-------------------------	--------------------	------------------------	--------------------------------------

Structure		$\lambda_{max} [nm]$			
	observed	calculated	predicted*		
1E	417	428	419		
1K		452			
$1\mathbf{EH}^+$		403			
$1 \mathrm{KH}^+$	495	475	477		
1ZW		462			
5E	408	414	401		
5K	468	450	446		
2 E	419	434	426		
2K		484			
$2EH^+$		417			
$2KH^+$	517	516	528		
2ZW		464			
6E	412	422	411		
6K	495	484	488		
3 E	444	462	561		
3K		449			
3EH ⁺		430			
3KH ⁺	472	472	473		
3ZW	555	505	514		
7 E	429	446	441		
7K	459	446	441		
4 E	466	496	503		
4K		460			
$4 \mathbf{E} \mathbf{H}^+$		450			
$4 \mathrm{KH}^+$	472	476	478		
4ZW	593	561	584		
8E	435	475	477		
8K	468	456	453		

Table S2. Observed and calculated (PBE0/6-31G**) absorption maxima of compounds 1-8 in acetonitrile.

* Predicted using the linear regression between observed and calculated values given in Figure S25.