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Abstract

Replication is a well-known approach to implementing storage systems that
can tolerate failures. Replicated storage systems are designed such that the
state of the system is kept at several replicas. A replication protocol ensures
that the failure of a replica is masked by the rest of the system, in a way that
is transparent to its users. Replicated storage systems are among the most
important building blocks in the design of large scale applications. Applications
at scale are often deployed on top of commodity hardware, store a vast amount
of data, and serve a large number of users. The larger the system, the higher its
vulnerability to failures. The ability to tolerate failures is not the only desirable
feature in a replicated system. Storage systems need to be efficient in order
to accommodate requests from a large user base while achieving low response
times. In that respect, replication can leverage multiple replicas to parallelize
the execution of user requests.

This thesis focuses on Deferred Update Replication (DUR), a well-established
database replication approach. It provides high availability in that every replica
can execute client transactions. In terms of performance, it is better than other
replication techniques in that only one replica executes a given transaction
while the other replicas only apply state changes. However, DUR suffers from
the following drawback: each replica stores a full copy of the database, which
has consequences in terms of performance.

The first consequence is that DUR cannot take advantage of the aggregated
memory available to the replicas. Our first contribution is a distributed caching
mechanism that addresses the problem. It makes efficient use of the main mem-
ory of an entire cluster of machines, while guaranteeing strong consistency.

The second consequence is that DUR cannot scale with the number of repli-
cas. The throughput of a fully replicated system is inherently limited by the
number of transactions that a single replica can apply to its local storage. We
propose a scalable version of the DUR approach where the system state is par-
titioned in smaller replica sets. Transactions that access disjoint partitions are
parallelized.
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The last part of the thesis focuses on latency. We show that the scalable
DUR-based approach may have detrimental effects on response time, especially
when replicas are geographically distributed. The thesis considers different
deployments and their implications on latency. We propose optimizations that
provide substantial gains in geographically distributed environments.
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Chapter 1

Introduction

In recent years we have witnessed increased demand for reliable storage sys-
tems that run on top of cheap commodity hardware. Applications at scale rely
on servers that are distributed over several data centers, located in different
geographical areas to provide high availability and low response times to their
clients. These applications store a vast amount of data and serve a large num-
ber of users. As systems become larger, failures are more frequent. Failures
may originate from human errors, single machine failures, network equipment
and communication failures, and sometimes disasters that shutdown data cen-
ters entirely. One way to cope with such failures is replication, where several
replicas cooperatively store the state of the system. In the event of failures,
replication protocols can mask the failure of replicas to ensure continued ser-
vice. The main challenge for replication protocols is to provide the illusion of
operating a single high-performance and fault-tolerant system.

1.1 Context

Storage systems have evolved rapidly over the past two decades. The internet
industry is one of the major driving forces behind the evolution of storage sys-
tems. The main reason is that web applications at scale store a large amount
of data (e.g., user profiles, posts, photos, shopping carts) and serve a massive
number of users spread around the globe.

Early web applications in the 90’s were usually built using a scripting lan-
guage in combination with a centralized SQL database. This kind of solution
gave enough power to build web applications that served static and dynam-
ically generated contents. Static content was simply stored on a file system.
While dynamic content was usually generated based on the user that is con-
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2 1.1 Context

nected to the application, and the particular actions performed by the user.
Centralized relational databases were flexible enough to capture most storage
requirements of web application builders: they were fast enough and stored
data reliably. Moreover, the SQL language offered powerful features such as
transactions, joins, indexes and views.

In the early 2000s the largest internet companies started to build their own
storage solutions from scratch [12; 14; 20; 30; 35]. Their platforms had to sus-
tain a rapid growth in users and data. Three major trends arose: (1) The use
of commodity hardware and the scale of these applications called for storage
systems that were available in the event of failures and outages. Failures are
costly in that they have immediate consequences on the income generated by
the applications (e.g. stopping sales, not serving advertisement). (2) SQL was
not necessarily the best language to handle the data. Simpler interfaces such
as key-value and columnar stores became popular. These interfaces usually did
not provide transactions, in some cases they provided limited forms of atom-
icity. (3) Relaxed consistency criteria reduce latency and can sustain higher
transaction/operation rates. For instance, eventual consistency [69] achieves
low latency and high throughput. However, data may diverge under concur-
rent access or network partitions, with the complexity of reconciliation pushed
to the application layer. For some applications, or parts of the application,
reconciling data is relatively easy (e.g., the operations are commutable).

More recently, many large web applications have moved to the cloud, where
they share large computing infrastructures. Companies can simply buy comput-
ing power and storage by the hour. Building infrastructures that are distributed
over several geographical locations is not only feasible, it can be done without
upfront investments. The focus now is on storage systems that can be dis-
tributed over several geographically distributed datacenters. There are two
main reasons for this trend: (1) Storing data close the user reduces the per-
ceived latency. Web applications have typically a large fan-out. A client request
to a web application typically translates to tens of requests to backend web ser-
vices and storage systems [19]. These requests are executed in parallel and the
overall latency depends on the slowest component, or those components with
the highest latency variability. (2) Geo-replication tolerates disasters, such as
the failure of an entire datacenter. Cloud computing vendors offer several stor-
age solutions, such as Amazon’s S3 and SimpleDB, or Microsoft Azure’s Blobs
and Tables. These solutions provide a variety of interfaces, from simple key-
value, to simplified SQL-like languages.
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1.2 Motivation

This thesis focuses on distributed and replicated database systems that guar-
antee strong consistency. This type of systems have recently seen a renovated
interest in both academia [3; 33; 55; 66] and industry [7; 15; 59]. Strongly
consistent storage systems offer the illusion and semantics of a single non-
replicated system. These systems mask failures and do not allow replicas to
diverge, leading to simpler application designs. However, building a system
that maintains low-latency and high-throughput with strong consistency guar-
antees, despite machine failures, is challenging. Replicas have to synchronize
in order to avoid inconsistencies that would break the illusion of a single high
performance and fault-tolerant database.

In this context, we revisit Deferred Update Replication, a well-known ap-
proach to building fault-tolerant data management systems. This approach has
been mainly studied in the context of group communication-based database
replication (e.g., [47; 52]), where fault-tolerant group communication primi-
tives are employed to order transactions in multiple replicas. This approach has
several advantages in terms of performance, although most existing solutions
have focused on full replication, which is not always acceptable. Full replica-
tion requires each replica to hold a complete copy of the database and limits
the scalability of update transactions since every transaction must be executed
by every replica. More recently, partial replication protocols based on deferred
update replication have been proposed. Though the existing solutions typi-
cally make use of atomic multicast primitives [6; 27; 55], which require more
communication steps and are therefore more expensive.

1.3 Contributions

The major goal of this thesis is to revisit the Deferred Update Replication ap-
proach in light of current architectural and deployment trends. Where possible,
we preferred solutions that resulted in the same guarantees provided by the
original approach, while providing increased performance in terms of latency,
throughput, or both. We next outline the three main contributions of this thesis.

In-memory execution in Deferred Update Replication. RAM-DUR is an ex-
tension of the Deferred Update Replication (DUR) approach that allows for fast
in-memory execution of transactions. As pointed out in [64], given the current
cost of main memory, many workloads should be considered as in-memory only.
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The main assumption in RAM-DUR is that retrieving items remotely (through
the network) is more efficient than accessing the local disk. We devised a pro-
tocol that leverages this assumption. Servers only store a subset of the dataset
and retrieve items from remote servers when needed. The resulting protocol
still meets the same consistency level of DUR.

Scalable Deferred Update Replication. S-DUR improves the overall scalability
of DUR. The assumption here is that the database can be partitioned and that
most transactions access contents from one partition (local transactions), while
a minority of transactions access two or more partitions (global transactions).
We devised a protocol in which each partition is fully replicated in a small set of
servers. Local transactions are handled as in the baseline DUR protocol, while
global transactions require only one additional inter-partition roundtrip. The
resulting protocol guarantees the same consistency level of DUR. Moreover, the
S-DUR protocol is less expensive compared to previous partial-replication ap-
proaches that are based on atomic multicast [6; 27; 55].

Deferred Update Replication in geographically distributed environments.
Large scale web services and applications are often deployed over several geo-
graphically distributed datacenters. The main goal of geographical replication
is to keep data “close” to the actual user to reduce the perceived latency. Al-
though desirable, efficient and strongly consistent replication over wide-area
networks is hard to achieve due to the high latency of wide-area links. One
solution is to deploy S-DUR partitions over multiple geographically distributed
datacenters. However, even if local transactions are cheaper than global ones,
the following problem arises in mixed workloads. Within a partition, the com-
mitment of transactions is serialized. Therefore local transactions may be de-
layed by global transaction that are pending due to the extra roundtrip. To
overcome this limitation we propose two different termination strategies, based
on the idea of reordering transactions.

1.4 Outline

The following chapters are structured as follows. Chapters 2 and 3 provide
useful background on this work. Chapter 2 states the system model and the
definitions that are assumed in the rest of the thesis. Chapter 3 illustrates the
Deferred Update Replication protocol that will serve as a baseline in comparing
the protocols developed in the following chapters. Chapter 4 presents the first
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contribution, an optimized version of the baseline protocol of Chapter 3, with
support for in-memory execution of transactions. Chapter 5 presents S-DUR,
a scalable partial replication protocol, based on deferred update replication.
Chapter 6 considers the problem of partial replication in the context of wide-
area networks, and proposes an optimization and two alternative termination
protocols that, in this context, outperform the S-DUR protocol of Chapter 5.
Chapter 7 concludes the thesis and proposes future work. Appendices A, B and
C argue about the correctness of the proposed protocols.
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Chapter 2

System Model and Definitions

In this chapter, we first review the system model we assume and present the
definitions we will use throughout the thesis.

2.1 Processes and failures

We consider a system composed of an unbounded set C = {c1, c2, ...} of client
processes and a bounded set S = {s1, ..., sn} of database server processes. We
assume the crash-recovery model in which processes may fail by crashing but
never perform incorrect actions (i.e., no Byzantine failures). Correct processes
are non-faulty. A correct process is operational “forever” and can reliably ex-
change messages with other correct processes. Notice that in practice, “forever”
means long enough for some useful computation to be performed. Faulty pro-
cesses lose all of their volatile state. However, processes have access to a local
stable storage that can be used for storing and retrieving state that survives
failures. The state on stable storage can be used for recovery.

2.2 Communication

Processes communicate through message passing and have no access to a shared
memory or a global clock. Processes communicate using either one-to-one or
one-to-many communication.

7
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2.2.1 One-to-one communication

One-to-one communication uses primitives send(m) and receive(m), where m
is a message. Links are quasi-reliable: if both the sender and the receiver are
correct, then every message sent is eventually received.

2.2.2 One-to-many communication

Server processes may use one-to-many communication that relies on total order
broadcast [21]. One-to-many communication uses primitives abcast(m) and
adeliver(m). Total order broadcast ensures the following properties:

• Validity. If a correct process broadcasts m, then all correct processes
eventually deliver m.

• Agreement. If a process delivers m, then all correct processes eventually
deliver m.

• Integrity. For any message m, every process delivers m at most once, and
only if m was previously

• Total Order. If correct processes p and q both deliver messages m and
m′, then p delivers m before m′ if and only if q delivers m before m′.

2.3 Synchrony assumptions

Solving total order broadcast requires some synchrony assumptions [10; 26].
We assume that the system is partially synchronous [24], that is, it is initially
asynchronous and eventually becomes synchronous. The time when the system
becomes synchronous is called the Global Stabilization Time (GST) [24], and
it is unknown to the processes. Before GST, there are no bounds on the time
it takes for messages to be transmitted and actions to be executed. After GST,
such bounds exist but are unknown. Moreover, in order to ensure liveness, we
assume that after GST all remaining processes are correct.

2.4 Database and transactions

We assume a multiversion database composed of a set of data items D =
{x1, x2, . . . }. Each data item is a tuple 〈k, v, ts〉, where k is a key, v its value,
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and ts its version. A transaction is a sequence of read and write operations
on data items followed by a commit or an abort operation. We represent a
transaction t as a tuple 〈id, st, rs, ws〉 where id is a unique identifier for t, st
is the database snapshot version seen by t, rs is the set of data items read by
t, denoted readset(t), and ws is the set of data items written by t, denoted
writeset(t). The set of items read or written by t is denoted by items(t). The
readset of t contains the keys of the items read by t; the writeset of t contains
both the keys and the values of the items updated by t. In the algorithms,
we use dot notation to access the attributes of a transaction, for instance t.rs
denotes the readset of transaction t.

2.5 Serializability

Several consistency criteria for database transactions exist [1]. In this thesis,
we are mainly interested in one-copy serializability: every concurrent execution
of committed transactions is equivalent to a serial execution involving the same
transactions [8].
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Chapter 3

Deferred Update Replication

Deferred Update Replication (DUR) is a well-established approach to fault-
tolerant data management systems. The idea behind Deferred Update Repli-
cation is conceptually simple: a group of servers fully replicate the database; to
execute a transaction, a client chooses one server and submits the transaction
commands to this server. During the execution of the transaction, there is no
coordination among different servers. When the client issues a commit request,
the transaction starts termination: its updates and some meta data are atom-
ically broadcast to all servers. Atomic broadcast ensures that all servers de-
liver the updates in the same order and can certify the transaction in the same
way. Certification guarantees that the database remains consistent despite the
concurrent execution of transactions. The transaction passes certification and
commits in a server only if it can be serialized with other committed transac-
tions; otherwise the transaction is aborted—essentially, the technique relies on
optimistic concurrency control [34].

Deferred update replication has two main characteristics, which contribute
to its performance. First, an update transaction is executed by a single server;
the other servers only certify the transaction and apply its updates to their
database, should the transaction pass certification. Applying a transaction’s
updates is usually cheaper than executing the transaction. Second, read-only
transactions do not need to be certified. A replica can serialize a read-only
transaction by carefully synchronizing it locally (e.g., using a multiversion
database). Consequently, read-only transactions scale with the number of repli-
cas. In this chapter we present a protocol for DUR, which will serve as a base-
line in the following chapters.

11
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3.1 General idea

In Deferred Update Replication, the lifetime of a transaction is divided in two
phases: (1) the execution phase and (2) the termination phase. The execution
phase starts when the client issues the first transaction operation and finishes
when the client requests to commit or abort the transaction, when the termi-
nation phase starts. The termination phase finishes when the transaction is
committed or aborted.

Before starting a transaction t, a client c selects the replica s that will exe-
cute t ’s operations; other replicas will not be involved in t ’s execution. When
s receives a read command for x from c, it returns the value of x and its cor-
responding version. The first read determines the database snapshot the client
will see upon executing other read operations for t. Write operations are lo-
cally buffered by c. It is only during transaction termination that updates are
propagated to the servers.

In the termination phase, the client atomically broadcasts t ’s readset and
writeset to all replicas. Upon delivering t ’s termination request, s certifies t.
Certification ensures a serializable execution; it essentially checks whether t ’s
read operations have seen values that are still up-to-date when t is certified. If t
passes certification, then s executes t ’s writes against the database and assigns
each new value the same version number k, reflecting the fact that t is the k-th
committed transaction at s.

The version of DUR we detail next closely resembles the Database State
Machine Approach [47], and assumes a multiversion database at each replica
to allow local termination of read-only transactions. This optimization was first
introduced in [51].

3.2 The algorithm in detail

Algorithms 1 and 2 illustrate the technique for the client and server, respec-
tively. Before submitting transaction operations, the client application first ini-
tializes the transaction using function begin() (lines 1 – 4). A read operation on
item k starts by updating transaction t ’s readset (line 6, Algorithm 1) and then
checking whether t has previously updated k (line 7), in which case this must
be the value returned (line 8); otherwise the client selects a server s to handle
the request (line 10). The client then waits for a response from s (line 11).
If c suspects that s crashed, it simply contacts another replica (not shown for
brevity). Upon the first read, c updates t ’s snapshot (line 12), which will de-
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Algorithm 1 Deferred Update Replication, client c

1: function begin(t)
2: t.rs← ; {initialize readset}

3: t.ws← ; {initialize writeset}

4: t.st ←⊥ {initially transactions have no snapshot}

5: function read(t, k)
6: t.rs← t.rs ∪ {k} {add key to readset}

7: if (k,?) ∈ t.ws then {if key previously written...}

8: return v s.t. (k, v) ∈ t.ws {return written value}

9: else {else, if key never written...}

10: send(read, k, t.st) to some s ∈ S {send read request}

11: wait until receive(k, v, st) from s {wait for response}

12: if t.st =⊥ then t.st ← st {if first read, init snapshot}

13: return v {return value from server}

14: function write(t, k, v)
15: t.ws← t.ws ∪ {(k, v)} {add key to writeset}

16: function commit(t)
17: if t.ws = ; then {if transaction is read-only...}

18: return commit {commit it right away}

19: else {else, if it is an update...}

20: send(commit, t) to a chosen server s ∈ S
21: wait until receive(outcome) from s
22: return outcome {outcome is either commit or abort}

termine the version of future reads performed by t. To perform a write as part
of t, the client simply adds item (k, v) to t.ws (lines 14–15). The commit of a
read-only transaction is local (lines 17–18). If t is an update transaction, the
client simply submits t to some server and waits for a response, either commit
or abort (lines 20–22).

Servers maintain variables SC and DB (lines 2–3, Algorithm 2). SC has the
latest snapshot created by server s. DB is a vector, where entry DB[i] contains
the i-th committed transaction at s. When s receives the first read operation
from a client, say, on key k, s returns the value of k in the latest snapshot
(lines 4–7) together with the snapshot id. The client will use this snapshot
id when executing future read operations. If s receives a read request with a
snapshot id, then it returns a value consistent with the snapshot (line 6; see also
next section). Upon delivering t (line 8), s certifies it (line 9) and replies to c



14 3.2 The algorithm in detail

Algorithm 2 Deferred Update Replication, server s

1: Initialization
2: SC← 0 {snapshot counter}

3: DB[...]← ; {list of applied transactions}

4: when receive(read, k, st) from c
5: if st =⊥ then st ← SC {if first read, initialize snapshot}

6: retrieve(k, v, st) from DB {most recent version ≤ st}

7: send(k, v, st) to c {return result to client}

8: when receive(commit, t)
9: abcast(t) to all servers in S

10: when adeliver(t)
11: outcome← certify(t) {outcome is either commit or abort}

12: send(outcome) to c {return outcome to client}

13: function certify(t) {used in line 9}

14: for i← t.st to SC do {for all concurrent transactions...}

15: if DB[i].ws ∩ t.rs 6= ; then {if some intersection...}

16: return abort {transaction must abort}

17: SC← SC+ 1 {here no intersection: one more snapshot}

18: DB[SC]← t {keep track of committed writeset}

19: return commit {transaction must commit}

(line 12). If the outcome of certification is commit, s applies t ’s updates to the
database (lines 10–11). Certification checks the existence of some transaction
u that (a) committed after t received its snapshot and (b) updated an item read
by t. If u exists, then t must abort (lines 14–16). If t passes certification, one
more snapshot is created (line 17) and t ’s updated entries are recorded for the
following certification (lines 17–18).

Database snapshots guarantee that all reads performed by a transaction see
a consistent view of the database. Therefore, a read-only transaction t is seri-
alized according to the version of the value t received in its first read operation
and does not need certification. Future reads of a transaction return versions
consistent with the first read. A read on key k is consistent with snapshot SC
if it returns the most recent version of k equal to or smaller than SC (line 6,
Algorithm 2). This rule guarantees that between the version returned for k
and SC no committed transaction u has modified the value of k (otherwise, u’s
value would be the most recent one).
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3.3 DUR and other replication techniques

Several database replication protocols are based on deferred update replication
(e.g., [2; 32; 38; 44; 47]), which can be explained by its performance advan-
tages with respect to other replication techniques, such as primary-backup and
state-machine replication. With state-machine replication, every update trans-
action must be executed by all servers [56]. Thus, adding servers does not
increase the throughput of update transactions; throughput is limited by what
one replica can execute. With primary-backup replication [63], the primary
first executes update transactions and then propagates their updates to the
backups, which apply them without re-executing the transactions; the through-
put of update transactions is limited by the capacity of the primary, not by the
number of replicas. Servers act as “primaries” in deferred update replication,
locally executing transactions and then propagating their updates to the other
servers.
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Chapter 4

In-Memory Deferred Update
Replication

In typical data management systems, servers strive to store the database in
memory (i.e., a cache) when executing transactions to avoid reading from
the on-disk database image and thus improving performance. Disk writes are
needed at commit time to ensure durability; however, disk writes are typically
sequential, in the form of log append operations [28]. Since caching the whole
database (or a large portion of it) in memory is only possible if the data fits in
the memory of the server, some data management architectures recur to par-
titioning the database across multiple servers in order to increase the chances
that the data assigned to each server (i.e., a partition) fits its main memory.

Partitioning schemes, however, sometimes restrict transaction execution to
a single partition or sacrifice consistency of multi-partition transactions. Par-
titioning the database across multiple servers without restricting transaction
execution and sacrificing consistency is possible with variations of deferred up-
date replication (see Chapter 5 and 6). In all such protocols, however, multi-
partition transactions have a higher response time than single-partition trans-
actions due to additional communication between partitions during the certi-
fication of transactions — essentially, multi-partition transactions have to pass
through a voting phase during termination to ensure that they are serializable
across the system

This chapter introduces in-memory deferred update replication (RAM-DUR),
an extension to deferred update replication where the database is partitioned
among a set of servers. Ideally, the database will fit the aggregated memory of
the compound, but not necessarily the main memory of any individual server. If
a server needs a data item it does not cache, instead of retrieving the item from

17
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disk, the server retrieves it from the cache of a remote server. The rationale
behind RAM-DUR is that network access is faster than a local disk access. Dif-
ferently from previous approaches, RAM-DUR does not increase the response
time of transactions. Transactions are certified following the traditional de-
ferred update replication procedure and there is no voting phase during trans-
action termination. RAM-DUR’s key insight is a distributed cache mechanism
that allows servers to cache portions of the database without sacrificing serial-
izability.

4.1 General idea

RAM-DUR distinguishes between two types of servers: core servers, which ex-
ecute the traditional deferred update replication, and volatile servers (vnodes),
which store a subset of the database in memory only. The purpose of vnodes
is to increase the performance of transaction execution by ensuring that data
is always in memory. The system does not rely on vnodes for durability. Vn-
odes essentially implement a caching layer that ensures consistent execution of
transactions. As we discuss in Section 4.5, transaction durability is guaranteed
by the core servers.

RAM-DUR partitions database entries among vnodes based on their key,
using a user defined partitioning scheme (such as range or hash partitioning).
A vnode is the owner of all entries assigned to it as a result of the partitioning
scheme. A vnode executes both read operations from the clients and remote
lookup operations from other vnodes. A vnode v issues a remote lookup for
key k to the owner of k when some client requests to read k and v does not
store k locally (e.g., v is not the owner of k). In addition to its assigned entries,
vnodes can cache any other entries, as long as memory is available. A vnode
is required to store new versions of the keys it owns, but it may discard other
entries, as long as consistency is not violated, as detailed next.

We define two operations to manipulate the local storage of vnodes: (1)
lookup(k, st), which returns a tuple 〈key, value, version〉 from the local storage
of the vnode or from the owner of k (by remotely fetching the tuple); and (2)
apply(k, v, st), which stores item (k, v) with version st in the vnode’s storage.
The lookup request must return the largest version of k equal to or smaller than
st. Figure 4.1 depicts a simplified view of the various storage abstractions of
a vnode. Clients (i.e., applications) have access to data through the read and
write primitives, which are implemented on top of lookup and apply primitives.
A lookup will be translated into a local retrieve operation or a remote-lookup



19 4.2 Ensuring Serializability

operation, depending on whether the item read is cached or not, respectively;
apply is implemented by a call to store. The remote-lookup request is submitted
to the owner of the missing entry, which will translate it into a lookup to its
local storage.

retrieve() store()

lookup() apply()

read() write()

retrieve() store()

lookup() apply()

read() write()

remote-lookup()

Server P1 Server P2

Figure 4.1. Simplified storage abstractions of a vnode.

4.2 Ensuring Serializability

In order to preserve serializability, lookup and apply have to follow a number
of rules. We introduce these rules next and justify their need with a few execu-
tions. In all executions described next, vnode P1 is the owner of data item x and
vnode P2 does not own x and does not have a cached version of x . Transaction
t issues read operations on x against P2.

Execution 1. Transaction t issues a read operation on x for version 11
against P2 (see Figure 4.2). As a result, P2 issues a remote lookup operation
against P1. When P1 handles the request, its SC is 10 while P2 had delivered
snapshot 11 before starting t (recall from Algorithm 2 that SC is the latest
snapshot created by a server). P1 returns the largest version of x it knows
about equal to or smaller than 11, which in this case is version 10. However,
snapshot 11 may include an update to x , which should be visible to transaction
t.

To avoid this case, we introduce Rule 1:
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P1

P2

SC = 10

SC = 10 SC = 11

SC = 11

R(x,11)

RL(x,11)
(x,10)

Figure 4.2. Problematic execution 1. Dots show the delivery of a transaction
that created snapshot SC. R(x,i) is a read request for version i of data item x.
RL(x,i) is a remote lookup request for version i of data item x.

• Rule 1. A vnode can only reply to a remote lookup for version v if v is less
than or equal to the vnode’s SC.

Execution 2. In this case (Figure 4.3), t issues a read operation for key x
with version 10 against P2. P2 sends a remote lookup request to P1 and then
delivers snapshot 11, before receiving a reply from P1. If snapshot 11 contains
an updated version of x , P2 is allowed to discard it (because P2 is not the owner
of x). Later P2 receives a reply for x with version 10. To avoid future requests
to x , P2 caches x with version 10 locally. Suppose a later transaction t ′ reads
x with version 11, P2 returns x with version 10, i.e. the most recent x with
version less than or equal to 11. This execution is not serializable because t ′

should see version 11 of x .

P1

P2

SC = 10

SC = 10 SC = 11

SC = 11

R(x,10)

RL(x,10) (x,10)

Figure 4.3. Problematic execution 2.

This case is excluded by Rule 2:



21 4.2 Ensuring Serializability

• Rule 2. A vnode must not discard a delivered version of k if it has a pending
remote request for k.

Execution 3. Assume that P2 is ahead in the execution by two snapshots
(Figure 4.4). P2 requests version 8 of key x . When P1 receives the request it
sends key x at version 8 to P1. According to the rules defined so far, P2 can
cache (x , 8) locally. However, a later transaction t with st = 9 might request
(x , 9), and because P2 is ahead in the execution it already discarded version 9
and returns (x , 8).

P1

P2

SC = 8

SC = 10

R(x,8)

RL(x,8)
(x,8)

Figure 4.4. Problematic execution 3.

Rule 3 avoids this case.

• Rule 3. A key can only be cached if the SC of the vnode handling a request
for k is bigger than or equal to the SC of the requesting vnode. Also, k can
be cached only if it is the newest version smaller than SC.

Execution 4. Figure 4.5 shows an execution in which both P1 and P2 deliver
snapshot 10. Right after delivering the snapshot, P1 garbage collects item x
with version 10. Later transaction t requests to read item x with version 10,
and accordingly P2 sends a remote request to P1. Since version 10 of x was
garbage collected, P1 returns the most recent version less than 10, namely x
with version 9.

Rule 4 applies to both cached and non-cached entries.

• Rule 4. A vnode can garbage collect version v of item k only if it has already
garbage collected all versions of k with version less than v. The owner of k
must preserve at least one version (the latest one), while vnodes caching k
can remove all versions.
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P1

P2

SC = 10

SC = 10

R(x,10)

RL(x,10)
(x,9)

GC(x,10)

Figure 4.5. Problematic execution 4. GC(x,i) shows the garbage collection for
version i of item x.

4.3 The algorithm in detail

RAM-DUR is an extension to the deferred update replication that does not re-
quire modifications to the client side. In this section we only discuss the pro-
tocol for vnodes, shown in Algorithm 3, while we assume clients follow Algo-
rithm 1 (see page 13).

Read requests are executed at vnodes by the lookup() primitive (line 6),
which either returns the entry stored locally (line 22) or requests the entry to
the key owner (lines 24 and 25). According to Rule 3, the returned entry is
cacheable if it is the newest entry stored by its owner and the owner’s snapshot
counter SC is at least as big as the requested version (line 17). Before respond-
ing to a remote lookup request, the owner of a key makes sure that its SC is
equal to or greater than the requested version, ensuring Rule 1 (line 14).

Upon delivering a committing transaction t (line 8), a vnode certifies t
using the same procedure as core servers (line 9, 31-37). If the outcome of
certification is commit, t ’s modification to the database are applied to the local
storage (lines 11 and 12). The apply primitive only keeps an entry in local
storage if it satisfies Rule 2 (lines 29 and 30).

4.4 Cache-only vnodes

So far we assumed that each vnode owns a portion of the dataset. A cache-only
vnode is a regular vnode that does not own any data items, in which case it
will only cache data items owned by other vnodes and does not store any data
items permanently.
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Algorithm 3 In-Memory Deferred Update Replication, server s

1: Initialization
2: SC← 0 {snapshot counter}

3: DB[...]← ; {list of applied transactions}

4: when receive(read, k, st) from c
5: if st =⊥ then st ← SC {if first read, initialize snapshot}

6: v← lookup(k, st) {most recent version ≤ st in database}

7: send(k, v, st) to c {return result to client}

8: when adeliver(t)
9: outcome← certify(t) {outcome is either commit or abort}

10: if outcome = commit then {it passes certification...}

11: for all (k, v) ∈ t.ws do {for each update in t’s writeset...}

12: apply(k, v) {...apply update to database}

13: send(outcome) to c {return outcome to client}

14: when receive(remote-lookup, k, sc, st) from r and SC ≥ st {Rule 1}

15: v← lookup(k, st)
16: cacheable← false
17: if v is newest version stored locally and SC ≥ sc then {Rule 3}

18: cacheable← true
19: send(k, v, st, cacheable) to r

20: function lookup(k, st) {used in lines 6 and 15}

21: if k is stored locally then
22: return retrieve(k, st)
23: else
24: send(remote-lookup, k, SC, st) to owner(k)
25: wait until receive(k, v, st, cacheable)
26: if cacheable then store(k, v, st)
27: return v

28: function apply(k, v) {used in line 7}

29: if s = owner(k) or k is stored locally or pending remote request for k
then {Rule 2}

30: store(k, v, SC)
31: function certify(t) {used in line 9}

32: for i← t.st to SC do {for all concurrent transactions...}

33: if DB[i].ws ∩ t.rs 6= ; then {if some intersection...}

34: return abort {transaction must abort}

35: SC← SC+ 1 {here no intersection: one more snapshot}

36: DB[SC]← t {keep track of committed writeset}

37: return commit {transaction must commit}
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Cache-only vnodes can be deployed in an existing RAM-DUR cluster on-the-
fly, with minimal impact on the performance of the cluster. A cache-only vnode
starts empty, with no data items in its storage. Therefore adding a cache-only
vnode does not require a recovery step, and will not require to redistribute data
over the cluster of vnodes (which is possibly an expensive operation).

Deploying cache-only vnodes can be advantageous in many circumstances.
For instance, some services follow diurnal or seasonal patterns, where the ser-
vice is subject to workload spikes during particular times of the day. Cache-only
vnodes do not add storage capacity, instead they increase the available process-
ing power to execute transactions in the workload. Cache-only vnodes are thus
useful for absorbing workload spikes due to increased number of clients.

4.5 Discussion

The motivation for vnodes in RAM-DUR is performance. Two mechanisms im-
plemented by vnodes improve performance. First, by requesting a missing data
from a remote vnode, no local disk reads are necessary. This approach is quite
effective since retrieving a missing item from the main memory of a remote
vnode is much faster than retrieving the item from the local disk (with cur-
rent hardware, a round-trip in a local area network is in the order of 0.1 mil-
liseconds, while a non-cached disk access may take 10ms, a discussion maybe
found in [42]). Second, items often accessed are cached by vnodes, thus re-
ducing network traffic and execution delay. Cached data is updated as part of
the termination of transactions, ensuring “data freshness”.

Our mechanism to broadcast terminating transactions to servers is based on
Paxos [36]. Paxos’s “acceptors” can be co-located with core servers or deployed
at independent nodes, the approach used in all our DUR and RAM-DUR experi-
ments. Therefore, when a transaction is delivered by a server, the transaction’s
contents and order have been safely stored by the acceptors and will not be for-
gotten, despite failures. This mechanism ensures transaction durability despite
the crash of vnodes.

Although recovering a vnode from the state of core servers is a simple oper-
ation, until it recovers, all entries the vnode owns will be unavailable for other
vnodes. To prevent blocking due to the crash of a vnode, we extend the logic
of vnodes to request missing items from core servers, should they suspect the
crash of one of its peers. Notice that as long as core servers respect the rules
presented in the previous sections, consistency will be preserved.
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4.6 Implementation and optimizations

For the implementation of RAM-DUR, we use Ring Paxos [41] as our atomic
broadcast primitive. Acceptors log delivered values on disk asynchronously, as
part of the atomic broadcast execution—we assume that there is always a ma-
jority of operational acceptors in order to ensure durability. Optionally, RAM-
DUR servers can store a consistent snapshot of their in-memory state to disk.
This checkpointing mechanism can be used for backups, or to restart the whole
system by replaying only the tail of the Paxos log since the last checkpoint.

Our DUR and RAM-DUR prototypes broadcast transactions in small batches.
This is essentially the well-known group commit optimization in centralized
databases. In our case, it amortizes the cost of the atomic broadcast primitive
over several transactions.

We use bloom filters to efficiently check for intersections between transac-
tion readsets and writesets. The implementation keeps track of only the past K
writeset bloom filters, where K is a configurable parameter of the system. There
are two more advantages in using bloom filters: (1) bloom filters have negligi-
ble memory requirements; and (2) they allow us to send just the hashes of the
readset when broadcasting a transaction, thus reducing network bandwidth.
Using bloom filters results in a negligible number of transactions aborted due
to false positives.

We used the same code base to implement standard DUR. In the case of
DUR, we disabled those features that are unique to RAM-DUR (i.e., each server
has a full copy of the database, does not issue remote requests, and has no
cache mechanism). Local storage of DUR is implemented using Berkeley DB
(BDB); for RAM-DUR, we provide an alternative storage implemented as a mul-
tiversion hash-table, optimized for keeping data in-memory only.

4.7 Performance evaluation

We assess next the performance of RAM-DUR. We measured throughput and
latency of RAM-DUR and compared them against standard DUR, under work-
loads that both fit and do not fit in the memory of a single server. We also
assess the effects of adding cache-only vnodes to a running RAM-DUR cluster.
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4.7.1 Setup and benchmarks

We ran the experiments in a cluster of Dell SC1435 servers equipped with
two dual-core AMD-Opteron 2.0 GHz processors and 4 GB of main memory,
and interconnected through an HP ProCurve2900-48G Gigabit Ethernet switch.
Servers are attached to a 73 GB 15krpm SAS hard-disk.

We evaluated the performance of RAM-DUR using a simple micro-benchmark.
The benchmark consists of two types of transactions (see Table 4.1): (1) update
transactions perform a read and a write on the same key; (2) read-only trans-
actions perform two read operations on different keys. Keys are 4 bytes long,
while values consist of 1024 bytes.

Clients are evenly distributed across servers. Each client issues a mix of 10%
update and 90% read-only transactions. Keys are selected uniformly at random
from a portion of 1/n of the total number of items in the dataset, where n is
the number of servers. Clients connected to the same vnode access the same
portion, which ensures some data locality.

We consider two datasets (see Table 4.2): (1) a small database, where
servers are loaded with 100 thousand data items per vnode and the dataset
fits in the memory of a single server; and (2) a large database, where servers
are loaded with 400 thousand items per vnode and the dataset does no fit in
the memory of a single server, but it fits the aggregated memory of all servers.

Moreover, to make the comparison between DUR and RAM-DUR fair, we
use the same number of nodes. Therefore, in DUR and RAM-DUR 3, only
three servers in total execute transactions, core servers in DUR and vnodes
in RAM-DUR. We assess the benefit of additional vnodes with RAM-DUR 6, a
configuration with 6 vnodes.

Type Operations Frequency
Read-only 2 reads 90%
Update 1 read, 1 write 10%

Table 4.1. Transaction types in workload

Dataset Size Characteristic
Small DB 100K items per server fits RAM of a single server
Large DB 400K items per server fits aggregated servers’ RAM

Table 4.2. Datasets in workload
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4.7.2 Throughput and latency

Figure 4.6 shows throughput and latency of DUR and RAM-DUR under max-
imum load. When data fits in memory (i.e., Small DB) we notice that both
DUR and RAM-DUR perform well, although RAM-DUR performs two times
faster than DUR. We attribute this difference to the fact that DUR is fully repli-
cated, and thus, every update must be applied to storage. Also, RAM-DUR’s in-
memory only storage is faster than DUR’s Berkeley DB-based storage. In terms
of latency, DUR does better than RAM-DUR, especially for read-only transac-
tions. This difference is due to the fact that RAM-DUR sustains more clients (in
this experiment we run 8 and 32 clients per server for respectively DUR and
RAM-DUR).

When the dataset does not fit in the memory of a single node (i.e., Large
DB) we notice a significant impact on DUR’s performance. Performing reads
from the local storage and applying updates requires disk access. In this setup,
DUR performs only 94 update transactions and 816 read-only transactions per
second. On the other hand, we observed a minimal performance impact in the
case of RAM-DUR. DUR’s latency is also heavily impacted: latency of update
transactions more than doubled; latency of read-only transactions went from
only 0.4 milliseconds to slightly less than 6 milliseconds.

Finally, increasing the number of servers in RAM-DUR is beneficial. Going
from 3 to 6 vnodes roughly doubled the performance of RAM-DUR, at the same
time keeping latency low.

4.7.3 Performance under remote requests

In the following experiment, we show how quickly a vnode builds its working
set and how its performance compares to a core server in DUR, where remote
requests never take place. In this experiment, an equal number of clients issue
transactions against DUR and RAM-DUR and, for the sake of the comparison,
we only consider the case where the dataset fits in memory. Figure 4.7 shows
throughput, latency, and the number of remote requests over time. At time 0,
RAM-DUR servers where loaded with 100 thousand items per node, however
they store locally only data items they own, and do not store any cached items.
Transaction execution starts at time 1, and at this time RAM-DUR’s throughput
and latency are worse than DUR’s. As the number of remote requests diminish,
RAM-DUR quickly catches up with DUR, and at time 5 both protocols roughly
perform the same. At time 10 the number of remote requests per second is
one fifth of the value in the beginning of the execution, and RAM-DUR starts
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Figure 4.6. Throughput and latency.

approaching its peak performance.

4.7.4 Cache-only vnodes

We evaluate next the effects of online additions of cache-only vnodes (Fig-
ure 4.8). A cache-only vnode is a vnode which does not own any data items.
Initially there are 6 vnodes. At time 20, a cache-only vnode is added to the com-
pound and at time 60 another one is included. System throughput increases
as more vnodes are added. The first graph, on the top of Figure 4.8, shows
the aggregated throughput of all vnodes in the system as well as the additional
throughput added by the 7th vnode. In terms of latency, we observe that the
addition of a new vnode slightly increases the average aggregated latency. This
effect is due to the fact that cache-only vnodes start without any items, and
therefore every read results in a remote request initially. The increase in la-
tency is experienced only at the added vnode. However as new vnodes cache
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Figure 4.7. Performance under remote requests (Small DB).

their working set, remote requests decrease. After 10–15 seconds, the 7th vn-
ode contributes the same throughput as the vnodes that were already present at
the beginning of the execution, its latency approaches the aggregated average
latency, and the number of remote requests per second approaches zero.

4.8 Related Work

A number of protocols for deferred update replication where servers keep a full
copy of the database have been proposed (e.g., [2; 32; 38; 44; 47]). Similar
to RAM-DUR some protocols provide partial replication to improve the perfor-
mance of deferred update replication (e.g., [54; 58; 60]). This also improves
scalability in that only the subset of servers addressed by a transaction applies
updates to their local database. These protocols, including RAM-DUR, require
transactions to be atomically broadcast to all participants. However, only RAM-
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Figure 4.8. Adding cache-only vnodes (Large DB).

DUR addresses the case where data is kept always in memory.
Full database replication hinders the scalability of update transactions, which

in RAM-DUR is inherently limited by the number of transactions that can be
ordered. We address the scalability issue of update transactions in Chapter 5.
Nothing prevents combining RAM-DUR’s mechanisms described here with other
techniques for improving scalability.

G-Store [18] proposes a key group protocol that allows transactional multi-
key access over dynamic and non-overlapping groups of keys. To execute a
transaction that accesses multiple keys, the key group protocol must transfer
ownership for all keys in a group to a single node. Once a node owns a group,
it can efficiently execute multi-key transactions. RAM-DUR has no such con-
straints.

H-Store [64] shares some design considerations with RAM-DUR, although
the main approach is different. In H-Store the execution is optimized depend-
ing on transaction classes and schema characteristics in order to distinguish
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two-phase, strictly two-phase and sterile transactions and attain high perfor-
mance. This can be done automatically, or by pre-declaring transaction classes,
which makes the system less flexible.

Recent trends in networking hardware suggests that in-memory storage sys-
tems should make use of modern networking equipment supporting Remote
Direct Memory Access (RDMA) [22; 31]. RDMA allows applications to access
memory of a remote node directly, without interrupting the remote CPU, yield-
ing significant improvements in latency. RAM-DUR’s remote reads could be
implemented using RDMA.

As discussed in Section 4.6, the implementation of RAM-DUR makes use of
Bloom filters to efficiently perform certification. A similar technique was first
introduced in the D2ST M distributed transactional memory system [16].

Tashkent+ [25] exploits information about the working set to load balance
transactions over a set of replicas. The idea is to better utilize the memory of
a cluster by submitting related transactions to the same replica. Similar tech-
niques could be used in RAM-DUR to improve cache effectiveness of vnodes.

RAM-DUR has been extended with indexing and integrated with MySQL to
support full relational semantics [67; 68].

4.9 Conclusion

This chapter presented an extension to deferred update replication. Deferred
update replication is widely used by several database protocols due to its per-
formance advantages: scalable read-only transactions, and good throughput
under update transactions. RAM-DUR extends deferred update replication with
the goal of in-memory execution. We introduce two mechanisms, remote reads
and caching, which allow us to significantly speedup the execution phase in
workloads that do not fit the memory of a single server. Moreover, we do so
without sacrificing consistency. We assessed the performance of RAM-DUR un-
der different scenarios and showed how RAM-DUR can quickly add cache-only
vnodes to further improve system throughput online.
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Chapter 5

Scalable Deferred Update
Replication

This chapter introduces Scalable Deferred Update Replication (S-DUR), which
improves the scalability of read-only and update transactions. Our solution is
to divide the database into partitions, replicate each partition among a group of
servers, and orchestrate the execution and termination of transactions across
partitions. Local transactions, those that read and write items within a sin-
gle partition, are handled as in traditional deferred update replication. Global
transactions, those that access items in more than one partition, undergo a dif-
ferent execution and termination procedure. During execution, a global trans-
action has its read operations submitted to servers in different partitions. Dur-
ing termination, partitions coordinate to ensure consistency using a two-phase
commit-like protocol, where each participant is a partition. Different than two-
phase commit [8], the termination of global transactions is non-blocking since
each partition is highly available.

5.1 Motivation

While read-only transactions scale with the number of replicas in deferred up-
date replication (Chapter 3), the same does not hold for update transactions.
There are two potential bottlenecks in the termination protocol: (1) every up-
date transaction needs to be atomically broadcast; and (2) every server needs
to certify and apply the updates of every committing transaction. Through-
put is therefore bounded by the number of transactions that can be atomically
broadcast or by the number of transactions that a server can execute, certify
and apply to the database. If performance is determined by the execution and
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termination of transactions, then adding replicas to deferred update replica-
tion may increase throughput, although the expected gains are limited. The
reason is that even though applying transaction updates is cheaper than exe-
cuting the transactions, it must be done by each replica for every committed
transaction. Intuitively, the problem is that while increasing the number of
replicas also increases the total number of transactions executed per time unit,
it does not reduce a replica’s load of certifying transactions and applying their
updates. Asymptotically, the system throughput is limited by the number of
transactions atomic broadcast can order and a single replica can certify and ap-
ply to its database per time unit. This is an inherent limitation of DUR, which
we address in the next sections.

5.2 Additional definitions and assumptions

The set of servers that replicate partition p is denoted by Sp. For each key k,
we denote partition(k) the partition to which k belongs. Transaction t is said
to be local to partition p if ∀(k,−) ∈ items(t) : partition(k) = p. If t is not local
to any partition, then we say that t is global. The set of partitions that contain
items read or written by t is denoted by partitions(t).

Hereafter, we assume that partitions do not become unavailable and that
the atomic broadcast primitive within each partition is live. Moreover, we
assume that transactions do not issue “blind writes", that is, before writing
an item x , the transaction reads x . More precisely, for any transaction t,
writeset(t)⊆ readset(t).

5.3 A straightforward (and incorrect) extension

Transactions that are local to a partition p can be handled as in regular deferred
update replication. Instead, global transactions need special care to execute
and terminate.

During the execution phase of a global transaction t, client c submits each
read operation of t to the appropriate partition. This assumes that clients are
aware of the partitioning scheme. Alternatively, a client can connect to a single
server and submit all its read requests to this server, which will then route them
to the appropriate partition. Since each partition is implemented with deferred
update replication, reads issued to a single partition see a consistent view of
the database.
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To request the commit of t, c atomically broadcasts to each partition p
accessed by t, the subset of t ’s readset and writeset related to p, denoted
readset(t)p and writset(t)p, respectively. Client c uses one broadcast operation
per partition. When a server s ∈ Sp delivers t ’s readset(t)p and writeset(t)p,
s certifies t against transactions delivered before t in partition p, as in tradi-
tional deferred update replication, and then sends the outcome of certification,
the partition’s vote, to the servers in partitions(t). Since certification within a
partition is deterministic, every server in Sp will compute the same vote for t.
Then, s waits for the votes from partitions(t). If every partition votes to commit
t, then s applies t ’s updates to the database and commits t; otherwise s aborts
t.

We now show an execution of this protocol that violates serializability. Re-
call that transactions are certified in the order in which they are delivered.

Example 1. In the following example, partition Px stores item x , and parti-
tion Py stores item y . Let t i and t j be two global transactions such that t i reads
x and then reads and writes y; t j reads y and then reads and writes x (see Fig-
ure 5.1). During termination, servers in Px first deliver t i ’s commit request and
then t j ’s commit request; servers in Py deliver t j and then t i—this is possible
because the termination of global transactions requires multiple invocations of
atomic broadcast, one per partition. Transaction t i passes certification at Px

because no transaction updated x since t i ’s snapshot; it passes certification at
Py because no other transaction updates y at Py . Thus t i commits. By a similar
argument, t j also commits. However, their execution cannot be serialized: in
any serial execution involving t i and t j, either t i must read t j ’s writes or the
other way around.

5.4 A complete and correct protocol

The problem with the protocol presented in the previous section stems from
the fact that global transactions are not delivered and certified in the same or-
der across partitions, something that cannot happen with the original deferred
update replication technique since transaction termination is totally ordered by
atomic broadcast.

In the examples shown before, certification at partition Px determined that
t j can be serialized after t i and certification at partition Py determined that
t i can be serialized after t j, but this is obviously not enough. To solve the
problem, we use a stronger condition for certification, where each partition
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Px
ti

tj

rs(ti)x = { x }
ws(ti)x = ∅

rs(tj)x = { x }
ws(tj)x =  { x }

Py

execution termination

tj

ti

rs(tj)y = { y }
ws(tj)y = ∅

rs(ti)y = { y }
ws(ti)y =  { y }

tj 's snapshot at Px (ST) tj 's delivery at Px (SC) tj 's commit at Px

time

Figure 5.1. Example 1. Transactions t i and t j are delivered in different order
at partitions Px and Py . At partition Px the readset of t j does not intersect the
writeset of t i. Similarly, at partition Py the readset of t i does not intersect the
writeset of t j. Both partitions commit, but the execution is not serializable.

checks whether t i and t j can be serialized in any order with regards to one
another (i.e., both t i before t j and t i after t j).

More precisely, let σ be the set of transactions that are (a) delivered and
certified before t i but (b) not included in t i ’s snapshot (i.e., because they com-
mitted after t i started). At certification, servers in p check whether t i ’s readset
intersects the writeset of any t j in σ. If t i passes this test, then it can be serial-
ized after every t j in σ. To ensure that t i can be serialized before transactions
in σ, servers in p also check that t i ’s writeset does not intersect the readsets of
transactions in σ.

With the new certification test, in the execution of example 1, both t i and
t j will fail certification: t j will fail certification at Px since its writeset intersects
the t i ’s readset; t i will fail certification for the same reason at Py .

5.4.1 The algorithm in detail

Algorithm 4 shows the client for scalable deferred update replication. To exe-
cute a read, the client first figures out which partition stores the key to be read,
and sends the request to one of the servers in that partition (lines 10–12). No-
tice that the snapshot of a transaction is now an array of snapshots, one for each
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Algorithm 4 Scalable Deferred Update Replication, client c

1: function begin(t)
2: t.rs← ; {initialize readset}

3: t.ws← ; {initialize writeset}

4: t.st[1...P]← [⊥...⊥] {initialize vector of snapshot times}

5: function read(t, k)
6: t.rs← t.rs ∪ {k} {add key to readset}

7: if (k,?) ∈ t.ws then {if key previously written...}

8: return v s.t. (k, v) ∈ t.ws {return written value}

9: else {else, if key never written...}

10: p← partition(k) {get the key’s partition}

11: send(read, k, t.st[p]) to s ∈ Sp {send read request}

12: wait until receive(k, v, st) from s {wait response}

13: if t.st[p]=⊥ then t.st[p]←st {if first read, init snapshot}

14: return v {return value from server}

15: function write(t, k, v)
16: t.ws← t.ws ∪ {(k, v)} {add key to writeset}

17: function commit(t)
18: send(commit, t) to a preferred server s near c
19: wait until receive(outcome) from s
20: return outcome {outcome is either commit or abort}

partition (line 4). Upon receiving the first response from the server, the client
initializes its snapshot time for the corresponding partition (line 13). Subse-
quent requests to the same partition will include the snapshot count so that
reads to the same partition observe a consistent view. At commit time (lines
18–20), the client submits a transaction to one server (line 18), which will be
broadcast for certification to all partitions concerned by the transaction. The
client then waits for a server that replies with the transaction’s outcome (lines
19–20).

Algorithm 5 shows the server side. When local transaction t is delivered,
it is certified (line 15) and appended to the queue of pending transactions
(line 39), if local certification for t results in a commit. The order of the trans-
actions in the pending queue PL follows the delivery order, and it is the same
on every server within the same partition. The pending queue is consumed in
order; when t is at the head of PL it can be completed (lines 20–23). To com-
plete t, the protocol proceeds as follows: if t passes certification, it is applied
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to the local database, thus generating a new snapshot, and the outcome of t is
sent to the client (lines 24–29).

The delivery of a global transaction t requires additional steps: it is cer-
tified (line 15), and the outcome of the local certification test is exchanged
between servers in different partitions (lines 18–19). Servers keep track of the
received votes in a set called VOTES (lines 12–13). Global transaction t can
be completed when it is at the head of the pending queue and if enough votes
have been received. Function readyToCommit() ensures that, for a given global
transaction t, a vote from the partitions concerned by t (lines 20–23) has been
received. For the algorithm to be correct, it is sufficient to wait for only one
vote from every partition involved, as every server in the partition produces the
same vote for a given transaction. The final outcome for global transaction t is
decided as follows: if every partition voted for committing t (line 22), then it
is committed, otherwise it is aborted.

5.5 Handling partially terminated transactions

With scalable deferred update replication, a client may fail while executing the
various atomic broadcasts involved in the termination of a global transaction
t. It may be the case that some partitions deliver t ’s termination request while
others do not. This is possible because the atomic broadcast only guarantees
that within a partition all servers deliver the same sequence of transactions.
However, there is no guarantee that if a partition delivers t then every partition
involved by t also delivers it.

A partition Pk that delivers the request will certify t, send its vote to the
other partitions involved in t, and wait for votes from the other partitions to
decide on t ’s outcome. Obviously, a partition Pl that did not deliver t ’s termi-
nation request will never send its vote to the other partitions and t will remain
partially terminated. Local transactions do not suffer from the same problem
since atomic broadcast ensures that within a partition either a local transac-
tion is delivered by all servers or by no server. To handle partially terminated
transactions, a server s in Pk that does not receive Pl ’s vote after a certain time
suspects that servers in Pl did not deliver t ’s termination request.
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Algorithm 5 Scalable Deferred Update Replication, server s in partition p

1: Initialization
2: DB← [. . . ] {list of applied transactions}

3: PL← [. . . ] {list of pending transactions}

4: SC← 0 {snapshot counter}

5: VOTES← ; {votes for global transactions}

6: when receive(read, k, st) from c
7: if st=⊥ then st←SC {if first read, init snapshot}

8: retrieve(k, v, st) from DB {most recent version ≤ st}

9: send(k, v, st) to c {return result to client}

10: when receive(commit, t)
11: for all q ∈ partitions(t) : abcast(t) to partition q

12: when receive(t id, v) from partition q
13: VOTES← VOTES∪ (t id, q, v) {one more vote for t id}

14: when adeliver(t)
15: vote← certify(t) {see line 34}

16: if vote = abort then {certification resulted in abort?}

17: complete(t, abort) {see line 24}

18: if t is global then
19: send(t.id, vote) to all servers in partitions(t) {send votes}

20: when readyToCommit(head(PL))
21: t ← head(PL) {get head without removing entry}

22: outcome← (t.id,?, abort) ∈ VOTES {one abort vote and t will be aborted}

23: complete(t, outcome) {see line 24}

24: function complete(t, outcome) {used in lines 17, 23}

25: PL← PL	 t {remove t from PL}

26: if outcome= commit then {if t commits...}

27: DB[SC+ 1]← t {create next snapshot and...}

28: SC← SC+ 1 {...expose snapshot to clients}

29: send(outcome) to client of t

30: function readyToCommit(t)
31: return t is local ∨ ∀q ∈ partitions(t) : (t.id, q,?) ∈ VOTES

32: function ctest(t, t ′)
33: return (t.rs ∩ t ′.ws = ;) ∧ (t is local ∨ (t.ws ∩ t ′.rs = ;))
34: function certify(t) {used in line 15}

35: if ∃t ′ ∈ DB[t.st[p] . . . SC] : ctest(t, t′) = false then
36: return abort {t aborts if conflicts with committed t ′}

37: if ∃t ′ ∈ PL : ctest(t, t′) = false then
38: return abort {t aborts if conflicts with pending t ′}

39: PL← PL⊕ t {append t to pending list if no conflicts}

40: return commit
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In this case, s broadcasts a termination request for t on behalf of c. Since
s does not have the readset and writeset of t for Pl , it broadcasts a request
to abort t at Pl . Notice that s may unjustifiably suspect that servers in Pl did
not deliver t ’s termination request. However, atomic broadcast ensures that
c’s message requesting t ’s termination and s’s message requesting t ’s abort are
delivered by all servers in Pl in the same order.

Servers in Pl process the first message they deliver for t: c’s message will
lead to the certification of t at Pk; s’s message will result in an abort vote. What-
ever message is delivered first, no transaction will remain partially terminated.

5.6 Certification—less read-only transactions

In the protocol described so far, both read-only and update transactions must
be certified to ensure that they can be serialized. Certifying read-only transac-
tions is a disadvantage with respect to the baseline Deferred Update Replication
protocol, where read-only transactions commit without certification.

In the following we describe a protocol that can be used for creating read-
only snapshots. A snapshot essentially consists of a set of snapshot counters,
one per partition. A read-only transaction that reads from such a snapshot
is guaranteed to be serializable with respect to update transactions. However,
such read-only transactions are not necessarily exposed to the freshest snapshot.
This algorithm can thus be used in cases when the client knows, a priori, that
the transaction that is going to be executed is read-only, and can tolerate the
fact that it may not see the latest results. Another use is to create consistent
read-only snapshots of the dataset. This could be useful to create backups,
or to create immutable snapshots of the state (i.e. using copy-on-write) to be
accessed using read-only transactions.

To allow certification-less read-only transactions, we must consider both lo-
cal and global read-only transactions. We illustrate these cases with examples.

Example 2. The problem with local read-only transactions is that although
they may individually see a consistent database snapshot, together they may
lead to an inconsistent execution.

Assume global transaction t i updates both x1 and y1, global transaction t j

updates x2 and y2. Transactions ta and tb are local and readonly: ta reads x1

and x2; tb reads y1 and y2 (see Figure 5.2). At Px , t i is delivered first and
passes certification; then ta is executed and reads the value of x1 written by t i

and the initial value of x2. Finally, t j is delivered and since its readset does not
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intersect the writesets of t i, it passes certification. At Py , t j is delivered first,
followed by t i. Transaction tb reads the value of y2 written by t j, and the initial
value of y1. Similarly to what happens at Px , all transactions commit, although
the execution is not serializable. Notice that in this case global transactions t i

and t j do not read or write any data items in common.

Px
tj

ta

rsx = { x1 }
wsx = { x1 }

rsx = { x1,x2 }
wsx =  { }

Py

ti

rsx = { x2 }
wsx =  { x2 }

tj

tb

rsy = { y1 }
wsy = { y1 } 

rsy = { y1,y2 }
wsy = { }

ti

rsy = { y2 }
wsy =  { y2 }

time

Figure 5.2. Example 2. At partitions Px , read-only transaction ta observes the
effects t i but not the effects of t j. At partition Py , read-only transaction tb

observes the effects of t j but not the effects of t i. Thus violating serializability.

Example 3. Consider now a global read-only transaction that reads from the
latest snapshot counters available at different partitions. For instance, assume
that read-only transaction t reads from snapshots SCx and SCy at partitions Px

and Py respectively. Transaction t may see an inconsistent view of the database,
in that SCx may contain a global transaction t g that is not included in SCy .
Potentially, t may see some of the updates of t g at partition Px , and miss some
updates at partition Py , thus violating serializability.

5.6.1 The algorithm in detail

We define snapshot S as an n-tuple S =



SC1, SC2, . . . , SCn
�

, where n is the
number of partitions, and SCi is the count of transactions that were committed
at partition i. Intuitively, we must find a snapshot that can be serialized with
the history of transactions. That is, for all transactions T that precede S, S’s
snapshot counter at partition i must be greater than or equal to the snapshot
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counter created by T at partition i. Similarly, for all transactions T that succeed
S, S′s snapshot counter at partition i must be smaller than the snapshot counter
created by T at partition i.

Algorithm 6 shows how to find a serializable snapshot. For simplicity, we
consider that each partition is composed of a single server. The complete proto-
col uses the broadcast primitive to ensure markers are received and processed
in the same order within the same partition. The algorithm is similar to the
Chandy-Lamport snapshot protocol [11], in that it uses markers, and relies on
FIFO-channels. Function snapshot() (lines 1–3) is invoked by server s to ini-
tiate the snapshot algorithm. To take a snapshot a server sends the marker
to itself. When a marker is received (lines 4–7) for the first time by server s,
s will suspend the delivery of global transactions, and relay the marker to all
other servers (in FIFO order). When server s receives a marker from all par-
titions, then a snapshot has been found and each server records its SC , the
current snapshot counter. Collectively, the SC of all partitions is a snapshot
that does not include partial views of transactions, thus avoiding the problem
we illustrated in example 3. Notice that to ensure serializable snapshots, only
one instance of the snapshotting algorithm can be active at any time. Other-
wise, two concurrent instances of the algorithm could create snapshots that
allow the execution of example 2. To ensure this, only one partition initiates
the algorithm by calling function snapshot().

Algorithm 6 Snapshot Algorithm, server s in partition p

1: function snapshot() {Used by server to create a new snapshot}

2: let marker be a unique integer
3: send(marker) to s {server s sends marker to itself}

4: when received(marker) from server q
5: if received marker for the first time then
6: suspend the delivery of global transactions {disable line 14 in Algorithm 5}

7: for all servers r : send(marker) to r {send maker to all partitions}

8: when received marker from all partitions
9: snapshot contains everything up to SC

10: resume delivery of global transactions {enable line 14 in Algorithm 5}
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5.7 Discussion

Local and global read-only transactions and local update transactions scale lin-
early in S-DUR with the number of servers. The performance of global trans-
actions depends on how many partitions transactions access. In general, when
running global transactions only, we can expect the system to be outperformed
by the traditional deferred update replication protocol—although as we show
in Section 5.9, the difference is small. Therefore, overall performance will
depend on a partitioning of the database that reduces the number of global
transactions and the number of partitions accessed by global transactions.

With respect to deferred update replication, our certification condition in-
troduces additional aborts in the termination of global update transactions.
Transaction termination in DUR relies on total order: any two conflicting trans-
actions t i and t j are delivered and certified in the same order in every server.
Thus, it is sufficient to abort one transaction to solve the conflict. Since in
S-DUR t i and t j can be certified in any order, to avoid inconsistencies, we
must be conservative and abort both transactions. This is similar to deferred
update replication algorithms that rely on atomic commit to terminate transac-
tions [46].

5.8 Implementation and optimizations

We use LibPaxos [37] as our atomic broadcast primitive. There is one instance
of LibPaxos per partition. Our prototype differs from Algorithms 4 and 5 in the
following aspects:

• Each client connects to a single server only and submits all its read re-
quests to the server it connected to. Clients are oblivious to the partition-
ing scheme. When a server receives a read request for key k that is not
stored locally, the server routes the request to one server in the partition
that is responsible for storing k. In the following experiments we use
range partitioning.

• Our implementation reduces the number of vote messages exchanged for
global transactions. Only one designated replica in a partition sends vote
messages, reducing the number of messages required by the protocol. If
the other replicas suspect the failure of the assigned replica, they also
send their votes and choose another replica as responsible for propagat-
ing the partition’s votes.
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• Similar to the implementation of RAM-DUR (Section 4.6), we use bloom
filters to efficiently check for intersections between transaction readsets
and writesets. Differently from RAM-DUR, S-DUR requires to store both
readsets and writesets to perform the extended certification test.

• The implementation broadcasts transactions in small batches. This is es-
sentially the well-known group commit optimization in centralized databases.
In the case of DUR and S-DUR, it amortizes the cost of the atomic broad-
cast primitive over several transactions.

5.9 Performance Evaluation

In this section we assess the performance of Scalable Deferred Update Repli-
cation under different workloads. We look into throughput, latency and abort
rate of S-DUR and compare them to our baseline DUR of Chapter 3.

5.9.1 Setup and benchmarks

We ran experiments on Amazon EC2, using r3.large instances, equipped with
two virtual cores and 15GB of main memory. These instances support enhanced
networking capabilities, and have hardware support to efficiently virtualize net-
work I/O. We deployed r3.large instances in one availability zone, in the EU
West region.

We evaluated the performance of S-DUR using four different workloads,
which we summarize in Table 5.1. For instance, workload type A reads two
items and updates them, both keys and values are 4 bytes. Workload types A
and B perform updates only, while workload types C and D perform read-only
transactions. The number of operations and value sizes are chosen such that
the implementation performs under two different conditions. Workload types A
and C perform small operations, and in this particular deployment the through-
put is CPU bound. Workload types B and D transactions perform few operations
on relatively large data items (512 bytes). In which case the throughput of type
B transactions is limited by the number of transactions that can be submitted
through the atomic broadcast primitive per time unit. Workload type C is also
network bound: throughput is limited by the number of read operations servers
can reply to.

In the experiments, we vary the percentage of global transactions, in which
case clients access items stored in two different partitions. Clients select the
keys of the operations to perform uniformly at random.
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Reads Writes Key size Value size DB size
Type (ops) (ops) (bytes) (bytes) (items/partition)

A 2 2 4 4 1M
B 2 2 4 512 1M
C 32 0 4 4 1M
D 8 0 4 512 1M

Table 5.1. Workload types - Varying number of read and write operations per
transaction (ops), and key and value sizes (bytes).

We ran experiments with increasing number of partitions, each partition is
composed of five nodes: three nodes ran S-DUR servers collocated with ac-
ceptors and proposers for the Paxos protocol; the remaining two nodes were
allocated to clients for generating the load. Three servers per partition means
there are a total of three replicas for each data item.

We report throughput and the corresponding latency at peak performance.
In all experiments, we generate one new snapshot every second using the mech-
anism described in Section 5.6. Each experiment lasts 80 seconds; we discard
10 seconds from the beginning and the end of the execution, leaving 60 sec-
onds worth of traces per experiments.

5.9.2 Throughput

Figure 5.3 shows the maximum throughput of S-DUR while varying the per-
centage of global transactions. Throughput is normalized over the performance
of standard DUR with three replicas. We repeated the experiment for 2, 4 and 8
partitions, under all workloads. For comparison, we also show deferred update
replication with 6, 12 and 24 replicas (last three columns in the graphs).

Under update transactions (workload types A and B), the throughput of S-
DUR scales linearly with the number of partitions. For instance, with workload
A and no global transactions, doubling the number of partitions also doubles
the total throughput. Two partitions perform twice the number of transactions
compared to the baseline, and similarly for 4 and 8 partitions.

The performance of S-DUR degrades as the percentage of global transac-
tions increases. Global transactions are more expensive for the following rea-
sons. Partitions involved by global transactions need to exchange votes in the
termination phase. Also, global transactions slow down local transactions (i.e.,
if a local transaction t i is delivered after a global transaction t j, then t i will ter-
minate after t j terminates). Finally, in our implementation clients connect to
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Figure 5.3. Normalized throughput versus percentage of global transactions.

one server only, and are oblivious to the partitioning scheme (see Section 5.8).
In this case, reading from a different partition costs roughly twice as much
compared to reading a value from the partition in which the client is connected
to.

This effect can be noticed in both workload A and B. However, the effect
is less pronounced in workload B. In this workload, transactions operate on
larger value sizes and the system is bound by the number of transactions that
can be broadcast within a partition. Adding the extra costs of exchanging votes
and reading from remote partitions has a low impact, compared to workload A,
where the system is CPU bound and adding extra costs has immediate impact
on throughput.

Nonetheless, system throughput scales with the number of partitions. For
instance, in workload A and 50% of global update transactions, two S-DUR
partitions perform roughly the same as the baseline. However, doubling the
number of partitions, doubles the throughput. A configuration with eight parti-
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tions (i.e., 24 server nodes) can execute roughly four times more update trans-
actions compared to the baseline. Similarly, in workload type B and 50% of
global transactions, eight S-DUR partitions performs more than six times more
update transaction compared to the baseline.

The results of Figure 5.3 confirm that update transactions in DUR do not
scale as replicas are added to the system. In fact, notice that including more
replicas reduces throughput. Adding replicas increases the overhead of broad-
casting transactions to all replicas, which explains the negative effect.

We next consider read-only transactions (workloads C and D). Under read-
only transactions, DUR and S-DUR have similar behavior. In workloads C and
D, the baseline DUR protocol scales throughput linearly with the number of
servers. Since the termination of a read-only transaction is completely local to
the executing server, the addition of a server increases throughput proportion-
ally.

With 0% of global transactions S-DUR has identical performance to the
baseline DUR protocol. In the case of read-only transactions, the additional
cost induced by global transactions is due to the increased cost of reading from
remote partitions: read operations for keys replicated in a different partition re-
quire one extra lookup and round-trip to the partition that stores the requested
item. In fact, workload C degrades more quickly than workload D because
transactions in workload D perform fewer read operations (even if workload B
reads larger values).

5.9.3 Latency

Figure 5.4 shows average and 99th percentile latency for workloads B and D
reported in the previous section, while the black horizontal bars represent the
99-th percentile latency measured for the baseline experiment with 1 partition.
The graph distinguishes between local and global transactions.

For workload B, all S-DUR configurations show similar latency compared
to the baseline; in most cases there is less than one millisecond difference.
However, the 99-th percentile latency increases noticeably with 8 partitions and
50% of global transactions. Since the average is slightly affected, the graph
suggests that the increase in 99-th percentile latency is due to few unlucky
transactions, that wait for slow global transactions to finish (we consider this
phenomenon in the next chapter). In general, due to the extra overhead of
global transactions, their latency is between 1 and 2 milliseconds higher than
the latency of local transactions.
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For workload D, the latency of local read-only transactions in S-DUR is es-
sentially the same as the baseline latency, differences are about 0.1 millisec-
onds. The latency of global read-only transactions is about twice the latency of
local read-only transactions. This is not surprising since global read-only trans-
actions involve communication among partitions, which is not the case with
DUR where the database is fully replicated in each replica.

5.9.4 Abort rate

Figure 5.5 reports the abort rates of workload B as we increase the percentage
of global transactions. The graph distinguishes local and global transactions.
For all configurations, we observed less than 0.1% of aborts for local transac-
tions and less than 1% of aborts for global transactions.

In general, aborts are influenced by a combination of two factors: decreas-
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Figure 5.5. Abort rate versus percentage of global transactions.

ing the number of global transactions results in higher throughput and thus
more aborts; increasing the number of global transactions tends to augment
aborts since certification of global transactions is more restrictive and their ex-
ecution takes more time.

With local transactions, abort rate remains stable with respect to the per-
centage of global transactions. With 8 partitions, the abort rate tends to de-
crease with the percentage of global transactions. We attribute this behavior to
the reduced throughput achieved with 8 partitions.

With global transactions, aborts tend to increase with the number of parti-
tions since the throughput of each partition is a fraction of the throughput of
DUR and thus there is less contention within partitions.

5.10 Related Work

We reviewed full replication protocols in Section 4.8 and discussed their lim-
itations in Section 5.1. In the following, we focus the discussion on partial
replication and partitioning.

Some protocols implement partial database replication using atomic multi-
cast primitives (e.g., [6; 27; 55]). Fritzke et al. [27] describe a protocol where
each read operation of a transaction is multicast to all concerned partitions,
and write operations are batched and multicast at commit time to the partitions
concerned by the transaction. SIPRe [6] improves over the protocol of [27] in
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that only two invocations of atomic multicast are needed in order to execute a
transaction, one to begin the transaction, and one to terminate it. P-Store [55]
implements deferred update replication with optimizations for wide-area net-
works. Upon commit, a transaction is multicast to the partitions containing
items read or written by the transaction; partitions certify the transaction and
exchange their votes, similarly to S-DUR.

On the one hand, multicasting a transaction to all involved partitions has
the advantage of ordering certification across partitions and aborting fewer
transactions (e.g., it would avoid the problematic execution depicted in Fig-
ure 5.1). On the other hand, genuine atomic multicast is more expensive than
atomic broadcast in terms of communication steps [53], and thus transactions
take longer to be certified.

GMU [48] is a partially replicated protocol targeted for distributed transac-
tional memories. GMU provides update serializable transactions [29], that is,
update transactions are serializable, however read-only transactions may ob-
serve two update transactions in different orders (for instance the problematic
execution of Figure 5.2). Weakening the guarantees of read-only transactions
allows to observe fresh data, without aborting read-only transactions.

Differently from previous works, Sinfonia [3] offers stronger guarantees by
means of minitransactions on unstructured data. Similarly to S-DUR, mini-
transactions are certified upon commit. Differently from S-DUR, both update
and read-only transactions must be certified in Sinfonia, and therefore can
abort. Read-only transactions do not abort in S-DUR.

Rao et al. [49] proposed a storage system called Spinnaker, which is sim-
ilar to the approach presented here in that it also uses several instances of
Paxos [36] to achieve scalability. Differently from S-DUR, however, it does not
support transactions across multiple Paxos instances.

This thesis does not investigate any partitioning techniques. In the experi-
ments, we generally used simple range partitioning. However, the assignment
of data items to S-DUR partitions, together with the workload, determines the
number of transactions involved in two or more partitions. Devising parti-
tioning techniques is fundamental to achieve scalable performance. Several
partitioning techniques have been devised which could be used in S-DUR (e.g.,
[17; 45; 65]).

P-DUR is an extended version of S-DUR that supports parallel execution
on multicore servers [43]. In P-DUR a small set of servers fully replicate the
database, and each server partitions its copy of the database across the different
cores available to the server. In this case, partitioning helps in making efficient
use of the multiple cores available in current hardware.
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5.11 Conclusion

This chapter proposes an extension of the deferred update replication approach.
Deferred update replication is implemented by several data management sys-
tems due to its performance advantages, namely, good throughput in the pres-
ence of update transactions and scalability under read-only transactions. Scal-
able Deferred Update Replication makes the original approach scale under both
read-only transactions and local update transactions. Under mixed workloads,
with global and local update transactions, system throughput depends on the
percentage of global transactions. In the worst case (i.e., 100% of global up-
date transactions), performance is similar to the traditional deferred update
replication technique.
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Chapter 6

Geo-Replication using Deferred
Update Replication

Many current online services are deployed over geographically distributed sites
(i.e., datacenters). Such distributed services call for geo-replicated storage, that
is, storage distributed and replicated among many sites. Geographic distribu-
tion and replication can improve locality and availability of a service. Locality
is achieved by moving the data closer to the users and is important because
it improves user-perceived latency. High availability is attained by deploying
the service in multiple replicas; it can be configured to tolerate the crash of a
few nodes within a datacenter or the crash of multiple sites, possibly placed in
different geographical locations.

6.1 Motivation

Scalable deferred update replication offers good performance, which under cer-
tain workloads grows proportionally with the number of database partitions,
but it is oblivious to the geographical location of clients and servers. While
the actual location of clients and servers is irrelevant for the correctness of S-
DUR, it has important consequences on the latency perceived by the clients.
S-DUR distinguishes between local transactions, those that access data in a
single partition, and global transactions, those that access data in multiple par-
titions. Intuitively, a local transaction will experience lower latency than a
global transaction since it does not require the two-phase commit-like termina-
tion needed by global transactions. Moreover, in a geographically distributed
environment, the latency gap between local and global transactions is likely
wider since the termination of global transactions may involve servers in re-

53



54 6.2 A system model for geo-replication

mote regions, subject to longer communication delays. This is not the case for
local transactions whose partition servers are within the same region. Applica-
tions can exploit these tradeoffs by distributing and replicating data to improve
locality and maximize the use of local transactions.

Although local transactions are “cheaper” than global transactions when
considered individually, in mixed workloads global transactions may hinder the
latency advantage of local transactions. This happens because within a parti-
tion, the certification and commitment of transactions is serialized to ensure
determinism, a property without which the state of replicas would diverge. As
a consequence, a local transaction delivered after a global transaction will ex-
perience a longer delay than if executed in isolation. We have assessed this
phenomenon in a geographically distributed environment and found that even
a fairly low number of global transactions in the workload is enough to increase
the average latency of local transactions by more than 10 times.

This chapter discusses how S-DUR can be deployed in geographically dis-
tributed systems, and proposes solutions to the problem mentioned above. The
chapter describes three optimizations. The first optimization is based on delay-
ing the submission of global transactions. It is a simple technique, but provides
limited improvements. The other two optimizations are based on reordering the
delivery of transactions. Reordering relies on the observation that transactions
can often be committed in an order that is different from the delivery order.
Reordering transactions needs to be a deterministic, so that every replica of the
same partition reorders transactions in the same way.

6.2 A system model for geo-replication

We assume client and server processes grouped within datacenters (i.e., sites)
geographically distributed over different regions. Processes within the same
datacenter and within different datacenters in the same region experience low-
latency communication; hereafter denoted as δ (from a fraction of a millisec-
ond to a few milliseconds of roundtrip time). Messages exchanged between
processes located in different regions are subject to larger latencies; hereafter
denoted as ∆ (i.e., roundtrip time of tens to hundreds of milliseconds). A par-
tition replicated entirely in a datacenter can tolerate the crash of some of its
replicas. If replicas are located in multiple datacenters within the same region,
then the partition can tolerate the crash of a whole site. Finally, catastrophic
failures (i.e., the failure of all datacenters within a region) can be addressed
with inter-region replication.
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Replication across regions is mostly used for locality, since storing data close
to the clients avoids large delays due to inter-region communication. We ac-
count for client-data proximity by assuming that each database partition p has
a preferred server, denoted by pserver(p), among the servers that contain repli-
cas of p. Partition p can be accessed by clients running at any region, but
applications can reduce transaction latency by carefully placing the preferred
server of a partition in the same region as the partition’s main clients.

6.3 Geographically distributed deployments

We now consider two deployments of S-DUR in a geographically distributed
system.

The first deployment (“WAN 1” in Figure 6.1) places a majority of the
servers that replicate a partition in the same region, possibly in different data-
centers; other servers replicating p are distributed across regions. Having the
majority of servers in the same region allows the partition to order messages
quickly and therefore terminate local transactions without long delays; global
transactions are subject to inter-region delays.

A local transaction executed against the preferred server of partition P1 (s1

in the figure) will terminate in 4δ, where δ is the maximum communication
delay among servers in the same region. A global transaction that accesses
partitions P1 and P2, executed against server s1, will be subject to 4δ + 2∆,
where ∆ is the maximum inter-region delay.

The second deployment (“WAN 2”) distributes the servers of a partition
across regions. This deployment can tolerate catastrophic failures, as we dis-
cuss next. The termination of a local transaction will experience 2δ+2∆ since
Paxos will no longer run among servers in the same region. Global transactions
are more expensive than local transactions, requiring 3δ + 3∆ to terminate.
Note that we do not place server s4 in Region 1 because this would result in
Region 2 having no preferred server. Therefore, if a region r contains a server
of p, read operations issued by transactions in execution at r on items in p will
not experience long delays. Although this deployment tolerates the failure of
an entire region (i.e., a catastrophic failure), it imposes longer delays in the
termination of both local and global transactions.

In both deployments, a global transaction that executes at P1 (respectively,
P2) will read items from P2 (P1) within 2δ. Servers in remote regions speed up
the execution of global transactions that execute in these regions and read data
items in p.
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Deployments WAN 1 and WAN 2 tolerate the failure of servers in a parti-
tion as long as a majority of the servers is available in the partition. The first
deployment, however, does not tolerate the failure of all servers in a region,
since such an event would prevent atomic broadcast from terminating in some
partitions. For example, in Figure 6.1, first deployment, if all servers in Region
1 fail, then transactions local to Partition 1 and global transactions that modify
Partition 1 will not terminate.
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Figure 6.1. Scalable Deferred Update Replication deployments in a geographi-
cally distributed environment, where δ is the maximum communication delay
between servers in the same region and ∆ is the maximum communication
delay across regions; typically ∆ � δ. The database contains two partitions,
P1 and P2, and clients are deployed in the same datacenter as server s1.

6.4 Performance considerations

S-DUR provides in theory good latency in the geo-replicated settings described
above. In practice, we identified the following problem that prevents S-DUR
from achieving good performance in wide-area networks. A partition decides
the order of a global transaction at delivery time. As a consequence global
transactions potentially delay local transaction by up to two inter-region de-
lays. For example, if t i is delivered before t j in partition p, t i will be certified
before t j. If t i and t j pass certification (in all concerned partitions), t i ’s updates
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will be applied to the database before t j ’s. While this mechanism guarantees
deterministic transaction termination, it has the undesirable effect that t j may
have its termination delayed by t i. This is particularly problematic in S-DUR if
t i is a global transaction and t j is a local transaction since global transactions
may take much longer to terminate than local transactions.

The consequences of global transactions on the latency of local transactions
depend on the difference between the expected latency of local and global
transactions. For example, in WAN 1 local transactions are expected to ter-
minate much more quickly than global transactions, which is not the case in
WAN 2. Thus, global transactions can have a more negative impact on local
transactions in WAN 1 than in WAN 2. We have assessed this phenomenon
experimentally (details in Section 6.8) and found that in WAN 1, global trans-
actions can increase the latency of local transactions by up to 18 times. We
next discuss three techniques that reduce the effects of global transactions on
the latency of local transactions.

6.5 Delaying transactions

In our example in the previous section, if t j is a local transaction delivered after
a global transaction t i at server s, t j will only terminate after s has received
votes from all partitions in partitions(t i) and completed t i.

We can reduce t i ’s effects on t j as follows. When s receives t i ’s termination
request (message 1 in Figure 6.1), s forwards t i to the other partitions (message
2) but delays the broadcast of t i at p by∆ time units. Delaying the broadcast of
t i in p increases the chances that t j is delivered before t i but does not guarantee
that t j will not be delivered after t i.

Note that if ∆ is approximately the time needed to reach a remote partition
(message 2 in Figure 6.1), then delaying the broadcast of t i at p by ∆ will not
increase t i ’s overall latency.

6.5.1 The algorithm in detail

Algorithm 7 shows the delaying of transactions for a server s in partition p.
To delay a transaction, the only part that is affected is when server s receives
a request to commit transactions t. In which case s broadcasts t to each one
of the partitions involved by t, possibly delaying the broadcast at partition
p. In Algorithm 7, function delay(x, p) of line 5 returns the estimated latency
between partitions x and p.
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Algorithm 7 Transaction delaying, server s in partition p

1: when receive(commit, t)
2: let P be partitions(t) \ {p} {broadcast t to each...}

3: for all x ∈ P : abcast(x, t) {...remote partition}

4: ∆←max({delay(x, p) | x ∈ P}) {determine maximum delay}

5: abcast(p, t) after ∆ time units {delay local broadcast}

6.6 Reordering with fixed threshold

The idea behind reordering is to allow a local transaction t j to be certified
and committed before a global transaction t i even if t i is delivered before t j.
This is challenging for two reasons: First, when t j is delivered by some server
s in partition p, s may have already sent t i ’s vote to other partitions. Thus,
reordering t j before t i must not invalidate s’s vote for t i. For example, assume
t i reads items x and y and writes item y and s voted to commit t i. If t j updates
the value of x , then s cannot reorder t j before t i since that would change s’s
vote for t i from commit to abort. Second, the decision to reorder transactions
must be deterministic, that is, if s decides to reorder t j, then every server in p
must reach the same decision.

We ensure that at partition p local transaction t j can be reordered with pre-
viously delivered pending transactions t i0 , ..., t iM using a reordering condition
similar to the one presented in [47], originally devised to reduce the abort rate
of concurrent transactions. In our context, we define that t j can be serialized
at position l if the following holds:

(a) ∀k, 0≤ k < l: writeset(t ik)∩ readset(t j) = ; and

(b) ∀k, l ≤ k ≤ M : writeset(t j)∩ readset(t ik) = ;.

If there is a position l that satisfies the constraints above, t j passes certifi-
cation and is inserted at position l, which essentially means that it will become
the l-th transaction to be applied to the database, after transactions t i0 , ..., t il−1

have completed. If more than one position meets the criteria, servers choose
the leftmost position that satisfies the conditions above since that will minimize
t j ’s delay.

Consider now an execution where t i is pending at server s when t j is de-
livered and let t i read and write item x and t j read and write item y . Thus, s
can reorder t j before t i in order to speed up t j ’s termination. At server s′, be-
fore t j is delivered s′ receives all votes for t i and commits t i. The result is that
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when s′ delivers t j, it will not reorder t j before t i since t i is no longer a pend-
ing transaction at s′. Although t i and t j modify different data items, servers
must commit them in the same order to avoid non-serializable executions. For
example, a transaction that reads x and y at s could observe that t j commits
before t i and another transaction that reads x and y at s′ could observe that t i

commits before t j.
To guarantee deterministic reordering of transactions, we introduce a re-

ordering threshold of size k per pending global transaction t i. Transaction t i ’s
reordering threshold determines that (a) only local transactions among the
next k transactions delivered after t i can be reordered before t i; and (b) s can
complete t i only after s receives all votes for t i and s has delivered k transac-
tions after t i. In the previous example, if we set k = 1, then server s′ would not
complete t i after receiving t i ’s votes from other partitions, but would wait for
the delivery of t j and, similarly to server s, s′ would reorder t j and t i.

Note that we try to reorder local transactions with respect to global transac-
tions only. We found experimentally that reordering local transactions among
themselves and global transactions among themselves did not bring any sig-
nificant benefits. The reordering threshold must be carefully chosen: a value
that is too high with respect to the number of local transactions in the work-
load might introduce unnecessary delays for global transactions. Replicas can
change the reordering threshold by broadcasting a new value of k.

6.6.1 The algorithm in detail

Algorithm 8 shows the mechanism in detail. The algorithm overrides func-
tions readyToCommit() and certify(). In addition, the algorithm keeps DC, the
number of delivered transactions, which is updated whenever a transactions is
certified (line 6)).

Function certify() certifies t against transactions that committed after t
started (lines 7–8), using the usual certification test performed by function
ctest(). This check distinguishes between local and global transactions: while
a local transaction has its readset compared against the writeset of committed
transactions, a global transaction has both its readset and writeset compared
against committed transactions (see Section 5.4 for a description of why this is
needed). If some conflict is found, t must abort (line 8); otherwise the check
continues.

A local transaction t is reordered among pending transactions (lines 15–
24). The idea is to find a position for t in the pending list as close to the begin-
ning of the list as possible, since that would allow t to leap over the maximum
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number of global transactions (line 15), that satisfies the following constraints:
(a) transactions placed in the pending list that will consequently commit be-
fore t must not update any items that t reads (line 16); (b) we do not wish to
reorder t with other local transactions, and thus, all transactions placed after t
in the pending list must be global (line 17); (c) we do not allow a local transac-
tion to leap over a global transaction that has reached its reorder threshold, in
order to ensure a deterministic reordering check (line 18); and finally (d) the
reordering of t must not invalidate the votes of any previously certified trans-
actions (lines 19–20). If no position satisfies the conditions above, t must abort
(line 21); otherwise, s inserts t in the appropriate position in the list of pending
transactions (lines 22–23) and t is declared committed (line 24).

A global transaction t is first tagged with a reordering threshold (line 10).
Transaction t is further checked against all pending transactions (lines 11–13),
to avoid non-serializable executions that can happen when transactions are
delivered in different orders at different partitions. In the absence of conflicts,
t becomes a pending transaction (line 13) and is locally declared as committed
(line 24).

A global transaction t that reaches the head of the pending list can only be
completed at server s if (a) s received votes from all partitions involved in t and
(b) t has reached its reordering threshold (line 4). If these conditions hold, s
checks whether all partitions voted to commit t and completes t accordingly.
When a global transaction t reaches the head of the pending list, conditions (a)
and (b) above will eventually hold provided that all votes for t are received and
transactions are constantly delivered, increasing the value of the DC counter
(line 6). If a server fails while executing the submit procedure for transaction t,
then it may happen that some partition p delivers t while some other partition
p′ will never do so. As a result, servers in p will not complete t since p′’s vote
for t will be missing. To solve this problem, if a server s in p suspects that t
was not broadcast to p′, because t ’s sender failed, s atomically broadcasts a
message to p′ requesting t to be aborted. Atomic broadcast ensures that all
servers in p′ deliver first either s′’s request to abort or transaction t; Servers in
p′ will act according to the first message delivered.

6.7 Reordering with broadcasting of votes

In the reordering mechanism described earlier, each partition relies on an agreed
upon reordering threshold to ensure a deterministic decision within a partition.
We next describe an alternative mechanism to perform reordering. The idea is
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Algorithm 8 Certification with fixed threshold, server s in partition p

1: Initialization
2: DC← 0 {delivered transaction counter}

3: function readyToCommit(t)
4: return t is local∨ (t.r t = DC∧∀q ∈ partitions(t) : (t.id, q,?) ∈ VOTES)
5: function certify(t)
6: DC← DC+ 1 {one more transaction delivered}

7: if ∃t ′ ∈ DB[t.st[p] . . . SC] : ctest(t, t′) = false then
8: return abort {t aborts if conflicts with committed t ′}

9: if t is global then
10: t.r t ← DC+ ReorderThreshold {set t’s Reorder Threshold}

11: if ∃t ′ ∈ PL : ctest(t, t′) = false then
12: return abort {t aborts if conflicts with pending t ′}

13: PL← PL⊕ t {append t to pending list if no conflicts}

14: else
15: let i be the smallest integer, if any, such that
16: ∀k < i : PL[k].ws ∩ t.rs = ; and {t’s reads are not stale}

17: ∀k ≥ i : (PL[k] is global and {no leaping local transactions}

18: PL[k].r t < DC and {no leaping globals after threshold}

19: t.ws ∩ PL[k].rs = ; and {previous votes still valid}

20: t.rs ∩ PL[k].ws = ;) {ditto!}

21: if no i satisfies the conditions above then return abort
22: for k from size(PL) downto i do PL[k+ 1]← PL[k]
23: PL[i]← t {after making room (above), insert t}

24: return commit {t is a completed transaction!}

to use the atomic broadcast primitive to agree on a deterministic ordering of
global transactions within each partition. Upon certification, local transactions
either commit or abort right away. A local transaction t commits right away if
it passes the usual checks: t does not conflict with concurrent transactions that
are already committed, and t does not invalidate votes of pending global trans-
actions. Otherwise t aborts. The mechanism performs the same certification
checks on global transactions. In addition, the protocol atomically broadcasts
the final outcome of global transactions within partitions. Upon delivery, global
transactions are committed or aborted according to the final outcome. This en-
sures a deterministic ordering of global transactions.

Differently from the previous reordering protocol, this mechanism aims at
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always reordering local transactions at the beginning of the list of pending
transactions, so that local transactions never wait for a global transaction to
finish. The downside of this mechanism is that global transactions become
more expensive, in that the termination protocol requires two invocations of
the atomic broadcast primitive. With respect to the deployments described in
Section 6.3, the termination of global transactions based on broadcasting of
votes requires 6δ+ 2∆ in the case of deployment WAN 1, and 3δ+ 5∆ in the
case of deployment WAN 2.

6.7.1 The algorithm in detail

Algorithm 9 shows the termination protocol in detail. With respect to Algo-
rithm 5 of Chapter 5, we override function certify() and the handler for receiv-
ing votes from other partitions (lines 1–6).

Function certify() (lines 10–19) performs similarly as in Algorithm 5, the
only significant change is that a committing local transaction is committed im-
mediately, and is never included in the pending list.

We next describe how the protocol orders global transactions. Whenever
the server receives a vote from partition p, the vote is included in the set of
votes (line 2). The server proceeds by checking whether enough votes for the
transaction have been received by invoking function readyToCommit() (line 4,
unmodified from Algorithm 5). If so, the server broadcasts the transaction
identifier and its final outcome within the partition (lines 5–6). When the final
outcome is delivered, the server commits or aborts the transaction according to
the delivered final outcome (lines 7–9).

6.8 Performance Evaluation

In the following, we assess the performance of transaction delaying and re-
ordering in two geographically distributed environments. We compare through-
put and latency of the system with and without the techniques introduced in
the chapter.

6.8.1 Setup and benchmarks

We ran the experiments using Amazon’s EC2 infrastructure. We used r3.large
instances equipped with two virtual cores and 15 GB of RAM. We deployed
servers in three different regions: Ireland (EU), N. Virginia (US-EAST), and
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Algorithm 9 Certification with broadcasting votes, server s in partition p

1: when receive(t id, v) from partition q
2: VOTES← VOTES∪ (t id, q, v) {one more vote for t id}

3: let t be the transaction in PL such that t.id = t id
4: if readyToCommit(t) then
5: outcome← (t.id,?, abort) ∈ VOTES {one abort vote and t will be aborted}

6: abcast(t.id, outcome) to partition p

7: when adeliver(tid, outcome)
8: let t be transaction in PL such that t.id = t id
9: complete(t, outcome)

10: function certify(t)
11: if ∃t ′ ∈ DB[t.st[p] . . . SC] : ctest(t, t′) = false then
12: return abort {t aborts if it conflicts with committed t ′}

13: if ∃t ′ ∈ PL : (t.rs ∩ t ′.ws 6= ;)∨ (t.ws ∩ t ′.rs 6= ;) then
14: return abort {t aborts if it conflicts with pending t ′}

15: if t is global then
16: PL← PL⊕ t {append t to pending list if no conflicts}

17: else
18: complete(t, commit) {commit local transactions right away}

19: return commit

Oregon (US-WEST). Using ping, we observed the following inter-region round-
trip latencies: (a) ≈100 milliseconds between US-EAST and US-WEST, (b) ≈90
milliseconds between US-EAST and EU, and (c) ≈ 170 milliseconds between
US-WEST and EU.

In the experiments we used two partitions, each composed of three servers.
For WAN 1, we deployed the partitions as follows: the first partition has a ma-
jority of nodes in EU, while the second partition has a majority of nodes in
US-EAST. For WAN 2, we deployed the partitions such that each one has one
server in EU, one in US-EAST, and one in US-WEST; to form a majority, parti-
tions are forced to communicate across regions. In any case, servers deployed
in the same region run in different availability zones.

We present results for two different workloads: a microbenchmark and a
Twitter-like social network application. In the microbenchmark, clients per-
form transactions that update two different objects (two read and two write
operations). In the experiments, we vary the percentage of global transactions
in which case a transactions updates one local object and one remote object.
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Clients select keys randomly using a uniform distribution. We use one million
data items per partition, where each data item is a 4-byte integer.

The Twitter-like benchmark implements the operations of a social network
application in which users can: (1) follow another user; (2) post a new mes-
sage; and (3) retrieve their timeline containing the messages of users they
follow. We implemented this benchmark as follows. Users have a unique id.
For each user u we keep track of: (1) a list of “consumers” containing user ids
that follow u; and (2) a list of “producers” containing user ids that u follows;
and (3) u’s list of posts. In the experiments, we partitioned the data by users
(i.e., a user, its posts, its producers and consumers lists are stored in the same
partition).

Post transactions append a new message to the list of posts. Given the above
partitioning, post transactions are all local transactions. Follow transactions
update two lists, a consumer list and a producer list of two different users.
Follow transactions can be either local or global, depending on the partitions
in which the two users are stored. Timeline transactions build a timeline of
user u by merging together the posts of the users u follows. Timeline is a global
read-only transaction.

In the experiments, we populate two partitions, each storing 100 thousand
users. We report results for a mix of 85% timeline, 7.5% post and 7.5% follow
transactions. Follow transactions are global with 50% probability.

We report throughput and latency corresponding to 70% of the maximum
performance, for both benchmarks. In all experiments, we generate one new
snapshot every second, using the mechanism described in Section 5.6, unless
stated otherwise. Each experiment lasts 80 seconds; we discard 10 seconds
from the beginning and the end of the execution, leaving 60 seconds worth of
traces per experiment.

6.8.2 Baseline

We deployed S-DUR in a geographically distributed environment following the
two alternatives (WAN 1 and WAN 2) discussed in Section 6.3. Figure 6.2
shows the throughput and latency for both WAN 1 and WAN 2 deployments
with workload mixes containing 0%, 1%, 10% and 50% of global transactions.
Latency values correspond to their 99-th percentile and average. Figure 6.3
shows the cumulative distribution function (CDF) of latency for 0% and 1% of
global transactions.

Global transactions have a clear impact on the system’s throughput; as ex-
pected the phenomenon is more pronounced in WAN 1 than in WAN 2 (see
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Section 6.4). In the absence of global transactions, local transactions can exe-
cute within 10 milliseconds in WAN 1. The latency of locals increases to 160
milliseconds with 1% of global transactions, a 16x increase. We observed that
in workloads with 10% and 50% of global transactions, latency of locals in-
crease to 173 milliseconds (17x increase to the 0% configuration) and 184 mil-
liseconds (18x increase), respectively. This shows that the convoy phenomena
deteriorates as we increase the fraction of global transactions.

In WAN 2, local transactions alone experienced a latency of 141 millisec-
onds, while in workload mixes of 1%, 10% and 50% of global transactions
latency increased to 151 milliseconds (1.07x), 181 milliseconds (1.34x) and
179 milliseconds (1.27x), respectively.

The CDFs of Figure 6.3 show that in workloads with global transactions,
the distribution of latency of local transactions follows a similar shape as the
latency distribution of global transactions, showing the effect of global on local
transactions (see Section 6.4).
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second (tps), latency 99-th percentile (bars) and average latency (diamonds in
bars) in milliseconds (ms).
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6.8.3 Delaying transactions

We now assess the transaction delaying technique in the WAN 1 deployment.
In these experiments, we tested various delay values while controlling the load
to keep the throughput of local transactions among the various configurations
approximately constant. Figure 6.4 shows that the technique has a positive
effect in all percentages of global transactions we considered. Delaying globals
by 40 milliseconds resulted in a reduction in the 99-th percentile latency of
30, 30.8, and 36 milliseconds for 1%, 10%, and 50% of global transactions
respectively. Moreover, we noticed no impact on the overall latency of global
transactions (Figure 6.5).

The 40-millisecond delay parameter was chosen such that it approximately
matches the latency for sending one message from one partition to the other. As
expected, increasing the delay further (e.g., 80 milliseconds) yields no signifi-
cant improvement on local transactions, while we noticed a significant impact
on the latency of global transactions.
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Figure 6.4. Local transactions with delayed transactions in WAN 1.
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Figure 6.5. Global transactions with delayed transactions in WAN 1.
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6.8.4 Reordering transactions

Figures 6.6 and 6.9 show the effects of reordering in the latency of local and
global transactions under various workloads in WAN 1. We assess different
reordering thresholds in configurations subject to a similar throughput. We
compare the various reordering thresholds with reordering based on the broad-
casting of votes.

In WAN 1, reordering has a positive impact on local transactions for all
three workload mixes (Figure 6.6). For example, for 1% global transactions, a
reordering threshold of 640 reduces the 99-th percentile latency of local trans-
actions from 160 ms (in baseline) to 114 milliseconds, a 29% improvement. For
mixes with 10% and 50% of global transactions the improvement is 24% and
30% respectively. The best results are achieved with reordering with broadcast-
ing of votes, where the improvement is always greater than 90%, regardless of
workload mix. We observed no significant impact on the 99-th percentile la-
tency of the corresponding global transactions, for both reordering techniques
(Figure 6.7).
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Figure 6.6. Local transactions with reordering in WAN 1.
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Figure 6.7. Global transactions with reordering in WAN 1.

Local transactions in WAN 2 (Figure 6.8) also benefit from reordering. Al-
though, there is a tradeoff between the latency of locals and globals, an effect
not seen for WAN 1. For example, in the workload with 10% of global transac-
tions, a reordering threshold of 80 reduced the 99-th percentile latency of local
transactions from 181 milliseconds (in baseline) to 130 milliseconds. The cor-
responding latency of global transactions increased from 211 milliseconds to
238 milliseconds (Figure 6.9). Reordering with broadcasting of votes achieves
the best results for local transactions, though it also experiences the worst la-
tency for global transactions. This is not surprising, as broadcasting the votes
is expensive across geographical regions (atomic broadcast requires two more
communication steps). Similar trends are seen for workloads with 1% and 50%
of global transactions.
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Figure 6.8. Local transactions with reordering in WAN 2.
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6.8.5 Social network application

We next discuss the effects of reordering in our social network application.
In WAN 1 (Figure 6.10), reordering with broadcasting of votes performs

best. It achieves the best improvement on latency of local Post and Follow
transactions (88% and 85% respectively), with minimal impact on the latency
of global Follow transactions (less than 5%).

In WAN 2 (Figure 6.11), reordering with broadcasting of votes achieves
the best latency for local Post and Follow transactions, although it is slower
in committing global Follow transactions. As explained in the previous experi-
ment, reordering with broadcasting of votes requires an additional invocation
of atomic broadcast across wide-area links. In this deployment, reordering with
a fixed threshold of size 60, achieves 40% improvement for local Post and Fol-
low transactions, and only 7% increased latency on global Follow transactions.

In this experiment, Timeline transactions use the snapshot created with the
snapshot mechanism described in Section 5.6. Timeline transactions perform
equally well using both techniques: both reordering mechanisms have no im-
pact on read-only transactions. The latency of Timeline transaction is low, even
in WAN 2, because the snapshotting algorithm allows transactions to read data
items from the closest replica.
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Figure 6.10. Social network application in WAN 1.
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Figure 6.11. Social network application in WAN 2.

6.8.6 Impact of Snapshots

We next assess the impact of the snapshot mechanism described in Section 5.6.
We consider average and 99-th percentile latency while varying the think time
between invocations of the snapshot algorithm. Figures 6.12 and 6.13 shows
the results for in WAN 1 and WAN 2, respectively.

The latency of local transactions grows steadily (with or without broadcast-
ing of votes) as we decrease the snapshot interval. We notice that the average
grows slower than the 99-th percentile, suggesting that the snapshot algorithm
impacts only few, unlucky, transactions. In the case of reordering with broad-
casting of votes, local transaction are not affected by the snapshot algorithm.
This is due to the fact that local transactions never wait for global transactions
to finish. In the case of WAN 1, reordering with broadcast is advantageous, in
that local transactions experience no impact due to global transactions or the
snapshot mechanism. While the commitment of a global transaction takes the
same time for both techniques in the worst case (i.e., when there is no think
time between invocations of the snapshot algorithm).

In WAN 2, global transactions are more expensive with the reordering with
broadcasting of votes, and therefore reordering with a carefully selected thresh-
old performs better than broadcasting votes.
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Figure 6.12. Impact of snapshots in WAN 1.
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6.9 Related Work

Many storage and transactional systems have been proposed recently. In the
following we concentrate on systems that were designed to work well in geo-
graphically distributed environments.

Some of these systems (e.g., Cassandra [35], Dynamo [20], Voldemort[70])
guarantee eventual consistency, where operations are never aborted but isola-
tion is not guaranteed. Eventual consistency allows replicas to diverge in the
case of network partitions, with the advantage that the system is always avail-
able. However, clients are exposed to conflicts and reconciliation must be han-
dled at the application level.

COPS [39] is a storage system that ensures a strong version of causal con-
sistency, which in addition to ordering causally related write operations also
orders writes on the same data items. COPS provides read-only transactions,
but does not provide multi-key update transactions. The Eiger system [40]
improves over COPS in that it also provides atomic write-only transactions.

Walter [62] offers an isolation property called Parallel Snapshot Isolation
(PSI) for databases replicated across multiple data centers. PSI guarantees
snapshot isolation and total order of updates within a site, but only causal
ordering across data centers.

PSI can be further weakened to a consistency criterion called Non-monotonic
Snapshot Isolation (NMSI) [4]. Differently from PSI, NMSI allows a transaction
to observe a snapshot that was committed after its start. While PSI assumes full
replication, NMSI assumes partial replication [4].

Vivace [13] is a storage system optimized for latency in wide-area networks.
Vivace’s replication protocol prioritizes small critical data exchanged between
sites to reduce delays due to congestion. Vivace does not provide transactions
over multiple keys.

Google’s Bigtable [12] and Yahoo’s PNUTS [14] are distributed databases
that offer a simple relational model (e.g., no joins). Bigtable supports very
large tables and copes with workloads that range from throughput-oriented
batch processing to latency-sensitive applications. PNUTS provides a richer
relational model than Bigtable: it supports high-level constructs such as range
queries with predicates, secondary indexes, materialized views, and the ability
to create multiple tables.

None of the above systems provides strongly consistent execution for multi-
partition transactions over wide-area networks. We consider next systems that
offer guarantees closer to S-DUR.

P-Store [55] is perhaps the closest to our work in that it implements de-
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ferred update replication optimized for wide-area networks. Unlike S-DUR,
P-Store uses genuine atomic multicast to terminate transactions, which is more
expensive than atomic broadcast. P-Store also avoids the convoy phenomenon
in that it can terminate transactions in parallel. S-DUR can also terminate
transactions in parallel, and in addition to that we use reordering to further
reduce delays.

Spanner [15] is a distributed database for WANs. Like S-DUR the database
is partitioned and replicated over several Paxos instances. Spanner uses a com-
bination of two-phase commit and a so called TrueTime API to achieve con-
sistent multi-partitions transactions. TrueTime uses hardware clocks to derive
bounds on clock uncertainty, and is used for assigning globally valid timestamps
and for consistent reads across partitions.

Clock-SI [23] is similar to Spanner in that it also uses physical clocks to
order transactions. Unlike Spanner, Clock-SI relies on loosely synchronized
clocks, but does not provide replication.

MDDC [33] is a replicated transactional data store that also uses several in-
stances of Paxos. MDCC optimizes for commutative transactions, and uses Gen-
eralized Paxos to relax the order of transaction delivery of commuting transac-
tions.

Recently, a framework called G-DUR [5] has been proposed for develop-
ing and comparing protocols that use the deferred update replication tech-
nique. This work includes a comparison of S-DUR [57] (without the reordering
techniques of Sections 6.6 and 6.7), P-Store [55], Serrano [58], Walter [62],
NMSI [5], and GMU [48]. Their results confirm our considerations made in
this thesis: protocols based on snapshot isolation (such as [58]) are not neces-
sarily more efficient than protocols that provide serializability (such as S-DUR).
However, weaker forms of Snapshot Isolation (such as PSI [62] and NMSI [4])
provide substantial gains. The use of atomic multicast in systems such as P-
Store [55] is more expensive than the separate and independent atomic broad-
casts of S-DUR. Slightly weakening read-only transactions with update serial-
izability, as in GMU [48], also allows for substantial gains.

Our reordering technique with fixed threshold (Section 6.6) is based on the
algorithm described in [47], originally designed for reducing the abort rate. In
our context, we extend the idea to avoid the delay imposed by global commu-
nication on local transactions.

The transactions delaying technique of Section 6.5 increases the likelyhood
that transactions are delivered approximately at the same time in every parti-
tion. A similar problem has been explored in the context of Optimistic Atomic
Broadcast protocols. These protocols take advantage of the spontaneous or-
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der in which networks deliver messages so that the computation is overlapped
with the final total order delivery. While spontaneous ordering is highly prob-
able in local area networks, it is not tipically the case in wide area networks.
Spontaneous order can be achieved by injecting artificial delays [61; 50] or
by timestamping messages (using loosely synchronized clocks) optimistically
deliver in timestamp order [9].

6.10 Conclusion

We discussed scalable deferred update replication in geographically distributed
settings. S-DUR scales deferred update replication, a well-established approach
used in several database replicated systems, by means of data partitioning. S-
DUR distinguishes between fast local transactions and slower global transac-
tions. Although local transactions scale linearly with the number of partitions
(under certain workloads), when deployed in a geographically distributed envi-
ronment they may be significantly delayed by the much slower global transac-
tions — in some settings, global transactions can slow down local transactions
by a factor of more than 10. We presented two techniques that account for
this limitation: Transaction delaying is simple, however, produces limited im-
provements; reordering, a more sophisticated approach, provides considerable
reductions in the latency of local transactions, mainly in deployments where
global transactions harm local transactions the most. Our claims are substan-
tiated with a detailed performance evaluation of a series of microbenchmarks
and a Twitter-like social network application.



Chapter 7

Conclusions

Strongly consistent transactions have been historically considered too expen-
sive. Implementing such guarantees requires coordination across machines
and has been considered impossible to be used at scale. However, we have
recently witnessed a resurgence of interest, both industrial and academic, in
strongly consistent transactional data stores. The main reason for this trend is
that strong consistency leads to semantically simpler APIs. In other words, it is
simpler to implement a large system on top of stronger guarantees. This the-
sis focuses on transactional replication protocols. We started from the baseline
Deferred Update Replication protocol, and devised extensions that improve its
performance, scalability and latency in both local, and wide-area networks.

7.1 Contributions

This thesis contributes three replication protocols motivated by current hard-
ware and deployment trends: (i) RAM-DUR optimizes for reads and in-memory
execution; (ii) S-DUR employs partial replication to offer scalability and strong
consistency; and finally (iii) reordering termination in S-DUR provides substan-
tial latency improvements in geographically distributed environments. The the-
sis describes each of these protocols, their implementation, and performance
evaluation.

In-memory Deferred Update Replication. RAM-DUR extends the baseline
Deferred Update Replication approach with volatile nodes, or vnodes. Vnodes
implement a distributed caching layer which allows for fast in-memory trans-
action execution. The protocol behind vnodes is built around the assumption
that retrieving a data item from a remote server is more efficient than accessing
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a local disk. Vnodes store a subset of the dataset in memory and retrieve data
items from remote servers during the execution phase of transactions. The re-
sulting protocol guarantees the consistency level of the baseline approach.

Scalable Deferred Update Replication. S-DUR is a scalable Deferred Up-
date Replication protocol. The assumption here is that the database can be
partitioned such that most transactions are local to one partition, that is they
access data items from one partition only. Local transaction achieve best per-
formance, in that no coordination is required across partitions. The protocol
behind S-DUR allows multi-partition transactions to be committed using only
one roundtrip across the partitions involved. The resulting protocol guarantees
the same consistency level of DUR. The resulting protocol is less expensive than
previous protocols with similar guarantees [27; 55].

Geo-distributed Deferred Update Replication. Globally distributed applica-
tions impose challenging requirements on transactional systems. In particular,
the high latency of wide-area networks is detrimental to coordinate strongly
consistent systems. We investigated the performance of S-DUR when deployed
in a wide-area network, and found that the commitment of a global transac-
tion may delay the commitment of local transaction by up to two roundtrips.
We introduced two reordering algorithms. The first is based on a threshold that
fixes the number of local transactions that have to be committed before a global
transaction can terminate. The second algorithm uses one extra invocation of
the atomic broadcast primitive to order the vote messages of global transac-
tions. Both techniques result in a considerable reduction of latency, especially
in deployments where global transactions harm local transactions the most.

7.2 Future Directions

Several aspects of this thesis are worth further exploration.

Combining RAM-DUR and S-DUR. We introduced two techniques to improve
the performance of deferred update replication. S-DUR improves scalability
by partitioning the system into multiple smaller partitions, while RAM-DUR
allows fast in-memory execution. We believe that the two approaches can be
combined by simply applying RAM-DUR’s techniques within S-DUR partitions.
This approach would improve the execution phase of local transactions in S-
DUR. In addition, RAM-DUR vnodes can be added and removed online, thus
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making it possible to resize partitions based on the actual client load.

Dealing with non-uniform workloads. Database workloads are often non-
uniform. That is, some data items may be accessed more frequently than oth-
ers. Such workloads are generally problematic for partitioned databases like
S-DUR. For instance, if the workload mostly accesses one of the partitions only
the performance is bound to whatever a single partition can handle. A sim-
ple load balancing scheme could spread heavily accessed items to the available
partitions. However this might not be ideal, because moving data items to a
partition might increase the percentage of global transactions. This problem
calls for a load balancing scheme that is aware of the possible consequences on
transaction execution when moving items from one partition to another.

Reconfiguration of S-DUR partitions. In Chapters 5 and 6 we considered
a fixed partitioning of the data. That is, the number of partitions, and the par-
titioning function is fixed. Changing the number of partitions in a S-DUR de-
ployment while the system is running, is not trivial problem to solve efficiently.
Ideally, a solution to this problem would be relatively quick in increasing or
decreasing the number of partitions, have minimal impact on the performance
of the running system, and allow ongoing transactions to terminate without
interruption.
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Appendix A

RAM-DUR: Proof of correctness

We show next that RAM-DUR only produces serializable schedules. In the
proof, we argue that every history h produced by RAM-DUR has an acyclic
multi-version serialization graph (MVSG) [8]; if MVSG(h) is acyclic, then h is
view equivalent to some serial execution of the transactions in h [8].

We first prove the following property about RAM-DUR.
Proposition 1 (No holes.) If a lookup(k, st) request results in tuple 〈k, v, x〉,
where x ≤ st, then no committed transaction creates tuple 〈k, u, y〉 such that
x < y ≤ st.
PROOF: Assume for a contradiction that at server s, a lookup(k, st) returns
〈k, v, x〉, x ≤ st, and there is a transaction t that creates entry 〈k, u, y〉 and
x < y ≤ st.

From Algorithm 3, there are two cases to be considered:
Case (a): 〈k, v, x〉 is stored locally. When s issues a retrieve(k, st) request, it

returns the most recent version smaller than or equal to st from the store; thus,
entry 〈k, u, y〉 must not be in the store when s executes the retrieve operation.
But when s executes retrieve(k, st), it has already certified every transaction
that creates snapshot y ≤ st.

We divide case (a) in three sub-cases (Rule 2):

• Case (a.1) s is the owner of k. Then it must store every update to k,
including version y . Thus, we conclude that s is not k’s owner.

• Case (a.2) s caches entry 〈k, v, x〉. Then either (a.2.1) s received from r,
k’s owner, cacheable entry 〈k, v, x〉 or (a.2.2) s cached an earlier version
of k and delivered update 〈k, v, x〉. In case (a.2.1), by the algorithm,
when r replied to the remote lookup request (remote-lookup, k, SCs, st)
from s, v was the newest version stored locally and SCr ≥ SCs (Rule
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3). It follows that there is no version y of k such that x < y ≤ SCs, a
contradiction since st ≤ SCs. Case (a.2.2) is similar to (a.1).

• Case (a.3) s garbage collected 〈k, u, y〉. A contradiction to Rule 4, because
there exists older version x of k which was not garbage collected.

Case (b): 〈k, v, x〉 is not stored locally. Therefore, s sends message (remote-lookup, k, SCs, st)
to server r, the owner of k, and it must be that st ≤ SCs. Server r only executes
s’s request when SCr ≥ st (Rule 1). Hence, r returns 〈k, u, y〉, and not version
x , a contradiction that concludes the proof. �

Theorem 1 RAM-DUR guarantees serializability.
PROOF: MVSG is a directed graph, in which the nodes represent committed
transactions. There are three types of directed edges in MVSG: (a) read-from
edges, (b) version-order edges type I, and (c) version-order edges type II. These
types are described below. We initially consider update transactions only, i.e.,
edges that connect two update transactions. Then we consider read-only trans-
actions.

Update transactions. From the algorithm, the commit order of transactions
induces a version order on every data item: if transactions t i and t j create en-
tries 〈k, vi, tsi〉 and 〈k, v j, ts j〉, respectively, then SC(t i) < SC(t j)⇔ tsi < ts j,
where SC(t) is the snapshot counter associated with transaction t and corre-
sponds to its commit order.

To show that MVSG(h) has no cycles, we prove that for every edge t i → t j in
MVSG(h), it follows that SC(t i) < SC(t j). The proof continues by considering
each edge type in MVSG(h).

1- Read-from edge. If t j reads 〈k, vi, tsi〉 from t i, then t i → t j ∈MVSG(h).
We have to show that SC(t i) < SC(t j). From the algorithm, tsi = SC(t i),

which is the value of global counter SC at server s when t i was certified at s.
Since transactions only read committed data from other transactions, and t j

reads an entry from t i, t j is certified after t i is certified. For each transaction
that passes certification, s increments SC, and thus, it must be that SC(t i) <
SC(t j).

2- Version-order edge type I. If t i and t j create entries 〈k, vi, tsi〉 and 〈k, v j, ts j〉,
respectively, such that tsi < ts j, then t i → t j ∈MVSG(h).

Since the commit order induces the version order, we have that tsi < ts j ⇔
SC(t i)< SC(t j).

3- Version-order edge type II. If t i reads 〈k, vk, tsk〉 from tk and t j creates
entry 〈k, v j, ts j〉 such that tsk < ts j, then t i → t j ∈MVSG(h).
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Since no two transactions have the same commit timestamp, either SC(t i)<
SC(t j) (i.e., what we must show), or SC(t j) < SC(t i). For a contradiction,
assume the latter, which together with tsk < ts j leads to (a) SC(tk) < SC(t j) <
SC(t i). Since t i reads from tk, it follows that (b) SC(tk) ≤ ST(t i), where ST(t)
is the database snapshot version seen by t.

From (a), (b), and the fact that ST(t i)< SC(t i) (i.e., the database snapshot
version seen by t i must precede the version t i creates), we have to show that
the cases that follow cannot happen (see Figure A.1):

Case (i): SC(tk) ≤ ST(t i) < SC(t j) < SC(t i). In this case, t j ’s writeset
must be considered when certifying t i since t j commits before t i is certified. t i

can only commit if its readset does not intersect t j ’s writeset, but since t i.rs ∩
t j.ws = {k}, t i fails certification, a contradiction.

Case (ii): SC(tk) < SC(t j) < ST(t i) < SC(t i). When t i reads key k, it re-
ceives 〈k, vk, SC(tk)〉 from the storage, and not the value created by t j. The
read operation is translated into a lookup(k, ST(t i)) and returns 〈k, vk, SC(tk)〉,
where SC(tk) < ST(t i). Thus, from Proposition 1 (no holes), there is no trans-
action that creates entry 〈k,−, SC(t j)〉, a contradiction.

Read-only transactions. Let tq be a read-only transaction in h. Since tq does
not update any data item, any edge involving tq in MVSG(h) is of the type either
(a) read-from edge: t i → tq or (b) version-order type II: tq → t j, where t i and
t j are update transactions. We show that the former implies SC(t i) < ST(tq)
and the latter implies ST(tq)< SC(t j).

4- Read-from edge. Since t i → tq ∈ MVSG(h), tq must read some data
item written by t i. Since only committed versions can be read, it follows that
SC(t i)< ST(tq).

5- Version-order edge type II. Since tq → t j ∈ MVSG(h), there must exist
some transaction tk such that both tk and t j create entries 〈k, vk, tsk〉 and
〈k, v j, ts j〉, where tsk < ts j, and tq reads 〈k, vk, tsk〉. By an argument similar
to case (3) above, it must be that ST(tq)< SC(t j).

The proof continues by contradiction: assume tq is involved in a cycle c in
MVSG(h). Then, for each edge ta → tb ∈ c, SC(ta) < SC(tb) if both ta and tb

are update transactions (from the first part of the proof), SC(ta) < ST(tb) if tb

is a read-only transaction (from case (4) above), and ST(ta) < SC(tb) if ta is
a read-only transaction (from case (5) above). Thus if c exists, it follows that
ST(tq)< ST(tq), a contradiction that concludes the proof. �
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write k

read k

SC(tk)   ≤   ST(ti)   <   SC(tj)   <   SC(ti)

write ktk

tj

ti

ti reads k from tk

timeline

Case (i)

write k

read k

SC(tk)   <   SC(tj)   <   ST(ti)   <   SC(ti)

write ktk

tj

ti

ti reads k from tk

timeline

Case (ii)

Figure A.1. Instances of cases (i) and (ii) in proof.
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S-DUR: Proof of correctness

B.1 Scalable Deferred Update Replication

In the following, we argue that any execution of S-DUR is serializable, that is,
it is equivalent to a sequential execution involving the same transactions.

We start by introducing three definitions involving transactions t i and t j.

Definition 1. t i is serialized before t j if there is a serial execution in which t i

appears before t j.

Definition 2. t i and t i intersect if and only if readset(t i)∩writeset(t j) 6= ;.
Definition 3. t i and t j are concurrent at partition Px if they overlap in time at
Px . If t i and t j are not concurrent at Px , then either t i precedes t j or t j precedes
t i at Px .

Traditional DUR ensures that at each partition, local transactions are se-
rializable. From the certification test, the delivery order of transactions in a
partition defines one serial execution equivalent to the real one. Since no two
local transactions from different partitions intersect, any serial execution that
(a) is a permutation of all transactions and (b) does not violate the delivery or-
der of each partition is equivalent to the actual execution, and therefore every
execution of local transactions only is serializable.

With global transactions, however, the above does not hold since global
transactions may intersect with local transactions in multiple partitions. In or-
der to show that S-DUR guarantees serializable executions with both local and
global transactions, we introduce a few facts about the algorithm. Hereafter,
ST i

x and SCi
x are the snapshot and the delivery order of transaction t i at parti-

tion Px , respectively.

Fact 1. If t i passes certification at Px , then it can be serialized anywhere after ST i
x ,
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up to SCi
x .

To see why, note that t i is certified against each t j that committed after
t i started (otherwise it would be in t i ’s snapshot SCi

x) and finished before t i

(otherwise t i would not know about t j). From the certification test, t i and t j

do not intersect, and thus t i can be serialized before or after t j.

Fact 2. If t i and t j are concurrent at Px , then they can be serialized in any order.

Fact 2 is a consequence of Fact 1. Since t i and t j are concurrent at Px , they
overlap in time, and it must be that ST j

x < SCi
x and ST i

x < SC j
x . Without loss

of generality, assume that SC j
x < SCi

x . Obviously, t j can be serialized before t i.
Transaction t i can be serialized before t j since, from Fact 1, t j can be serialized
at SC j

x , t i can be serialized at ST i
x , and ST i

x < SC j
x .

Fact 3. The lifespan of a committed transaction in every two partitions in which it
executes must overlap in time.

This follows from the fact that a transaction only commits in a partition
after receiving the votes from all other partitions in which it executes.

We now proceed with a case analysis and show that for any interleaving
involving global transactions t i and t j, there is a serial execution that is equiva-
lent to the real execution, and therefore S-DUR is serializable (see Figure B.1).

• Case 1. t i precedes t j in all partitions. Then trivially t i can be serialized
before t i.

• Case 2. t i precedes t j in partition Px and they are concurrent in some
partition Py . From Fact 2, t i can be serialized before t j in Py .

• Case 3. t i and t j are concurrent in all partitions. Then, from Fact 2, they
can be serialized in any order at every partition.

• Case 4. t i precedes t j in partition Px and t j precedes t i in partition Py .
This case is impossible from Fact 3.
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Px
ti

Py

Case 1: ti precedes tj at both Px and Py

tj

ti
tj

Px
ti

Py

tj

ti
ti

Px
ti

Py

tj

ti
tj

Px
ti

Py

tj

tj
ti

Case 2: ti precedes tj at Px ; ti and tj are concurrent at Py

Case 3: ti and tj are concurrent at Px and Py

Case 4: ti precedes tj at Px ; tj precedes ti at Py

Figure B.1. Interleaved executions of transactions (Cases 1–3 are possible un-
der S-DUR but not Case 4).
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B.2 Read-only snapshots

We first show that a snapshot S built by our algorithm can be serialized with
committed update transactions. Since committed update transactions are seri-
alizable, they can be organized as a sequence H = T1; T2; ... and there is some
l such that S succeeds all transactions Tk, k ≤ l and S precedes all transactions
Tk, k > l, as we show next.

Define S as an n-tuple S =



SC1, SC2, . . . , SCn
�

, where n is the number of
partitions, and SCi is the count of transactions that were committed at partition
i. We define transaction T as an n-tuple T =




SC1, SC2, . . . , SCn
�

, where SCi is
the count created by the commit of T , if T modified partition i, and ⊥ if T did
not modify any items in partition i. S succeeds T , denoted T → S, if for all i,
S[i]≥ T[i] or T[i] =⊥; S precedes T , denoted S→ T , if for all i, S[i]< T[i]
or T[i] =⊥.

Therefore, S can be serialized at position l in H if for each Tk, k ≤ l, Tk→ S
and for each Tk, k > l, S → Tk, which is what our algorithm ensures. For a
contradiction, assume there is some transaction T that neither succeeds nor
precedes S, that is, there are i and j such that (a) T[i] ≤ S[i] and T[i] 6= ⊥;
and (b) S[ j]< T[ j] and T[ j] 6=⊥ and.

From (a), the commit of T at partition i precedes the snapshot of S at i.
In other words, processes in i received votes for T before receiving the last
snapshot marker needed to create S. For case (b), we distinguish two cases:

• (b.1) Processes in partition j delivered T after receiving the last snapshot
marker that created S. Thus, processes in j send S’s snapshot marker
before sending T ’s vote, but from (a), processes in i received T ’s vote
from j before the marker from j, which contradicts the property of FIFO
channels.

• (b.2) Processes in j delivered T before receiving the last snapshot marker
that created S. In this case, either j delivers and commits T before re-
ceiving the first marker, in which case S[ j] ≥ T[ j]. Or j received the
first snapshot marker before delivering T . Since the algorithm suspends
the delivery of new transactions until a snapshot is found, we contra-
dict again the fact that processes in i received T ’s vote from j before the
marker from j.

We now show that creating snapshots that can be serialized with commit-
ted update transactions is not enough to guarantee serializable executions that
combine update and read-only transactions.
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Suppose two partitions i and j initiate the snapshot algorithm at about the
same time. To distinguish the markers for the snapshot created at i and j,
let mi respectively m j be their markers. Consider the following sequence of
events. Partition i sends snapshot marker mi, receives snapshot marker m j

from j, delivers a local transaction Ti, and receives snapshot marker mi from j.
Similarly partition j snapshot marker m j, receives snapshot marker mi from i,
delivers a local transaction T j, and receives snapshot marker m j from i. Thus
the snapshot initiated at i includes Ti but not T j, and viceversa the snapshot
initiated at j includes T j but not Ti. Which is not serializable. To avoid this
problem, we have to ensure that only one instance of the snapshot algorithm is
active at any time.
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Appendix C

Geo-DUR: Proof of correctness

C.1 Delaying transactions

Delaying the broadcast of a global transaction t in a partition may delay the
delivery of t at p but this does not change the correctness of the protocol.
To see why, notice that since we assume an asynchronous system, even if t
is broadcast to all partitions at the same time, it may be that due to network
delays t is delivered at any arbitrary time in the future.

C.2 Reordering with fixed threshold

Consider a local transaction t, delivered after global transaction t ′ at partition
p. We claim that (a) if server s in p reorders t and t ′, then every correct server
s′ in p also reorders t and t ′; and (b) the reordering of t and t ′ does not violate
serializability.

For claim (a) above, from Algorithm 8, the reordering of a local transaction
t (lines 5 – 24) is a deterministic procedure that depends on DB[t.st[p] . . . SC]
(line 7), PL (lines 16 – 20), and DC (line 18). We show next that DB, PL, SC
and DC are only modified based on delivered transactions, which suffices to
substantiate claim (a) since every server in p delivers transactions in the same
order, from the total order property of atomic broadcast.

For an argument by induction, assume that up to the first i delivered trans-
actions, DB, PL, SC and DC are the same at every correct server in p (inductive
hypothesis), and let t be the (i + 1)-th delivered transaction (line 5). PL is
possibly modified in function certify() (line 23) and from the discussion above
depends on DB, PL, SC and DC, which together with the induction hypothesis
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we conclude that it happens deterministically. DB, PL and SC are also possi-
bly modified in the complete() procedure (Algorithm 5, lines 24 – 29), called
(i) after t is delivered (Algorithm 5, line 17), (ii) when the head of PL is a local
transaction (Algorithm 5, line 20), and (iii) when the head of PL is a global
transaction u (Algorithm 5, line 20).

In cases (i) and (ii), since all modifications depend on t, PL and SC, from a
similar reasoning as above we conclude that the changes are deterministic. In
case (iii), the calling of the complete() procedure depends on receiving all votes
for t and t having reached its reorder threshold (line 4). From the induction
hypothesis, all servers agree on the value of DC. Different servers in p may
receive u’s votes at different times but we will show that any two servers s and
s′ will nevertheless reorder t in the same way. Assume that when s assesses
u it already received all u’s votes and proceeds to complete u before it tries
to reorder t. Another server s′ assesses u when it has not received all votes
and does not call the complete procedure. Thus, s will not reorder t with
respect to u. For a contradiction, assume that s′ reorders t and u. From the
reorder condition, it follows that u has not reached its reorder threshold at s′,
which leads to a contradiction since u has reached its threshold at s, from the
algorithm (line 6) DC depends only on delivered messages and from atomic
broadcast all servers deliver the same transactions in the same order.

Finally, claim (b), to see that reordering transactions does not violate se-
rializability, note that the condition for local transaction t to be placed before
global transaction t ′ is that both transactions would be committed if t had
been delivered before t ′. Since t ′ passes certification, its readset and writeset
do not intersect the readsets and writesets of concurrent transactions delivered
before. Thus, in order for t to be reordered before t ′, t ’s readset and write-
set must not intersect t ′’s readset and writeset (lines 19 – 20). Moreover, t ’s
readset must not intersect the writeset of any concurrent transaction delivered
before t (lines 5 and 16), which is essentially the certification test for local
transactions in S-DUR.

C.3 Reordering with broadcasting of votes

Consider a local transaction t, delivered after global transaction t ′ at partition
p. We claim that (a) if server s in p reorders t and t ′, then every correct server
s′ in p also reorders t and t ′; and (b) the reordering of t and t ′ does not violate
serializability.

For claim (a) above, from Algorithm 9, the reordering of a local transaction
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t (lines 10 – 19) is a deterministic procedure that depends on DB[t.st[p] . . . SC]
(line 11) and PL (line 13). We show next that DB, PL and SC are only modified
based on delivered transactions, which suffices to substantiate claim (a) since
every server in p delivers transactions in the same order, from the total order
property of atomic broadcast.

For an argument by induction, assume that up to the first i delivered trans-
actions, DB, PL and SC are the same at every correct server in p (inductive
hypothesis), and let t be the (i + 1)-th delivered transaction (line 10). PL is
possibly modified in function certify() (line 16) and from the discussion above
depends on DB, PL, SC and DC, which together with the induction hypothesis
we conclude that it happens deterministically. DB, PL and SC are also possibly
modified in function complete() (Algorithm 5, lines 24 – 29), called (i) after t is
delivered (Algorithm 5, line 17), (ii) when t is committed in function certify()
(line 10), and (iii) when s delivers a final vote for global transaction u (line 7).

In cases (i) and (ii), since all modifications depend on t, DB PL and SC, from
a similar reasoning as above we conclude that the changes are deterministic. In
case (iii), the calling of function complete() depends on the server in p receiving
all votes for t and broadcasting u’s final vote. From the total order property of
atomic broadcast, all servers in partition p will deliver u’s final vote in total
order, and call complete() for transaction u in the same order.

Finally, claim (b), to see that reordering transactions based on broadcasting
of votes does not violate serializability, note that the condition for local transac-
tion t to be placed before global transaction t ′ is that both transactions would
be committed if t had been delivered before t ′. Since t ′ passes certification, its
readset and writeset do not intersect the readsets and writesets of concurrent
transactions delivered before. Thus, in order for t to be reordered before t ′,
t ’s readset and writeset must not intersect t ′’s readset and writeset (line 13).
Moreover, t ’s readset must not intersect the writeset of any concurrent trans-
action delivered before t (line 11), which is essentially the certification test for
local transactions in S-DUR.
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