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Chapter 1

Introduction

Does money illusion have an impact on aggregate consumption? Every well-educated
economist should answer this question in the negative, with the argument that the
representative consumer is rational and, therefore, perfectly knows the difference
between nominal and real values. In consequence, consumption should remain un-
affected by variations in the general price level, such that the neutrality of money
prevails. By theoretically and empirically unveiling a short- to medium-term impact
of inflation on consumption, the present dissertation shows that the answer to this
question is – contrary to the typical assumption – far from evident.

1.1 Motivation

The idea of analyzing the effect of money illusion on aggregate consumption is
motivated by two observations: First, people typically present some degree of money
illusion, and, second, aggregate consumption models completely leave out inflation
from their analysis.

Money Illusion Exists at the Individual Level

With the success of behavioral economics in the 1990s, there has been a renewed in-
terest in money illusion as a departure from the pure rationality assumption. Money
illusion argues that consumers rely not only on real values, as assumed by the tradi-
tional models, but also partly on nominal values. As a result, money illusion reveals
that inflation is a potentially significant determinant of consumption. In fact, money
illusion need not be the reflection of an intrinsic irrationality or a foible on the part
of the individuals; rather, it is equally consistent with the widely assumed rational-
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2 Chapter 1. Introduction

ity assumption. Following the literature on rational inattention (see, for example,
Sims, 2003; Mankiw and Reis, 2002), this dissertation considers money illusion as
pertaining to the fact that the consumer is constrained in her ability or willingness
to collect and process information about inflation. Although surveys and experimen-
tal studies show that people are confused between nominal and real values (see, in
particular, Shafir et al., 1997; Fehr and Tyran, 2001), there is no certainty whether
they really behave in an illusioned way and, consequently, whether this confusion
has a real impact on aggregate values. The present thesis addresses this question
by investigating whether inflation has a significant impact on real consumption and
whether this impact can be attributed to money illusion.

Traditional Consumption Models Exclude any Role for Inflation

Inflation is typically defined as a purely monetary phenomenon, influencing nominal
values but leaving real values unchanged, upon which most macroeconomic models
rely. Based on the original literature on signal extraction, which predicted a real
impact of unanticipated changes in nominal variables (Lucas, 1972; Barro, 1977),
many empirical works have focused on the possible effects of inflation on output and
unemployment. While some find inflation to have an overall negative impact on the
economy (e.g., Barro, 1995; Chari et al., 1995; Bruno and Easterly, 1998), others
refute this nonneutrality of money (e.g., Bullard and Keating, 1995; McCandless and
Weber, 1995; Lucas, 1996). However, with the notable exception of Deaton (1977),
there are hardly any studies analyzing a possible dependency of consumption on
fluctuations in the general price level. This thesis aims at filling this gap and provides
an alternative justification, in terms of money illusion, for any significant short-
term impact of inflation on consumption. An important insight to be gained from
the different analyses is that inflation should not be excluded from any aggregate
consumption model.

1.2 Outline

Since the central question of this dissertation remains largely uninvestigated, I ex-
plore different ways to apprehend and model the relationship between money illusion
and consumption. All reported empirical results have been obtained with quarterly
U.S. data for two reasons: first to facilitate comparison with other studies on con-
sumption, and, second, because the U.S. inflation series can be neatly divided into
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subperiods with different average inflation rates.
As a formal introduction, Chapter 2 presents the rational expectations–permanent

income hypothesis model, which is used throughout the dissertation as a benchmark
model representing the optimal behavior of the fully rational and illusion-free con-
sumer. According to this standard model, consumption growth is totally indepen-
dent of inflation because the consumer perfectly anticipates every fluctuation in the
general price level. Next, Chapter 2 presents an example of how money illusion can
be modeled directly in the consumer’s utility function as an extension of the money
in the utility function model.

Chapter 3 derives stylized facts regarding inflation and consumption growth and
reveals that inflation is, together with lagged consumption growth, the only sig-
nificant short- to medium-term determinant of consumption growth. This result is
obtained by extending the random walk model derived in Chapter 2 with current and
lagged inflation and by controlling for other determinants of consumption typically
evoked in the consumption literature. The resulting money illusion consumption
function is estimated with ordinary least squares (OLS) and two stage least squares
(TSLS) over different subperiods and using different inflation measures. The results
reveal two opposing effects of inflation on consumption growth, each correspond-
ing to a different effect of money illusion on consumption. First, contemporaneous
inflation has a negative effect on consumption growth. This effect reflects money
illusion as a signal extraction problem: that is, the consumer does not fully an-
ticipate inflation and temporarily decreases her consumption when she observes an
increase in the price level. Second, lagged inflation has a positive cumulative effect
on current consumption growth. This effect reflects money illusion as a cost-saving
rule of thumb, in which the consumer uses nominal values as a proxy for real val-
ues. Following this behavioral approach, the consumer’s subjective wealth increases
when her nominal income is adjusted upward to meet inflation, stimulating her real
consumption.

Chapter 4 focuses on the interpretation of money illusion as a signal extraction
problem, in which the consumer decides not to be constantly and perfectly informed
about inflation. The adopted modeling approach proposes that the consumer ob-
serves only her nominal income and wealth and must rely on assumptions about
the unobserved evolution of her real income and inflation. This inflation extraction
problem is estimated with a Kalman filter, thus yielding potentially more efficient
estimates than those in Chapter 3. The estimation results confirm a strong and sig-
nificant negative impact of current inflation on consumption growth in periods during
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which inflation is particularly high, but find no robust evidence of any positive or
negative inflation effect in periods with low inflation rates. This result suggests that
consumers behave differently depending on the inflationary environment and that
money illusion can have a potentially important impact on aggregate consumption
in times of high inflation.

Based on the insights gained from the Chapter 4, Chapter 5 suggests modeling
money illusion as a specification error within the benchmark rational expectations–
permanent income hypothesis model. In this indirect measure of money illusion, the
consumer is assumed to be aware that she might suffer from money illusion during
times of high inflation and to be able to efficiently control for it. Using the robust
control method suggested by Hansen and Sargent (2008), the estimation results
show that the consumer seeks a higher robustness in high-inflation subperiods than
in illusion-free, low-inflation subperiods. Moreover, the greater degree of robustness
induces a high degree of precautionary savings on the part of the consumer. These
results suggest a high degree of inflation uncertainty in times of high inflation, at-
tributable to the higher degree of money illusion during such periods. Moreover,
they suggest that money illusion has an important negative impact on consumption.

The intuitive and straightforward models presented in this dissertation clearly
show that inflation is an important determinant of consumption growth, particularly
in times of high inflation. One should be very cautious, however, when interpreting
the uncovered inflation effects as stemming from money illusion only. In fact, it
is not possible to perfectly disentangle money illusion from other inflation effects
when using only aggregate data. On one hand, this drawback calls for further
investigations into the exact relationship between inflation and consumption. On the
other hand, the different models and estimation results presented in this dissertation
show that money illusion cannot be excluded a priori at the aggregate level, which
supports the idea that modern macroeconomics should pay greater attention to
behavioral phenomena.



Chapter 2

Two Potential Benchmark
Models

As a first step, this chapter introduces the rational expectations–permanent income
hypothesis model, which is used throughout the dissertation as a benchmark em-
pirical model for the analysis of the impact of money illusion on consumption. The
main advantage of this model lies in its relative simplicity and in its straightforward
and testable implication: that no variable other than current consumption helps
predict future consumption.

The second possible benchmark model suggested in this chapter is the money in
the utility function model. This monetary model is appealing because it provides a
potential explanation for why people suffer from money illusion: They want to hold
money balances because such balances facilitate transactions. As an example, the
last section of this chapter shows how money illusion can be modeled directly in the
consumer’s utility function.

The main purpose of this chapter is to present the assumptions underlying the
models and to introduce the notation and derivation techniques that will accom-
pany this thesis from beginning to end. Readers familiar with these models and
with standard dynamic programming optimization techniques can safely skip the
introductory sections and start with the example in Section 2.3.2 or with the actual
empirical analyses in Chapters 3, 4 and 5.

Keywords: Rational expectations-permanent income hypothesis, random walk hy-
pothesis, money in the utility function, money illusion.

JEL classification: D11, D91, E21.
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6 Chapter 2. Two Potential Benchmark Models

2.1 Introduction

Money illusion can be interpreted as the consumers’ confusion between nominal
and real values (see Section 3.1). The theoretical consequence of money illusion is
that consumption is affected by purely nominal variations in its determinants, i.e.,
inflation becomes a further determinant of consumption. However, since people are
typically assumed to be rational, money illusion can only have a short-term effect
– if any – on consumption. To measure this temporary effect of money illusion
on consumption, it is useful to have a benchmark model representing the average
consumer’s behavior over the long run.

This chapter presents two suitable benchmark models that can be used for an
empirical analysis of the relationship between inflation and consumption growth.
The first model is the rational expectations–permanent income hypothesis model
(REPIH) developed by Hall (1978). Although this model does not explicitly deal
with inflation or monetary issues, its simplicity and intuitive random-walk implica-
tions for consumption growth render it the ideal empirical benchmark model. For
this reason, the REPIH is used in Chapter 3 to analyze the relationship between
inflation and consumption and extended in Chapter 5 to control for money illusion
as a misspecification.

As a matter of completeness, this chapter further presents the money in the
utility function (MIU) model developed by Sidrauski (1967a,b). Contrary to Hall’s
model, Sidrauski’s model allows for a non-neutrality of money in the short run by
attributing a direct utility to the holdings of money balances. In Section 2.3.2, I
present an example of how money illusion can be controlled for directly within the
utility function, using a method suggested by Miao and Xie (2013).

2.2 The Rational Expectations–Permanent Income Hy-
pothesis

The permanent income hypothesis (PIH) dates back to the work of Friedman (1956),
who developed a consumption theory aimed at explaining the fact that aggregate
consumption is much smoother than aggregate income (in that it presents fewer and
smaller fluctuations over time). To explain this phenomenon, he introduces the dual
concepts of permanent income yp and transitory income yt, such that both add up
to total income yt in every period (i.e., yt = ypt + ytt). The idea behind permanent
income is that the individuals base their consumption plan for each period on their
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total wealth, which corresponds to the amount of resources they expect to have
at their disposable for all remaining periods of their lives. The PIH then states
that only very short-term fluctuations in consumption are induced by transitory
income fluctuations, while long-term fluctuations in consumption are generated by
fluctuations in permanent income. Compared to the absolute consumption model
developed by Keynes (1936), ct = a+ byt, in which b is the marginal propensity to
consume (MPC) out of contemporaneous income, Friedman (1956) suggests that the
MPC out of transitory consumption is much smaller than the MPC out of permanent
income. In consequence, in order to understand consumption, one must be able to
precisely capture permanent income. However, the main problem arising from the
original PIH model is that yp is an unobserved subjective concept and, thus, cannot
directly be measured or estimated.

Friedman’s PIH, being foremost a statistical concept, only forms a complete
consumption behavior theory when combined with the life cycle hypothesis, which
was developed by Modigliani and Brumberg (1954) and later extended by Ando and
Modigliani (1963). Indeed, Modigliani and Brumberg (1954) provided the utility
analysis that set the foundations for what is sometimes referred to as the life cycle–
permanent income hypothesis (LCPIH). This model, despite its sound theoretical
assumptions and plausible implications, still suffers from the measurement problem
of permanent income and from the fact that the consumers are neither fully forward-
looking nor able to account for uncertainty in their decisions.

Hall (1978) was the first to directly address the uncertainty problem in deriving
the PIH implications for a representative and fully rational consumer by modelling
aggregate consumption as obeying the first order conditions for the optimal choice
of the representative consumer. His approach was revolutionary in the sense that
his micro-founded REPIH model is immune to the so-called “Lucas (1976) critique”
and provides a solution for many of the drawbacks of the original PIH. First, the
direct measure of permanent income becomes secondary because it is completely
captured by contemporaneous consumption. Second, by taking into account uncer-
tainty about the future, the model implies that future consumption is determined
by no other variable than current consumption. Consequently, consumption growth
is unpredictable and follows a random walk.

The following section derives the REPIH and shows which assumptions underlie
the random walk hypothesis, which is used as a benchmark model and extended in
Chapter 3.
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2.2.1 The Consumer’s Problem Under Uncertainty

Starting from the general maximization problem for a single rational consumer,
this section presents how we can derive, in a stepwise manner, under minimal as-
sumptions and with dynamic programming optimization techniques, a simple and
intuitive consumption function that can be empirically tested.

Under uncertainty, the consumer’s dynamic optimization problem can be spec-
ified as follows.1 Consider a representative consumer who maximizes her lifetime
utility Ut = U(ct, ct+1, ...) over an infinite horizon:

max
{ct}

Ut = Et

[ ∞∑
t=0

( 1
1 + ρ

)t
u(ct)

]
(2.1)

subject to

At+1 = (1 + r)(At + yt − ct) (2.2)

where A0 is given and

lim
j→∞

( 1
1 + r

)j
At+j ≥ 0. (2.3)

The variables ct, yt and At denote, respectively, the beginning-of-period con-
sumption, labor income and assets in period t. The uncertainty in the model is
induced by the income process {yt}, which is stochastic. At can be negative, mean-
ing that the consumer is allowed to freely borrow or lend. The constants r and
ρ > 0 are the certain, risk-free interest rate and the subjective discount rate, or the
consumer’s intertemporal rate of time preference. The within-period utility function
u(·) is strictly concave; that is, it has diminishing marginal utility with u′(·) > 0 and
u′′(·) < 0. A constant ρ in this discrete setup implies that utility is additive, which
means that the total utility over all periods is simply the sum of the discounted
utilities of each period. For now, the utility function is also assumed to be time-
separable, meaning that each period’s utility depends only on consumption within
the given period. Later in this chapter, two types of utilities fulfilling the presented
requirements will be suggested: namely, the quadratic and the constant elasticity
of substitution utility functions. In Chapter 3, however, the model will also allow

1In this section, I broadly follow Bagliano and Bertola (2007, ch. 1).
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for non time-separability of the lifetime utility. Individuals characterized by this
particular type of utility function, in which current period utility also depends on
past consumption, display some degree of habit formation (see Section 3.3.1). Yet,
another type of utility function – namely the money in the utility function – will
be considered in Section 2.3, when we turn to modeling money illusion by directly
including a role for money in the individuals’ preferences.

Equation (2.2) is the accounting identity representing the evolution of assets: The
gross savings (At+ yt− ct) are carried from period t to period t+ 1 and remunerated
with r. In the present case, I use the original notation of Hall (1978), in which
consumption and labor income take place at the beginning of period t. This notation
follows the suggestion of Samuelson (1969) and is widely used in the literature (see,
for example, Blanchard and Fischer, 1989; Deaton, 1992; Carroll, 1997). However,
it is also very common to assume that consumption occurs at the end of the period,
in which case the asset evolution equation is equal to At+1 = (1 + r)At + yt− ct (as
in Flavin (1981) or Muellbauer and Lattimore (1999)). Whereas the choice of the
specification for equation (2.2) can slightly alter the appearance of the equilibrium
conditions, it does not change their substance. Moreover, it can be easily shown that
the solution to the simple consumer problem presented in this chapter is independent
from the specification of the accounting identity (Azar, 2012).

The second constraint, equation (2.3), guarantees that the consumer does not
run a Ponzi game in which the consumer infinitely borrows in order to attain infinite
utility at the end of her life through infinite consumption. Note that this constraint
is equal to the non-negativity constraint AT+1 ≥ 0 in a finite-horizon setup, in which
T denotes the end-of-life period. More importantly, the inequality becomes a strict
equality if the marginal utility is always positive (which is the case) because the agent
will be able to attain a higher total utility by increasing her consumption until she
has consumed all her resources. In this case, the no-Ponzi-scheme constraint is called
the transversality condition, which states that the individual consumes exactly all
of her lifetime resources over her life cycle.

Under uncertainty, the maximization problem depends on future payoffs that are
not certain and that depend on a particular probability distribution. This uncer-
tainty is reflected by the operator Et, which represents the consumer’s expectations,
conditional on all information available up to period t. Typical uncertain variables
include income and the interest rate, for which the individual forms rational ex-
pectations based on the optimal use of all information available at the time the
expectations are built. As a matter of simplicity – and in order to better stress
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the main implication of the REPIH – the interest rate is considered certain and
constant, which leaves future income as the only uncertain variable. Due to its
uncertain nature, {yt} is to be interpreted as an exogenous endowment process.

There are several ways to solve this optimization problem. The standard method,
presented by Hall (1978) in his original paper, is to set up the Lagrangian for the
dynamic optimization problem and to derive the first order conditions (FOC) with
respect to ct and ct+1.2 The idea here is to analyze the utility loss of moving from
consumption in period t to consumption in a period infinitesimally forward in time,
which is equivalent to t+ 1 in this discrete setup. It can then be shown that it is
optimal for the consumer to set u′(ct) equal to E[u′(ct+1)], which is the main result
of the REPIH. The following section shows how to obtain exactly the same result
using another derivation technique: namely, dynamic programming.

Dynamic Programming: Derivation of the Bellman Equation

The reason for using dynamic programming is that, not only does it provide a
more general framework, which offers additional flexibility, but it is also particu-
larly powerful in dealing with problems under uncertainty.3 In addition, dynamic
programming is also used to derive the solution to the money in the utility function
model in Section 2.3 and to the robust consumption model in Section 5.3.

Two preliminary conditions (which are met in the above-presented consumer’s
problem) are necessary for the use of dynamic programming: First, the objective
function must be time-separable. Second, there must exist a dynamic accumulation
constraint in each period (in our case, equation (2.2)). The general idea behind
dynamic programming is to decompose, through backward recursion, the infinite-
period problem into a sequence of two-period optimization problems. To do this,
assume that the consumer faces a finite maximization problem, which ends at time
T , and that final wealth is non-negative (i.e., AT+1 ≥ 0). At the beginning of the
last period, the consumer faces the following problem:

2See Romer (2006, ch. 7) for a detailed textbook presentation.
3The approach presented in this section follows the notation and intuition of Bagliano and

Bertola (2007, pp. 36-41). For a detailed specification of the assumptions underlying dynamic
programming and a complete description of the alternative derivation techniques, refer to Ljungqvist
and Sargent (2004, ch. 3), who enthusiastically define dynamic programming as “the imperialism
of recursive methods”.
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max
{cT }

{
ET [u(cT )]

}
subject to

AT+1 = (1 + r)(AT + yT − cT )

and

AT+1 ≥ 0,

where AT is given. Solving for the optimal solution (while assuming that the non-
negativity constraint is binding) we get the optimal level of consumption in period
T as a function of wealth and income at time T ; that is, cT = cT (AT , yT ). To see
this, we can first insert AT+1 = 0 into the accounting identity and then substitute
for cT in the objective function.

By definition, the solution to the maximization problem yields the consumer’s
maximum utility that the consumer can obtain in the last period. The value of
this maximum utility is summarized by a so-called value function, VT , which can
be thought of as the value of the consumer’s objective function in the last period,
depending on the then-available resources. Just as the solution to the consumer’s
problem, the value function depends only on resources available in the last period,
i.e., VT (AT , yT ).

The same line of thought can be applied to the penultimate period for a given
value of wealth AT−1. The problem in period T − 1 can then be written as the
following two-period problem:

max
{cT−1}

{
u(cT−1) +

( 1
1 + ρ

)
ET [VT (AT , yT )]

}
subject to

AT = (1 + r)(AT−1 + yT−1 − cT−1).

Analogously to the final period, we get the optimal solution cT−1 = cT−1(AT−1, yT−1)
and further define the value function VT−1(AT−1, yT−1), which summarizes the max-
imum value of utility that the consumer can obtain over the two periods (T − 1) and
T .

As we continue the backward recursion, we find ourselves at the initial period,
where the infinite-period optimization problem condenses into a maximization prob-
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lem over only two periods. The consumer now optimizes only over her first-period
utility function and her (forward-looking) value function at t+ 1, representing the
intertemporal utility after maximization in all future periods. This two-period rep-
resentation of the consumer’s discrete-time problem is called the Bellman equation,
which has the following general form:

V (At, yt) = max
{ct}

{
u(ct) +

( 1
1 + ρ

)
Et [V (At+1, yt+1)]

}
(2.4)

subject to

At+1 = (1 + r)(At + yt − ct). (2.5)

Unlike the original maximization problem described by equations (2.1) through
(2.3), the Bellman equation breaks down the dynamic problem by forming a sequence
of maximization problems, in which the consumer faces a trade-off between opting
for immediate utility and utility tomorrow. As such, the right-hand side (RHS) of
equation (2.4) comprises the current objective u, plus the consequences V , of the
discounted objective of behaving optimally in the future. Note that, in the Bellman
equation, V no longer depends on time anymore because it converges to a constant
as T →∞.

Another simple way of understanding the Bellman equation and expressing the
consumer problem as a two-period maximization problem is suggested by Chen and
Funke (2007, pp. 6-8). Beginning with the objective function (equation (2.1)), we
can separate the current period t from all following periods and re-index the sum
from t = 1 to t = 0:

max
{ct}

Ut = Et

[ ∞∑
t=0

( 1
1 + ρ

)t
u(ct)

]

= u(ct) + Et

[ ∞∑
t=1

( 1
1 + ρ

)t
u(ct)

]

= u(ct) +
( 1

1 + ρ

)
Et

[ ∞∑
t=0

( 1
1 + ρ

)t
u(ct+1)

]

= u(ct) +
( 1

1 + ρ

)
Et [Ut+1(·)] .

We can restate the previous equation in terms of the value function V (At, yt)
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which measures the total lifetime utility U that the consumer can obtain by max-
imizing all one-period utilities. We find ourselves at the same Bellman equation,
(2.4), subject to the usual accumulation constraint and transversality condition.

A particularity of dynamic programming is that the Bellman equation is ex-
pressed in terms of control and state variables. The idea underlying dynamic pro-
gramming is to find the optimal control and state “today”, taking as a given that
later behavior will be optimal. In the present example, ct is the control variable,
whose level can be chosen by the consumer in each period so as to maximize her
overall utility. The choice of the control variable in t affects the amount of wealth
that the consumer will have at her disposal for consumption in the next period t+ 1.
This amount is given by the endogenous state variable At+1, which is also referred to
as the controlled state. The labor income variable yt is an exogenous state variable
following a certain stochastic process. This exogenous state cannot be influenced by
the consumer and, hence, does not enter the consumption-borrowing plan {ct,At+1}
chosen as optimal by the consumer over her lifetime.

There are two possibilities for solving the dynamic programming optimization
problem of equation (2.4) and equation (2.5).4 The first is to take the Euler route
by directly inserting ct from the constraint into the value function and then differen-
tiating with respect to At+1. The second possibility, presented hereafter, is to set up
a Lagrangian by adding the constraint with an appropriate multiplier λt. In either
case, the solution is a sequence of optimal control {ct}, optimal state {At+1} and
optimal shadow price {λt} that satisfies the first order and transversality conditions,
given the exogenous path {yt}. Note that, since the interest rate r is constant over
time, the shadow price of consumption is also constant over time; that is, λt = λ.
The Lagrangian for the Bellman equation is given by:

L = u(ct) +
( 1

1 + ρ

)
Et [V (At+1, yt+1)] + λt

[
At −

( 1
1 + r

)
At+1 + yt − ct

]
,

4In this chapter, I only illustrate how to find the Euler equation representing the solution for
the consumer’s general maximization problem. A complete solution for the dynamic programming
problem also, however, implies a derivation of the exact form of the value function of the Bellman
equation. This is done in Section 5.3.2 for the robust consumption model.
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with the corresponding FOC:

ct :
∂u(ct)
∂ct

− λt = 0 (2.6)

At+1 :
( 1

1 + ρ

)
Et

[
∂V (At+1, yt+1)

∂At+1

]
−
( 1

1 + r

)
λt = 0 (2.7)

λt : At −
( 1

1 + r

)
At+1 + yt − ct = 0.

The FOC for ct states that the marginal utility of consumption is constant in
every period. Since marginal utility is uniquely determined by the consumption
level ct, consumption must also be constant over time; that is, it becomes already
clear that the optimal behavior will be c0 = c1 = c2 = ... (Romer, 2006, p. 347).
Moreover, since marginal utility is equal to the multiplier λ, it corresponds to the
marginal utility of an infinitesimal increase in the consumer’s available resources.
Substituting (2.6) into (2.7), we get the following FOC:

u′(ct) =
(1 + r

1 + ρ

)
Et

[
∂V (At+1, yt+1)

∂At+1

]
, (2.8)

which must hold in every period. To solve for ∂V (At+1,yt+1)
∂At+1

, we make use of the
envelope theorem, which gives the effect of an infinitesimal change in At on V (At, yt);
that is:

∂V (At, yt)
∂At

= λt =
∂u(ct)
∂ct

.

Since the first order conditions are valid for all periods, we can update the
previous equation from period t to period t+ 1:

∂V (At+1, yt+1)
∂At+1

=
∂u(ct+1)
∂ct+1

.

Reinserting this into equation (2.8), we finally get the optimal consumption rule,
or the so-called Euler equation:

u′(ct) =
(1 + r

1 + ρ

)
Et [u′(ct+1)] . (2.9)
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The Euler equation (2.9) shows that the optimal consumption behavior rests
upon the indifference between the current marginal utility and the future discounted
marginal utility of consumption. It states that, given a consumer’s subjective dis-
count rate, she is indifferent between consuming one unit of a particular good today
and consuming (1 + r) units of the same good in the following period. Consequently,
equation (2.9) reflects the stability of the marginal utility relationship between any
two successive periods.

An important implication of uncertainty is that future realizations of utility may
well deviate from its expectations. Using the definition of expectation, we can write
u′(ct+1) = Etu

′(ct+1) + νt+1, where, for rational consumers, the νts have a zero
mean and are serially uncorrelated. Thus, under rational expectations, equation
(2.9) becomes the stochastic equation:

u′(ct+1) =
(1 + ρ

1 + r

)
u′(ct) + νt+1, (2.10)

where νt+1 can be interpreted as new and unpredicted information about wealth
in t+ 1. More precisely, since yt is the only random variable in the model, νt+1

measures the unpredictable news about labor income accruing between the two
successive periods t and t+ 1. Note that, formally, the sequence νt is a martingale
difference sequence, defined as a process for which Et(νt) = 0 for t = 1, 2, ... and
Et(νt|νt−1, ..., ν1) = 0 for t = 2, 3, ... (Lütkepohl, 2005, p. 689).

Depending on the nature of the consumer’s utility function, different optimal
consumption behaviors can be derived from this Euler equation. I briefly present
two strictly concave utility functions scrutinized by Hall (1978): the quadratic utility
function and the isoelastic utility function.

Case One: Quadratic Utility

Recall that u(c) is an increasing and concave function of consumption. One type
of utility function presenting these characteristics is the quadratic utility function,
which has the convenient feature of yielding linear marginal utility.5 Consider, for
example, the following intra-period quadratic utility (see, for example, Romer, 2006,
p. 353):

5The advantage of linear marginal utility is that, in this case, Et[u′(ct+1)] is equal to
u′(Et[ct+1]) (Romer, 2006, p. 353).
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u(c) = c− a

2c
2,

where a > 0. Inserting the differentiated utility function into equation (2.9) yields6

Et(ct+1) =
(1 + ρ)act + (r− ρ)

(1 + r)a
. (2.11)

If we further assume that the interest rate is equal to the subjective discount
rate (i.e., r = ρ), we get Hall’s famous result:

ct = Et(ct+1), (2.12)

which states that the optimal consumption path for the rational consumer is to keep
her level of consumption constant over time.7 In probabilistic terms, the stochastic
process ct is then said to be a martingale (Ljungqvist and Sargent, 2004, p. 36). In
other words, the ex ante current consumption is the best forecast of the next period’s
consumption. Thus, equation (2.12) implies that no variable other than ct (as, for
example, current wealth, income, interest rates or inflation) can help predict the
evolution of consumption. Consequently, the REPIH not only excludes alternative
consumption behaviors as habits or liquidity constraints, but also fails to leave room
for money illusion to impact consumption growth via inflation, which is the main
assumption of the present thesis.

This central theoretical result becomes even more striking when we use of the
above-mentioned definition of expectations and insert the marginal quadratic utility
into equation (2.10). This gives:

∆ct+1 = εt+1, (2.13)

where ∆ct+1 = ct+1 − ct and εt+1 =
(
−1
a

)
νt+1 is a martingale difference sequence,

with Et(εt+1) = 0 by construction under rational expectations, the exact inter-
6Note that, if we define β = 1

1+ρ and R = 1 + r, as in Sections 2.3.1 and 5.3, equation (2.11)

becomes Et(ct+1) = act+(βR−1)
aβR , while equation (2.12) remains unchanged under βR = 1.

7As we will see in Section 3.3.2, the common assumption that r = ρ is everything but slight,
since it excludes the possibility for the expected inflation to have an impact on current consumption
through the real interest rate.
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pretation of which will be derived in Section 2.2.2. Equation (2.13) states that,
under quadratic preferences and with an interest rate being equal to the discount
rate, consumption growth follows a random walk.8 This result, uncovered by Hall
(1978), represents the stochastic implication of the PIH under rational expectations
and has lead to much debate across empirical studies. However, this model pos-
sesses the tremendous advantage of simplicity, and it yields both microeconomically
and theoretically founded implications that can be directly tested with aggregate
macroeconomic data.

I undertake such a test in Chapter 3, where I use the random walk hypothesis
as a benchmark model and extend it with variables controlling for money illusion,
habit formation, liquidity constraints and wealth.

Case Two: CES Utility

Consider now the constant elasticity of substitution (CES) utility function, which
is commonly used in macroeconomic models. This function also presents the conve-
nient properties of being increasing, concave and additively separable. We have:

u(c) =


c1−γ−1

1−γ for γ 6= 1

log(c) for γ = 1,

where the constant γ > 0 represents the consumer’s degree of risk aversion. Note
that, in the special case of γ = 1, the limit u(c) = log(c) results from l’Hôpital’s
rule.9 In this particular case, again under the assumption that r = ρ, the Euler
equation (2.9) becomes ct = Et(ct+1). As a consequence, the logarithmic utilities
yield the same optimal consumption path as the quadratic preferences analyzed
above. The picture is, however, slightly different if the degree of risk aversion is not
equal to one (γ 6= 1). In this case, the Euler equation is equal to:

c−γt = Et(c
−γ
t+1).

8Although the random walk hypothesis rests upon the assumption of quadratic utility, the result
that departures of consumption growth from its average value are not predictable arises under more
general assumptions (Romer, 2006, p. 356).

9According to l’Hôpital’s rule,

lim
γ→1

=
c1−γ − 1

1− γ = log(c).
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Taking the logarithm on both sides of the equation, we can apply Jensen’s in-
equality10 by virtue of which log[Et(c

−γ
t+1)] ≤ Et[log(c

−γ
t+1)], and derive the following

result:

log(ct) ≤ Et[log(ct+1)].

We see that, without additional constraints, CES utility consumers have simi-
lar, but not congruent optimal consumption paths as quadratic utility consumers.
Consequently, the REPIH implication that consumption follows a random walk is
generally restricted to quadratic utility functions. This result can, however, be ex-
tended to other types of utilities, provided that more restrictive assumptions are
imposed.11

2.2.2 Definition of Permanent Income

In order to deduce the optimal decision rule, reconsider the initial accounting identity
equation (2.2), which describes the dynamic evolution of assets. Rearranging this
equation for current assets, we get:

At =
( 1

1 + r

)
At+1 + ct − yt. (2.14)

Since the initial endowment A0 is known, we can solve the previous equation
forward by substituting for At+1 =

(
1

1+r

)
At+2 + ct+1 − yt+1, At+2, ..., At+j in

equation (2.14). This gives the following solution:

At =
( 1

1 + r

)j
At+j +

j−1∑
i=0

( 1
1 + r

)i
ct+i −

j−1∑
i=0

( 1
1 + r

)i
yt+i.

Making use of the transversality condition equation (2.3), we find that the first
term on the RHS of the previous equation tends towards zero as j →∞. We obtain:

∞∑
i=0

( 1
1 + r

)i
ct+i = At +

∞∑
i=0

( 1
1 + r

)i
yt+i. (2.15)

10If the utility function is concave, Jensen’s inequality states that the expected utility is smaller
than the utility of the expected value.

11It can be shown, for example, that if the logarithm of income (and consumption) follows a
normal distribution, then consumption follows a random walk with drift. See, for instance, Hansen
and Singleton (1983) or Romer (2006, p. 381) for details.
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Equation (2.15) is the forward recursive solution of the evolution of assets, which
becomes the infinite horizon budget constraint of the representative consumer once
the transversality condition is taken into account. Starting in any period t, the
consumer will finance the present value of current and future consumption with her
current assets, as well as the present values of the flows of current and future labor
income. Allowing for uncertainty about the future, equation (2.15) can be rewritten
as:12

∞∑
i=0

( 1
1 + r

)i
Et(ct+i) = At +

∞∑
i=0

( 1
1 + r

)i
Et(yt+i).

We can now substitute the general definition of Et(ct+i) under quadratic utility
(2.11) into the previous equation:

(1 + ρ)act + (r− ρ)
(1 + r)a

∞∑
i=0

( 1
1 + r

)i
=At +

∞∑
i=0

( 1
1 + r

)i
Et(yt+i)

(1 + ρ)act + (r− ρ)
(1 + r)a

(1 + r

r

)
=At +

∞∑
i=0

( 1
1 + r

)i
Et(yt+i)

ct =
(

r

1 + ρ

)[
At +

∞∑
i=0

( 1
1 + r

)i
Et(yt+i)

]
− r− ρ

(1 + ρ)a
.

(2.16)

This equation is the general expression relating consumption to wealth and the
constant parameters ρ and r. Though the complete formulation of equation (2.16)
is being deepened and discussed in Section 5.3,13 for now, it is important to analyze
its implications in the case where r = ρ, as suggested by Hall (1978). In this case,
we have ct = Et(ct+i), and the consumption function (2.16) melts down to:

ct =
(

r

1 + r

)[
At +

∞∑
i=0

( 1
1 + r

)i
Et(yt+i)

]
︸ ︷︷ ︸

ypt

. (2.17)

Equation (2.17) represents the consumption function resulting from the PIH;

12Taking the expectation of both sides of equation (2.15) is a necessary step for the derivation
of the solution to this problem. This convention is questionable from a strict mathematical point
of view, but it is nonetheless widely used in the economic literature.

13In Chapter 5, under the definitions of ypt , β and R, the consumption function (2.16) is rewritten
as ct = β(R− 1)ypt −

1−βR
a .
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it reflects exactly how consumption ct depends on its determinants: namely, as-
sets At and labor income yt. It states that it is optimal for an individual to con-
sume in every period t a constant fraction (i.e., the annuity value r

1+r ) of her dis-
counted total lifetime resources. These lifetime resources comprise the value of
current financial wealth At and the present value of all expected future labor in-
comes,

∑∞
i=0

(
1

1+r

)i
Et(yt+i). The latter term can be thought of as the consumer’s

human capital, denoted by Ht, as used, for instance, in Hall (1978, p. 975) and
Bagliano and Bertola (2007, p. 8). On the RHS of equation (2.17), the term in
square brackets corresponds to Friedman’s definition of permanent income, denoted
by ypt . For Friedman (1956), permanent income is, thus, closely related to total
wealth, which comprises both nonhuman and human wealth. Consequently, equa-
tion (2.17) gives the amount that an individual can consume in every period, while
leaving wealth unaltered. This straightforward interpretation of the consumption
function – corresponding to the main assumption of the LCPIH – implies that peo-
ple want to smooth their consumption, keeping consumption levels constant across
their lifetimes.

With his derivation of the consumption function under rational expectations,
Hall (1978) first showed that the problem of identifying and measuring permanent
income becomes redundant because it is entirely captured by current consumption.
While the marginal effect of ypt on ct,

(
r

1+r

)
, is invariant, all short-term fluctuations

in the consumption level are induced by transitory changes in the income level. Sec-
ond, equation (2.17) shows that an individual’s consumption in t is not determined
by her wealth or income in the current period only, but rather by all current and
future incomes she can expect to earn, given her information set in t. This is the
forward-looking feature of the REPIH, which fully accounts for the uncertainty the
individual faces regarding the exact evolution of her income in the future.

By relating consumption to its determinants (i.e., financial and human wealth) it
is possible to give an exact interpretation of the random walk hypothesis presented
above.

Interpretation of the Consumption Function

Making use of the insight that current consumption ct is equal to current permanent
income ypt and of the random walk hypothesis summarized in equation (2.13), it is
possible to give a precise definition and interpretation of the error term εt.

From equation (2.17) the permanent income is given by:
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ypt = At +
∞∑
i=0

( 1
1 + r

)i
Et(yt+i). (2.18)

Considering permanent income in period t+ 1 and adding conditional expecta-
tions on both sides, we get:

Et(y
p
t+1) = Et(At+1) + Et

[ ∞∑
i=0

( 1
1 + r

)i
Et+1(yt+1+i)

]
. (2.19)

From the definition of the evolution of assets in equation (2.2), we know that
Et(At+1) = At+1, since next period’s wealth depends only on current period values.
Using the definition of permanent income, ct =

(
r

1+r

)
ypt , we can further deduce

from the Euler equation (2.12) that Et(y
p
t+1) = ypt . This means that, analogously

to consumption, the best and only predictor of permanent income in t+ 1 is the
permanent income in t. If we now wish to measure the difference between the actual
permanent income in period t+ 1 and the permanent income for period t+ 1 that
was expected in the period t, we can subtract equation (2.19) from equation (2.18),
updated one period ahead. This yields:

ypt+1 −Et(ypt+1) =At+1 +
∞∑
i=0

( 1
1 + r

)i
Et+1(yt+1+i)−

At+1 + Et

[ ∞∑
i=0

( 1
1 + r

)i
Et+1(yt+1+i)

]

ypt+1 − y
p
t =

∞∑
i=0

( 1
1 + r

)i
Et+1(yt+1+i)−Et

[ ∞∑
i=0

( 1
1 + r

)i
Et+1(yt+1+i)

]

ypt+1 =ypt +
∞∑
i=0

( 1
1 + r

)i
[Et+1 −Et] (yt+1+i). (2.20)

Note that, for the last step, we can make use of the fact that Et[Et+1(y)] = Et(y)
by the law of iterated expectations. Equation (2.20) states that the evolution of
permanent income from one period to another is governed only by the difference in
expectations regarding labor income between these two periods. If the information
set in t is identical to the information set in t+ 1, then the expectations about income
do not change (Et = Et+1) and the permanent income will not change between t

and t+ 1 (i.e., ypt+1 = ypt ).
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Again, under the equality ct =
(

r
1+r

)
ypt , we can rewrite equation (2.20) in terms

of the deviation of consumption from one period to another:

∆ct+1 =
(

r

1 + r

){ ∞∑
i=0

( 1
1 + r

)i
[Et+1 −Et] (yt+1+i)

}
(2.21)

∆ct+1 = εt+1. (2.22)

Equation (2.22) is equal to the above-defined equation (2.13), which states that,
under quadratic utility and an interest rate identical to the discount rate, the optimal
consumption path follows a random walk. Equation (2.21) now gives us a precise
definition of the innovation ε. It becomes evident that consumption growth is dic-
tated only by revisions of the expectations regarding future labor incomes. These
revisions in expectations occur only if new and previously unpredictable informa-
tion about income emerges between two periods. Since such news is unpredictable,
it means that the error terms are orthogonal to each other, which implies that
Et(εt+i) = 0 for all i = {1, 2, ...}. This is another way of stating that, if the news
about future income were predictable at t, it would already be accounted for in the
current consumption level ct. The fact that the error terms have a zero mean that is
conditional on all previously observed information is convenient in that the lagged
values of income and consumption become valid instruments for the estimation of
the consumption function. This fact will be used in Chapter 3 for the two-stage least
squares estimation of the money illusion consumption function. Note, finally, that
wealth completely disappeared from equation (2.21), leaving current consumption
as the only measurable and relevant predictor for future consumption.

2.3 The Money in the Utility Function Model

The present thesis is devoted to the analysis of the impact of money illusion on
consumption. The central question in performing such an analysis remains how to
best model money illusion. In the later chapters, I suggest three approaches to mod-
eling money illusion – namely, as a rule of thumb (Chapter 3), as a signal extraction
problem (Chapter 4) and as a source of model ambiguity (Chapter 5) – all of which
directly or indirectly rely on the assumptions of the REPIH. Since money illusion is,
per se, a monetary phenomenon, another potential way to address this problem is to
depart from the previously derived REPIH, which depicts a nonmonetary economy
(in which no money is used as a medium of exchange).
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One way to introduce money into the consumer’s problem is to assume that the
representative consumer wants to constantly hold a positive amount of real money
balances because holding such a balance eases transactions and is, hence, more time-
efficient. Since the consumer attributes an intrinsic utility to money as a transaction
facilitator, this model is called the MIU model. Even though the original formulation
of this model excludes the presence of money illusion by focusing only on real values,
money illusion is related to the MIU model in two ways. First, money illusion implies
a non-neutrality of money in the short run, which is a feature of the standard MIU
model. As discussed in more detail in Chapter 3, money illusion induces individuals
to seek increases in their nominal income and wealth, regardless of the inflation
level (Shafir et al., 1997). In consequence, people’s utility and consumption depend
partially on inflation and, thus, are not neutral to monetary values.

Second, the fact that consumers retain positive utility from the mere holding of
money balances can explain why people suffer from money illusion. Since having
more money is always preferred to having less money, the money-illusioned consumer
will be reluctant to undergo cuts in her nominal income or nominal wealth – a typical
feature of money illusion. This approach is advocated by Miao and Xie (2013), who
incorporate money illusion into the MIU model by assuming that consumers retain
a direct utility from a mixture of real and nominal money balances. The standard
(illusion-free) MIU model is derived in the next section, followed, in Section 2.3.2,
by a brief presentation of the extension, incorporating money illusion, suggested by
Miao and Xie (2013).

2.3.1 The Original Sidrauski Model

The MIU model goes back to Sidrauski (1967a,b) who was the first to link money,
inflation and growth by attributing an intrinsic role to money.14 Since then, the
MIU model has been widely used in the literature on monetary economics to analyze
the impact of monetary policies and the welfare cost of inflation (see, for example,
Poterba and Rotemberg, 1986; Blanchard and Kiyotaki, 1987; Farmer, 1997).

In the standard MIU model, the representative consumer’s problem can be writ-
ten as follows. The consumer wants to maximize her lifetime utility:

Ut = Et

[ ∞∑
t=0

βtu (ct,mt)

]
,

14In this section, I loosely follow Walsh (2010, Chapter 2) regarding notation and derivations.
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where β = 1
1+ρ is the intertemporal discount factor, subject to the following wealth

governing constraints:

Wt = f(kt−1) + τt + (1− δ)kt−1 +
(1 + it−1)bt−1 +mt−1

1 + πt
(2.23)

Wt = ct + kt + bt +mt. (2.24)

The within-period utility is assumed to be strictly concave, continuously differen-
tiable and increasing in both real consumption ct and the end-of-period real money
balances mt = Mt

Pt
. While the inclusion of mt in the utility function corresponds

to Sidrauski’s intuition, it is also the main criticism of the MIU model: Even if
money holdings are never used for the purchase of consumption goods and services,
they yield utility to the consumer. On one hand, this seems to contradict the full
rationality assumption.15 On the other hand, if one assumes that money illusion can
prevail in the short-term, then leaving the money balances in u(ct,mt) is, again, a
reasonable representation of the consumer’s preferences.

The first constraint, equation (2.23), represents the consumer’s sources of wealth,
which consist of a production function f(kt−1) with constant returns to scale, real
lump-sum transfers per capita τt and capital stock per capita kt−1 (adjusted by
the rate of depreciation δ), as well as the previous period’s money balances mt−1

and bonds bt−1 holdings (where it−1 is the nominal interest rate on bond holdings,
and πt is the inflation rate, such that 1 + πt = Pt

Pt−1
). Equation 2.24 states that

the consumer can spend her income on consumption, invest it in capital, save it in
bonds or keep it as money balances.

This dynamic optimization problem can be formulated in terms of a value func-
tion with the following Bellman equation:

V (Wt) = max
{ct,mt,bt}

{
u(ct,mt) + βEt [V (Wt+1)]

}
(2.25)

subject to

Wt+1 = f(Wt − ct − bt −mt) + τt+1 +

+(1− δ)(Wt − ct − bt −mt) +
(1 + it)bt +mt

1 + πt+1
. (2.26)

15An alternative model is the cash-in-advance (CIA) model, which does not attribute an intrinsic
utility to money, but, instead, imposes the additional constraint Ptct ≤Mt, which states that every
good must be paid with cash in advance (see Clower, 1967; Lucas, 1980). Interestingly, the CIA
model yields very similar conclusions to those of the MIU model, be they in cases without or with
consideration for money illusion (for the latter case, see Appendix B of Miao and Xie, 2013).
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Note that equation (2.23) has been inserted into equation (2.24) to eliminate kt,
such that the maximization needs to be done over the control variables ct, mt and
bt, as well as over the controlled state Wt+1.

In the same fashion as in the previous section, we can set up the corresponding
Lagrangian for equation (2.25) and derive the corresponding FOC:

ct : uc(ct,mt) = λt[fk(kt) + (1− δ)] (2.27)

mt : um(ct,mt) = λt

[
fk(kt) + (1− δ)− 1

1 + πt+1

]
(2.28)

bt : fk(kt) + (1− δ) =
1 + it

1 + πt+1
(2.29)

Wt+1 : βEt

[
∂V (Wt+1)
∂Wt+1

]
= λt, (2.30)

accompanied by the following transversality conditions, which ensure that the con-
sumer does not over-accumulate debts in terms of capital, money or bonds to attain
a higher lifetime utility:

lim
t→∞

βtλtkt = 0

lim
t→∞

βtλtmt = 0

lim
t→∞

βtλtbt = 0.

Making use of the envelope theorem for equation (2.30), we get

∂V (Wt)
∂Wt

= λt[fk(kt) + (1− δ)] = uc(ct,mt),

updated one period:

∂V (Wt+1)
∂Wt+1

= λt+1[fk(kt) + (1− δ)] = uc(ct+1,mt+1). (2.31)

Substituting (2.31) back into (2.30) yields the definition of λt:

λt = βEt[uc(ct+1,mt+1)].

Combining equations (2.27), (2.29) and (2.30) gives us the following Euler equation
for consumption:
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uc(ct,mt) = βEt[uc(ct+1,mt+1)]
( 1 + it

1 + πt+1

)
. (2.32)

It states that the utility loss from consumption today equals the utility from
consumption tomorrow, adjusted for the real gain from keeping bonds. When we
define the real interest rate as 1 + rt = 1+it

1+πt+1
, the Euler equation for consump-

tion is similar to the one obtained in the REPIH (i.e., equation (2.9)). The crucial
difference is that money balances enter the utility function and, thus, potentially
have a direct impact on the consumer’s optimal consumption path.16 Note, further,
that the just-used definition of the real interest rate is called the Fisher relation-
ship and corresponds to the real return on capital, as shown by the FOC for bt in
equation (2.29).

Making use again of the definition of λt and of equation (2.29), equation (2.28)
gives the Euler equation for money. This can be interpreted as the marginal cost,
in terms of future consumption, of retaining real money balances today:

um(ct,mt) = βEt[uc(ct+1,mt+1)]
(

it
1 + πt+1

)
. (2.33)

Finally, we can combine equation (2.32) with equation (2.33) to get the marginal
rate of substitution (MRS) between money and consumption:

um(ct,mt)
uc(ct,mt)

=
it

1 + it
. (2.34)

This is a central result of Sidrauski’s MIU model, which characterizes the money
demand. It appears that the intertemporal ratio of marginal utilities is equal to the
relative price, it

1+it , which can thus be considered as the opportunity cost (in terms of
consumption goods) of holding money balances. We see from the Fisher relationship
that inflation increases the nominal interest rate and the RHS of equation (2.34). In
consequence, inflation is said to be equivalent to a distortionary inflation tax (Walsh,
2010, p. 53). The counterpart to the demand for money is the growth of real money
balances, which is set by the government and is governed by the following equation:

mt+1
mt

=
1 + ϑt

1 + πt+1
,

where (1 + ϑt) is the growth rate of the nominal money balances. Again, we see

16This is, however, only the case if the utility function is non-separable, as in the example
presented further below, on page 27.
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that inflation has a negative impact on the growth of real money balances.

The Non-Separable MIU Utility Function

Of crucial importance for this section is the shape of the MIU utility function, which
typically takes the following CES form:

u(ct,mt) =
1

1− γ
[
α(ct)1−ϕ + (1− α) (mt)1−ϕ

] 1−γ
1−ϕ , (2.35)

where γ > 0 is the risk aversion parameter, 1
ϕ > 0 is the elasticity of substitution be-

tween consumption goods and money, and α ∈ (0, 1) represents the relative weights
of consumption and money. This general specification comprises several specific
cases. For instance, γ = 1 implies a logarithmic utility function (similar to the
example on page 17). Further, the case in which γ = ϕ condenses down to a separa-
ble utility function, since the marginal utilities of consumption and money are then
independent from one another. Note, however, that the case of non-separability,
in which γ 6= ϕ, seems more plausible because the mere fact that holdings of real
money balances facilitate transactions signifies that the consumer’s utility is not
independent of the amount of goods she is willing to purchase.

The partial derivatives of u with respect to ct and mt are:

uc(ct,mt) =αc−ϕt
[
α(ct)1−ϕ + (1− α) (mt)1−ϕ

]ϕ−γ
1−ϕ

um(ct,mt) =(1− α)m−ϕt
[
α(ct)1−ϕ + (1− α) (mt)1−ϕ

]ϕ−γ
1−ϕ .

Looking at the first derivative, we see that the marginal utility of consumption
depends on the real money balances. In consequence, inflation has, potentially, two
different effects on consumption. First, the inflation tax weighs on the consumer’s
budget and, thus, is expected to have a negative (wealth) effect on consumption.
Second, inflation will have an intertemporal substitution effect because the optimal
consumption path (described by the consumption Euler equation (2.32)) will also
depend on money.

Inserting these equations back into equation (2.34) yields the following optimal
money demand for the MIU consumer:
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1− α
α

(
mt

ct

)−ϕ
=

it
1 + it

mt

ct
=
[(

α

1− α

)(
it

1 + it

)]− 1
ϕ

. (2.36)

The money demand in terms of consumption goods, mt
ct
, depends on the time-

invariant parameters ϕ and α, as well as on the nominal interest rate it. The simple
and reduced form of this equation presents an easily testable empirical model of
the real money balances as a function of real consumption and the nominal interest
rate. Again, an increase in inflation decreases the RHS of equation (2.36) and
implies, for a constant ct, a decrease in mt. While this is an interesting feature,
equation (2.36) merely describes the ratio of real money to consumption, which is
expressed in their levels and for a given period. With regard to money illusion and
to the effective impact of inflation on the real economy, the crucial question is to
what extent consumption growth is affected by this strict monetary phenomenon.
As is presented in the next section, the answer to this question is not unambiguous;
rather, it relies heavily on the governing parameters and the assumptions about the
underlying processes.

2.3.2 Incorporating Money Illusion

Miao and Xie (2013) extended the standard MIU model developed by Sidrauski
(1967a,b) by assuming that the representative consumer suffers from money illusion,
which is defined as her (partial) reliance on both nominal and real values. This
definition is similar to the one used in Chapters 3 and 4, and it implies that the
consumer’s demand function is not anymore homogeneous of degree zero with respect
to its determinants (see Section 3.1.2). To account for this apparent irrationality,
Miao and Xie (2013) suggested including the price level in the MIU utility function,
as follows:

U(ct,Mt,Pt) =
1

1− γ

α [c1−θ
t (Ptct)θ

]1−ϕ
+ (1− α)

[(
Mt

Pt

)1−θ
Mθ
t

]1−ϕ


1−γ
1−ϕ

, (2.37)

where the variables and parameters are the same as defined in the previous sec-
tion, except for the new money illusion parameter θ ∈ (0, 1). According to this
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money illusion MIU utility function, people again retain utility from consumption
and money. Money illusion comes into play through the θ parameter, which at-
tributes utility not only to real consumption ct and real money balances Mt

Pt
= mt,

but also to nominal consumption Ptct and nominal money balances Mt. If there is
no money illusion and the consumer is fully rational (i.e., if θ = 0), then the utility
function is identical to the one analyzed in the previous section (equation (2.35)).
The other extreme case is θ = 1, in which case the consumer suffers from complete
money illusion. In this case, she seeks to maximize her nominal consumption and
nominal money balances only. The fact that the utility is now a function of the
general price level in U(ct,Mt,Pt) does not mean that the consumer prefers higher
prices to lower prices; rather, it reflects the fact that the consumer suffering from
money illusion derives her total utility from the “misperceived mixture of real and
nominal consumption, as well as real and nominal money balances” (Miao and Xie,
2013, p. 87).

Similarly to the standard MIU model analyzed in the previous section, γ =
ϕ = 1 implies that the utility function is log-linear and completely separable in ct,
Mt and Pt. In this case, the consumption decision is affected neither by money
illusion nor by the money balances, such that neutrality of money prevails even
with a positive θ. To allow for a certain effect of money illusion, Miao and Xie
(2013) restricted their analysis to the special case where γ = ϕ, corresponding to an
additively separable utility function over money and consumption and under money
illusion. This assumption is fairly restrictive, and it needs to be kept in mind when
interpreting their main results. To illustrate the difficulty of drawing conclusive and
incontestable results regarding the real impact of money illusion on the consumer’s
optimal behavior, consider the partial derivatives of the (non-separable) MIU utility
function with respect to consumption (ct) and real money balances (Mt

Pt
):

uc(ct,mt) = αP θt (ctP θt )−ϕ
{
α
[
c1−θ
t (Ptct)θ

]1−ϕ
+ (1− α)

[(
Mt

Pt

)1−θ
Mθ
t

]1−ϕ
}ϕ−γ

1−ϕ

um(ct,mt) = (1− α)P θt
(
Mt

Pt
P θt

)−ϕ{
α
[
c1−θ
t (Ptct)θ

]1−ϕ
+ (1− α)

[(
Mt

Pt

)1−θ
Mθ
t

]1−ϕ
}ϕ−γ

1−ϕ

.

In line with the previous section, the marginal utility of consumption depends,
not only on consumption, but also on the (nominal and real) money balances and
the general price level. The impacts of these variables on the consumption path
depend entirely on the choices of the parameters θ, α, γ and ϕ, as well as on the
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assumptions about the processes governing the evolution of the price and money
levels in the economy. Furthermore, recall that the case in which γ 6= ϕ probably
describes the MIU consumer’s preferences more accurately than the computationally
easier case of γ = ϕ. Indeed, it seems more plausible that the demands for money
holdings and consumption are not independent from one another because at least
some current money balances are being held as a transaction facilitators for future
purchases of consumption goods. This argument clearly favors the general case with
non-separable preferences.

Assuming γ = ϕ > 1 and introducing some specific monetary and productivity
shocks, Miao and Xie (2013) found a negative relationship between inflation and long
term economic growth. Intuitively, an increase in the expected inflation rate encour-
ages the consumer to consume more and save less, which impairs future growth. In
their setting, the money-illusioned agent’s consumption and saving decisions were
also influenced by her distorted perception of the riskiness of real wealth. Note that,
while money illusion might well impact the real economy via this wealth channel,
the following chapters of this thesis assume that, for psychological reasons (which
will be exposed in Section 3.1.2), money illusion’s main impact on real consumption
growth works via the income channel.

In order to define the optimal money demand for the money-illusioned MIU
consumer, we can insert the marginal utilities of consumption and money into the
Euler equation (2.34) and get

(1− α)
α

P θt
P θt

(
Mt
Pt
P θt

)−ϕ
(ctP θt )−ϕ

=
it

1 + it(
Mt
Pt

)
ct

=
[(

α

1− α

)(
it

1 + it

)]− 1
ϕ

, (2.38)

which is equal to equation (2.36) in cases with only real money balances (mt) and
without money illusion (θ = 0). Interestingly, even a fully money-illusioned con-
sumer (i.e., a consumer who retains utility solely from nominal values) will have
the same optimal money demand. To see this, plug θ = 1 into equation (2.37) and
maximize over ctPt (instead of ct) and Mt (instead of Mt

Pt
). The result will be the

same money demand as in equations (2.36) and (2.38). The fact that a money-
illusioned consumer’s optimal money demand is the same as the rational consumer’s
(i.e., the two consumers have the same optimal money-consumption ratio) can be
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interpreted as the fact that money illusion, just like any irrational behavior, is not
optimal or viable in the long run and, in consequence, can only reflect short-term
deviations from the optimal money-to-consumption path. Beware, however, that,
as alluded in the previous section, equation (2.38) is solely a static observation of
the factors influencing the consumer’s optimal demand for money and consump-
tion, since this equation is valid in every period. Of course, any deeper and more
thorough analysis of the putative impact of money illusion on consumption should
focus on its impact on consumption growth. Due to its heavy reliance on the ad
hoc assumptions regarding the governing parameters and the underlying processes,
I depart from this extended MIU model in the following chapters in order to use
empirically more suitable models to estimate the relationship between inflation and
consumption growth.

2.4 Conclusion

This chapter has presented two widely used macroeconomic models that are relevant
to the main topic of the present dissertation: money illusion, which assumes the exis-
tence of a direct and causal relationship between inflation and consumption growth.
The first model, the REPIH model, shows that a fully rational and forward-looking
agent seeks to keep her consumption constant over time and that deviations from
this optimal path are only driven by random shocks to income. In this nonmonetary
economy, money illusion is rejected a priori because inflation has no impact on the
real economy or consumption growth. Since the REPIH yields a very convenient
and intuitive dynamic framework for analyzing consumption growth and testing for
its determinants, it is used as a long-term benchmark model in the next chapters,
which perform empirical investigations on the putative link between money illusion
and consumption growth.

The second model analyzed in this chapter was the MIU model, which attributes
an intrinsic value to the holding of real money balances. In this model, inflation
has – through these money holdings – a potentially important impact on the real
economy. Miao and Xie (2013) extend this model to allow for the representative
consumer to suffer from money illusion (i.e., to retain utility from both real and
nominal consumption and money balances). They show that, under some specific
assumptions, money illusion stimulates immediate consumption and impedes long-
term economic growth through unexpected inflation. Chapter 3 further investigates
this potentially positive impact of inflation on short-term consumption growth and
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provides an alternative justification for it: namely, the nominal income channel (see
Section 3.1.2). Note, however, that the empirical investigations in chapters 4 and
5 do not confirm this positive impact of inflation on consumption; rather, they
advocate in favor of a short-term depressing effect of money illusion on consumption
growth.



Chapter 3

Estimating a Money Illusion
Consumption Function

Money illusion, defined as the misperception of nominal values as real values, implies
that consumption is not homogeneous of degree zero with respect to its determinants
and, thus, reacts to variations in the price level. This chapter tests for the presence
of money illusion in aggregate U.S. quarterly consumption data by adding inflation
as an explanatory variable to the random walk hypothesis model. It appears that
inflation is, in fact, the most important determinant of consumption growth and that
money illusion has two distinct effects on consumption. First, contemporaneous
inflation negatively impacts on current consumption growth, which reflects that
consumers misinterpret inflation as individual price increases and, thus, reduce their
immediate consumption. This negative inflation effect reflects money illusion as
a signal extraction problem. Second, lagged inflation has a positive cumulative
effect on current consumption growth. This positive inflation effect reflects the
presence of money illusion as a cost-saving rule of thumb, such that consumers
use nominal values as proxies for real values and increase their consumption when
nominal incomes are adjusted upward towards inflation. The results are robust to
the inclusion of other determinants of consumption growth, do not depend on the
choice of the inflation measure and are valid across periods experiencing different
average inflation rates.

Keywords: Money illusion, aggregate consumption function, random walk hypothe-
sis.

JEL classification: D11, D12, D91, E21, E31.
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3.1 Introduction

Money illusion is a well-known concept among economists that is widely used to de-
scribe a variety of apparently irrational behaviors that are, in principle, all related
to a latent confusion between nominal and real values. In order to better apprehend
this still vague phenomenon, Section 3.1.1 presents, in a first step, a brief literature
overview of the concept and applications of money illusion. A major problem related
to money illusion is that, even though survey studies show that individuals are con-
fused between nominal and real values, there is not yet certitude regarding whether
they really behave in an illusioned way and, consequently, whether money illusion
has a real impact on aggregate values. In a second step, in Section 3.1.2, I derive a
refined definition of money illusion that allows for a short- to medium-term impact
of inflation on aggregate real consumption. It is important to emphasize that this
assumption does not necessarily contradict the traditional macroeconomic models,
which are based on the full rationality assumption and the long-run non-neutrality
of money.1

In the present chapter, it is not only assumed that inflation is a major short-
term determinant of consumption growth, but also that its impact differs depending
on the time horizon considered. In the very short term, inflation has a negative
impact on consumption because consumers misinterpret (unanticipated) increases
in the aggregate price level as rises in the prices of individual goods they typically
purchase and, consequently, substitute consumption with saving. In the short to
medium term, money illusion has a positive impact on consumption because money-
illusioned consumers “feel richer” as their nominal incomes increase and, thus, in-
crease their consumption. Note that this dual impact of inflation on consumption
growth assumed in this chapter is quite different from the sole positive wealth effect
of inflation on consumption growth suggested by the extended MIU model of Miao
and Xie (2013) (see Section 2.3.2).

The subsequent sections derive and estimate empirical models that allow to
test for the presence of money illusion in aggregate consumption. First, in Sec-

1In particular, the present assumption is totally compatible with the early signal extraction lit-
erature of Lucas (1972, 1973) and Barro (1977, 1978), who allowed for inflation to have a short-term
positive impact on output and, similarly, a negative impact on unemployment. Their idea was that
incomplete information prevents people from perfectly distinguishing nominal money shocks from
(demand-induced) real shocks. Consequently, some nominal shocks are unanticipated and induce
short-term non-neutrality. Using the theoretical implications of money illusion for consumption,
the present study extends this intuition to consumption by allowing unanticipated nominal shocks
to have a real impact on consumption. As in the original models, we will see in Chapter 4 that
money illusion can be interpreted and modeled as a signal extraction problem.
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tion 3.2, inflation is tested as a determinant of consumption growth within the
rational expectations–permanent income hypothesis (REPIH) model. The resulting
inflation-augmented random walk hypothesis model is then extended in Section 3.3
to form the money illusion consumption function, which controls for other possible
determinants of consumption growth.

The estimation of these models with quarterly U.S. data (Section 3.4) shows
interesting results and presents the following new insights on the relationship be-
tween inflation and consumption. First, inflation is the most important short-term
determinant of consumption growth and should, as a consequence, not be excluded
from any study modeling and forecasting aggregate consumption.2 Second, the in-
flation effect on consumption growth is, as expected, negative for contemporaneous
inflation and (mostly) positive for lagged inflation rates, confirming the presence of
different kinds of money illusion depending on the considered time horizon. Last,
inflation has a more long-lasting effect on consumption during periods with low aver-
age inflation rates than during periods with high inflation rates. This indicates that
money illusion through the nominal income channel decreases as inflation increases,
reflecting a greater awareness of inflation when inflation accelerates or lies above
a certain threshold. Note that, while the positive inflation effect is not confirmed
by the estimations of the alternative consumption models under money illusion in
Chapters 4 and 5, these estimations also show a more pronounced effect of inflation
on consumption in periods with high average inflation.

3.1.1 Money Illusion in the Economic Literature

As early as in the beginning of the twentieth century, money illusion was considered
to be a cognitive bias, through which, as defined by Camerer et al. (2004, p. 32)
people “make decisions based on nominal quantities rather than converting those
figures into real terms by adjusting for inflation”. For Fisher (1928, p. 4), who
coined the term and devoted an entire book to it, money illusion is “the failure to
perceive that the dollar, or any other unit of money, expands or shrinks in value”.

In particular, money illusion becomes crucial for Keynesian economists because
it violates the long-run neutrality proposition of the quantitative theory of money
and provides an explanation for the observed downward nominal wage and price
rigidities. Describing the observed tendency for workers to reject nominal wage cuts

2From a long-term and growth perspective, consumption and income (output) grow at the same
rate. In consequence, the main long-term determinant of consumption growth is, indeed, income,
as is evident from the consumption function represented by equation (2.17) in the previous chapter.
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but to accept real wage cutbacks, Keynes (1936, p. 9) wrote: “whether logical or
illogical, experience shows that this is how labour in fact behaves”. As Akerlof and
Shiller (2009, Chapter 4) state it, money illusion is, in Keynes’ view, one of five an-
imal spirits (or apparent irrationalities) that govern much of the economic activity
and cause the economic fluctuations. Concerning the nominal wage rigidities, mod-
ern field studies by Baker et al. (1994) and Bewley (1999) show, for example, that
firms are reluctant to cut nominal wages due to such a move’s negative impact on
employees’ satisfaction. This could be explained by the fact that workers suffering
from money illusion focus on their nominal instead of their real wage fluctuations.
For example, as Shafir et al. (1997, p. 364) learned through questionnaires, “many
people [...] who would strongly object to a 1 percent cut in salary in times of no
inflation, are less likely to complain when they get a 5 percent raise in times of 6
percent inflation”.3 Since wages and prices are generally closely related, there might
also be a potential and indirect link between downward price rigidities and money
illusion, in that people will dislike price decreases because of their negative impact
on nominal wages and, thus, their satisfaction. Since price rigidities can typically be
explained by more straightforward illustrations such as menu costs, I deliberately
ignore the possibility that money illusion may have an impact on the real economy
via the downward rigidity of wages and prices.

During the 1970s, with the breakthrough of the rational expectations revolution,
money illusion was considered irrational and costly to decision makers and, hence,
completely lost its interest for researchers. This change in paradigm is perfectly
illustrated by Tobin (1972, p. 3) who warned that “an economic theorist can, of
course, commit no greater crime than to assume money illusion”. The REPIH model
developed by Hall (1978) and presented in Chapter 2 perfectly mirrors this paradigm,
since the agent is fully rational and, consequently, does not attribute any role to
money or to nominal values.

It is not until the 1990s and the emergence of behavioral economics that money
illusion regained some popularity, especially as an example of irrational behavior.
Unfortunately, the very broad definition of the concept of money illusion, which was
thought to arise with “any change in relative prices” (Shafir et al., 1997, p. 347),
resulted in the use of money illusion to describe a plethora of inscrutable situations.

3As suggested by (Fehr et al., 2009), it is probable that other mechanisms, such as fairness or
morale, rather than money illusion, play a crucial role in these downward rigidities. However, one
cannot exclude that these fairness concerns do not, in fact, stem from money illusion. Part of the
answer was potentially provided by Boes et al. (2007) who analyze money illusion through people’s
wage satisfaction and did not find evidence in favor of money illusion.



3.1 Introduction 37

For example, not only was money illusion revived as an explanation for nominal
downward wage and price rigidity (Fehr and Tyran, 2001), but it was also newly used
to describe confusion after a currency changeover.4 Moreover, money illusion was
also transposed onto different markets (in which the distinction between nominal and
real values plays an important role) to describe, for example, an investors’ reliance
on nominal values in the financial and housing markets.5,6

Despite the numerous studies focusing on money illusion, evidence in favor of
it can only be found at the individual level. In particular, such evidence has been
obtained through survey studies (Shafir et al., 1997; Shiller, 1997), laboratory ex-
periments (Fehr and Tyran, 2001, 2005, 2008; Weber et al., 2009) and in the fact
that the fraction of inflation-indexed contracts is low and does not increase when
inflation accelerates (Howitt, 1987, p. 518). Many behavioral studies focusing on
irrationalities suggest that even a small amount of irrationality at the individual
level can potentially have a huge and long-lasting aggregate impact.7 Consequently,
a deeper understanding of the mechanisms underlying money illusion and of its ag-
gregate impact is of greatest importance. There exist, however, hardly any studies
trying to investigate the presence of money illusion at the aggregate level.8 The
following sections aim to fill this gap by deepening the understanding of the gen-
eral relationship between consumption and inflation. In light of the overuse of the
term of “money illusion”, Section 3.1.2 first suggests a narrower and more testable
definition of money illusion.

4Consumers’ “illusion” with respect to newly introduced currencies is analyzed by Kooreman
et al. (2004), Cannon and Cipriani (2006),Wertenbroch et al. (2007) and Dzokoto et al. (2010).

5In financial markets, money illusion is also referred to as the Modigliani-Cohn hypothesis, in
which investors discount future real payoffs at nominal rather than at real rates (Modigliani and
Cohn, 1979). More recent studies also support this finding, for example Ritter and Warr (2002),
Sharpe (2002), Campbell and Vuolteenaho (2004), Cohen et al. (2005) and Basak and Yan (2010).

6Examples of studies supporting the presence of money illusion on the housing market are
Genesove and Mayer (2001), Brunnermeier and Julliard (2008), Piazzesi and Schneider (2007) and
Stephens and Tyran (2012).

7See, in particular, works from George Akerlof (Akerlof and Yellen, 1985a,b; Akerlof, 2002). A
few studies directly address money illusion by supposing its potentially important aggregate impact,
but none directly test for it using aggregate data. See, for instance, Shafir et al. (1997), Fehr and
Tyran (2001) and Basak and Yan (2010).

8Exceptions are, for example, Akerlof et al. (1996) and Akerlof et al. (2000), who construct a
long-term money illusion Phillips curve and analyze its consequences for the real economy. It seems
unrealistic, however, that money illusion can subsist in the long run, as suggested by assumption
(A2) below. Another example is the MIU model of Miao and Xie (2013), which is presented in
Section 2.3.2.
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3.1.2 Refining the Concept of Money Illusion

In this thesis, money illusion is defined as the consumer’s confusion between nominal
and real values, causing real consumption to react to purely nominal variations of its
determinants. Intuitively, money illusion can be interpreted as the underperception
of inflation on the part of the consumer. In spite of this rather straightforward
definition of money illusion, several factors may explain why a consumer might
present some degree of money illusion in her consumption behavior.

Rather than using the original definition of money illusion as a pure irrationality,
I focus on money illusion as a cost- and time-saving rule that is fully consistent
with rationality.9 Since the continuous collecting and processing of information
about inflation is costly for the consumer, she updates her information set only
occasionaly or when the inflation rate changes significantly. In this respect, the
present understanding of money illusion is closely related to the rational inattention
model, which assumes that people are constrained in their ability to acquire and
process information. The rational inattention model, also referred to as the sticky
information model, is advocated by Sims (2003), Mankiw and Reis (2002) and Reis
(2006).

The informational constraint implies two different types of money illusion: namely,
money illusion as a signal extraction problem and money illusion as a rule of thumb.
Whereas the former predicts a direct and negative impact of inflation on consump-
tion, the latter implies an indirect but positive and more long-lasting effect of infla-
tion on consumption:

(i) The negative unanticipated inflation effect: This channel, described by Deaton
(1977), stems from the fact that consumers purchase their goods in a sequen-
tial manner. When inflation is unanticipated, or when consumers are not
perfectly informed about inflation, then (at least some) consumers temporar-
ily misinterpret the price rises of goods they typically purchase as relative
price increases rather than as inflation, (i.e., rather than as increases in the
general price level). The result of this money illusion is that, in the case of
unexpected inflation, each consumer attempts to adjust her purchases (i.e.,
favoring saving, or future consumption, to immediate consumption), such that
contemporaneous real consumption automatically falls. In this case, money

9In this chapter, I do not consider money illusion to reflect the consumer’s preference for positive
holdings of money balances in order to facilitate transactions. This particular case is discussed is
Section 2.3.
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illusion as a bounded rationality is observationally equivalent to a pure cog-
nitive bias: For some arbitrary reason, the consumer makes a mistake in her
calculations, either because she suffers from incomplete information or because
she is unable (or unwilling) to continuously collect and process the available
inflation. This is a typical example of a signal extraction problem, which can
also be apprehended with specific modeling and estimation techniques (see
Chapter 4). Of course, this contemporaneous and negative effect of inflation
on consumption disappears very rapidly as more and more consumers realize
that the price increases of the individual goods are due to inflation. Similarly,
the unanticipated inflation effect disappears as the rational consumer updates
her information set after a nominal price shock.

(ii) The positive nominal income effect: According to this channel, consumers
base their (real) consumption decisions, not only on their real income, but
also on their nominal income. In this case, inflation indirectly stimulates
real consumption because money-illusioned consumers misinterpret nominal
income increases as real income increases in the case of a positive price shock.
The idea of this argument, first advocated by Branson and Klevorick (1969)
and supported by Shafir et al. (1997), is that, if money-illusioned consumers
see their nominal income increase, they “feel richer” and increase their current
consumption. This type of money illusion can be interpreted as an efficient
cost- and time-saving rule of thumb, in which consumers use nominal values
as proxies for real values. Consumers could, indeed, rationally decide to not
fully account for inflation because nominal values are more salient, easier to
gage, more available, and good proxies for real values in periods of stable
inflation (Shafir et al., 1997; Fehr and Tyran, 2001).10 Note that this positive
nominal income–money illusion effect does not take place immediately after an
unanticipated positive price shock, but only once nominal incomes are adjusted
to account for the new price level. On the other hand, the effect could easily
last for several periods, depending on the efficiency of the rule of thumb.

At present, the distinction between the negative unanticipated inflation effect
10There is extensive literature on the heuristics employed in making judgments under uncertainty,

which dates back to Tversky and Kahneman (1974). In particular, Cochrane (1989) demonstrated
that simple rules of thumb for consumption (so-called “near rational” alternatives) incur only very
small utility losses. Furthermore, Uhlig and Lettau (1999) considered how such rules of thumb can
arise endogenously in a learning context. Finally, Akerlof et al. (2000) provided a good overview of
different psychological justifications for the use of money illusion as a rule of thumb, in particular
during periods of low inflation.
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and the positive nominal income effect is not crucial for the mere identification of
money illusion in the aggregate consumption. Formally, both of these money illu-
sion mechanisms can be described as violations of homogeneity postulate developed
by Patinkin (1965), which asserts that demand and supply functions must be ho-
mogeneous of degree zero in all nominal prices (see also Leontief, 1936; Dusansky
and Kalman, 1974). Applied to consumption, this definition implies that real con-
sumption should be a function of real income and real wealth, but not of the price
level. Building on the definition of money illusion and of the homogeneity postulate,
three empirically testable assumptions emerge, all of which are reconcilable with the
evidence of money illusion at the individual level and with the standard rationality
assumption:

(A1) Real consumption is not neutral to nominal shocks to its determi-
nants.
This assumption describes the violation of the homogeneity postulate due to
money illusion as either a signal extraction problem or a cost- and time-saving
rule of thumb. It can be tested in an extended REPIH model (presented
in Section 3.2) by simply adding inflation as an additional determinant of
consumption growth. In particular, breaking down nominal income into real
income and the price level makes it possible to distinguish the change in real
consumption which is due to the change in real income from that which is due
to the change in the price level. The idea is that, if all consumers are fully
rational, they react only to changes in their real income and are unaffected by
changes in the price level. Money-illusioned consumers, however, do not have
homogeneity of degree zero demand functions and, thus, also react to changes
in the price level.

(A2) Money illusion is a short-term phenomenon.
Money illusion cannot persist in the long term. As a signal extraction problem,
money illusion is supposed to fade out rapidly as the consumer updates her
information set about inflation. Money illusion as a rule of thumb is also
limited in time, since the consumer is not able to hold her real consumption
level constant if inflation exceeds her real income increase over a long period of
time. In this case, the persistence of the rule of thumb depends on its efficiency,
which is inversely proportional to the inflation level. It further depends on
the number of people adopting this rule, on the depth and persistence of the
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nominal (income or price) shock and on the after-shock inflation level.11 In
the empirical analysis, this assumption is tested by allowing lagged inflation
to have an effect on contemporaneous consumption.

(A3) The degree of money illusion depends on the inflation level.
In the absence of inflation, money illusion is insignificant and has no impact on
real consumption. Intuitively, the aggregate impact of money illusion increases
in the inflation level and, potentially, is very important in periods or countries
with high and volatile inflation rates. On the other hand, it is also likely
that peoples’ awareness of inflation increases as the inflation level increases,
as the quality of the rule of thumb worsens (see, for example, Brainard and
Perry, 2000) and as the media reporting increases (Badarinza and Buchmann,
2009; Lamla and Lein, 2010). If money illusion stems from consumers’ reliance
on nominal values as proxies for real values, it should disappear as the cost
of using this rule of thumb increases (i.e., with an increasing, volatile or high
inflation level). This suggests the existence of a maximum money illusion level,
where money illusion’s impact is potentially most important.12 Another reason
for the decrease in money illusion is that, at high inflation rates, durables
are substituted for money, since the latter becomes more expensive to hold
(Deaton, 1977). This decreases consumers’ sensitivity to inflation and, hence,
lowers the impact of money illusion. The dependence of money illusion on
the inflation level is tested in two ways. First, every model is tested over two
periods with different inflation rates in order to test whether consumers adapt
their behavior to different inflationary environments. Second, every model is
tested for a nonlinear relationship between inflation and consumption, which
would indicate the presence of a threshold above which money illusion loses
its impact.

There are, of course, many additional testable hypotheses that could be for-
11For this reason, the strong evidence in favor of money illusion reported by Shafir et al. (1997)

needs to be dampened. They based their conclusions solely on one-time survey experiments and
exclude any learning effect. On the other hand, Fehr and Tyran (2001) suggest that already a very
small degree of money illusion at the individual level can have a very large aggregate effect through
strategic interaction and that it does both increase and extend the impact of a price shock. In other
words, it suffices for (some) individuals to believe that (some) others suffer from a certain degree of
money illusion to spur a snowball effect. The authors’ prediction that money illusion may subsist
in the equilibrium is, however, directly contrary to assumption (A2).

12Akerlof et al. (2000) estimated this threshold to occur at a 6% inflation level. In the following
sections, however, high inflation periods roughly correspond to inflation rates exceeding 3%, which
seems to be a more realistic assumption.
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mulated in the context of money illusion.13 However, the focus of this chapter is
primarily to estimate whether there is any presence of money illusion in aggregate
consumption.

3.2 A Simple Empirical Model for the U.S.

This section shows, in a first step, how money illusion can be measured within the
REPIH framework by including inflation as a single explanatory variable within the
simple random walk (RW) hypothesis. In a second step, the inflation-augmented
RW model is tested with U.S. data. The estimation results suggest that inflation
is a potentially important determinant of consumption growth, but do not allow
to draw robust conclusions with respect to the presence and the nature of money
illusion in aggregate consumption data.

3.2.1 The Inflation-Augmented Random Walk Hypothesis

The first attempt to directly estimate the impact of money illusion on aggregate
consumption dates back to Branson and Klevorick (1969) who simply added the
price level as an explanatory variable to the life cycle–permanent income hypoth-
esis. The original idea is that a coefficient on the price level significantly different
from zero corresponds to a violation of the Patinkin (1965) homogeneity postulate
and, hence, indicates the presence of money illusion. Branson and Klevorick (1969)
found evidence in favor of the presence of money illusion, but their model was sub-
ject to Lucas’ critique and their results were obtained with out-of-date estimation
techniques. This section can be interpreted as an attempt to revive their intuition
by transposing it within a more elaborate framework that is better able to account
for the effects of money illusion on consumption and that can be estimated more
efficiently.

The most appropriate benchmark consumption model is the widely used REPIH
developed by Hall (1978) and presented in Chapter 2. As derived in Section 2.2.1,
this model rests upon the postulate of rational expectations, according to which
aggregate consumption obeys the first order conditions for the optimal consumption

13A few examples are: (i) Due to loss aversion, the effect and persistence of money illusion on
consumption depends on the positive or negative nature of the shocks, as suggested by Fehr and
Tyran (2001); (ii) The magnitude of money illusion differs depending on the nature of the goods
and depending on the income and age distribution of the population; and (iii) The cost of money
illusion is higher in terms of growth than in terms of welfare loss (Miao and Xie, 2013).
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choice of a fully rational, forward-looking representative consumer. The main impli-
cation of the REPIH model is equation (2.13), which states that, under quadratic
utility and a constant real interest rate equal to the subjective discount rate, con-
sumption growth is unpredictable. That is, real consumption approximately follows
the following RW without drift:

∆ct = εt, (3.1)

where ct is the logarithm of aggregate real consumption and εt ∼ i.i.d.(0,σ2) is the
error term summarizing all new and unpredictable information about future income
available in period t. According to the RW hypothesis derived by Hall (1978), no
variable other than past consumption can help predict current consumption because
all other relevant information has already been taken into account by the rational
agent in her past consumption behavior. However, if Branson and Klevorik’s in-
tuition is correct and money illusion is present at the aggregate level, then adding
inflation to equation (3.1) improves the REPIH model’s predictive power of con-
sumption growth and violates the homogeneity of degree zero postulate. The result-
ing inflation-augmented RW models are designed to fully capture money illusion:

∆ct = α+
I∑
i=0

λiL
i(∆pt) + εt (3.2)

∆ct = α+
I∑
i=0

λiL
i(∆pt) +

J∑
j=0

λ∗jL
j(∆pt)2 + εt, (3.3)

where α is the constant; pt is an appropriate price level index, such that ∆pt is
the one-period inflation; and λi denotes the coefficient measuring the impact of a
particular price change on current consumption growth. Li is the lag operator, rep-
resenting the ith lag of the variable ∆pt. The innovations are, again, εt ∼ i.i.d.(0,σ2)
and represent unexpected news about real income. Equation (3.2) reflects the linear
relationship between inflation and real consumption. In the strict sense, if any λi is
significantly different from zero, then the homogeneity postulate is violated, validat-
ing assumption (A1). In this case, current and past prices contain useful information
that has not yet been included in current consumption. This reflects an imperfect
adjustment to past information and, hence, contradicts fully rational behavior.

If 0 <
∑I
i=1 λi ≤ 1 then the positive nominal income effect, advocated by Bran-

son and Klevorick (1969) prevails because the consumer reacts positively to a positive
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nominal shocks captured by the ∆pt terms. On the contrary, −1 ≤
∑I
i=1 λi < 0 in-

dicates the presence of the negative unanticipated inflation effect on consumption
suggested by Deaton (1977). As discussed in Section 3.1.2, these opposite infla-
tion effects are not mutually exclusive, since the latter is immediate and disappears
rapidly, while the former operates with a certain time lag and can potentially last
for several periods. The distributed lags in inflation, represented by

∑I
i=1, capture

any effect of lagged inflation on current consumption growth. They allow the model
to not only show the depth of money illusion, but also to test how much inertia (if
any) money illusion contains, thus confirming or invalidating assumption (A2).

The linear model of equation (3.2) can be extended to the more general model
described by equation (3.3), which also allows for a nonlinear relationship between
inflation and consumption, as suggested by assumption (A3). The variables and in-
tuitions are the same, except for the second summation, which captures the possible
effect of squared current and past inflation on current real consumption growth. If
(A3) is true, then the λ∗j s are expected to be negative, so that the impact of inflation
on consumption decreases after it exceeds a certain threshold.

Henceforth, equations (3.2) and (3.3) will be referred to as the “linear” model
and the “nonlinear” model, respectively.

3.2.2 Estimation Results Over the Whole Sample

In order to obtain a broad picture of the relationship between inflation and con-
sumption, this section presents the estimations of the linear and nonlinear inflation-
augmented RW hypothesis models (3.2) and (3.3) for the U.S. over the whole-sample
period (1959Q1 to 2012Q1). In a second step, in Section 3.2.3, the analysis focuses
on separately estimating the linear and nonlinear models within two distinct high-
and low-inflation subperiods to determine whether the representative consumer be-
haves differently in different inflationary environments.

The main estimation results for the linear and nonlinear models are summarized
in Tables 3.1 and 3.2, respectively. They are obtained using detrended time series
based on quarterly data. For a detailed description of the data and their properties,
see Appendix A. As a matter of completeness, and to add robustness to the results,
two alternative price indexes are used for the price variable pt and to deflate all
nominal time series. The first index is the implicit price deflator (IPD) for the
consumption of nondurables and services, which is the most widely used measure of
inflation in the consumption literature. The second index is the consumer price index
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(CPI), which captures the price evolution of a representative basket of consumer
goods and services. Another reason for also reporting CPI-based estimations is that
this index makes particular sense in the context of money illusion because it reflects
the price increase the consumers face when making their purchases over time.

The reported estimates in Tables 3.1 and 3.2 have been obtained with OLS.
Although a simple Hausman test could not exclude the endogeneity of inflation with
respect to current consumption growth over the whole sample at the 5% significance
level, the endogeneity of inflation is clearly rejected within the two subperiods.14

As a matter of simplicity and since, as we shall see below, the estimations over the
whole sample are subject to structural issues and cannot be considered accurate,
only the OLS estimates are reported in this section.

Estimation of the Linear Model, Equation (3.2)

The first regressions of interest are models (i) and (ii) in Table 3.1. They represent
the “preferred” IPD and CPI models in Tables B.1 and B.2 in Appendix B, where
preferred refers to the retained lag length chosen for inflation, which corresponds to
the upper limit I of the summation in the inflation-augmented RW equation (3.3).

All preferred models reported in the text have been chosen according to the ad-
justed R2, the Akaike information criterion (AIC), the Schwartz information crite-
rion (BIC) and the last significant coefficients for lagged inflation (λi), when starting
at I = 10 and consecutively reducing the number of lags. Regression (i) of Table 3.1,
for example, corresponds to model (ix) in Table B.1. This is retained as the preferred
model because it performs much better than the RW model (regression (x)), and
because adding more lags does not significantly improve the quality of the model.
For clear statistical and theoretical reasons, fewer lags in inflation are always pre-
ferred to longer distributed lags, especially if the coefficients and their significances
are stable and close when reducing the number of lags in the model. Applying the
same procedure to the CPI linear model in Table B.2, the retained model (model
(viii)) contains three lags for inflation and is reported as regression (ii) in Table 3.1.

Looking at models (i) and (ii) in Table 3.1, the first striking result is that adding
inflation to the RWmodel greatly improves the predictability of current consumption

14The Hausman (1978) test, also called the Wu-Hausman test, confirms the endogeneity of a
variable if its OLS estimate βOLS is significantly different from the consistent βIV estimate. If the
null hypothesis of βOLS = βIV is rejected, the OLS estimate is not consistent, so the instrumental
variable (IV) method should be preferred. For the IV estimate, I have chosen as instruments for
inflation the quarterly growth of the M3 U.S. money stock in the periods t to t− 5 and lagged
inflation in the periods t− 3 to t− 5.
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growth, with coefficients of determination in the IPD and CPI models of R̄2 = 0.72
and 0.34, respectively. According to this statistic, the simple IPD model with only
two lags in inflation explains over 70% of the variability of consumption growth,
which is a surprisingly high value. The large difference in the goodness-of-fit between
the IPD and the CPI models can be explained by two main factors that bring the
IPD closer to the consumption series, measured through the personal consumption
expenditures (PCE):15 First, the IPD includes a broader category of goods and
services and, thus, better reflects the households’ consumption, as measured by the
PCE. Second, the IPD is a Fisher-type index that accounts for the evolution of the
reference basket of consumption goods and services in its weights and, thus, follows
the PCE closer than the CPI, which is based on the Laspeyres index and measures
the price evolution of a fixed reference basket.

Apart from this difference, the IPD and the CPI models yield similar results with
respect to the impact of inflation on current consumption growth. First, both models
confirm that inflation has a strong predictive power for consumption growth and
imply a rejection of the RW hypothesis. This may indicate that consumers do not –
or are not able to – fully incorporate information about inflation in their past and
current consumption. Since both current and lagged inflation (up to, respectively,
two and three lags for IPD and CPI) have significant impacts on current consumption
growth, the homogeneity postulate is violated, which possibly indicates the presence
of money illusion in aggregate consumption. Furthermore, the high F -statistics in
Table 3.1 imply that the null hypothesis of all coefficients (except the constant)
being equal to zero is strongly rejected, thus validating assumption (A1).

The estimates of models (i) and (ii) in Table 3.1 are also in line with assumption
(A2). The inflation effect is important for current inflation, but all coefficients for
lagged inflation are rather small and become insignificant above the second lag in
(i) and the third lag in (ii). This could indicate that money illusion is only a short-
term phenomenon and disappears rapidly as consumers update their information
sets. The small coefficients on lagged inflation further suggest that money illusion
is not as deep or widespread as assumed by Shafir et al. (1997) and Fehr and Tyran
(2001).

A more surprising result, which is visible in Tables B.1 and B.2, is that the

15Details on the differences between IPD and CPI can be found on the website of the U.S. Bureau
of Economic Analysis at http://bea.gov/faq/index.cfm?faq_id=555. For more information on
the problems pertaining to the measurement of inflation and its implications, see, for instance,
the publications of the Boskin Commission focusing on the accurate measure of the cost of living
(Boskin et al., 1998).

http://bea.gov/faq/index.cfm?faq_id=555
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coefficients for lagged inflation do not present homogeneous or consistent signs across
the distributed lags. For example, looking at the first regression with 10 lags in B.2,
we see that λ̂0, λ̂3, λ̂5, λ̂6 and λ̂7 have negative signs, whereas λ̂1, λ̂2, λ̂4, λ̂8, λ̂9,
λ̂10 have positive signs. This irregularity in the inflation impact is incompatible
with the intuition of money illusion. It is likely that these variations in the signs
reflect the presence of deeper, model-specific biases, such as, for example, omitted
variables, structural breaks or the presence of nonlinearities. These potential biases
are addressed individually in later sections.

In fact, the only coefficient that presents a constant sign and remains significant
across the different models and periods analyzed in this chapter is the coefficient
for the strong negative impact of current inflation on consumption growth. For
example, in model (i) of Table 3.1, the coefficient of −0.69 on current IPD inflation
means that a 1% increase in the IPD growth implies a ceteris paribus decrease in
current consumption growth of 0.69%. This result clearly advocates in favor of
the negative effect of unanticipated inflation on consumption. Further note that
Davidson et al. (1978) argued that a large negative effect of current inflation on
consumption growth reflects the erosion of the value of liquid assets from inflation.
Note that this hypothesis is rejected in Section 3.3 when financial assets are directly
controlled for.

The last important insight to be gained from regressions (i) and (ii) of Table 3.1
pertains to the coefficient for εt−1, which represents the estimated first-order moving-
average (MA(1)) coefficient of the error term in the equation. This has been added
to the estimated model whenever needed to control for serial correlation in the resid-
uals. Note that, if it lies inside the unit circle, the MA(1) process is invertible. Since
the coefficients are highly significant at the 1% level, there is a large degree of auto-
correlation in the residuals of models (i) and (ii). Since the U.S. data are seasonally
adjusted, it is more likely that the serial correlation stems from the fact that current
consumption also depends on lagged consumption, reflecting the presence of habit
persistence. The estimations in Section 3.3 indeed show that consumption habits
are a further important predictor of consumption growth.

Alternatively, the presence of serial correlation can be explained by the time
aggregation problem pointed out by Working (1960): There is a time inadequacy
between the model and the data because the consumer’s purchases are made at a rel-
ative high frequency, whereas the consumption and income data used for the analysis
are measured as three-months averages (and not at points in time). This discrep-
ancy mechanically induces first-order serial correlation in the model and possibly
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induce incorrect inferences. Similarly, Granger (1980) showed that the aggregation
of simple dynamic models can induce long memory in aggregate consumption even
if the consumption of every individual household follows a RW. This aggregation
problem can be attributable to incomplete information (Thornton, 2014).

Estimation of the Nonlinear Model, Equation (3.3)

The question remains to know as to whether the relationship between inflation and
consumption is better explained by a nonlinear model (in our case, a quadratic
model, as described by equation (3.3)). Following assumption (A3), the effect of
inflation on consumption growth is supposed to decline when inflation exceeds a
certain threshold, at which the general awareness about inflation increases.

The preferred estimated nonlinear models for the IPD- and CPI-based inflation-
augmented RW models are summarized, respectively, in regressions (i*) and (ii*) of
Table 3.2. The preferred models were chosen from the different estimations sum-
marized in Tables B.7 and B.8 for the IPD and the CPI models, respectively. The
selection procedure for the preferred models was the same as for the linear model, in
that I constantly reduced the number of lags for inflation (the summation limit I in
equation (3.3)) and for squared inflation (the upper limit J) until the coefficients λi
and λ∗j became significant. According to the significance and to the usual summary
statistics, the retained models (i*) and (ii*) for the IPD and CPI models correspond
to the models (vi*) and (vii*) in their respective tables.

Moving from the preferred linear models (i) and (ii) to the preferred nonlinear
models (i*) and (ii*), four noteworthy features emerge. First, the RW hypothesis
is again strongly rejected by the U.S. data for both the IPD and CPI models, since
the nonlinear models have even better fits than the linear ones. Second, both infla-
tion measures reveal the existence of a nonlinear relationship between inflation and
consumption growth: In both preferred equations, squared inflation has a strong
negative and significant impact on consumption growth. The estimated λ∗j s all have
the expected negative sign, which indicates a decline in the inflation effect above a
certain inflation level. This negative impact is stronger for the CPI model (reflected
by higher estimated λ̂∗j s), but it disappears rapidly in both models. Third, the in-
clusion of squared inflation in the regression alters the linear effects captured by the
λis. In the IPD model, the coefficients on inflation from zero to two lags are roughly
the same as those in Table 3.1. For the CPI model, the picture is slightly differ-
ent: Adding squared inflation cuts the impact of current inflation approximately
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Table 3.1: Impact of Inflation on Consumption – Linear Model

∆ct = α+
∑I
i=0 λiL

i(∆pt) + εt

Whole Sample High Inflation Low Inflation
IPD CPI IPD CPI IPD CPI
(i) (ii) (iii) (iv) (v) (vi)

α 0.01∗∗∗ 0.01∗∗∗ 0.02∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

λ0 −0.69∗∗∗ −0.38∗∗∗ −0.72∗∗∗ −0.66∗∗∗ −0.67∗∗∗ −0.33
(0.03) (0.09) (0.07) (0.09) (0.08) (0.24)

λ1 0.08∗∗∗ 0.04 − − 0.21∗∗∗ 0.24
(0.02) (0.07) (0.07) (0.23)

λ2 0.10∗∗ 0.15∗∗ − − −0.11∗ −0.42∗∗
(0.03) (0.06) (0.05) (0.17)

λ3 − −0.15∗∗ − − 0.08∗ 0.14
(0.07) (0.04) (0.20)

λ4 − − − − −0.30∗∗∗ −0.58∗∗∗
(0.05) (0.16)

λ5 − − − − 0.17∗∗∗ −0.01
(0.06) (0.17)

λ6 − − − − 0.06∗ 0.34∗
(0.03) (0.17)

λ7 − − − − − −0.31
(0.17)

λ8 − − − − − 0.41
(0.24)

λ9 − − − − − −0.37∗∗
(0.17)

εt−1 0.46∗∗∗ 0.43∗∗∗ 0.46∗∗∗ 0.40∗∗∗ 0.05 0.14
(0.07) (0.08) (0.10) (0.09) (0.18) (0.14)

R̄2 0.72 0.34 0.75 0.56 0.66 0.45
AIC −7.81 −7.90 −8.04 −7.95 −8.94 −8.74
BIC −7.73 −7.80 −7.94 −7.85 −8.57 −8.24
DW 1.72 1.84 1.99 1.97 1.98 1.93
FP 133.07 22.18 93.57 43.28 10.68 3.99

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

This table summarizes the preferred models of Tables (B.1) to (B.6) resulting from the regression
of consumption growth on current and lagged inflation for quarterly U.S. data. The IPD and CPI
report, respectively, the inflation measure and the deflator used for the corresponding regression.
The “Whole Sample” period is from 1959Q1 to 2012Q1, whereas the “High Inflation” period is from
1966Q1 to 1981Q3 for IPD and from 1966Q1 to 1982Q3 for CPI. The “Low Inflation” period is
from 1991Q1 to 2001Q1. The coefficient for εt−1 is the estimated first-order moving-average (MA)
coefficient of the error term in the equation. In parenthesis are the Newey-West heteroscedasticity
and autocorrelation consistent (HAC) standard errors. The reported statistics are standard and
are described in detail in Table B.1.
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Table 3.2: Impact of Inflation on Consumption – Nonlinear Model

∆ct = α+
∑I
i=0 λiL

i(∆pt) +
∑J
j=0 λ

∗
jL

j(∆pt)2 + εt

Whole Sample High Inflation Low Inflation
IPD CPI IPD CPI IPD CPI
(i*) (ii*) (iii*) (iv*) (v*) (vi*)

α 0.01∗∗∗ 0.00∗∗∗ 0.02∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

λ0 −0.69∗∗∗ −0.18∗∗∗ −0.72∗∗∗ −0.76∗∗∗ −0.33
(0.03) (0.05) (0.07) (0.11) (0.24)

λ1 0.10∗∗∗ 0.23∗∗∗ − − 0.14∗∗ 0.24
(0.02) (0.06) (0.06) (0.23)

λ2 0.11∗∗∗ 0.22∗∗∗ − − −0.10∗ −0.42∗∗
(0.02) (0.06) (0.06) (0.17)

λ3 0.01 −0.10 − − 0.06 0.14
(0.03) (0.07) (0.06) (0.20)

λ4 0.09∗∗∗ 0.14∗∗ − − −0.19∗∗∗ −0.58∗∗∗
(0.03) (0.07) (0.06) (0.16)

λ5 0.06∗∗∗ − − − 0.05 −0.01
(0.02) (0.04) (0.17)

λ6 0.06∗∗ − − − 0.16∗∗∗ 0.34∗
(0.03) (0.04) (0.17)

λ7 − − − − −0.10∗ −0.31∗
(0.05) (0.17)

λ8 − − − − 0.15∗∗ 0.41
(0.06) (0.24)

λ9 − − − − −0.13∗∗ −0.37∗∗
(0.05) (0.17)

λ∗0 −2.33∗∗∗ −11.37∗∗∗ − −12.66∗∗∗ 14.88∗ −
(0.49) (2.47) (3.32) (8.08)

λ∗1 −2.17∗∗∗ −10.00∗∗∗ − −7.98 − −
(0.72) (3.39) (6.07)

λ∗2 −1.28∗∗∗ − − 8.15∗ − −
(0.48) (4.46)

λ∗3 −2.07∗∗∗ − − −7.74∗∗ − −
(0.67) (3.65)

λ∗4 − − − 5.32∗∗ − −
(2.33)

εt−1 0.44∗∗∗ 0.40∗∗∗ 0.46∗∗∗ 0.39∗∗∗ − 0.14
(0.08) (0.07) (0.10) (0.13) (0.14)

R̄2 0.76 0.42 0.75 0.61 0.72 0.45
AIC −7.92 −8.01 −8.04 −8.00 −9.10 −8.74
BIC −7.72 −7.87 −7.94 −7.77 −8.59 −8.24
DW 1.81 1.85 1.99 1.92 1.93 1.93
FP 54.45 19.67 93.57 17.92 10.42 3.99

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

This table summarizes the preferred models of Tables (B.7) to (B.12) resulting from the regression of
consumption growth on current inflation, lagged inflation and lagged squared inflation for quarterly
U.S. data. The variables, periods and statistics are identical to those described in Table 3.1.
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in half (moving from λ̂0 = −0.38 to λ̂0 = −0.18), while the estimated values and
significances for λ1, λ2 and λ4 are substantially higher. Finally, we observe that
all significant coefficients on lagged inflation have the same sign in (i*) and (ii*),
which could resolve the previous puzzling result of undetermined signs in the linear
models of Table 3.1. This suggests the presence of the unanticipated inflation effect
on contemporary inflation suggested by Deaton (1977), compensated by the nominal
income money illusion effect on lagged inflation suggested by Branson and Klevorick
(1969) after nominal incomes have been adjusted for inflation.

Overall, the nonlinear models (i*) and (ii*) in Table 3.2 yield superior results
(when compared to the linear models (i) and (ii) in Table 3.1) for U.S. data over
the period from 1959Q1 to 2012Q1. This result is confirmed when we perform a
Regression Equation Specification Error Test (RESET test) suggested by Ramsey
(1969) to verify whether model (3.2) is misspecified and whether a nonlinear model
is more accurate with regard to describing the data.16 The result of the RESET
test on the (preferred) linear inflation-augmented RW models is that, over the whole
sample and using the second- and third-degree polynomials in predicted values, the
null hypothesis of no misspecification is rejected at the 1% level.

Despite this result, however, it would be misleading to conclude that the nonlin-
ear preferred models (i*) and (ii*) do not suffer from any misspecification and best
describe the relationship between inflation and consumption growth. The next sec-
tions show that the analyzed models indeed suffer from several specification errors.
In particular, the next section reveals the presence of numerous structural breaks
in the data, which call for separate analyses of the model in distinct subsamples.
Moreover, it is plausible that many other determinants of consumption growth are
omitted from the model (see Section 3.3). Finally, note that the same RESET test
does not reject linearity when different subsamples or further exogenous variables
are considered. Consequently, the nonlinear model cannot definitively be preferred
over the linear model at this stage.

16The RESET test determines whether nonlinear combinations of the fitted values have an
explanatory power for the dependent variable. In particular, for our regression ∆ct = α +∑I
i=0 λiL

i(∆pt) + εt, the RESET test consists of estimating the extended model ∆ct = α +∑I
i=0 λiL

i(∆pt) + δ1∆ĉ2
t + δ2∆ĉ3

t + ut, with the null hypothesis of δ1 = δ2 = 0. If the null hypoth-
esis is rejected, the original linear model is wrongly specified, favoring a nonlinear reformulation of
the relationship between inflation and consumption growth and, thus, indicating that assumption
(A3) may well be correct.
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3.2.3 Estimations for High- and Low-Inflation Subperiods

The estimations over the whole sample suggest that inflation is a potentially impor-
tant determinant of consumption growth. This result is contested by assumption
(A3), which suggests that consumers behave differently depending on the inflation
level. In order to better isolate the assumption that money illusion vanishes in pe-
riods of accelerating inflation, it is judicious to re-estimate models (3.2) and (3.3)
for two subperiods with similar average inflation rates: one experiencing relatively
high average inflation and the other one experiencing low average inflation.

In order to determine the two subperiods, first consider Figure 3.1, which shows
the annualized quarter-to-quarter percentage growth rates of the IPD (upper graph)
and the CPI (lower graph). Both inflation rates present similar evolutions since
1959, though the IPD inflation appears to be more volatile than the CPI inflation,
in particular since the end of the 1990s. We see in both graphs that the level and
volatility of inflation has been subject to many significant changes since the 1960s.
Inflation rose sharply in the first quarter of 1973 and was fairly volatile until the
first quarter of 1991, where it remained stable for roughly one decade before again
becoming more volatile.

Another reason for seeking similar inflation levels within the selected subperiods
is that, in light of the very irregular evolution pattern of the U.S.’s quarter-to-quarter
inflation levels, the inflation-augmented RW model might be subject to several struc-
tural breaks over the whole-sample period. To test for different structural breaks,
I make use of a Quandt-Andrews breakpoint test (Andrews, 1993) instead of the
simple Chow (1960) test for a single structure break. The latter test requires the
structural break date to be known, whereas the former allows for more flexibility
because it consists of performing a Chow test at every time observation within a
given interval.

By performing the Quandt-Andrews test on both IPD- and CPI-based linear and
nonlinear models (i.e., equations (3.2) and (3.3)), in which the first and last 7.5%
of the observations have been excluded, I have retrieved the likelihood ratio (LR)
F-statistic for each period. These LR F-statistics are drawn in Figure 3.2, where
the upper graph presents the LR F-statistic series for the IPD-based models and the
lower graph presents the same statistics for the CPI inflation. Note that the greater
the LR F-statistic, the higher the probability of a rejection of the null hypothesis of
no structural break. The graphs clearly indicate the presence of structural breaks in
all the models, with three peaks at the beginning of each decade from the 1980s to
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Figure 3.1: Evolution of U.S. IPD and CPI Quarterly Inflation

The two graphs represent the IPD (top) and CPI (bottom) annualized quarter-to-quarter growth
rates in percentages for the U.S. over the sample period from 1959Q1 to 2012Q1. Data source:
Federal Reserve Economic Data.
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Figure 3.2: LR F-Statistic Series

The two graphs represent the LR F-statistic series for the presented IPD (top) and CPI (bottom)
linear and nonlinear models resulting from a Quandt-Andrews unknown breakpoint test with 15%
trimmed data. Data source: Federal Reserve Economic Data.
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the 2000s. A direct consequence of this finding is that the estimations previously ob-
tained over the whole-sample period might not depict the true relationship between
inflation and consumption growth.

To avoid structural breaks within the two chosen subperiods and to better dif-
ferentiate the high-inflation period from the low-inflation period, I ignore most of
the 1980s and the 2000s because they are characterized by inflation rates that are
both relatively low and particularly volatile in historical comparison. Based on the
average inflation rates and the highest LR F-statistics, the chosen high-inflation pe-
riods are, respectively, 1966Q1 to 1981Q3 and 1966Q1 to 1982Q3 for IPD and CPI,
respectively, whereas the chosen low-inflation period is 1991Q1 to 2001Q1 for both
inflation measures. Within these selected subperiods, “high” inflation corresponds to
a period during which inflation is mostly above 3% and particularly volatile, whereas
“low” inflation period refers to a stable inflation rate that does not exceed 3%. Note
that the end of the high inflation subperiod corresponds roughly to the beginning of
the period that Stock and Watson (2002) have called the Great Moderation: namely,
an important decline in the volatility of the U.S. Gross Domestic Product that has
taken place in the first half of the 1980s.17

The estimation results for models (3.2) and (3.3) over the selected high- and
low-inflation subperiods yield the preferred linear models (iii) to (vi) in Table 3.1
and the preferred nonlinear models (iii*) to (vi*) in Table 3.2. These are derived
from Tables B.3 to B.6 for the linear models and B.9 to B.12 in Appendix B using
the same lag-reducing technique as for the estimations over the entire sample period.

Looking at the differences between the high-inflation and the low-inflation sub-
periods in Tables 3.1 and 3.2, the most striking result is the fact that the response
of consumption growth to current and lagged inflation differs greatly from one sub-
period to another. While the inflation-augmented RW models still outperform the
standard RW hypothesis model in both subperiods (thus confirming the importance
of inflation as a determinant of consumption growth, and corroborating (A1)) the
duration of the inflation effect diverges across the subperiods. For the low-inflation
period, we see in Table 3.1 that lagged inflation is significant for up to six lags for the
IPD model (v), or up to nine lags for the preferred CPI model (vi). On the contrary,
there is absolutely no significant impact of lagged inflation on current consumption
growth in the high-inflation preferred models (iii) and (iv). This is in line with as-
sumptions (A2) and (A3), which suggest that money illusion as a cost-saving rule of

17For more details about the origins and characteristics of the Great Moderation, see Blanchard
and Simon (2001), Summers (2005), Fang and Miller (2008) and Burren and Neusser (2010).
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thumb is efficient when the inflation level is low and can last for several periods. In
times of high and volatile inflation, using nominal values as proxies for real values
is too costly for the consumer, which causes the positive nominal income effect of
inflation on consumption disappear in the high-inflation subperiod.

In line with this observation, the estimates in Table 3.2 indicate that the non-
linear model (3.3) does not perform particularly better than the linear model in the
subperiods, as opposed to the nonlinear models over the whole sample, which do per-
form better. In fact, squared inflation is never significant for the IPD models in the
high-inflation subperiod. This explains why the preferred model (iii*) is the same
as the linear preferred model (iii) in Table 3.1. The same insight is valid for the CPI
model in the low-inflation period, where (vi*) corresponds to the linear preferred
model (vi) in Table 3.1. A surprising result occurs in model (iv*), in which the linear
effect of inflation totally disappears (including λ0), but where squared inflation has
a rather strong and long-lasting nonlinear effect on consumption growth. In this
regard, model (iv*) seems to be a special case that needs to be further investigated.
Concerning the low-inflation subperiod, the squared inflation IPD model (v*) per-
forms slightly better than the preferred linear IPD model over the same period (v)
with a more long-lasting effect of inflation (up to nine lags) on current consumption
growth. However, since the low-inflation subperiod is relatively short (41 observa-
tions), it is particularly important to choose models with fewer lags, provided that
the loss in the fit of the model is reasonable. In order to enhance the quality of the
estimation results, particular attention is devoted to this issue throughout the rest
of the analysis.

Even though the estimation of the inflation-augmented RW model over the se-
lected subperiods shows that inflation is an important determinant of consumption
growth and that consumers adjust their behavior to the changing inflationary envi-
ronments, several open questions remain. First, the coefficients of lagged inflation
have changing signs in all preferred models for the low-inflation period, as well as
in the preferred, nonlinear, high-inflation CPI model (iv*). Since there is no sound
economic theory explaining this phenomenon, it may pertain to statistical prob-
lems or reflect some deeper misspecifications. Second, the unanticipated inflation
effect, captured by λ0, is not significant anymore in the CPI preferred model for
the low-inflation period. In consequence, money illusion stemming from the sequen-
tial purchase of goods might not be as important as previously thought. Third,
the preferred inflation-augmented RW models have surprisingly high coefficients of
determination. For example, the mere adding of contemporaneous (IPD-based) in-
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flation to the RW in model (iii) allows to explain as much as 75% of the variance
in consumption growth. Even if money illusion is an important and widespread
phenomenon, it seems unrealistic that inflation causes most variations in aggregate
consumption. In fact, it is possible that the significant and high coefficients on cur-
rent and lagged inflation do not exclusively reflect money illusion and that the λis
work as proxies for other consumption-driving variables that are not controlled for
in the baseline models (3.2) and (3.3).

These remaining problems call for further investigations in order to better iso-
late the impact of inflation on consumption growth and to determine whether this
effect is due to money illusion. The following section considers an extension of
the inflation-augmented RW model, labelled as the money illusion aggregate con-
sumption function, which controls for additional variables and incorporates other
consumption behaviors that could potentially determine consumption growth.

3.3 The Money Illusion Aggregate Consumption Func-
tion

The inflation-augmented RW model estimated in Section 3.2 is a rather simplistic
extension of the REPIH because it assumes that only inflation can help predict con-
sumption growth and a priori excludes the idea that the consumer can be influenced
by other phenomena. In order to obtain a more robust and general consumption
model, this section further extends the benchmark RW model to control for other
possible determinants of consumption growth: namely, liquidity constraints (LC),
habit formation (HF), wealth, the interest rate and an error-correction term. I refer
to the resulting model as the money illusion consumption function because the ad-
ditional variables ensure that the inflation effect does not work as a proxy for other
determinants and that it captures predominantly the impact of money illusion on
consumption.

In the style of the inflation-augmented linear and nonlinear RW models, the
linear and nonlinear money illusion consumption function (MICF) can be written
as follows:
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∆ct = α+
I∑
i=0

λiL
i(∆pt) +

K∑
k=1

δkL
k(∆ct) +

η∆yt + ωat−1 + ϕ[ct−1 − yt−1] + εt (3.4)

∆ct = α+
I∑
i=0

λiL
i(∆pt) +

J∑
j=0

λ∗jL
j(∆pt)2 +

K∑
k=1

δkL
k(∆ct) +

η∆yt + ωat−1 + ϕ[ct−1 − yt−1] + εt (3.5)

where Lk(∆ct) is consumption growth lagged k times capturing HF, ∆yt is current in-
come capturing LC, at−1 is the lagged wealth-to-income ratio capturing both wealth
and the interest rate and [ct−1− yt−1] is an ECT capturing the short-term deviation
from the long-term relationship between consumption and income. These variables
are briefly presented in the next sections. In a second step, equations (3.4) and (3.5)
are estimated in order to refine the relationship between inflation and consumption
and to find the best predictive model for consumption growth.

3.3.1 Liquidity Constraints and Habit Formation

In the consumption literature, consumers who do not behave exactly as predicted
by the standard REPIH model are typically said either to face LC or to present a
certain degree of HF.

First, it is plausible to assume that a constant fraction of consumers face LC,
which prevents them from borrowing in order to smooth consumption.18 Camp-
bell and Mankiw (1989, 1990, 1991) were first to empirically show that there is a
large fraction of “hand-to-mouth” consumers in the populations of many developed
countries. This behavior is later justified with the existence of “buffer-stock-savers”
(Carroll, 1997): either individuals who hold small buffer stocks as a precaution
against very bad income shocks or near-zero-net-worth people who simply do not
have the financial wherewithal to smooth their consumption (Mankiw, 2000). For-
mally, the distinctive feature of LC consumers is that they consume all of their
current real income Yt in every period, as presented in equation (3.6):

ct = yt. (3.6)

18LC consumers are often referred to as rule-of-thumb consumers. To avoid confusion and to
stay in line with the above-presented characteristics of money illusion, rule-of-thumb behavior in
this chapter is only used to describe the adoption of nominal values as proxies for real values.
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The inability of these current income consumers to smooth their consumption
over time leads to an aggregate excess sensitivity of consumption to income in com-
parison to the predictions of the REPIH model.19

The second type of consumers who do not behave as predicted by the REPIH are
those who, without regard to their real income evolution, are willing to keep their
consumption level constant in each period. This HF has garnered a great deal of
attention because it generates persistence in consumption growth.20 In particular,
HF is often used to explain the hump-shaped response of U.S. consumption to income
shocks (Fuhrer, 2000) or the equity premium puzzle (Constantinides, 1990; Campbell
and Cochrane, 1999). In its simplest form, HF can be modeled as in equation (3.7),
such that the consumer consumes, in every period, exactly what she had consumed
in the previous period:

ct = ct−1. (3.7)

The implication of HF is (for positive income shocks) contrary to that of the LC
in that it leads to an excessively smooth consumption in comparison to the REPIH’s
predictions. It is important to note that equation (3.7) does not necessarily only
capture consumption habits; it can also reflect any phenomenon encouraging the
consumer to save more than suggested by the long-term REPIH benchmark. For
example, both the HF and the rational inattention model, though different in their
microeconomic foundations, have identical implications with regard to aggregate
data and can be formulated the same way (Reis, 2006, p. 1788). Consequently, the
general formulation of equation (3.7) can also be understood as capturing differ-
ent sources of uncertainty that stimulate precautionary savings on the part of the
consumer. This relationship is analyzed in more detail in Chapters 4 and 5.

There is still much debate regarding whether LC or HF contributes more to
consumption growth,21 but it appears evident that neither of them should be left
out of a model attempting to capture the determinants of consumption growth.

19Many studies have contributed to describing this excess sensitivity of consumption. See, in
particular, Flavin (1981), Blinder and Deaton (1985), Campbell and Mankiw (1989, 1990, 1991),
Attanasio and Weber (1995) and Carroll (2001). Interestingly, hyperbolic discounting behavior,
suggested by Laibson (1997), yields a similar outcome.

20Consumption habits became successful starting with Muellbauer (1988). His original formula-
tion has often been reused without major modifications (e.g., Campbell and Deaton, 1989; Sommer,
2004; Carroll et al., 2011). Micro-evidence for habits can be found, for example, in Ferson and Con-
stantinides (1991), Tallarini and Zhang (2005) and Ravn et al. (2006).

21See, for example, Malley and Molana (2006), Sommer (2007), Kiley (2010), Carroll et al. (2011)
and Di Bartolomeo et al. (2011).
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Note that the MICF described in equation (3.4) allows current consumption to also
depend on consumption lagged more than one period, which is, of course, a sound
assumption in the context of persistent consumption habits.

A crucial difference between money illusion, LC and HF is that the last two
behaviors rely solely on real values. Depending on its nature, however, money illusion
can induce an aggregate effect that is similar to either LC or HF. In particular,
money as a rule of thumb induces excessive sensitivity of aggregate consumption
in the case of a nominal income increase, and money illusion as a signal extraction
problem implies excessive smoothness of aggregate consumption via the unexpected
inflation channel.

3.3.2 Real Interest Rate and Wealth

In order to further improve the REPIH model and to better understand the factors
explaining consumption growth, the real interest rate and wealth are good candidates
for inclusion as additional control variables. Furthermore, these are potentially
important in the present context of money illusion because the general confusion
between nominal and real values concerns, not only income, but also, potentially,
the interest rate (which is directly available to individuals only in nominal terms)
and wealth (which is a determinant of consumption in the REPIH, as can be seen
in equation (2.17)).

To understand the exact relationship between the real interest rate and con-
sumption growth, consider again the Euler equation (2.9) representing the optimal
consumption path of the representative consumer in the REPIH model. If we drop
the standard assumptions of the real interest rate being constant and equal to the
discount rate (i.e., giving us rt 6= ρ), then an increase in the real interest rate has a
positive impact on consumption growth.22

Furthermore, loosening the just-mentioned original assumptions also allows for
an indirect effect of inflation on consumption growth. Indeed, as we can see from the
standard (loglinearized) Fisher equation, denoted rt = it − πet+1, a ceteris paribus
increase in the expected inflation decreases the contemporaneous real interest rate,
which again decreases the current growth rate of consumption. Consequently, it
is possible that the statistically significant negative impact of current inflation on
contemporaneous consumption growth found in Section 3.2 captures, not only the

22It becomes particularly intelligible if we consider logarithmic utility. In this case, the Euler
equation is equal to ct+1

ct
= 1+rt

1+ρ . An increase in rt has to be compensated by either an increase in
ct+1 or a decrease in ct, fostering consumption growth.
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unexpected inflation effect, but also, to a certain extent, expected inflation. For
this reason, including (a proxy for) the real interest rate in the MICF helps to
distinguish between the two effects. Note, however, that most empirical studies on
consumption – which also omit inflation from their estimated equations – find no
statistically significant evidence for this theoretical link between real interest and
consumption.23

Wealth is not much better in predicting consumption growth, as was theoretically
and empirically shown by Hall (1978). The reason is that the consumer with rational
expectations already takes into account her wealth in her current consumption.
Nevertheless, in order to match the above-mentioned intuition and as a means of
robustness, the MICF includes a measure for both wealth and the real interest
rate to verify whether these have an influence on the estimates for inflation. An
interesting variable is the ratio of liquid household assets (i.e., financial wealth) to
income, defined as a = At−1

yt
, as suggested by Muellbauer and Lattimore (1999).

The advantage of this weighted ratio over a direct wealth measure is that this ratio
gives illiquid assets a lower weight than liquid assets (Muellbauer and Lattimore,
1999, Section 11) and, more importantly, captures time variations in the interest
rate (Carroll et al., 2011, p. 1137).

3.3.3 An Error Correction Model Reformulation

The last control variable included in the MICF is an error-correction term capturing
both the short-run and the long-run relationships between consumption and income,
as presented in the seminal paper of Davidson et al. (1978) and the subsequent liter-
ature. Davidson et al. (1978) described the UK consumption growth using an error
correction model (ECM) of the following type: ∆ct = β0 + β1Et−1∆yt + β2[ct−1 −
yt−1] + εt. This model is, in fact, an ADL(1,1) autoregressive distributed lag model,
in which ∆ct = β0 + β1∆yt + εt represents the long-run equilibrium relationship be-
tween income and consumption. The short-term deviation from that equilibrium is
then captured by [ct−1− yt−1], corresponding to lagged savings, and β2[ct−1− yt−1]
is the corresponding error-correction term.24

In this setup, β2 is expected to be negative and represents the speed of return to
the equilibrium relationship between income and consumption after a shock. Fur-

23See, for example, Hall (1988), Campbell and Mankiw (1989, 1990, 1991), Parker and Preston
(2005) and Kiley (2010).

24Note that the ECM proposed here can be extended to a VECM if all the variables of interest
(in particular, consumption, income and prices) are cointegrated time series.
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ther note that, even though Davidson et al. (1978) used a different approach than
the Euler equation model of Hall (1978) to characterize consumption growth, the
ECM can be used to describe, to a certain extent, the behavior of a LC consumer
within the REPIH (Davidson and Hendry, 1981; Muellbauer and Lattimore, 1999):
Consider an LC consumer who is willing to keep constant her marginal propensity
to consume at a high level. The ECM allows her to deviate from this equilibrium
in the short run in response to a certain shock. For example, she may temporarily
decide to “save for a rainy day” – in the terms of Campbell (1987) – and, conse-
quently, increase her consumption to return to her long-run objective. Conversely,
if this consumer’s previous-period consumption was higher than her previous-period
income, her consumption in the current period will tend to be lower, ceteris paribus.

3.4 Estimation of the Money Illusion Consumption Func-
tion

In Section 3.4.1, the preferred models resulting from the estimation of the inflation-
augmented RW model over the selected subperiods are re-estimated with the MICF
in order to test whether the inflation effects are robust to the inclusion of additional
control variables. The results allow the exclusion of the nonlinear models and suggest
that inflation and HF are the main determinants of consumption growth. This result
is confirmed in Section 3.4.2, which derives the optimal IPD- and CPI-based MICFs
for the high- and low-inflation subperiods. In particular, it is demonstrated that the
MICF yields substantially better results than aggregate consumption models that
do not control for inflation.

3.4.1 Extended Preferred Inflation-Augmented RW Models

Table 3.3 describes the estimation results of the linear and nonlinear MICFs (equa-
tions (3.4) and (3.5)), in which the number of distributed lags on inflation, I, and
squared inflation, J , are chosen according to the preferred models of the inflation-
augmented RW hypothesis presented in Tables 3.1 and 3.2. For simplicity, only the
first lag of consumption growth is reported in Table 3.3 (i.e., K has been arbitrarily
set to 1). Because of the endogeneity of income, the results have been calculated
with a two-stage least-squares (TSLS) model. In line with the literature and the
model assumptions, the natural candidate instrumental variables are the lagged val-
ues of the exogenous variables because these are correlated with themselves, but not
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with the error terms. Note that all instruments have to be lagged by at least two
periods to avoid the time aggregation problem pointed out in Section 3.2.2.

Comparing the MICF estimates in Table 3.3 with the previous results in Ta-
bles 3.1 and 3.2, the most striking difference is that squared inflation is no longer
a significant determinant of consumption growth (cf. models (iii) and (v)). Con-
sequently, the nonlinear inflation-augmented RW model (equation (3.3)) and the
nonlinear MICF (equation (3.5)) can probably be ignored in further analyses. It is
important to stress, however, that this does not contradict assumption (A3) of an
inflation effect that decreases with the inflation level, since the nonlinear effect is
already controlled for by analyzing subperiods with differing average inflation rates.

Concerning the impact of current inflation on consumption growth, we see that
λ0 remains highly significant in all models (except for model (vi)), with an impor-
tant negative impact of current inflation on consumption growth. This means that
current inflation cannot be considered as simply a proxy for either financial wealth,
as suggested by Davidson et al. (1978), nor as solely capturing other consumption
behaviors, such as HF or LC. As a result, The unanticipated inflation effect appears
to be important. Inflation should, therefore, not be excluded from any analysis fo-
cusing on the determinants of consumption growth. On the other hand, the effect
of lagged inflation on consumption growth is much less important in Table 3.3, and
even almost completely disappears in model (vi). This could indicate that there is
no money illusion as a rule-of-thumb behavior and that consumers do not system-
atically use nominal values as proxies for real values. Note, further, that adding the
other possible determinants of consumption growth to the model could not resolve
the puzzle of the changing signs in lagged consumption, a result that again calls for
further investigation.

Contrary to many empirical studies on this subject, this study finds that the
coefficients on the other variables in the MICF do not yield clear or homogeneous
results - a finding that calls for additional analyses. Although the coefficient δ1 on
consumption growth lagged one period is significant in models (i), (iii) and (vi), its
sign and magnitude differ depending on the period, the inflation measure and the
number of lags on inflation. Since these results for δ1 are somewhat counterintuitive,
their robustness can be tested by including more lags on consumption growth, using,
for example, the same lag-reducing technique as used for inflation in Section 3.2.2.
Having a K > 1 also makes economical sense because it is very possible that con-
sumption habits overlap across several quarters. Moreover, we see that there is still
some degree of serial correlation, as reflected by the significant MA(1) term in (i)
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Table 3.3: Re-Estimation of the Preferred Inflation-Augmented RW Models

∆ct = α+
∑I
i=0 λiL

i(∆pt) +
∑J
j=0 λ

∗
jL

j(∆pt)2 + δ1∆ct−1+
+η∆yt + ωat−1 + ϕ[ct−1 − yt−1] + εt

IPD CPI
High Low linear Low nonlinear High linear High nonlinear Low
(i) (ii) (iii) (iv) (v) (vi)

α 0.00 0.00 −0.01 −0.02 −0.01 −0.01
(0.03) (0.01) (0.02) (0.02) (0.03) (0.03)

λ0 −0.54∗∗∗ −0.50∗∗ −0.78∗∗∗ −0.58∗∗∗ − −0.27
(0.13) (0.22) (0.22) (0.17) (0.56)

λ1 − 0.30 0.58∗∗∗ − − 0.51
(0.32) (0.12) (0.45)

λ2 − −0.11 −0.11∗ − − −0.50
(0.07) (0.06) (0.40)

λ3 − 0.11 0.13 − − 0.51
(0.09) (0.11) (0.38)

λ4 − −0.27∗∗∗ −0.18∗ − − −0.54
(0.09) (0.09) (0.34)

λ5 − 0.19∗∗ 0.09 − − 0.26
(0.07) (0.06) (0.26)

λ6 − 0.00 0.10 − − 0.07
(0.06) (0.09) (0.25)

λ7 − − −0.09 − − −0.26
(0.08) (0.23)

λ8 − − 0.16 − − 0.59
(0.12) (0.38)

λ9 − − −0.18∗∗ − − −0.54∗
(0.08) (0.30)

λ∗0 − − 13.34 − −20.59 −
(19.65) (23.53)

λ∗1 − − − − 8.58 −
(17.76)

λ∗2 − − − − 10.95 −
(17.84)

λ∗3 − − − − −9.63 −
(10.08)

λ∗4 − − − − 3.55 −
8.48

δ1 −0.11∗∗ 0.19 0.47∗∗∗ −0.14 0.68 0.59∗∗∗
(0.05) (0.28) (0.10) (0.14) (0.51) (0.19)

η 0.10 −0.01 0.08 0.08 −0.02 0.12
(0.10) (0.03) (0.13) (0.09) (0.53) (0.15)

ω 0.07∗∗ 0.16 0.03 0.03 −0.10 0.06∗
(0.03) (0.11) (0.02) (0.02) (0.14) (0.03)

ϕ −0.05 −0.02 −0.07 −0.12∗ −0.05 −0.05
(60.10) (0.03) (0.07) (0.07) (0.11) (0.12)

εt−1 0.48∗∗∗ −0.39 −0.52∗ 0.58∗∗ − −
(0.13) (0.30) (0.27) (0.22)

AR(1) − − − − − −0.51∗∗∗
(0.17)

R̄2 0.79 0.57 0.71 0.62 0.27 0.46
DW 1.83 1.74 2.01 2.02 1.98 2.25
FP 27.25 3.14 5.93 13.98 3.49 3.39

[0.00] [0.01] [0.00] [0.00] [0.00] [0.00]

This table presents the TSLS estimates of the preferred models represented in Tables (3.1) and
(3.2), controlling for HF, LC, wealth and an error correction term. The instruments used are the
considered inflation variables lagged two periods, as well as: ∆ct−3 to ∆ct−5, ∆yt−2 to ∆yt−4,
at−3 to at−5 and [ct−3 − yt−3] to [ct−5 − yt−5]. The inflation measures, periods and statistics
are identical to those described in Table 3.1. AR(1) is the estimated coefficient of the first-order
autoregressive (AR) term of the MICP. Note that, in contrast to the previously reported OLS
estimations, the R̄2 has no direct statistical meaning in the context of IV estimations.
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and (ii) and the significant AR(1) term in (vi).25 If, as previously assumed, serial
correlation comes from the presence of HF in aggregate consumption, adding fur-
ther lags on consumption growth could remove the remaining autocorrelation in the
residuals and add consistency to the results.

The remaining variables in equation (3.4) do not seem to play an important role
in predicting consumption growth. Their coefficients are mostly insignificant and
remain very small in comparison to those for inflation or lagged consumption growth.
This casts some doubt, for example, on the LC model hypothesizing that a constant
and relatively large fraction of the population lives from hand to mouth. Starting
from the general model (equation (3.4)), the next section looks for the models that
best explain consumption growth in both high-inflation and low-inflation periods.

3.4.2 Finding the Best Aggregate Consumption Function

The estimations in the previous sections uncover new insights about the nature of
the relationship between inflation and consumption growth. In particular, current
and past inflation seem to be important determinants of consumption growth, and
consumers seem to behave differently in different inflationary environments. How-
ever, neither the negative nor the positive inflation effects of the inflation-augmented
RW models are totally robust to the inclusion of additional variables. In order to
better identify the effect of money illusion on consumption growth and to find the
most reliable aggregate consumption models for the selected subperiods and inflation
measures, this section focuses on the estimation of the linear MICF (equation (3.4))
without significant initial restrictions. The nonlinear model (3.5) can be excluded
because there is no nonlinear relationship between inflation and consumption growth
within the two analyzed subperiods.

The different estimation results of equation (3.4) for the high- and low-inflation
subperiods are summarized in Tables 3.4 and 3.5, respectively. In order to compare
the performance of the MICF with aggregate consumption functions from the liter-
ature, I also report the estimations of (3.4) excluding inflation (i.e., setting λi = 0
for i = 0, ..., I).26 Contrary to these “traditional” aggregate consumption functions,
however, I also allow for distributed lags in consumption growth in order to control

25In model (vi), the MA(1) term has been replaced by the first-order autoregressive term AR(1)
because this term better explains the data. This choice does not, however, change the interpretation
of autocorrelation in the residuals.

26Examples of inflation-excluding aggregate consumption models can be found in Carroll et al.
(2011), Kiley (2010), Fuhrer (2000), Malley and Molana (2006) and Sommer (2007).
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for consumption habits that overlap across several quarters. For the estimation, the
maximum numbers of lags in inflation and consumption growth have been set to
I,K = 5 for three reasons: first, because the coefficients on further lags are almost
never significant in the estimation of the inflation-augmented RW model; second, to
remain in an economically realistic range; and third, to avoid, as much as possible,
the small sample problem for the low-inflation subperiod (see Section 3.2.3).

The reported models in Table 3.4 (high-inflation subperiod) and Table 3.5 (low-
inflation subperiod) are as follows. The first and fifth benchmark regressions (e.g.,
(i)H or (v)H for the IPD and CPI models in Table 3.4) report the TSLS estimations of
equation (3.4), in which inflation is excluded from the list of regressors. The second
and the sixth regressions correspond to the same inflation-excluding model after
sequentially removing each least-significant variable, until all remaining variables (or
the last lag of the variables) are statistically significant. The resulting models can be
interpreted as the preferred standard aggregate consumption functions, which do not
attribute any predictive role to inflation. The third and seventh regressions report
the estimation of the MICF that correspond to the benchmark model augmented by
current and past inflation. The last presented models are the preferred MICFs for
each subperiod and inflation measure, obtained through the same variable-reducing
technique as before. They are to be compared to the preferred benchmark models
without inflation. The preferred MICF models are highlighted in bold because they
unambiguously outperform the benchmark models that exclude inflation, as well as
the previously preferred inflation-augmented RW models and, thus, represent the
final estimation results of this chapter.

Looking at Tables 3.4 and 3.5, we see that the traditional aggregate consumption
function models, which include all variables but exclude inflation, do not perform
well in describing consumption growth. In fact, no variable has a significant im-
pact on consumption growth that is statistically significant and constant across the
subperiods and inflation measures. Reducing these benchmark models to keep only
those variables that have a significant impact on consumption growth slightly im-
proves the fit, but yields estimates that depend entirely on the subperiod and the
inflation measure considered. In the preferred IPD model (ii)H , for example, the
significant variables are current income and consumption growth lagged two periods,
which advocate in favor of LC with some presence of HF. In the CPI model (vi)H ,
however, the LC effect is cut in half and is only significant at the 10% level, HF
is more long-lasting and wealth has the most significant coefficient at the 5% level.
The preferred models for the low-inflation subperiod are completely different. In the
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Table 3.4: Money Illusion Consumption Function – High-Inflation Period

∆ct = α+
∑I
i=0 λiL

i(∆pt) +
∑K
k=1 δkL

k(∆ct) + η∆yt + ωat−1 + ϕ[ct−1 − yt−1] + εt

IPD CPI

Excluding Inflation Including Inflation Excluding Inflation Including Inflation
(i)H (ii)H (iii)H (iv)H (v)H (vi)H (vii)H (viii)H

α 0.00 0.00 −0.03 0.01∗∗∗ −0.03 0.00∗∗ 0.14 0.01∗∗∗
(0.04) (0.00) (0.08) (0.00) (0.03) (0.00) (2.04) (0.00)

λ0 − − −1.48 −0.76∗∗∗ − − 5.53 −0.75∗∗∗
(2.14) (0.07) (82.27) (0.12)

λ1 − − 1.06 0.27∗ − − −6.04 0.34∗∗
(2.04) (0.15) (91.56) (0.16)

λ2 − − −0.27 0.14 − − 10.75 −
(1.00) (0.10) (143.01)

λ3 − − −0.59 −0.20∗ − − −5.60 −
(0.83) (0.11) (61.71)

λ4 − − 0.84 0.17∗∗ − − 6.99 −
(0.92) (0.08) (85.21)

λ5 − − 0.07 − − − −4.64 −
(0.68) (61.96)

δ1 −0.03 −0.15 1.26 0.38∗∗∗ −0.01 −0.03 4.41 0.36∗∗∗
(0.32) (0.15) (2.20) (0.11) (0.24) (0.29) (49.94) (0.12)

δ2 0.11 0.27∗∗ −0.51 − 0.15 0.17 7.02 −
(0.24) (0.14) (1.35) (0.18) (0.23) (98.72)

δ3 0.05 − 0.03 − 0.03 0.01 −2.70 −
(0.20) (0.68) (0.12) (0.15) (32.88)

δ4 −0.11 − 0.48 − −0.22∗ −0.23∗ −0.62 −
(0.14) (0.86) (0.13) (0.12) (11.85)

δ5 −0.01 − 0.11 − 0.24 0.30∗ 0.22 −
(0.17) (0.75) (0.16) (0.17) (4.74)

η 0.39 0.66∗∗∗ −0.06 − 0.41∗∗ 0.38∗ 5.65 −
(0.29) (0.14) (0.89) (0.19) (0.21) (72.46)

ω 0.15 − −0.36 − 0.13∗ 0.16∗∗ −0.45 −
(0.36) (0.59) (0.07) (0.07) (4.50)

ϕ −0.04 − −0.10 − −0.12 − 1.13 −
(0.15) (0.27) (0.11) (15.74)∑I

i=1 λi − − − 0.38∗∗∗ − − − 0.34∗∗
(0.11) (0.16)

R̄2 0.85 0.52 −0.91 0.75 0.49 0.38 −121.86 0.55
DW 1.73 2.17 2.09 1.78 1.99 2.02 1.75 1.84
FP 8.23 8.36 1.14 32.28 5.98 5.74 0.02 27.37

[0.00] [0.00] [0.35] [0.00] [0.00] [0.00] [1.00] [0.00]

This table presents the estimation results of the MICF (3.4) for the U.S. over the subperiods 1966Q1
to 1981Q3 and 1966Q1 to 1982Q3 for the IPD and CPI models, respectively. The superscript H
stands for “high-inflation period”. The regressions containing income have been estimated with
TSLS, using as instruments each utilized variable, lagged by two periods. In the regressions that
exclude inflation, lagged inflation has been added to the instrument set with two lags up to the
highest lags of the instruments for lagged consumption. Models that do not contain income have
been estimated with OLS.
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Table 3.5: Money Illusion Consumption Function – Low-Inflation Period

∆ct = α+
∑I
i=0 λiL

i(∆pt) +
∑K
k=1 δkL

k(∆ct) + η∆yt + ωat−1 + ϕ[ct−1 − yt−1] + εt

IPD CPI

Excluding Inflation Including Inflation Excluding Inflation Including Inflation
(i)L (ii)L (iii)L (iv)L (v)L (vi)L (vii)L (viii)L

α −0.02 0.00∗∗∗ 0.02 0.01∗∗∗ 0.00 0.00∗∗ −0.15 0.01∗∗
(0.02) (0.00) (0.11) (0.00) (0.04) (0.00) (2.85) (0.00)

λ0 − − −0.83 −0.72∗∗∗ − − −3.52 −0.53∗∗∗
(1.56) (0.07) (60.36) (0.18)

λ1 − − −0.44 0.38∗∗∗ − − −5.82 0.25
(2.54) (0.06) (97.93) (0.28)

λ2 − − −0.06 −0.19∗∗ − − −3.47 −0.71∗∗∗
(1.44) (0.09) (51.45) (0.22)

λ3 − − 0.16 0.53∗∗∗ − − 1.36 0.59∗∗∗
(1.74) (0.08) (19.44) (0.16)

λ4 − − 0.45 −0.53∗∗∗ − − 5.97 −0.65∗∗∗
(4.62) (0.09) (110.93) (0.20)

λ5 − − −0.69 0.22∗∗∗ − − −6.23 0.51∗∗
(4.62) (0.04) (113.25) (0.21)

δ1 0.04 − −0.63 0.26∗∗∗ 0.22 0.22 −9.08 0.10
(0.16) (3.43) (0.07) (0.25) (0.17) (157.76) (0.13)

δ2 −0.01 − 0.02 0.00 0.27 0.09 1.12 0.05
(0.10) (1.31) (0.08) (0.36) (0.14) (22.23) (0.13)

δ3 0.09 − −0.01 0.41∗∗∗ 0.18 0.28∗∗ −0.97 0.42∗∗∗
(0.16) (2.40) (0.09) (0.22) (0.12) (24.32) (0.10)

δ4 0.05 − 0.57 −0.31∗∗∗ 0.00 − 6.85 −
(0.19) (4.36) (0.10) (0.29) (118.93)

δ5 −0.02 − −0.45 − −0.16 − −2.10 −
(0.13) (2.70) (0.21) (36.12)

η 0.44 0.42∗∗ 0.79 − 0.08 − 5.36 −
(0.27) (0.04) (4.23) (0.30) (92.61)

ω 0.05 − 0.12 − 0.13 0.03∗ 0.16 −
(0.06) (0.70) (0.06) (0.02) (2.51)

ϕ −0.09 − 0.05 − 0.01 − −1.03 −
(0.08) (0.41) (0.18) (18.29)∑I

i=1 λi − − − 0.40∗∗ − − − −0.02
(0.16) (0.32)∑K

k=1 δk − − − 0.37∗ − − − 0.57∗∗
(0.19) (0.23)

R̄2 0.08 0.29 −3.67 0.81 −0.57 0.24 −150.15 0.51
DW 2.94 2.77 1.73 1.88 2.70 2.35 1.63 1.81
FP 1.54 5.36 0.30 17.61 1.58 4.13 0.01 5.55

[0.18] [0.03] [0.99] [0.00] [0.17] [0.01] [1.00] [0.00]

This table shows the estimation results of the MICF (3.4) for the U.S. over the subperiod 1991Q1
to 2001Q1. The superscript L stands for “low-inflation period”. The regressions containing income
have been estimated with TSLS, using as instruments each utilized variable, lagged by two periods.
In the regression that excludes inflation, lagged inflation has been added to the instrument set with
two lags up to the highest lags of the instruments for lagged consumption, except for the case of
regression (ii), for which the instruments are income lagged by two periods and inflation lagged by
two to five periods. Models not containing income have been estimated with OLS.



3.4 Estimation of the Money Illusion Consumption Function 69

IPD model, the only potentially relevant variable is current income, since all other
effects vanish as the insignificant variables are being removed. However, this LC
effect is rather weak because it is only present when more than four lags of inflation
are added to the instruments list. In the last retained benchmark model (vi)L, the
LC effect completely disappears, replaced by a weakly significant wealth effect and
some degree of HF.

The fact that the preferred benchmark models differ greatly across the selected
subperiods and inflation measures indicates, not only that the standard aggregate
consumption functions underestimate the changes in the consumer behavior depend-
ing on the inflationary environment, but also that they are inappropriate for drawing
robust conclusions about any consumption behavior due to their extreme sensitivity
to the model specifications.

Compared to this benchmark case, simply adding current and lagged inflation in
the third and sixth regressions does not increase the fit of the model. In contrast, in
this case, no coefficient is significant, and some have implausible signs and values.
The estimations of these full MICFs perform particularly badly in the CPI case, as
reflected by very large estimated standard errors. In fact, the models that include
all additional variables are not able to beat the RW model suggested by Hall (1978),
since the F-tests cannot reject the null hypothesis of all coefficients being equal to
zero (as shown by the low F-statistics in (v)H , (i)L and (v)L).

The picture changes dramatically when the full MICF is reduced to include
only those variables that have significant coefficients, as reported by the fourth
and seventh models in Tables 3.4 and 3.5. These preferred MICF models clearly
outperform the preferred inflation-ignoring models in terms of the general fit of
the model and of the robustness of the estimated coefficients. In fact, both high-
inflation and low-inflation models confirm the importance of current and past IPD-
and CPI-based inflation, as well as of HF for consumption growth. This corroborates
assumption (A1) by showing that consumption growth is not neutral with respect
to inflation.

Interestingly, the preferred MICF models yield very similar results across the
subperiods. The main difference lies in the number of significant lags on inflation
and consumption growth. In the high-inflation period, only one lag on consumption
growth is (highly) statistically significant, presenting similar values in the IPD and
CPI models. In models (iv)H and (viii)H , the negative unanticipated inflation effect
(λ0) is highly significant and very large, at around −0.75. There is a slight difference
with regard to lagged inflation, however, in that the IPD model suggests a longer
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lasting nominal income effect than the CPI model. That said, the overall effect
of lagged inflation is very similar in both model. Table 3.5, in contrast, suggests
more long-lasting effects for inflation and HF. Both the IPD model (iv)L and the
CPI model (viii)L indicate that inflation with up to five lags and that consumption
with, respectively, four- and three-period lags have significant effects on current
consumption growth. The fact that the inflation effect lasts longer in the low-
inflation subperiod corresponds to assumption (A3), which suggests that money
illusion as a rule of thumb is more costly when inflation is high and that consumption
behaviors should be analyzed separately in different inflationary environments.

The superiority of the preferred MICFs represents a novel finding because it
shows that the only stable model capable of successfully predicting consumption
growth across different subperiods and using different inflation measures is the simple
RW model augmented by current and lagged inflation, as well as lagged consumption
growth. In fact, the preferred MICF models outperform, not only the benchmark
models that exclude inflation, but also outperform the linear inflation-augmented
RW models presented in Table 3.1. If we compare, for example, models (iv)H and
(viii)H in Table 3.4 with models (iii) and (iv) of Table 3.1, we see that allowing
past consumption to be correlated with current consumption not only substantially
reduces the serial correlation in the model, but also validates lagged inflation rates as
significant predictors for current consumption growth. Table 3.5 presents a similar
picture for the low-inflation period: Both preferred MICF models (iv)L and (viii)L

appear to be simple extensions of models (v) and (vi) of Table 3.1. The MICF
models clearly outperform the inflation-augmented RW models by using fewer lags
on inflation but allowing for the presence of HF.

There are two further noteworthy features of the preferred MICF. First, note that
the IPD-based MICF models have a substantially better fit than the CPI models,
which is reflected in much higher coefficients of determination in Tables 3.4 and
3.5. This feature illustrates the fact that the IPD is closer to the PCE time series
than the CPI (cf. Section 3.2.2). Second, even though equation (3.4) contains
many different explanatory variables and does not impose any particular structural
form, all preferred models present the particular form of autoregressive distributed
lag models, or ADL(I,K) models, with I lags of the exogenous variable ∆pt and
K lags of the endogenous variable ∆ct. Since one of the major issues generally
associated with ADL models is the presence of multicollinearity, the preferred MICF
models might suffer from some degree of multicollinearity as well. On one hand, this
weakness could be particularly important in the low-inflation models of Table 3.5,
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which contain a relatively high number of lags.27 On the other hand, the major issue
with multicollinearity is the prevalence of particularly large standard errors, which
can lead to erroneously declaring coefficients statistically insignificant. In fact, this
is not the case for the coefficients on lagged inflation in the low-inflation subperiod.

The encouraging results with respect to the importance of inflation for consump-
tion growth should not eclipse the puzzle mentioned earlier (namely, the fact that
some coefficients on lagged inflation are negative). If all coefficients were positive,
this would unequivocally indicate the presence of a widespread money illusion affect-
ing consumption through the nominal income channel and corroborate the existing
literature on money illusion, as exposed in Section 3.1.1. Regardless, this puzzle
does not refute the presence of this type of money illusion because the negative
coefficients could also capture some remaining statistical issues, such as remaining
seasonality patterns in the data or other omitted variables that are not controlled
for in the MICF.

Two facts support the possible presence of remaining statistical issues. First,
the signs on lagged inflation appear to be negative over regular intervals, as can
be seen in the negative signs of λ0, λ2 and λ4 in the preferred MICF models (iv)L

and (viii)L. Second, lagged consumption growth also seems to suffer from the same
bias, in the manner of δ4 in the preferred MICF model (iv)L. The simplest and
most intuitively appealing way of addressing this issue is to analyze the cumulative
effect of the distributed lags on inflation and consumption growth. In fact, the total
nominal income effect of lagged inflation on consumption growth is entirely captured
by the sum

∑I
i=1 λi, as reported in Tables 3.4 and 3.5. The cumulative effect of past

consumption growth,
∑K
k=1 δi, is also reported in Table 3.5 and can be interpreted

as the total HF effect influencing current consumption growth.
Concerning the total effect of lagged inflation in Table 3.4, we see that

∑4
i=1 λi

is clearly positive and highly significant, despite the negativity of λ3. Note that∑4
i=1 λi is very close in value to the only significant coefficient λ1 in the CPI model

(viii)H , which indicates some robustness of the money illusion effect within the high-
inflation subperiod. Consequently, both preferred MICFs advocate for the presence
of both money illusion mechanisms presented in Section 3.1.2: namely, the negative
unanticipated inflation effect of current inflation and the positive nominal income
effect of lagged inflation on current consumption growth. Interestingly, it appears

27In order to avoid the negative effects associated with multicollinearity, it is possible to impose
restrictions on the parameters to be estimated, as suggested by Koyck (1954), or to use the Almon
(1965) technique by imposing a rapid speed of decay on the coefficients of the exogenous variable.
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that the negative effect is approximately twice as big as the positive effect and the
HF effect, which both yield similar impacts on consumption growth.

In Table 3.5, the IPD and the CPI models present somewhat divergent results for
the low-inflation subperiod. On one hand, the preferred IPD MICF model presents
cumulative effects for lagged inflation and lagged consumption growth that are very
similar to those in the high-inflation subperiod in Table 3.4. In particular, model
(iv)L confirms the presence of both money illusion effects. On the other hand, the
preferred CPI model for the low-inflation subperiod, (viii)L, mitigates these results.
Even though the unanticipated inflation effect and the HF are still important and
significant (despite the former being slightly lower and the latter slightly higher than
in the other preferred models), the cumulative effect of lagged inflation becomes
insignificant and almost null (

∑5
i=1 λi = −0.02). As we can see in the table, this is

due to the fact that the negative coefficients are much larger than those in the other
models and that, in consequence, the different coefficients on lagged inflation cancel
out their respective effects.

As a concluding remark, there is little doubt that both current and past inflation
play a central role in current consumption growth, indicating that money illusion
might be far more important than has been thus far admitted. The estimation results
for the MICFs show a particularly high and significant negative impact of current
inflation on consumption growth, validating money illusion as a signal extraction
problem, as suggested by Deaton (1977). However, the estimation results are not
as conclusive for the presence of money illusion as a rule of thumb, thus calling
for further investigation in order to remove the remaining statistical biases and to
be able to determine the exact depth and duration of the nominal income channel
suggested by Branson and Klevorick (1969).

3.5 Conclusion

Contrary to most empirical macroeconomic studies on aggregate consumption, which
leave inflation completely out from their analysis, this chapter shows that both
contemporaneous and lagged inflation play an important role in real consumption
growth. This novel result is robust to the choice of the inflation measure (i.e., IPD
or CPI) and valid for periods with both high and low average inflation rates.

When extending the model to control for liquidity constraints, habit forma-
tion, wealth, the interest rate and an error-correction term, all estimated models
reduce to an autoregressive distributed lag model, in which current consumption
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growth depends only on past consumption growth, current inflation and past infla-
tion. Whereas the significance of past consumption growth is typically attributed
to consumption habits, this chapter assumes that the impacts of current inflation
and past inflation are due to money illusion, which influences consumption growth
via two distinct channels.

Contemporaneous inflation has a negative effect on consumption, which is at-
tributable to the fact that consumers misinterpret inflation as a price increase in
individual goods and, thus, postpone their current consumption. This negative ef-
fect of current inflation on consumption growth is found to be highly significant
and particularly important, independent of the chosen inflation measure and sample
period. To further investigate whether this negative unanticipated inflation effect is
as important as suggested by the money illusion consumption function, Chapter 4
directly addresses money illusion as a signal extraction problem, which allows for
the use of more sophisticated estimation techniques.

The second identified impact of money illusion is reflected by a positive effect
of lagged inflation on consumption growth. This effect captures money illusion as a
rule-of-thumb behavior, in which the consumer uses nominal income as a proxy for
real income. In this case, a positive nominal income shock increases the consumer’s
subjective wealth and stimulates her consumption. The estimation results show that
this positive effect of money illusion on consumption growth is significant and lasts
for only one period when inflation is high, reflecting the fact that the efficiency of
this rule of thumb worsens rapidly when nominal and real income decouple. In the
examined low-inflation period, the effect of lagged inflation on consumption growth
is found to be more long-lasting, although it is only significant and positive in the
IPD inflation models.

The contrasting results of the CPI models call for a deeper analysis of the re-
lationship between inflation and consumption growth. Moreover, the assumed link
between money illusion and the observed inflation effect should be interpreted with
some caution. Showing that inflation has a significant effect on consumption growth
violates the homogeneity postulate, but is it not a sufficient condition to prove the
existence of money illusion at the aggregate level. Even though the money illusion
consumption function excludes the possibility that the inflation effects works as a
proxy for LC, HF, the interest rate or wealth, there may still be other inflation-to-
consumption mechanisms at work that are totally independent of the money illusion
phenomenon.

For example, the inflation effect could also reflect an uncertainty effect (Koskela
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and Viren, 1985; Barro, 1995) or a substitution effect between durable and non-
durable goods (Cukierman, 1972; Fortune, 1982). Concerning such a substitution
effect, recall that the IPD accounts for substitution effects between different non-
durable goods and between non-durables and services, but not between durables and
non-durables. To directly address this possible substitution effect in future studies,
a solution could be to re-estimate the money illusion consumption function with
disaggregated price indexes.

The argument that inflation solely captures an uncertainty effect can be ques-
tioned. The presented results show a highly significant inflation effect, even after
controlling for income, wealth and the interest rate. This suggests that, if the in-
flation effect works as a proxy for some remaining uncertainty, this uncertainty is
not directly related to the consumer’s lifetime wealth. Furthermore, the positive
and significant effect of lagged consumption growth on current consumption growth,
which is attributed solely to HF in this chapter, predominantly reflects a prudent
behavior on the part of the consumer. The resulting excessive consumption smooth-
ing certainly captures a high degree of uncertainty and not only HF. Note, finally,
that this argument can only address the negative effect of current inflation on con-
sumption growth, which works as an additional consumption smoother, and cannot
address the uncovered positive effect of lagged inflation.



Chapter 4

Money Illusion as a Signal
Extraction Problem

Money illusion can be interpreted as a signal extraction problem, in which the con-
sumer observes only her nominal income and “overlooks” the relevant inflation at the
time that she makes her consumption decisions. In this chapter, I develop two state-
space models for this signal extraction problem. The first one takes an unobserved
components approach to model a fully money-illusioned consumer, while the second
one treats inflation as an observed variable. Given the same U.S. quarterly data and
sample periods as in Chapter 3, the Kalman filter estimation results are as follows.
Due to its heavy reliance on the assumed processes governing inflation and real in-
come growth, the first model yields rather poor predictions for actual consumption
growth, such that full money illusion can be rejected. The second state-space model
performs much better in explaining real consumption growth, but yields different
results than the model in Chapter 3. While the negative inflation effect suggested
by Deaton (1977) is significant and large in the high-inflation period, its presence
remains undetermined in the low-inflation subperiod. Furthermore, the models do
not confirm any presence of the positive inflation effect on consumption growth ad-
vocated by Branson and Klevorick (1969). Finally, the estimates uncover a high
degree of consumption smoothness in the high-inflation subperiod, attributable to
increased precautionary savings when inflation uncertainty is high.

Keywords: Money illusion, signal extraction, state-space model, Kalman filter.

JEL classification: E21, C61, E31, C32.
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4.1 Introduction

A consumer is considered to be money-illusioned if she does not fully anticipate and
account for inflation in her consumption decisions, thus violating the homogeneity
of degree zero postulate (see Section 3.1.2). The resulting confusion between nom-
inal and real income can be modeled as a signal extraction problem, which can be
understood as a measurement problem in which the consumer would like to anchor
her consumption to her real income, but only observes her nominal income.

The economic literature dealing with signal extraction problems goes back to the
early 1970s, when incomplete information was first introduced to justify the nonneu-
trality of money in the short run. The idea is that people are not able to disentangle
changes in monetary policy from changes in demand or relative prices, thus causing
unexpected monetary shocks to have an impact on real economic variables (typically
output or labor supply).1 Of course, all changes are anticipated in the long run, such
that the neutrality of money prevails. Deaton (1977), by making a similar distinction
between anticipated and unanticipated inflation, was the first to establish a direct
and positive link between (unexpected) inflation and savings. Following more recent
studies on rational inattention (Sims, 2003; Mankiw and Reis, 2002; Reis, 2006), the
signal extraction problem analyzed in this chapter is completely in line with the full
rationality assumption (i.e., the consumer deliberately chooses not to be constantly
and perfectly informed about inflation).

The analysis in Chapter 3 of the inflation-augmented random walk (RW) model
and the money illusion consumption function (MICF) suggests that money illusion,
via inflation, has two distinct impacts on contemporaneous consumption growth.
On one hand, unexpected inflation implies a negative impact of current inflation
(Deaton, 1977), while, on the other hand, the nominal income effect suggested by
Branson and Klevorick (1969) implies a positive impact of lagged inflation on current
consumption growth. The purpose of this chapter is to provide, as a robustness check
for the previous OLS and TSLS estimation results, an alternative and potentially
more efficient way to model and estimate money illusion. In particular, money
illusion as a signal extraction problem can be estimated by means of a Kalman
filter, which allows us to optimally extract the relevant information from unobserved
(state) variables.

In this chapter, I develop two alternative state-space models that characterize
the signal extraction problem faced by two consumers suffering from different de-

1See Lucas (1972, 1973), Sims (1972) or Barro (1977, 1978).
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grees of money illusion. The first model, developed in Section 4.2 and estimated in
Section 4.2.1, considers a consumer who is completely money-illusioned. The par-
ticularity of this consumer is that she only observes two variables – namely, her real
consumption and her nominal income growth – while she entirely relies on assump-
tions about the evolution of the unobserved inflation and real income growth.

One advantage of this “unobserved components” approach is that, despite its
simplicity and the minimal amount of information available to the consumer, it cap-
tures, through the correlations between the states, different consumption behaviors
that are relevant for the present analysis: namely, money illusion, habit formation
(HF) and liquidity constraints (LC). The reverse side of this coin, however, is that
the two conflicting inflation effects, as well as the opposing HF and LC effects, are
mutually exclusive. Interestingly, the estimation results show that the completely
money-illusioned consumer, having access to no information about inflation, behaves
according to the RW hypothesis of Hall (1978) (i.e., exactly the same way as the
fully rational consumer).

The second state-space model, analyzed in Section 4.3 and estimated in Sec-
tion 4.3.1, is less restrictive than the first one, in that it considers that the consumer
observes inflation, but might not be able – or willing – to completely account for it
in her evaluation of her real income growth. Moreover, it allows opposite inflation
effects and consumption behaviors to have simultaneous effects on current consump-
tion growth. The resulting model is similar to the MICF of Section 3.3, in which
money illusion, HF and LC are directly controlled for in the estimated equation, ex-
cept for the fact that, in this model, real income growth is considered as unobserved
and follows a specific process.

Thanks to the greater amount of information about inflation at her disposal,
the second consumer is able to better anticipate the evolution of her real income.
With regard to money illusion, the estimation results show that, while the negative
inflation effect is still present, the supposed positive effect of lagged inflation on
current consumption growth does not survive the robustness checks, which suggests
that the significant effect in Chapter 3 might capture other phenomena that are not
explicitly controlled for.

4.2 Modeling Inflation as an Unobserved Variable

In a fashion similar to that of Sargent (1979, p. 209), and in keeping with the defini-
tion of money illusion as an underperception of inflation, we can state the signal ex-
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traction problem faced by the money-illusioned consumer as follows: Consider a con-
sumer who wants to estimate her real income growth, defined as ∆yrt = ∆ynt − ∆pt,
but only observes her nominal income growth ∆ynt . She sees the random variable
∆ynt , but overlooks the pertinent inflation ∆pt at the time that she makes her con-
sumption decisions. Recall that this underperception of inflation does not necessarily
reflect an irrationality; it can also be attributed to some intentional rule-of-thumb
behavior or to incomplete information about the state of the general price level (see
Section 3.1.2).

This signal extraction problem is, conceptually, a measurement error problem
that can be controlled for via a Kalman filter, which is a powerful recursive algorithm
that provides potentially more efficient estimates than the standard OLS and TSLS
methods used in Section 3.4.2 In the consumption context, Kalman filters can be
used to account for measurement errors in consumption growth (Sommer, 2007;
Carroll et al., 2011), but also (and mainly) to distinguish between the different
components of the income process, such as, particularly, permanent and transitory
income (Malley and Molana, 2006; Morley, 2007; Pozzi, 2010). Compared to the
latter case, this approach of modeling inflation (rather than permanent income) as
a signal might be more accurate, since aggregate shocks to the log level of income
are essentially permanent. As a result, the distinction between permanent and
transitory income is obsolete, since, at the aggregate level, permanent income is
equal to actual income (Carroll et al., 2011). This fact is of great importance in the
following analysis because it implies that apparent transitory income shocks stem
from other mechanisms, such as inflation shocks.

To model the signal (here: inflation) extraction problem in such a way that it
can be estimated with a Kalman filter, it is useful to write the model in a state-
space form. To do so, I adopt an approach similar to that of Morley (2007) and first
decompose consumption and nominal income into two components: an idiosyncratic
stationary component and a stochastic innovation component. Even though sta-
tionarity is not a prerequisite for an optimal estimation of state-space models, I use
the same detrended variables as in Chapter 3 to facilitate a direct comparison. The
second step is to develop a correlated unobserved components model for aggregate
consumption and income growth.

Consider the following measurement (or observation) equations:

2There are, of course, other methods that depart from this linear quadratic control filtering,
but can be used to model and estimate concerns about mismeasurement or model misspecification.
One of these is robust control, which is presented in detail in Chapter 5.
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∆ct = β + η∆yrt + ut (4.1)

∆ynt = ∆yrt + ∆pt, (4.2)

where ynt is (the logarithm of) nominal income, yrt is (the logarithm of) real income,
and ut and ∆pt are the measurement errors of consumption and income growth,
respectively. The constant β can be thought of as reflecting the precautionary motive
and collateral nonlinearities (as in Carroll et al., 2011). The parameter η is the
consumer’s marginal propensity to consume out of her current real income.

An important assumption in this first model is that inflation (∆pt) is entirely
unobserved, in the sense that the consumer does not have (or seek) immediate access
to information about the evolution of the general price levels of goods and services.
In other words, this model depicts the signal extraction problem of a consumer suf-
fering from complete money illusion. Since the consumer only observes the (control)
variables ∆ct and ∆ynt , she needs to make assumptions about the processes govern-
ing all unobserved (state) variables. First, assume that real income growth follows
a first-order autoregressive AR(1) process:

∆yrt = µ+ φy∆yrt−1 + υt, (4.3)

where υt ∼ iidN(0,σ2
υ) and µ is a drift parameter that can be interpreted as captur-

ing a constant long-term growth rate in the economy. In addition, the measurement
errors of real consumption growth and nominal income growth both follow AR(1)
processes, as suggested by the data and the literature:

ut = φuut−1 + εut (4.4)

∆pt = φp∆pt−1 + εpt, (4.5)

where εut,pt ∼ iidN(0,σ2
u,p). Equations (4.1) to (4.5) can be rewritten in a state-

space form. First, the measurement equation of the state-space model is the follow-
ing:

[
∆ct
∆ynt

]
=
[
β

0

]
+
[
η 1 0
1 0 1

]
∆yrt
ut

∆pt

 . (4.6)
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This can be summarized as ỹt = Axt +H ′ξt, where ỹt is the (2× 1) vector of
observed variables, xt is a scalar one and ξt is a vector containing the unobserved
state variable ∆yrt and the measurement errors.3 The accompanying state (or tran-
sition) equation, written as ξt = µ̃+ Fξt−1 + υ̃t in its general formulation, is equal
to: 

∆yrt
ut

∆pt

 =


µ

0
0

+


φy 0 0
0 φu 0
0 0 φp




∆yrt−1
ut−1

pt−1

+


υt

εut

εpt

 , (4.7)

with the associated variance-covariance matrix E(υ̃tυ̃′t) = Q:

Q =


σ2
υ ρυuσυσu ρυpσυσp

ρυuσυσu σ2
u ρupσuσp

ρυpσυσp ρupσuσp σ2
p

 , (4.8)

where

ρυu = corr(υt, εut)

ρυp = corr(υt, εpt)

ρup = corr(εut, εpt).

Contrary to the basic state-space model, in which the elements of Q outside the
diagonal are set to zero, this chosen representation, in which the unobserved com-
ponents are cross-correlated, allows us to distinguish between different theories of
aggregate consumption and inflation. Of particular interest for the present analysis
are the correlations ρup and ρυu, which incorporate, respectively, the different money
illusion and consumption theories presented in Chapter 3.4

The former correlation, ρup, directly relates the measurement error in consump-
tion growth to the measurement error in income growth (i.e., inflation). Conse-
quently, a positive correlation of ρup > 0 indicates that inflation and consump-
tion growth move in the same direction. Such a positive relationship indicates the
presence of money illusion in the Branson and Klevorick (1969) sense (i.e., con-

3The notation follows Hamilton (1994, Chapter 13), with the exception that the measurement
errors are included in the state vector to allow for correlations between the unobserved components.

4Note that, in this chapter, the ρs stand for the correlations and should not be mistaken for the
subjective discount rate used in Chapter 2.
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sumers “feel richer” and increase their consumption after a positive nominal income
shock). This behavior implies that consumption growth is more sensitive to income
growth than predicted by the REPIH. On the other hand, a negative correlation (i.e.,
ρup < 0), implies that consumption growth is less reactive to a shock to the nominal
income growth, favoring additional consumption smoothing. This negative corre-
lation between inflation and consumption growth corresponds to the unanticipated
inflation effect suggested by Deaton (1977), predicting that consumers decrease their
consumption after an unexpected positive price shock.

With regard to the second correlation of interest, ρυu < 0 implies a partial ad-
justment of consumption to income shocks in each period, resulting in consumption
smoothness, as predicted by the HF model. On the other hand, LC consumption is
characterized by a greater sensitivity of consumption to income shocks and suggests
ρυu > 0. Note, finally, that the REPIH implies that consumption reacts to nothing
apart from permanent income (i.e., σ2

u = 0 and ρυu = ρup = 0).
In this model, I assume the shocks to inflation and real income growth to be

independent from one another, such that the third correlation is equal to zero (ρυp =
0). The reason for this choice is twofold. First, the literature does not provide any
robust evidence for this relationship. Second, this assumption allows for a necessary
degree of freedom. Given ρυp 6= 0, the model would face an underindentification
problem because there would be only two known variables from which to estimate
three correlations.5 To add further robustness, the following section presents the
Kalman filter estimation results for when only one correlation is set to zero (i.e.,
ρυp = 0; ρυu, ρup 6= 0), as well as the results for the case in which two correlations
are set to zero (i.e., ρυp, ρυu = 0; ρup 6= 0). The Kalman filter for the state-space
model summarized by equations (4.6) to (4.8) is briefly presented in Appendix C.

4.2.1 Kalman Filter Estimation Results

The Kalman filter estimation results for the first state-space model, characterized
by equations (4.6) to (4.8), are summarized in Tables 4.1 and 4.2. To allow for a
better comparison of the results and to account for the previously gained insights,
the estimations are done for the same U.S. quarterly data, sample periods and
inflation measures as in Chapter 3 and as described in Appendix A. Recall, however,
that since inflation is unobserved in the present model and follows an assumed
and predetermined process, the different price indexes (i.e., IPD and CPI) enter

5I thank Professor James D. Hamilton (University of California) for pointing out this identifi-
cation problem.
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the model only as deflators for the consumption series. Furthermore, since the
money-illusioned consumer observes her nominal income (and not her real income),
measured as the disposable personal income per capita, nominal income is deflated
by neither IPD nor CPI inflation.

Tables 4.1 and 4.2 report the estimates for the parameters β, η, µ, ρup (in both
tables) and ρυu (Table 4.2 only), which maximize the log-likelihood and minimize
the AIC. The only difference between the two tables is that Table 4.1 allows for only
one correlation (namely, ρup) to be unequal to zero, whereas Table 4.2 estimates
both correlations (ρup and ρυu). Consequently, Table 4.1 is more restrictive than
the second table, but it releases one additional degree of freedom for estimating the
model presented in the previous section.

In order for the Kalman filter to find a recursive solution to the signal extraction
problem, initial values need to be provided for ξ1|0 and P1|0 (see Appendix C).
Instead of arbitrarily fixing the initial values, I generated them randomly, iterated
the model until convergence was obtained, and selected the model with the highest
log-likelihood. These “preferred” models are reported in Tables 4.1 and 4.2. For
plausibility reasons, the estimated coefficients for η and the correlations ρup and ρυu
have been restricted to lie, respectively, within the (0, 1) and (−1, 1) intervals.

Before we turn to the interpretation of the estimation results, it would be judi-
cious to recall what we can expect, in light of the previous results from Section 3.4,
with respect to the coefficients reported in Tables 4.1 and 4.2. The supposedly
money-illusion-capturing coefficient ρup should be negative, because the total pos-
itive Branson and Klevorick (1969) effect, denoted

∑I
i=1 λi in Section 3.4, despite

its significance and magnitude, was only half as important (in most cases) as the
negative inflation effect advocated by Deaton (1977).

With regard to the excess smoothness or excess sensitivity of consumption with
respect to income, HF was high and significant (with largely positive

∑K
k=1 δk) in all

preferred models, while LC was never significant once inflation was included in the
regression equation. Consequently, we expect η to be insignificant in both tables,
while ρυu should be negative in Table 4.2. Regardless of the fact that the present
state-space model uses as little information as possible and seeks to be very general
and unrestricted in its formulation, nesting the different consumption theories solely
within only one or two correlations does not allow for the simultaneous presence of
inflation and income effects that operate in opposite directions. Another concern
of the present model in comparison to the MICF of Chapter 3 is that it does not
allow for distributed lags to have a contemporaneous impact, even though the MICF
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suggested a simple ADL model to be the most suitable.6

Looking at the estimates of the first state-space model in Tables 4.1 and 4.2, we
see that they clearly do not match the results from Chapter 3 and that they lead
to contrasting conclusions. Consider, first, the most important parameter in this
model: the correlation ρup between inflation, as an unobserved shock to nominal
income, and the unexpected component in real consumption growth. In both tables,
this is positive for the whole-sample period and for the low-inflation period, but
negative for the high-inflation subperiod. On one hand, this regularity indicates
that consumers might behave differently in different inflationary environments (i.e.,
that the negative inflation effect prevails over the positive nominal income effect
in high-inflation periods, with the opposite being true for the low-inflation period).
The importance of analyzing the high-inflation and the low-inflation subperiods
separately is suggested, not only by the antagonistic signs on the correlations, but
also by the different performances of the models, as measured with the log-likelihood
and the AIC. As can be seen in the tables, the AICs for the low-inflation subperiod
models are conspicuously lower than the AICs for the high-inflation subperiods for
the whole sample. Moreover, the different log-likelihoods reported in Tables 4.1 and
4.2 also suggest the presence of structural breaks when estimating the models over
the whole-sample period: Summing up the log-likelihood values for the different
superiod models, we obtain a sensibly higher value than that for the whole-sample
models.7 Consequently, it is important to primarily consider the estimation results of
the models in the subperiods to avoid biased estimates in the whole-sample models.
This is in line with the findings of the MICF in Section 3.2.3. Interestingly, note
that we obtain different results for the two subperiods, even though none of the price
indexes are used as explanatory variables in the model.

On the other hand, the estimates of ρup are neither significant nor robust to the
inclusion (in Table 4.2) of the second estimated correlation ρυu, or when consid-
ering alternative inflation measures. This advocates strongly against the presence

6The second state-space model, presented in Section 4.3, corrects for these drawbacks by directly
controlling for HF in the measurement equation and is, thus, closer to the MICF in its formulation
and interpretation.

7Adding up the log-likelihood values of the three subperiods from 1966Q1 to 2001Q1 in Table 4.1,
we have 435.23 + 253.38 + 316.19 = 1004.80 > 969.35 (IPD models) and 474.67 + 240.27 + 328.03 =
1042.97 > 1016.48 (CPI models). Note that the log-likelihoods for the “middle” periods of 1981Q4
to 1990Q4 (IPD models) and 1982Q4 to 1990Q4 (CPI models) are not reported in the tables
and that the log-likelihoods for the whole-sample models have been calculated for the truncated
sample of 1966Q1 to 2001Q1 in order to fit the subperiods. Table 4.1 also suggests the presence
of structural breaks, since the corresponding log-likelihood values are 435.48 + 253.62 + 316.21 =
1005.31 > 969.86 (IPD models) and 474.29 + 240.61 + 327.27 = 1042.17 > 1016.51 (CPI models).
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Table 4.1: Inflation Unobserved: Estimations for a Single Correlation

∆ct = β + η∆yrt + ut; ∆ynt = ∆yrt + ∆pt; ∆yrt = µ+ φy∆yrt−1 + υt;
ut = φuut−1 + εut; ∆pt = φp∆pt−1 + εpt; εut,pt, υt ∼ iidN(0,σ2

u,p,υ)

Whole Sample High Inflation Low Inflation
(i)IPD (ii)CPI (iii)IPD (iv)CPI (v)IPD (vi)CPI

β 0.00 0.00*** −0.01 0.00 0.01* 0.00
(0.00) (0.00) (0.01) (0.00) (0.00) (0.00)

η 0.26 0.06* 0.69** 0.12 0.15 0.43**

(0.16) (0.04) (0.34) (0.08) (0.32) (0.22)
µ 0.00 0.01** 0.02*** 0.02 0.01 0.01**

(0.00) (0.01) (0.00) (0.00) (0.01) (0.00)
ρup 0.02 0.15 −1.00 −1.00*** 0.05 0.33

(0.07) (0.17) (0.79) (0.22) (0.71) (0.77)

AIC −13.18 −14.33 −13.50 −13.86 −14.95 −15.57
log-L 969.35 1016.48 435.23 474.66 316.19 328.02

This table reports the Kalman filter estimation results of the state-space model described by equa-
tions (4.6) to (4.8) for quarterly U.S. data over the sample period of 1959Q1 to 2012Q1. The IPD
and CPI indicate the price index used to deflate the consumption series. The “High-Inflation”
subperiods are 1966Q1 to 1981Q3 and 1966Q1 to 1982Q3 for IPD and CPI, respectively, whereas
the “Low-Inflation” subperiod is 1991Q1 to 2001Q1 for both inflation measures. The variance-
covariance matrix Q for the shocks is restricted to be positive definite, and the initial values for
the parameters are generated randomly. Parameter restrictions have been set for η to take values
between 0 and 1 and for the estimated correlations to lie within the (−1, 1) interval. The corre-
sponding estimated standard errors (in parentheses) have been calculated with the delta method.
{∗, ∗∗, ∗∗∗} denote the statistical significance of the coefficient at the {10, 5, 1} percent levels. AIC
is the Akaike information criterion. log-L reports the (maximum) estimated log-likelihoods for each
model, except for the values given for the “Whole-Sample” models, which have been calculated over
the sample period from 1966Q1 to 2001Q1.
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Table 4.2: Inflation Unobserved: Estimations for Two Correlations

∆ct = β + η∆yrt + ut; ∆ynt = ∆yrt + ∆pt; ∆yrt = µ+ φy∆yrt−1 + υt;
ut = φuut−1 + εut; ∆pt = φp∆pt−1 + εpt; εut,pt, υt ∼ iidN (0,σ2

u,p,υ)

Whole Sample High Inflation Low Inflation
(i*)IPD (ii*)CPI (iii*)IPD (iv*)CPI (v*)IPD (vi*)CPI

β 0.00 0.00*** −0.02 −0.02*** 0.01 0.00
(0.00) (0.00) (0.02) (0.01) (0.02) (0.01)

η 0.42* 0.03 1.00 1.00*** 0.02 0.66
(0.25) (0.10) (0.76) (0.23) (1.58) (1.12)

µ 0.01** 0.01* 0.02*** 0.02*** 0.01 0.01***

(0.01) (0.01) (0.01) (0.00) (0.00) (0.00)
ρup 0.22 0.61*** −0.38 −0.81 0.06 0.72

(0.21) (0.17) (0.84) (0.84) (0.72) (9.17)
ρυu 0.40** −0.07 0.50 0.29 −0.17 1.00

(0.18) (0.18) (0.64) (0.66) (2.08) (10.50)

AIC −13.18 −14.32 −13.48 −13.83 −14.89 −15.43
log-L 969.86 1016.51 435.48 474.29 316.21 327.27

All notes for Table 4.1 apply to this table.
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of money illusion or any related inflation effect. In addition, one should be very
careful when considering restricted coefficients (in our case the ηs and the corre-
lations), which lie very close to their imposed boundaries. This is the case, for
instance, in equations (iii)IPD and (iv)CPI , in which the estimated correlations are
equal to negative one. In fact, the coefficients are restricted using a nonlinear logit
transformation that yields “reconstructed” values that are non-symmetrical, espe-
cially near the boundaries. Furthermore, the standard errors are calculated using
the delta method, which yields poorer approximations for parameters with nonlinear
distributions, making inferences difficult for restricted coefficients that are equal or
close to the boundary values. Consequently, the correlations in (iii)IPD and (iv)CPI

that are equal to −1.00 are more likely to reflect a statistical feature related to the
restrictions imposed on the parameters than any actual consumption behavior. The
same reasoning and circumspection apply to the estimated correlation ρυu in (iv)CPI

and to the estimated ηs in equations (iii*)IPD and (iv*)CPI .
Concerning the relationship between income and consumption (captured by the

parameters η and ρυu), no clear picture appears. Even though a few ηs are sig-
nificantly positive at the 5% or 10% significance level, these results are not robust
when considering different inflation measures or when estimating an additional cor-
relation. This inconsistency shows up even more clearly in the estimates for ρυu in
Table 4.2, which have contradictory signs and values across the different equations.
Consequently, there is no clear sign of the presence of excess sensitivity or excess
smoothness of consumption to income in the Kalman filter estimations of the first
state-space model. Rather, it indicates quite the reverse: that consumption growth
is free of behaviors like HF or LC.

Even though some estimates of the constants β and µ are significant in both
tables, they are always very close to zero and, hence, can be left out of the inter-
pretation. In light of all of these results, the estimations for the state-space model
described by equations (4.6) to (4.8) indicate that consumption growth is indepen-
dent from inflation, HF and LC. In fact, Tables 4.1 and 4.2 rather advocate in favor
of the REPIH that consumption growth is essentially unpredictable and, thus, fol-
lows an RW without drift (see Hall (1978) and the derivation of equation (2.13) in
Chapter 2). At first glance, this result seems surprising, since it lies in stark con-
trast to the estimation results of the MICF in Chapter 3, which strongly reject the
REPIH irrespective of the chosen period or inflation measure. On the other hand,
recall that the consumer in this signal extraction problem suffers from total money
illusion, is assumed to have no access whatsoever to information about inflation, and
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relies entirely on a guess about its governing process.
The consequence of the imposed informational constraint is perfectly illustrated

by Figure 4.1. It depicts, for the CPI models in the high- (upper graph) and low-
inflation (lower graph) subperiods, the consumer’s prediction of CPI inflation for
the case in which one correlation (“predicted(1)” series) or two correlations (“pre-
dicted(2)” series) are estimated.8 To evaluate the predictions’ accuracy, the pre-
dicted series are being compared to the “true” inflation series (solid line), which has
been demeaned so that the graphs only show deviations from the within-period aver-
age inflation rate. Recall that, since inflation is assumed to follow an AR(1) process
without drift, as defined in equation (4.5), the Kalman filter-estimated state series
for inflation represent predictions of deviations around a zero mean. An alternative
modeling procedure would be to add a constant to equation (4.5) and to leave the
true inflation series unchanged. However, though this would have no impact on the
prediction’s accuracy, it would imply the unnecessary loss of degrees of freedom that
would negatively impinge on the statistical inference. As suggested in Section 3.2.3,
this problem can be particularly pronounced in the low-inflation subperiod, since its
sample period is relatively short. Note that, in this context, the estimation results
reported in Tables 4.1 and 4.2 do not change when the inflation series is demeaned.

The upper graph suggests that the consumer’s best predictions of inflation are
rather poor in the high-inflation subperiod. The model estimating only one cor-
relations (i.e., the predicted(1) series) appears to overestimate true inflation over
most of the subsample, since it almost never anticipates negative inflation shocks.
Furthermore, this model is not capable of predicting most of the peaks and troughs,
as reflected by the series’ relative smoothness. The predicted(2) series better fol-
lows the actual inflation’s deviations from the mean, but provides fairly inaccurate
predictions by either overestimating or underestimating true inflation.

The lower graph, which depicts the measured inflation rates in the low-inflation
period, shows a sensibly more favorable picture. On one hand, the predictions
are more accurate than in the high-inflation subperiod. Not only is the average
prediction error smaller in this period (which is attributable to the lower average
inflation rates), but the peaks and troughs in the true CPI inflation evolution also

8On account of the apparent inappropriateness of the whole-sample models, and since the CPI
models perform better than the IPD models in terms of their AIC values, I show only the graphs for
the CPI models in the subperiods. Note, however, that the IPD models yield a similar picture as
Figure 4.1, except for the fact that the predicted(1) and predicted(2) series are sensibly closer from
each other. In particular, the predicted(1) series for the high-inflation subperiod (upper graph) is
not as smooth as in Figure 4.1 and follows a very similar path as the more volatile predicted(2)
series.
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Figure 4.1: Predicted and Actual CPI Inflation (demeaned)

The graphs compare the evolution of the filtered state estimates of the unobserved CPI inflation,
∆pt, with the “true” demeaned CPI inflation rates for the high-inflation subperiod (upper graph) and
the low-inflation subperiod (lower graph). The measured series “predicted(1)” and “predicted(2)”
correspond, respectively, to the models in which one or two correlations are estimated.
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seem to be better anticipated. This provides a further explanation for the lower AIC
values of the low-inflation models in comparison to the high-inflation models.

On the other hand, even though the predicted(1) and predicted(2) series broadly
follow the evolution of the actual inflation, correctly anticipating the positive and
negative directions of the inflation shocks most of the time, the predictions always
over-shoot their real magnitude over this subperiod. This higher volatility in the
predicted values certainly pertains to the fact that the true inflation rates are very
stable and low (i.e., the deviations from the mean are very low, on average). The
resulting relative inaccuracy of the inflation predictions implies that the consumer
cannot objectively rely on her predictions about inflation for her consumption deci-
sions in either the high- or in the low-inflation subperiod.

Overall, the poor predictions of actual inflation suggest that the assumption
of full money illusion (i.e., that the consumer does not possess any information
about inflation) is too restrictive and should probably be relaxed. The fact that the
completely money-illusioned consumer ends up adopting the same optimal behavior
as the fully rational consumer (i.e., her future consumption is determined only by
current consumption and unexpected shocks) is, nonetheless, not surprising. Of
course, the illusioned consumer knows from Figure 4.1 that her best predictions of
the true inflation are rather unsatisfactory, regardless of the prevailing inflationary
environment. Consequently, she is, on the average, better off not relying on these
predictions if she does not want to wrongly diverge too much from her main objective,
which is optimal intertemporal consumption smoothing. Recall, however, that even
though this rule of thumb makes the completely money-illusioned consumer behave
like the fully rational one, both consumers still base their consumption decisions on
different information sets, with the former one relying on her nominal income and
the latter one relying on her real income.

The heavy reliance of the model on the very restrictive and rather implausible
assumption of full money illusion, as well as the fact that the model is incapable of
predicting consumption growth, regardless of the considered sample periods or in-
flation measures, calls for an alternative state-space model capable of yielding more
stable estimates. Furthermore, this first state-space model has the disadvantage
of drawing conclusions based, to a large extent, on correlations. Yet, a nonzero
correlation between two variables, even if it is statistically significant, does not nec-
essarily imply a causal relationship. In any case, since the correlations in Tables
4.1 and 4.2 are not significant for the two subperiods, it seems judicious to search
for an alternative specification, rather than deepening the analysis of this specific
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state-space model. The second state-space model, which is presented and estimated
in the following section, allows for different consumption behaviors to have simul-
taneous impacts on consumption growth. Moreover, its greater precision renders it
theoretically and empirically more appealing.

4.3 Modeling Inflation as an Observed Variable

This section presents an alternative and more direct way to model money illusion
as a signal extraction problem. In contrast to the above-derived model, the money-
illusioned consumer now observes past and current inflation. She no longer necessar-
ily suffers from complete money illusion and she can decide to what extent she wants
to make use of information about (past and current) inflation in her consumption
decisions. The most straightforward way to account for this new possibility is to
include contemporaneous and lagged inflation directly within the signal equation of
the state-space model. This less constrained informational setup seems more real-
istic than the one presented in Section 4.2 and is, at the same time, closer to the
approach adopted in Chapter 3, allowing different inflation-to-consumption channels
to simultaneously impact on contemporaneous consumption growth. Pursuing the
same line of thought, we can also include lagged consumption growth as an observed
variable in order to better control for HF and LC behaviors and to permit them to
coexist.

Taking these theoretical modifications into account, the measurement equations
(4.1) and (4.2) can be rewritten as:

∆ct = β + δ∆ct−1 + λ0∆pt + λ−1∆pt−1 + η∆yrt + ut (4.9)

∆ynt = ∆yrt + ∆pt. (4.10)

Since inflation is now observed, ∆pt is no longer an unknown inflation state;
rather, it denotes inflation as an exogenous and deterministic variable. As a result,
the only unknown (state) variable remaining in this model is that of real income
growth, ∆yrt . Apart from the central distinction between nominal and real income
and the inclusion in the model of the latter as an explanatory variable, equation (4.9)
appears to be similar to the ADL model of Section 3.4.2, which emerged as the
most appropriate model to describe real consumption growth. For interpretation
and computational reasons, lagged inflation and lagged consumption are restricted
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to only one lag.9 With these new assumptions, the state-space model simplifies
to two signal equations and two state equations (instead of two signal and three
state equations in the previous setup). Moreover, only one correlation (ρυu) is now
estimated. The other correlations are being set to zero: the first one, ρυp, for the
same reason as before (by assumption), and the second one, ρυp, because the inflation
effect is being already controlled for in the measurement equation.

Assuming real income growth (∆yrt ) and the measurement error of real consump-
tion growth (ut) to follow the same AR(1) processes as in equations (4.3) and (4.4),
the measurement equation ỹt = Axt +H ′ξt and state equation ξt = µ̃+ Fξt−1 + υ̃t

can be written, respectively, in the following state-space form:

[
∆ct
∆ynt

]
=
[
β

0

]
+
[
δ λ0 λ−1

0 1 0

]
∆ct−1

∆pt
∆pt−1

+
[
η 1
1 0

] [
∆yrt
ut

]
(4.11)

[
∆yrt
ut

]
=
[
µ

0

]
+
[
φy 0
0 φu

] [
∆yrt−1
ut−1

]
+
[
υt

εut

]
. (4.12)

The variance-covariance matrix melts down to the following (2× 2)-matrix:

Q =
[

σ2
υ ρυuσυσu

ρυuσυσu σ2
u

]
, (4.13)

where the only correlation left, ρυu = corr(υt, εut), captures the residual excessive
sensitivity (ρυu > 0) or excessive smoothness (ρυu < 0) of consumption growth with
respect to real income growth, after a one-period HF behavior has been accounted
for. The benchmark REPIH model predicts that δ = λ0 = λ−1 = ρυu = 0, such
that contemporaneous real consumption growth remains unpredictable.

4.3.1 Kalman Filter Estimation Results

The Kalman filter estimations of the state-space model treating inflation as an ob-
served variable, characterized by equations (4.11) to (4.13), are summarized in Ta-
ble 4.3. Contrary to the state-space model estimated in Section 4.2, which impugns

9Note, further, that in state-space models, lags of observed variables are typically treated as
predetermined rather than as exogenous (as, for instance, in Chapter 3). In such an approach, the
dependent variable and its lagged values are included in the state vector, with the advantage that
the predicted values directly contribute to the prediction MSE, thus improving multi-step ahead
forecasting. See Harvey (1990, pp. 367-373) for more details and further examples.
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the importance of money illusion and other consumption smoothers (HF) or stimula-
tors (LC) for consumption growth, the estimation results of the present model imply
a rejection of the RW hypothesis in every period, for both the IPD- and CPI-based
inflation models.

With regard to the importance of inflation for consumption growth, the param-
eters of interest are λ0 and λ−1. All of the estimates for λ0 have a largely negative
effect. In light of the results from Chapter 3 and the economic intuition behind the
unexpected inflation effect, the negative sign is expected. Note, further, that the es-
timates are all highly significant (at the 1% level), except for those of the CPI model
in the low-inflation period, (xii)CPI . For the high-inflation period, the estimates of
λ0 are close to those of Table 3.4, which are obtained from the estimation of the
MICF. However, the same observation does not hold for both low-inflation models.
On one hand, the contrasted results for the second subperiod highlight, again, the
importance of distinguishing between different inflationary environments when scru-
tinizing aggregate consumption. As was the case in the previous state-space model,
the difference between the subperiods is also confirmed by the log-likelihood values
reported in Table 4.3, which suggest the presence of a structural break.10

On the other hand, the contrasted results cast some doubt on the importance and
validity of the unexpected inflation effect for the low-inflation period. This doubt is
corroborated by the fact that the estimated models for the low-inflation subperiod
((xi)IPD and (xii)CPI) perform equally well in terms of their AIC values (-15.63
and -15.64, respectively), even though they find diametrically opposite predictors of
consumption growth: In (xi)IPD, the only significant effect is the negative inflation
effect, whereas (xii)CPI attributes a significant role solely to HF. While this confirms
that both money illusion and HF play potentially important roles in explaining the
evolution of real aggregate consumption, the present state-space model is not able
to unambiguously conclude in favor of one effect or the other within the selected
low-inflation subperiod.

The estimates for λ−1 call for even more wariness, this time with regard to the
presence of a positive impact of (lagged) inflation on aggregate consumption growth.
Even though the coefficients are largely positive and highly significant over the whole
sample, in (vii)IPD and (viii)CPI , this effect, while remaining positive as expected,
almost entirely loses its significance when different inflation levels are accounted

10Again, the sum of the log-likelihoods for the three subperiods is higher than the log-likelihood
of the whole-sample models: We have 445.68 + 265.08 + 331.52 = 1042.28 > 1019.21 for the IPD
models and 482.51 + 244.85 + 331.53 = 1058.89 > 1040.98 for the CPI models.
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Table 4.3: Estimation Results When Inflation Is Observed

∆ct = β + δ∆ct−1 + λ0∆pt + λ−1∆pt−1 + η∆yrt + ut; ∆ynt = ∆yrt + ∆pt;
∆yrt = µ+ φy∆yrt−1 + υt; ut = φuut−1 + εut; εut, υt ∼ iidN(0,σ2

u,υ)

Whole Sample High Inflation Low Inflation
(vii)IPD (viii)CPI (ix)IPD (x)CPI (xi)IPD (xii)CPI

β 0.00** 0.00 0.00 0.00 0.00** 0.00
(0.00) (0.00) (0.01) (0.00) (0.00) (0.00)

δ 0.59*** 0.50*** 0.17 0.26* 0.24 0.39***

(0.06) (0.09) (0.15) (0.16) (0.25) (0.15)
λ0 −0.55*** −0.35*** −0.59*** −0.56*** −0.45*** −0.29

(0.04) (0.05) (0.09) (0.12) (0.11) (0.30)
λ−1 0.48*** 0.27*** 0.28* 0.27 0.18 0.01

(0.04) (0.06) (0.16) (0.20) (0.18) (0.29)
η 0.27*** 0.43** 1.00 1.00*** 0.33 0.33

(0.09) (0.20) (0.73) (0.03) (0.28) (0.33)
µ 0.01*** 0.00 0.00** 0.00** 0.01*** 0.00**

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
ρυu −0.15 −0.41 −0.94*** −0.91*** −0.37 −0.28

(0.29) (0.37) (0.13) (0.03) (0.72) (0.71)

AIC −14.14 −14.59 −13.80 −14.08 −15.63 −15.64
log-L 1019.21 1040.99 445.68 482.51 331.52 331.53

This table reports the Kalman filter estimation results of the state-space model described by equa-
tions (4.11) to (4.12). For more details, see the notes for Table 4.1.



94 Chapter 4. Money Illusion as a Signal Extraction Problem

for. The effect remains weakly significant at the 10% level only in the high-inflation
subperiod and for the IPD inflation model. Interestingly, in this case, λ−1 = 0.28
is very close to the estimate for the preferred linear ADL model in the previous
chapter, which yielded an estimate of λ−1 = 0.27 and was significant at the same
confidence level (see Table 3.4). However, the positive effect of inflation lagged one
period is no longer significant in the three remaining models for the two subperiods:
namely, (x)CPI , (xi)IPD and (xii)CPI . Even though the present state-space models
are not necessarily directly comparable to the MICF estimated in Section 3.4, the
estimates of λ−1 in Table 4.3 clearly call for more caution with regard to the presence
of the nominal income effect of inflation on real consumption growth.

The estimates of the parameters characterizing the inflation-to-consumption re-
lationship (namely δ, η and ρυu) also yield contrasting results. The HF parameter δ
always has the expected positive sign, but differs in its significance and magnitude
when different periods or inflation measures are considered. While it is very high
(over 0.50) and significant at the 1% level over the whole-sample period, its mag-
nitude and significance drop sharply across the two subperiods. In both the high-
and low-inflation subperiods, δ is insignificant in the IPD model but remains signif-
icant in the CPI model at the 10% and 1% levels for the high and low subperiod,
respectively. The fact that the highly significant HF effect in equations (vii)IPD

and (viii)CPI is not robust to estimations over subperiods and alternative inflation
measures highlights, again, not only that it is crucial to distinguish between differ-
ent inflationary environments when analyzing the relationship between consumption
growth and its potential determinants, but also that the choice of the inflation mea-
sure can engender antagonistic conclusions about consumption behaviors, even if the
model does not directly address money illusion or other inflation-related phenomena.

The correlations between the innovations to consumption growth and real income
growth (ρυu) also indicate a smooth adjustment of consumption to income shocks.
Contrary to the previous state-space model, ρυu is now negative in all models and
presents similar values within each period, independent of the inflation measure.
The estimates for the whole sample and for the low-inflation subperiod are negative
and moderate within the -0.15 to -0.41 range, but never significant. On the other
hand, ρυu is highly significant for both high-inflation models and is very close to
negative one (its lower boundary). This could indicate the presence of additional
excessive smoothness in consumption growth, which could reflect either that con-
sumption habits are even more persistent (i.e., present in further lags of consumption
growth) or the existence of other mechanisms not accounted for in the model, like
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precautionary savings or imperfect insurance on the credit markets.
The fact that the estimations of the MICF in Chapter 3 do not find consumption

growth lagged more than one period to be significant in the high-inflation subperiod
(see Table 3.4), speaks more in favor of alternative explanations than of additional
HF. Furthermore, since ρυu is highly significant only in the subperiod experienc-
ing particularly high and volatile average inflation, it could well reflect the higher
uncertainty that the risk-averse consumer faces in this period regarding the future
evolution of her real income path.11 The higher uncertainty clearly supports the
argument for additional precautionary savings. This observation represents an in-
teresting complement to the previous estimations of the MICF, in which the HF
coefficient is found to be similar in both subperiods, but where no other sources of
consumption smoothness are controlled for. Moreover, recall that, in the MICF, the
significant HF coefficient does not necessarily only reflect consumption habits, but
also captures further sources of excessive consumption smoothing as uncertainty or
sticky information (see Section 3.3.1). Finally, the assumption that HF and precau-
tionary savings might prevail simultaneously in uncertain environments potentially
extends the existing inflation-ignoring literature, which either omits the possibility of
additional consumption “smoothers” (Carroll et al., 2011) or is unable to disentangle
the former behavior from the latter (Morley, 2007).

Note, however, that since the estimates for ρυu in the high-inflation subperiod
are close (but not equal) to their imposed lower boundary (-1), they could also
reflect a statistical bias and should, therefore, be interpreted with prudence (see
the explanation in Section 4.2.1 above). While whether ρυu is really affected by
this statistical bias is questionable, it undoubtedly applies to the estimates for η in
the high-inflation subperiod. Consequently, the second state-space model does not
confirm the presence of LC in aggregate consumption growth, even though this effect
is highly significant over the whole sample (as can be seen in the first two equations
of Table 4.3). This rejection of LC behavior is in line with the results obtained from
the previous state-space model and the MICF in Section 3.4.2.

Comparing the estimation results of the second state-space model in Table 4.3
with the results of the previous state-space model and treating inflation as an un-
observed variable (see Tables 4.1 and 4.2), several further features are noteworthy.
First, the constants, or drift parameters, β and µ, are, again, very close to 0 and do
not play any particular role in the model, aside from their statistical significance.

11This negative impact of uncertainty on consumption is closely related to the concept of ambi-
guity aversion, which is analyzed in detail in Chapter 5.
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Second, the present state-space model performs better, in terms of the estimated
AIC (and log-likelihood) values, than the first state-space model, irrespective of the
chosen period, the inflation measure, or the number of estimated correlations. This
is no surprise, since, in the second model, the consumer observes inflation and takes
it as given, whereas, in the first model, she needs to make an assumption about its
evolution. In consequence, the consumer in the second model has more information
at her disposal to calculate her optimal behavior, which is reflected by the lower
AIC values.

Third, the CPI models still outperform the IPD models in Table 4.3, but the
difference is much less pronounced than in the previous state-space model and is
even negligible for the low-inflation subperiod. Overall, the most accurate models
are those for the low-inflation subperiods. This does not only reflect the fact that
the considered time series are subject to fewer shocks and lower volatility during
this period. In the second state-space model, it also pertains to the fact that the
discrepancy between the evolution of the observed nominal income and the evolution
of the unobserved, but relevant real income is much lower and precisely determined,
since it exactly corresponds to inflation (which is also observed).

Figure 4.2 depicts the evolution of the predicted shocks to consumption growth,
which is defined as the unobserved state variable ut in equation (4.1), in comparison
to the evolution of real income growth. Just as for the above-presented Figure 4.1, I
deliberately show in Figure 4.2 the graphs for the CPI models in the subperiods only,
since models (x)CPI and (xii)CPI outperform their IPD inflation-based counterparts
and since the models over the whole sample lack robustness. Note, further, that
the IPD models report very similar evolutions of the estimated state variables that
are very similar to those of the CPI models, such that most conclusions drawn from
Figure 4.2 are also valid for the IPD models.

The two graphs of Figure 4.2 compare the estimated state values of the two
state variables in the present state-space model (i.e., the two elements of ξ̃t in equa-
tion (4.12)). Note that, since inflation is observed in this state-space model, the
consumer will make no mistake in estimating the value of her real income growth
(even though she only observes her nominal income growth), but still needs to make
an assumption about its evolution. Consequently, the estimated ∆ŷrt is equal to the
true ∆yrt in this model.

In the upper graph, which graphically represents the innovations to consumption
growth and the predicted real income growth in the high-inflation subperiod, the two
series seem to be highly negatively correlated. As we can see, both series experience
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Figure 4.2: Innovations to Consumption Growth and Real Income Growth

The graphs compare the evolution of the filtered state estimates of the innovations to consumption
growth, ut, with the filtered state estimates for real income growth, ∆yrt . The upper and lower
graphs illustrate this relationship for the CPI model in the high- and low-inflation subperiods,
respectively, corresponding to models (x)CPI and (xii)CPI in Table 4.3.
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shocks of the same magnitude in the same quarters; the shocks are simply in oppo-
site directions. This relationship is captured by the highly significant and negative
ρυu = −0.91 of equation (x)CPI in Table 4.3. On one hand, this clearly advocates
against the statistical bias mentioned above and confirms that other consumption
smoothers, such as precautionary savings motives, are at work in a highly uncertain
environment. On the other hand, one should keep in mind the general rule that a
statistically significant correlation does not necessarily imply a causal relationship
between two variables. For this reason, the precautionary savings assumption needs
to be analyzed in more detail in order to be able to exclude the possibility of any
flawed inferences.

The lower graph also suggests a negative correlation between ût and ∆ŷrt for the
low-inflation CPI models, though this effect is less pronounced than in the high-
inflation subperiod. In fact, the correlation seems to be first positive at the very
beginning of the sample, as reflected by the co-movements in the estimated state
series until the second quarter of 1992. After this point, the two series drift apart to
present mostly opposite movements, even though the ût series is slightly smoother
than the ∆ŷrt series. Over the entire low-inflation subsample, the negative correlation
of ρυu = −0.28 in (xii)CPI is, however, not significant, such that precautionary
savings do not seem to play an important role in periods experiencing low average
inflation rates. This assumption, that precautionary savings are only present (or
are more pronounced) in a particularly high inflationary environment, is thoroughly
analyzed in Chapter 5.

4.4 Conclusion

In this chapter, I have developed and estimated two alternative ways of modeling
money illusion as a signal extraction problem. In the first state-space model, which
assumes the consumer to be completely money-illusioned, consumption growth is
shown to be essentially unpredictable, following the implication of the standard
REPIH model. This result pertains to the fact that the Kalman filter estimations
rely almost entirely on the arbitrary assumptions the consumer has to make about
the processes governing inflation and real income growth. The consequence of this
maximal informational constraint is that the consumer’s predictions of the “true”
inflation are rather inaccurate.

At first glance, it seems surprising that a fully money-illusioned consumer ends
up behaving the same way as a fully rational consumer facing no such informational
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constraints. On the other hand, the money-illusioned consumer knows that even her
best predictions of inflation are, at best, a rough approximation of the inflation’s
real evolution and that she is, thus, better off ignoring this variable in her consump-
tion decisions rather than taking the risk of wrongly diverging from her optimal
consumption path.

Once the consumer is given access to information about the evolution of the
general price level, the picture changes dramatically. While, in this second setup,
real income growth remains unobserved, the consumer might still suffer from some
degree of money illusion due to deciding to not fully account for inflation in her con-
sumption decisions. As expected, the estimations of the second state-space model
clearly outperform those of the first one and also produce some interesting results.
First, distinguishing periods with high inflation from periods with low average in-
flation not only shows that estimations over the whole sample potentially lead to
biased conclusions, but also confirms that consumers behave differently in different
inflationary environments.

Second, the estimation results are very different from the results obtained in
Chapter 3, in particular with respect to the impact of inflation on real consump-
tion growth. While the negative effect of current inflation on contemporaneous
consumption growth is present in the high-inflation subperiod, it is not robust to
different inflation measures in the low-inflation subperiod. Moreover, the positive
nominal income effect of inflation on consumption growth attributed to Branson and
Klevorick (1969) almost completely disappears when controlling for different infla-
tion measures. This result lies in stark contrast to the results obtained in Chapter 3,
indicating that the statistically significant positive effect of lagged inflation captured
by the MICF could be due to other factors than money illusion as a rule of thumb.

Finally, the estimations of the second state-space model allow us to draw some
interesting conclusions with regard to the relationship between real consumption
growth and real income growth. The LC are found to have no significant impact on
consumption growth, which excludes any excess sensitivity of consumption growth to
income growth. On the contrary, the estimations suggest that consumption growth
is rather smooth, particularly in the high-inflation period.

In this subperiod, the inertia in aggregate consumption growth is highly sig-
nificant, persistent and attributable to factors other than HF. In particular, it is
assumed that consumers increase their precautionary savings in times of greater un-
certainty about the future evolution of inflation, which should be the case in the
high-inflation period. This prudent behavior is typically induced by a consumer’s
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ambiguity aversion and can be modeled as a robust control problem. The following
chapter explores this idea and shows that this aversion against high and volatile
inflation can be modeled as an extension of the standard REPIH model.



Chapter 5

Seeking Robustness Against
Money Illusion

This chapter considers a money-illusioned consumer who is aware of her confusion
between nominal and real values and decides to account for it in her consumption de-
cisions. The adopted modeling approach is to impose money illusion as a distortion
to the benchmark REPIH model and to let the robust consumer choose the distorted
model that yields the highest utility. Two robust consumption models are used to
analyze the impact of money illusion on consumption: the closed-form robust con-
trol model, suggested by Luo (2008), and the model by Hansen et al. (1999), which
also controls for habit formation. These models predict that robustness induces pre-
cautionary savings on the part of the consumer in order to hedge against the model
misspecifications. Using quarterly U.S. data, the estimations show empirically that
robustness is higher in the subperiod with high inflation rates than in the subpe-
riod with low inflation rates. This result suggests that money illusion, measured via
the degree of robustness, is more pronounced when inflation is high and, thus, has a
negative impact on consumption growth. In consequence, the degree of robustness is
not time-invariant, but instead varies in the degree of inflation uncertainty. Finally,
assuming that robustness largely reflects the degree of uncertainty about inflation,
money illusion can be interpreted as providing an economical intuition for the desire
for robustness in the two selected robust consumption models.

Keywords: Robust control, money illusion, precautionary savings, robust permanent
income hypothesis

JEL classification: C61, D11, D81, D91, E21.
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5.1 Introduction

In Chapters 3 and 4, I have presented two possible ways to apprehend and model
money illusion, defined as the consumers’ confusion between nominal and real values.
In particular, it was suggested that money illusion can be understood both as a time-
saving rule-of-thumb behavior and as a signal extraction problem on the part of the
consumer. Both concepts theoretically imply a non-neutrality of real consumption
with respect to inflation. The empirical analyses performed in these chapters confirm
that inflation is an essential determinant of consumption growth and suggest that
consumers behave differently in periods with high and volatile average inflation than
in periods with low and stable average inflation.

As a matter of completeness, the present chapter introduces a third and last way
to model money illusion: namely, as a misspecification – or distortion – imposed on
the benchmark consumption model. The benchmark model chosen in this chapter
is the rational expectations–permanent income hypothesis (REPIH) model, which
predicts that consumption growth follows a random walk (see Chapter 2). The
intuition behind this alternative concept is that the representative consumer knows
that she might, on occasion, misinterpret nominal values for real values, such that
her illusion-free benchmark model becomes situationally inaccurate. To account for
this possible imprecision, the consumer becomes more prudent with respect to the
predictions of her reference model and decides to allow for some specification error
in the purely rational model. This type of consumer, who is willing to account for
misspecifications in the underlying consumption model, is said to be robust – or, in
our case, robust to money illusion.

In addition to providing an additional method to model money illusion, the
present chapter ties in perfectly with the previous chapters of this thesis and can
be viewed as a synthesizing chapter. First, the two robust consumption models
presented further below are an extension, or generalization, of the standard REPIH
model presented in Chapter 2 and tested in Chapter 3. As is shown in Section 5.3, the
REPIH represents, in fact, a particular case of the robust control permanent income
hypothesis (henceforth, the RCPIH) model, in which the robustness parameter is
set to equal zero.

Second, recall that the estimations in Chapter 4 suggest the presence of precau-
tionary savings in periods characterized by high inflation rates or, more generally,
high model uncertainty. In this context, the robust consumption models analyzed
in this chapter not only provide a theoretical justification for precautionary savings
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that can prevail even given the quadratic preferences assumed so far. Furthermore,
robust control theory can be understood as a more general decision rule than the
Kalman filter (used in Chapter 4), which allows us to better and more fully account
for model uncertainty.1

Robust control found its way into economics through the early works of Dow and
Werlang (1992) and Epstein and Wang (1994) in finance. The real breakthrough of
robust control methods in economics, however, was generated by a series of papers by
Lars P. Hansen and Thomas J. Sargent.2 They compiled their findings in a reference
book (Hansen and Sargent, 2008), which is used as a guideline for this chapter and,
in particular, for the Hansen et al. (1999) model estimated in Section 5.4.

The rest of this chapter is structured as follows: Section 5.2 shows, in a first
step, that robustness, which can be understood as a particular form of ambiguity
aversion, provides an ideal framework through which to analyze money illusion as a
model misspecification. In a second step, it illustrates how robustness can be easily
modeled as a simple static robust optimal control problem. The two sections that
follow present two different extensions of the REPIH model that explicitly control
for money illusion via some robustness parameter: Section 5.3 not only derives
an alternative version of the closed-form RCPIH model suggested by Luo (2008),
which establishes a direct link between robustness and consumption growth, but
also emphasizes its limited appropriateness for empirical analysis. The last analysis,
in Section 5.4, uses the robust version of the REPIH model developed by Hansen
et al. (1999) to show that robustness is higher in periods experiencing high average
inflation rates than in periods with low inflation, thus providing evidence in favor
of money illusion in the high-inflation period. Section 5.5 concludes.

1The Kalman filter is a typical example of the linear quadratic optimal control method that
emerged in the late 1960s. Even though it is used extensively in modern economic studies and works
well under full observation, it presents the particular drawback of being not fully robust to certain
types of model perturbations, especially in the case of partial observation (Williams, 2008, p. 4).
Robust control theory, which originated in the 1980s engineering literature, directly addresses this
drawback.

2Apart from Hansen et al. (1999), who introduced robustness into the PIH model, others have
applied similar methods to inflation models (Cogley and Sargent, 2005), monetary policy models
(Cogley et al., 2008) and asset prices (Alonso and Prado, 2007). An exhaustive literature review of
the implications of ambiguity aversion for asset pricing and portfolio choices can be found in the
work of Guidolin and Rinaldi (2013). Note, further, that Giordani and Soderlind (2004) provided a
guideline for solving macroeconomic models with robust control methods, including various software
components.
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5.2 Modeling Robust Control

In a first step, this section provides a general intuition for robust control and further
specifies how money illusion can be understood as a particular type of misspecifica-
tion. In a second step, it shows how robustness can be modeled as a simple static
min-max problem and solved by means of usual optimization techniques. This intu-
itive, two-step, sequential procedure is later extended to the dynamic setting of the
RCPIH in Section 5.3.

5.2.1 Robustness as Aversion Against Money Illusion

In economics, robust control (or robustness) is closely related to the concept of am-
biguity aversion and can, hence, be seen as a way of modeling model uncertainty.
Ambiguity aversion, or Knightian uncertainty, pertains to the well-known Ellsberg
(1961) paradox: If a decision maker (DM) faces two containers A and B, where A
contains an equal number of white and black balls, but where the exact composi-
tion of B is unknown, the DM will opt for lottery A. This is a paradox because it
violates the subjective expected utility theory, according to which the DM should
be indifferent between the two lotteries (Savage, 1954). This example shows that
people typically dislike uncertain environments and, thus, display some degree of
ambiguity aversion. In this context, robust control can be interpreted as providing
a solution to the Ellsberg paradox.

The idea of robustness is to find a decision rule for an ambiguity-averse agent who
does not fully trust her reference model, which is typically assumed to have generated
the data. In short, the “robust” DM is seeking for an alternative model that takes
into account small specification errors. To address this concern for misspecification,
the suggested decision rule is for the DM to consider a range of alternative but
similar models and to opt for the model that yields the highest utility under the
worst possible outcome. Hansen and Sargent (2008, p. 27) describe this particular
problem as a two-player game between the DM, who wants to maximize her utility,
and an evil player or “malevolent nature”, whose objective is to choose the worst
possible model with the greatest distortion. In this setup, the DM decides over the
control, while the malevolent nature has the distortion at its disposal.

Formally, the result of this ambiguity-robust behavior is a min-max decision rule,
which is presented in Section 5.2.2. Note that this procedure – of optimizing a model
while simultaneously hedging against the worst possible outcome – is a related but
different way of thinking about model uncertainty in comparison to the Bayesian
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approach, in which the DM must form a prior regarding the form of the model
specification and considers the weighted average of all possible models.

The uncertain world faced by the robust DM is best illustrated by Figure 5.1,
which is a simplified version of the “ambiguity circle” portrayed by Hansen and
Sargent (2008, p. 12). Their interpretation of the ambiguity circle is that the
robust DM, fearing misspecification, does not know the “true” data-generating model
(f) and tries to find an approximating model (f̃) that is statistically close to f .
She chooses her model from a range of statistically close alternative models (i.e.,
the distorted models), which all lie within the ambiguity circle. The size of the
ambiguity circle increases with the degree of ambiguity aversion and is limited by
some maximum misspecification η allowed by the DM. Similarly, η can also be
interpreted as the maximum distortion that the malevolent nature can impose on
the DM’s choice.

In the general procedure, the DM uses (relative) entropy as the distant measure
between different models and to impose the restriction η on the size of the ambiguity
circle.3 Note, however, that we will not be directly needing entropy in the two robust
consumption models presented in Sections 5.3 and 5.4 in this chapter. While the
conclusions of the former are valid for any degree of robustness, the latter is able to
measure robustness indirectly via the subjective discount factor.

In this chapter, I suggest a related but more specific interpretation of Figure 5.1,
specifically in terms of money illusion. For the rational consumer analyzed in Chap-
ters 2 and 3, the true model f corresponds to the standard REPIH. The money-
illusioned consumer, however, fears that f is an overly optimistic model in the sense
that it does not allow for nominal values to have an impact on real consumption.
To control for this error and adopt a more prudent behavior, the robust consumer
imposes a distortion on the REPIH that captures her own money illusion. The
consumer’s objective is to choose the distorted consumption model f̃ that is equal
to the standard REPIH with some money-illusion-induced specification errors. The
RCPIH and the Hansen et al. (1999) models (presented in Sections 5.3 and 5.4) both
potentially capture money illusion by allowing for such distortions in the benchmark
REPIH models. In this interpretation, the maximum distortion η is proportional to
the consumer’s fear of suffering from money illusion. If, on the contrary, the con-
sumer does not suffer from money illusion or does not face any uncertainty about

3As Hansen and Sargent (2008, pp. 30-31) showed, relative entropy can be statistically measured
with the expected value of the log-likelihood ratio. See also Olalla and Gómez (2011) for a more
intuitively appealing definition of entropy.
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𝑓 

𝑓 
𝜂 

Figure 5.1: Ambiguity Circle

The ambiguity-averse DM concerned about misspecification does not know the true data-generating
model f and chooses an approximating model f̃ from a set of alternative models, limited by a
maximum distortion of η. Source: Hansen and Sargent (2008, p. 12).

inflation, the ambiguity circle disappears, such that f and f̃ coincide.
In light of the intuition behind money illusion (see Section 3.1.2) and the insights

gained from the different empirical analyses (see Sections 3.4 and 4.3.1), it is rea-
sonable to assume that the money-illusioned consumer opts for a higher degree of
robustness (i.e., a higher η) in periods with higher and more volatile inflation rates
than in periods experiencing low average inflation rates. This conjecture is, indeed,
confirmed in Section 5.4, in which the robust PIH model developed by Hansen et al.
(1999) is estimated over different periods.

The major drawback of modeling money illusion as a misspecification is that we
cannot exclude the possibility that there are other misspecifications at work. In fact,
it seems more plausible that the robust consumer seeks robustness against all pos-
sible kinds of misspecifications, such that the distortion η is not solely attributable
to money illusion. Nonetheless, a few of the insights gained through the present
dissertation allow us to assume that a non-negligible part of the specification error
is due to money illusion. First, since the representative consumer is rational, devia-
tions from the benchmark REPIH model should be only temporary. This excludes
the presence of systematic or long-term biases due to misspecifications and suggests
that, if robustness persists over a longer period, then it is induced by economic
rather than statistical motives.

Second, recall that a positive impact of lagged consumption growth on current
consumption growth does not necessarily only capture habit formation (HF), but also
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indicates a particularly prudent behavior on the part of consumer (see Section 3.3.1).
In consequence, whenever HF is controlled for in a model, then the corresponding
coefficient also captures any effect stimulating precautionary savings (such as, for
example, a greater uncertainty about the future evolution of income). Since the
OLS estimations of the MICF in Chapter 3 and the Kalman filter estimations of the
signal extraction problem in Chapter 4 both reveal an important negative inflation
effect on consumption even when HF is controlled for, it seems that the consumer is
affected by inflation-specific uncertainty. The negative inflation effect could possibly
reflect an anticipated inflation effect via the real interest rate, but this effect is clearly
rejected by both the literature and the data (see Section 3.3.2).

Finally, the estimation of the robust model of Hansen et al. (1999) in Section 5.4
shows that both HF and robustness are more pronounced in the subperiod with
high average inflation than in the low-inflation subperiod. This clearly indicates
that the increased robustness is due to factors other than the different uncertainty
effects already captured by the HF coefficient. Since the superiod in which the
consumer presents a higher degree of robustness has been selected because it presents
particularly high and volatile inflation rates, the assumption of this chapter is that
at least part – if not all – of this increased robustness is due to the high inflation
uncertainty of this period. If the consumer alters her consumption behavior only as
a reaction to changing inflationary conditions, this violates homogeneity postulate of
Patinkin (1965) and indicates that she suffers from money illusion (see Section 3.1.2).

The following section shows how robustness with respect to ambiguity aversion –
or money illusion – can be modeled as a simple static robust control problem, which
takes the form of a two-player game between the DM and the malevolent nature.

5.2.2 A Static Robust Optimal Control Problem

As an illustration of the above-presented modeling concept, suppose that the DM
thinks that her model is subject to specification errors due to, for example, money
illusion. In the static case, she faces the following max-min problem:4

max
{c}

min
{ω}

{
E [u (c, s)] + θω2

}
, (5.1)

4This section uses the notation and intuition of Hansen and Sargent (2008, Ch. 1 and 2). In
addition, it utilizes some elements of a guest lecture of Professor Yulei Luo (University of Hong
Kong) on “Robust and Risk-sensitive Control”, which he kindly put at my disposal.
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subject to the distorted linear constraint:

s = As0 +Bc+C (ω+ ε) , (5.2)

where, for simplicity, preferences are quadratic with u (c, s) = −
(
Qc2 +Rs2). c

and s are the control and state variables, with s0 representing the initial known
state value. Q, R, A, B and C are nonzero parameters, and the shocks ε are
normally distributed with a zero mean and a unitary variance. The specificity of
this setup is the inclusion of ω, which represents the misspecification parameter
distorting the mean of the innovation ε. Without concern for robustness or money
illusion, ω = 0 and the model reduces to a simple maximization problem, such that
equation (5.2) becomes s = As0 + Bc + Cε. In the presence of money illusion,
however, equation (5.2) represents the range of distorted models from which the
agent chooses.

This distortion parameter ω is controlled by the malevolent nature, which seeks
to set the parameter as high as possible to minimize the agent’s expected utility. We
know from the previous section that ω is restricted by the arbitrary upper bound
η, so that the distorted model f̃ stays within the ambiguity circle and remains
statistically close to the benchmark model f . The restriction η can be interpreted
as the degree of money illusion that the consumer fears she is suffering from. In
order to be robust against this money illusion, the consumer includes the “penalty”
parameter θ > 0 in the objective function. This parameter is inversely related to η
and can be understood as a Lagrange multiplier attached to the distortion in the
objective function.

To understand the interdependence between η and θ, note that the size of the
ambiguity circle can be defined, in the dynamic setting, as Et

∑∞
t=0 ω

2
t ≤ η (Hansen

et al., 1999, p. 27). In this case, Et
∑∞
t=0 ω

2
t measures the distance between the

true and the distorted model. This distance augments with in the consumer’s fear
of suffering from money illusion, which is controlled for by the consumer by a lower
penalty parameter θ. In times of decelerating inflation, for example, the consumer’s
money illusion decreases, reflected by a higher θ and an overall more robust model.
Consequently, defining money illusion as a distortion in the reference model implies
that both the maximum size of the ambiguity circle η and the degree of robustness
θ become time dependent, and, respectively, increase and decrease with the degree
of inflation uncertainty. This assumption differs from that of the existing literature
on robustness, which typically assume the degree of robustness to be constant.
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Before maximizing her objective function (5.1) with respect to the control vari-
able, the agent first wants to minimize the distortion that her malevolent opponent
can impose on the quality of her model. This is how the DM maximizes her utility,
given the worst possible outcome. Inserting equation (5.2) into equation (5.1) and
making use of E(ε) = 0 gives the following minimization problem:

min
{ω}

{
−E

[
Qc2 +R (As0 +Bc+C(ω+ ε))2

]
+ θω2}

= min
{ω}

{
−E

[
Qc2 +R

(
(As0 +Bc)2 + 2(As0 +Bc)C(ω+ ε) +C2(ω+ ε)2)]+ θω2}

= min
{ω}

{
−
[
Qc2 +R(As0 +Bc)2 + 2R(As0 +Bc)Cω+RC2ω2 +RC2]+ θω2}.

The solution for the minimization problem yields the value of ω that causes the
DM the least damage. We have:

−2RC(As0 +Bc)− 2RC2ω− 2θω = 0

ω =
RC (As0 +Bc)

θ−RC2 .

Substituting this optimal ω back into equation (5.1) gives the robust objective
function, which, reduced to a simple maximization problem, gives:

max
{c}

{
E [u (c, s)] + θω2}

= max
{c}

{
−E

[
Qc2 +R (As0 +Bc+C(ω+ ε))2

]
+ θω2}

= max
{c}

{
−
[
Qc2 +R(As0 +Bc)2 + 2RC(As0 +Bc)ω− (θ−RC2)ω2] }

= max
{c}

{
−
[
Qc2 +R(As0 +Bc)2 + 2 [RC(As0 +Bc)]2

θ−RC2 − [RC(As0 +Bc)]2

θ−RC2

]}
= max

{c}

{
−
[
Qc2 +

R(θ−RC2)(As0 +Bc)2 + [RC(As0 +Bc)]2

θ−RC2

]}
= max

{c}

{
−
[
Qc2 +

[R(θ−RC2) +R2C2]
θ−RC2 (As0 +Bc)2

]}
= max

{c}

{
−
[
Qc2 +

Rθ

θ−RC2 (As0 +Bc)2
]}

.

The agent’s optimal and robust control is then:
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− 2Qc− Rθ

θ−RC2 2ABs0 −
2B2Rθ

θ−RC2 c = 0

c = − ABRθ

Q(θ−RC2) +B2Rθ
s0. (5.3)

As a matter of comparison, the result of the maximization problem without
model misspecification (i.e., if ω = 0) is straightforward and yields the following
optimal control:

c = − ABR

Q+B2R
s0. (5.4)

While the parameters A, B, C, Q and R have no particular meaning in the
present example, it is interesting to focus on the impact θ has on the agent’s optimal
control. In particular, notice that equation (5.3) converges to equation (5.4) when
θ → ∞. In other words, as the DM increases the penalty (θ) imposed on the
malevolent nature’s distortion (ω), she reduces the size of the ambiguity circle (η)
until the distortion completely disappears and the optimal robust control reduces
to the optimal control without concern for robustness. The interpretation of the
solution remains the same if we focus on robustness with respect to money illusion.
In this case, θ increases as the fear of suffering from money illusion vanishes. In any
case, the model without robustness can be seen as a special case of the static robust
control problem.

Comparing both optimal controls, it appears that the optimal c is larger for
the robust DM than for the standard optimizing agent. This can be interpreted
as the result of the robust agent’s need to offset the evil nature’s distortion ω.
The implication of this compensation is that, depending on the degree of ambiguity
aversion (i.e., the value of θ), robustness can bring about large differences in the
optimal decision rules of the DMs. This conclusion is naturally also valid in a
dynamic context, such as that of the REPIH, as is shown in the next section.
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5.3 A Closed-Form Robust Permanent Income Hypoth-
esis Model

This section presents a tractable closed-form solution to the dynamic optimization
problem of a representative robust consumer. The model, derived in detail in Sec-
tion 5.3.2, and critically evaluated in Section 5.3.3, can be seen as an extension,
or generalization, of the PIH analyzed in Chapter 2. According to the money il-
lusion interpretation of robustness (see Section 5.2.1), the solution to this problem
can be directly interpreted as the optimal consumption path for a money-illusioned
consumer willing to account for money illusion as a distortion to her benchmark
REPIH model. In order to derive the solution to the model, however, it is useful
to first rewrite it as a univariate model, as suggested by Hansen and Sargent (2008,
Ch. 2) and Luo (2008, pp. 380-381).

5.3.1 The Univariate REPIH Model

The idea of the univariate REPIH is to move from one control variable (ct) and two
state variables (At, yt), as in Section 2.2, to one control variable and only one state
variable (namely, the permanent income ypt ). As a matter of notational simplicity,
we define, in this section, β = 1

1+ρ as the discount factor and R = 1 + r, where
R > 1, such that the case in which the discount rate equals the interest rate (ρ = r)
implies βR = 1.

In order to derive the univariate PIH model, consider the original consumer prob-
lem, formerly described by equations (2.1), (2.2) and (2.3), which can be rewritten
as

max
{ct}∞t=0

Ut = Et

{ ∞∑
t=0

βtu(ct)
}

(5.5)

subject to
At+1 = R(At + yt − ct) (5.6)

and
lim
j→∞

( 1
1 + r

)j
At+j ≥ 0, (5.7)

where the control variable is real consumption ct and the state variables are At
and yt, representing, respectively, assets and a general income process to be speci-
fied further below. The within-period utility function is quadratic, as described in
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Chapter 2 (i.e., we have u(ct) = ct − a
2c

2
t ).

Using dynamic programming techniques, I showed in Chapter 2 that the solution
for this consumer problem is represented by the following Euler equation:

Et(ct+1) =
act + (βR− 1)

aβR
,

which boils down to the optimal consumption path Et(ct+1) = ct (equation (2.12))
in the case where βR = 1. Also, under the definition of permanent income,5 the
consumption function becomes:

ct = β(R− 1)ypt −
1− βR
a

. (5.8)

If βR = 1, the consumption function becomes ct = R−1
R ypt , indicating that the

agent consumes, in every period, a constant fraction of permanent income.
For the moment, assume that income yt follows a random walk (RW). This

assumption is rather restrictive, but it greatly simplifies the derivation of the closed-
form solution for the robust consumption problem. As we shall see in Section 5.3.3,
it can be relaxed for income to follow other processes. We have:

yt+1 = yt + εt+1, (5.9)

where the error terms are iid with a zero mean and a variance of σ2
ε . The advantage

of this RW assumption is that, after substituting for equation (5.9) in the definition
of permanent income (equation (2.18)), permanent income boils down to ypt = At +
R
R−1yt. Rewriting this as At = ypt − R

R−1yt and At+1 = ypt+1 − R
R−1yt+1, we can use

it to rewrite the above-presented standard REPIH model in terms of a single state
variable: the permanent income ypt . The asset evolution equation (equation (5.6))
then becomes:

5In Section 2.2.2, permanent income is found to be equal to ypt = At +
∑∞
i=0
( 1
R

)i
Et(yt+i);

see equation (2.17).
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At+1 = R(At + yt − ct)

ypt+1 −
R

R− 1yt+1 = R(At + yt − ct)

ypt+1 = R(ypt −
R

R− 1yt+1 − ct) +Ryt +
R

R− 1 [yt + εt+1]

ypt+1 = R(ypt − ct) + yt

[
R− R2

R− 1 +
R
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R
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R
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If we further define ζt+1 = R
R−1εt+1, with ζt ∼ iid(0,σ2

ζ ), as the shock to perma-
nent income, we can rewrite the consumer problem as a univariate PIH model with
a single state variable ypt :

max
{ct}∞t=0

Et

{ ∞∑
t=0

βtu(ct)
}

subject to
ypt+1 = R(ypt − ct) + ζt+1. (5.11)

The modifications to the original model presented in Chapter 2 do not alter the
main economic implications of the REPIH. To see this, we can compute the optimal
consumption resulting from the consumption function equation (5.8). In the case of
βR = 1, we get ct = R−1

R ypt , which can be extended to:

ct+1 −E(ct+1) =
R− 1
R

[ypt+1 −E(ypt+1)]

ct+1 − ct =
R− 1
R

[R(ypt − ct) + ζt+1 −R(ypt − ct)]

∆ct+1 =
R− 1
R

ζt+1 (5.12)

∆ct+1 = εt+1. (5.13)

Equation (5.13) is identical to equation (2.22) and represents the main result of
Hall (1978): that the PIH model under rational expectations implies that consump-
tion follows a RW.
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5.3.2 Incorporating Robust Control

The univariate REPIH derived in the previous section can be extended in such a way
as to account for robustness concerns on the part of the consumer. Incorporating the
robust control modeling method presented in Section 5.2, the dynamic programming
problem for the robust control–permanent income hypothesis model (RCPIH) can
be written as:

V (ypt ) = max
{ct}

min
{ωt}

{
ct −

a

2c
2
t + β

[
θω2

t + Et
[
V
(
ypt+1

)]]}
, (5.14)

subject to the following distorted budget constraint:

ypt+1 = R (ypt − ct) + σζωt + ζt+1, (5.15)

where θ > 0 is the penalty parameter controlling for the degree of money illusion the
robust consumer wants to control for in her benchmark model. σζ is the volatility of
permanent income, while ωt represents the control variable of the malevolent nature
distorting the mean of the shock to permanent income. The distortion (ωt) can be
interpreted as the degree of money illusion of which the consumer is aware but over
which she has no control. For this reason, in comparison to the rational consumer
from the simple REPIH setup, the money-illusioned consumer concerned about mis-
specification not only takes into account the distorted accumulation constraint, but
also directly includes the product θω2

t in her Bellman equation. As in the static
case analyzed in Section 5.2.2, this term penalizes any alternative candidate model
that she would consider to be “too distant” from the reference model. It guarantees
that the robust consumer chooses an approximating model in which money illusion
is present but does not exceed some plausibility threshold.

Note that the RCPIH model summarized by this extended Bellman equation is
essentially the same as that of Luo (2008), except for its interpretation in terms of
money illusion and for the form of the quadratic utility function. In his analysis,
Luo (2008) uses the same within-period utility function as Hall (1978), u(ct) =
−1

2 (c̄ − ct)2, with c̄ being the bliss point level of consumption. As a matter of
consistency with the previous section and with Chapter 2, however, I opt for the
general formulation suggested by Romer (2006, p. 353), u(ct) = ct − a

2c
2
t , in which

the bliss level of consumption is equal to 1/a. Even though, compared to the
first function, the latter formulation has very similar properties, it is intuitively
more appealing because the consumer’s utility is zero when consumption is equal to
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zero. The consequences of the different utility functions include, not only different
derivations (presented in detail in Appendix D), but also slightly different value
functions and optimal consumption paths. Apart from this, the solving procedure
and notation adopted in this section are very close to those suggested by Luo (2008).6

The max-min structure of the problem in equation (5.14), which is one of the
main contributions of the robust control theory, perfectly suits the intuition of the
PIH model: The consumer wants to maximize her lifetime utility, given the worst
possible distortion to her benchmark model. This rather prudent behavior, as we
shall see below, implies that people who are averse towards model ambiguity or
misspecification tend to have a lower consumption than rational consumers. For
this reason, Hansen and Sargent (2008) saw robust consumption as a particular
type of precautionary savings behavior. If the model misspecification controlled for
by this model is interpreted as the presence of money illusion, this result implies
that money illusion further contributes to aggregate consumption smoothing and
provides an additional explanation for the negative inflation effect advocated by
Deaton (1977) and extensively analyzed in Chapters 3 and 4.

Proposition 1 summarizes the solution to the robust control problem given by
equations (5.14) and (5.15):

Proposition 1. The value function for the RCPIH model takes the following quadratic
form:

V (ypt ) = −A(ypt )
2 −Bypt −C,

where A, B and C are defined as:

A =
aθ(βR2 − 1)
2βR2θ− aσ2

ζ

,

B =− 2Rθ(βR2 − 1)
(2βR2θ− aσ2

ζ )(R− 1)
,

C =
2βR4θ2(βR− 1)2

a(2βR2θ− aσ2
ζ )2(R− 1)2(β − 1)

+
σ2
ζ [2R2θ(βR− 1)− β(β2R2 − 1)]
(2βR2θ− aσ2

ζ )2(R− 1)2(β − 1)

+
aσ4

ζ

2(2βR2θ− aσ2
ζ )2(β − 1)

.

6One reason for following Luo (2008) to solve the RCPIH problem is not only that he was
successful in finding an intuitively appealing, closed-form solution, but also that the underlying
model can easily be extended and applied to other macroeconomic topics focusing on the relationship
between consumption and income. See, for instance, Luo and Young (2010) and Luo et al. (2012,
2014).
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The malevolent nature’s optimal distortion is:

ωt =
aRθσζ(βR2 − 1)(2βR2θ− aσ2

ζ )
(2βR2θ− aσ2

ζ )[(2βR2θ− aσ2
ζ )− aσ

2
ζ (βR2 − 1)] + 2βR2θ(βR2 − 1)

ypt−

σζ(βR2 − 1)
β{θ[2 + a(βR2 − 1)]− aσ2

ζ}
. (5.16)

Proof. The detailed derivations are presented in Appendix D. See Section D.1 for
the derivations of A, B and ωt and Section D.2 for the derivation of C.

Proposition 1 shows that the robust consumer’s (univariate) value function takes
a quadratic form and is governed by five constant parameters: namely, the inverse of
the bliss level of consumption a, the subjective discount factor β, the gross return R,
the misspecification distance parameter θ and the variance of the shock to permanent
income σ2

ζ . Even though the value function looks rather cumbersome, note that, if

we assume that βR = 1 and define Φ =
aσ2
ζ

2θ , it reduces to the following simpler
form:

V (ypt ) = − a(R− 1)
2(R−Φ)

(ypt )
2 − R

R−Φ
ypt −

Φ2

2a(R−Φ)2(β − 1)
.

Note that the parameter Φ is constant and can be interpreted as a measure of
the impact of robustness on consumption (Luo, 2008). Applying the same transfor-
mations to the optimal distortion ωt yields the following equation:

ωt =
aRθσζ(R− 1)(R−Φ)

(R−Φ)[(R−Φ)−Φ(R− 1)] +R(R− 1)
ypt −

Rσζ(R− 1)
θ[a(R− 1) + 2(1−Φ)]

.

We see that ωt, which distorts the mean of the shock to permanent income and
generates the ambiguity circle presented in Figure 5.1, depends on the state variable
ypt and is restricted by the different robustness-dependent parameters. Recall that
the robust consumer chooses, during her optimization process, the model in which ωt
causes her the least damage. The result of this dynamic optimization process is the
consumer’s optimal and robust consumption path, which is defined in Proposition 2.

Proposition 2. The robust consumption function is:

ct =
βR2 − 1
βR2 −Φ

ypt −
(βR2 −Φ)(βR− 1) + (βR2 − 1)Φ

aβR(βR2 −Φ)(R− 1)
(5.17)
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and the robust consumption growth is:

∆ct+1 =
(βR− 1)(βR2 −Φ) + (βR2 − 1)Φ

aβR(βR2 −Φ)
+

(R− 1)(βR2 −Φ)− (βR2 − 1)R
βR2 −Φ

ct+

βR2 − 1
βR2 −Φ

ζt+1, (5.18)

where Φ =
aσ2
ζ

2θ .

Proof. See Section D.3 in Appendix D.

Equation (5.17) represents the final robust consumption function, in which con-
sumption is a linear function of permanent income ypt and only depends on the
constant parameters a, β, R and Φ. We see from equation (5.17) that the RCPIH
model predicts that it is optimal for the consumer to consume, in each period, a
constant fraction of permanent income ypt . This result is totally in line with the
prediction of the standard REPIH scrutinized in Chapter 2.

To understand the exact implications of robustness for consumption, consider
again the standard assumption that the discount rate equals the interest rate (i.e.,
βR = 1). In this case, the robust consumption function (5.17) melts down to the
following simple equation, which is independent of the discount factor:

ct =
R− 1
R−Φ

ypt −
Φ

a(R−Φ)
. (5.19)

Since Φ =
aσ2
ζ

2θ is decreasing in θ, the absence of money illusion as a misspec-
ification (θ → ∞) implies Φ → 0. The corollary is that, without any concern for
robustness, equation (5.19) boils down to the rational expectations consumption
function scrutinized in Chapter 2: namely, ct = R−1

R ypt .
Interpreting equation (5.19) as the optimal consumption function for the money-

illusioned consumer, it appears that the effect of robust control is twofold, reflected
by the two terms on the RHS. On one hand, the marginal propensity to consume
out of permanent income ypt is higher for the money-illusioned consumer (provided
that Φ < 1) than for the standard permanent income consumer. On the other hand,
however, concern about unfavorable outcomes makes the robust consumer save more
in proportion to her aversion towards money illusion, as reflected by the second term
on the RHS of equation (5.19), which lowers consumption as Φ increases. However,
robustness only increases savings under the condition that Φ < R, so that the second
term of equation (5.19) remains negative. It can in point of fact be easily shown that
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Φ < 1, thus satisfying the conditions for both terms on the RHS to fit the suggested
intuition of precautionary savings. For the proof, see Section D.4 in Appendix D or
Luo et al. (2014, p. 7).

Since Φ < 1, robustness in the RCPIH implies that the second term on the RHS
of equation (5.19) has a negative effect on consumption that overshoots its positive
effect on the MPC out of permanent income. Consequently, the negative term
of equation (5.19) can be interpreted as a precautionary savings premium, which
increases with the degree of aversion against money illusion. A major difference
of robustness compared to “traditional” precautionary savings is that the latter
stems from utility functions presenting convex marginal utilities.7 In the present
case, however, precautionary saving occurs even with the quadratic preferences used
throughout this present thesis.

Consider now the optimal consumption growth under robustness against money
illusion (equation (5.18)). This is the main result of the RCPIH model and the most
important equation for the present analysis, which seeks to deepen our understanding
of the relationship between consumption growth and inflation. Equation (5.18) can
easily be rewritten as the following AR(1) process:

ct+1 =
(βR2 −Φ)(βR− 1) + (βR2 − 1)Φ

aβR(βR2 −Φ)
+
R(1−Φ)
βR2 −Φ

ct +
βR2 − 1
βR2 −Φ

ζt+1. (5.20)

To simplify the interpretation and to stay in line with the literature and the
previous chapters, we focus on the case for which βR = 1. Under this assumption,
optimal consumption growth (equation (5.18)) becomes:

∆ct+1 =
(R− 1)Φ
a(R−Φ)

− (R− 1)Φ
R−Φ

ct +
R− 1
R−Φ

ζt+1, (5.21)

and equation (5.20) reduces to the following AR(1) model:

ct+1 =
(R− 1)Φ
a(R−Φ)

+
R(1−Φ)
R−Φ

ct +
R− 1
R−Φ

ζt+1. (5.22)

The simplicity of equations 5.21 and 5.22 not only allows for an intuitive interpre-
tation, but also yields simple empirical models that can be easily estimated (see Sec-

7See Caballero (1990) for a complete analysis of the features and implications of precautionary
savings. Of course, since the origin of the precautionary savings motive is different, the policy
implications for robust consumers are different from those of precautionary savers.
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tion 5.3.3 below).8 As expected, in the absence of robustness against money illusion
(i.e., if Φ = 0), consumption growth in equation (5.21) reduces to ∆ct+1 = R−1

R ζt+1,
which corresponds to the standard RW implication of the REPIH derived in equa-
tions (2.22) and (5.13). Once concerns about money illusion are accounted for (i.e.,
with 0 < θ < ∞ and 0<Φ<1), consumption growth becomes more volatile rela-
tive to income than in the REPIH. The last term on the RHS of equation (5.21)
shows that consumption growth becomes more sensitive to unanticipated shocks to
permanent income. This feature deserves some particular attention because it em-
beds potential problems related to the values that Φ can take. For this reason, this
feature is analyzed in detail in the next section.

The middle term on the RHS of equation (5.21) attributes an increasing role
of past information, or past consumption, to consumption growth as robustness
increases. Any predictive power of past consumption for ∆ct+1 would, thus, not
necessarily stem from some HF, but could instead be the result of the presence of
aversion against money illusion or of other misspecifications. Consequently, the sta-
tistically significant coefficients of past consumption growth obtained in Section 3.4.2
could be partly attributable to concerns about money illusion (i.e., not only to HF)
and further emphasize the importance of inflation as a determinant of consumption
growth. This result is in line with the empirical results of Chapter 4, which indi-
cate that there might be other consumption-smoothing mechanisms at work beyond
solely HF.

Equation (5.22), apart from being simple in its form and intuitive in its inter-
pretation, possesses the formidable advantage of being easily and readily empirically
evaluated. This is done in the next section, which also shows that it incorporates
various shortcomings stemming from the different assumptions made throughout
this section.

5.3.3 Critical Evaluation of the RCPIH

The previous section showed that robustness, interpretable as the aversion against
money illusion, can be neatly incorporated into the standard REPIH framework.
Moreover, the derivation of the closed-form robust control problem has highlighted
the fact that the REPIH model can be understood as a special case of the RCPIH
model, in which the representative consumer is convinced that she does not confuse

8Note that this final equation is very similar to the one suggested by Luo (2008). Consequently,
the limitations of this model (emphasized in Section 5.3.3) naturally apply to this paper and to the
related literature mentioned in footnote 6.
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nominal values for real values and confidently follows the benchmark model f as the
“true” data-generating model (see Section 5.2.1). While the solution to the RCPIH
problem is intuitively appealing, questions regarding whether it is an appropriate
model to explain actual consumption data and whether it really outperforms the
benchmark RW model remain. The present section highlights some limitations re-
lated to the solution of the closed-form model derived in Section 5.3.2 and critically
evaluates its performance with actual U.S. data.

Under the benchmark assumption that βR = 1, the closed-form RCPIH model
yields the optimal and robust consumption path described by equation (5.22), sug-
gesting that consumption follows an AR(1) process in which the future value of
consumption ct+1 is determined by current consumption ct and the shock to per-
manent income ζt+1, as well as by a constant. Recall further that we assumed, in
Section 5.3.1, that income (yt) follows a simple RW (see equation 5.9), such that the
shock to permanent income, ζt+1 = R

R−1εt+1, is a simple function of the innovation
to income. Under this particular income process, equation (5.22) can be rewritten
as:

ct+1 =
(R− 1)Φ
a(R−Φ)

+
R(1−Φ)
R−Φ

ct +
R

R−Φ
εt+1, (5.23)

which directly relates consumption to the innovation to real income, εt+1.
Equation (5.23) is a simple and intuitive consequence of the solution to the

closed-form RCPIH model derived in the previous section. Not only does consump-
tion depend on only a few parameters, but its theoretically appealing AR(1) struc-
ture renders it an easily testable model. Before evaluation the equation using real
data, however, it is useful to first analyze the relationships between the different
parameters and to define a plausible range for their values. To accomplish this, let
us first consider the last term of equation (5.23), which embeds the positive impact
of robustness with respect to money illusion, Φ, into the immediate response of con-
sumption to unexpected income shocks, εt+1. This indicates that the consumption
response to an unexpected income shock is the more aggressive as the fear of money
illusion on the part of the robust consumer increases.

In fact, after pinning down arbitrary but realistic values for R, we can derive
the exact relationship between the response of ct+1 and Φ, characterized by the
multiplicator of the income shock R

R−Φ . Figure 5.2 depicts this impact of robustness
on the immediate response of consumption to an innovation in income for three
different values of R: namely R = 1.01, R = 1.05 and R = 1.1, corresponding to
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a β = 0.99, β = 0.95 and β = 0.91, respectively. Since β is typically very close to
one, Figure 5.2 is assumed to cover a wide range of realistic scenarios: For example,
Hansen et al. (1999) arbitrarily set β = 0.9971. In the case for which βR = 1, this
corresponds to an annual risk-free interest rate of 2.5%, after an adjustment for the
effects of a geometric growth factor of 1.0033 (Hansen et al., 1999, p. 886). Hansen
and Sargent (2008, Ch. 2) used, for comparison, the alternative specification of
β = 0.9995. Note that, instead of arbitrarily setting β, it is also possible to estimate
it within the Hansen et al. (1999) model. This is done in Section 5.4 and yields
estimated values for β that oscillate around 0.994. In the βR = 1 setting, choosing
a subjective discount factor close to one naturally implies that the gross return
R is also very close to 1. As demonstrated further below, this restriction can be
problematic when it comes to simulating equation (5.23) with actual data.

Figure 5.2 clearly shows that, for the money-illusioned consumer, the marginal
impact of robustness on the consumption response R

(R−Φ)2 depends heavily on the
value of Φ. In particular, the closer Φ and R are to one another, the greater the effect
of robustness, as reflected by the exponential shape of the immediate consumption
response. We see that the marginal effect of robustness is rather moderate when Φ
takes values between 0 and 0.5, where the latter value implies that the immediate
response of consumption is approximately twice as large as for the rational consumer
setting Φ = 0. Above this threshold, the marginal impact of robustness on the
consumption response increases exponentially and rapidly produces consumption
response values that are theoretically unrealistic. In light of this extremely sensitive
relationship between robustness and the consumption response to an income shock,
it seems reasonable to assume that the robustness parameter should lie within a low
to medium range, such as, for example, the (0,0.5) interval.

As suggested by Figure 5.2, a Φ close to one implies unrealistic consumption
responses: They would not be theoretically consistent with the goal of the robust
consumer – namely, to choose a distorted model that remains statistically close to the
benchmark REPIH model. Following the present interpretation, the consumption
responses become unrealistic when the consumer has to choose a Φ that corresponds
to unrealistic degrees of money illusion. Recall that, according to the definition of
the robustness parameter, Φ =

aσ2
ζ

2θ is inversely proportional to the penalty parame-
ter θ, such that Φ approaches its upper bound (equal to one) when θ is particularly
low. Yet, an excessively low θ allows the malevolent nature to impose a huge dis-
tortion on the approximating models from which the consumer can choose (i.e., the
ambiguity circle becomes very large; see Section 5.2.1). This explains the shape of
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Figure 5.2: The Impact of Robustness on the Response of ct+1 to εt+1

The immediate response of consumption to an unanticipated one-unit change in income, ε, in-
creases with the degree of robustness, 0 ≤ Φ < 1. Under the assumption that βR = 1, the three
pictured scenarios correspond to a β of 0.99 (solid line), 0.95 (dashed line) and 0.91 (dash-dot line),
respectively.
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the immediate responses of consumption in Figure 5.2, in which the consumer has
to compensate for the huge distortions that occur when Φ is allowed to approach
its upper bound.

Under the standard assumption that βR = 1, this intuition remains valid for any
plausible value chosen for the subjective discount factor. Figure 5.2 also shows how
this choice influences the consumption response to the income shock: For any given
Φ, a higher β is associated with more sensitive consumption responses. Again,
the closer Φ is to one, the more sensitive the response of consumption will be.
Interestingly, this relationship implies that impatience has an effect on consumption
similar to that of the fear of money illusion, such that it can be difficult a posteriori
to distinguish one effect from the other.9 Of course, this is only valid within the
RCPIH model when robustness is present. In the special case for which Φ = 0,
equation (5.23) reduces to the benchmark model of Hall (1978), ct+1 = ct + εt+1,
in which ct+1 reacts with a 1:1 ratio to a shock to εt+1 and is independent from β.
This is also visible in Figure 5.2, in which the immediate consumption response to
a one-unit shock to income is equal to one when Φ = 0 for any chosen R.

It is important to emphasize at this stage that the increased sensitivity of con-
sumption to a one-unit unexpected shock to income, depicted in Figure 5.2, reflects
only the immediate response of consumption and contains no information about its
evolution over time. Of course, the standard PI consumer immediately and per-
manently achieves her new long-term level of consumption, since the response of
consumption in the robustness-free equation ct+1 = ct + εt+1 is immediate, constant
and equal to one. In the case of an AR(1) process, the impulse response function
(IRF) can be easily computed because its dynamics depend only on the AR coeffi-
cient. In this particular case, the response of consumption will rapidly return to its
long-term value (equal to one), with the speed of this adjustment being determined
by the “half-life responses” to the shock. Due to the autoregressive pattern of equa-
tion (5.23), we know that this will also be the case for the robust consumer. Note,
however, that the convenient AR(1) structure of this reduced model nests several
contradictions with respect to the values that the governing parameters can take.

To highlight this conceptual weakness, consider now the AR coefficient in equa-
tion (5.23), which we define as φ1 = R(1−Φ)

R−Φ . Since R is rather close to one, most
conceivable estimates for φ1 imply a very high degree of robustness for this equality

9This interdependence between β and Φ is used in Section 5.4 to estimation the presence
of money illusion in aggregate U.S. data. See Hansen and Sargent (2008, Ch. 2) for a formal
demonstration of the conditions under which impatience yields results equivalent to those of concerns
about robustness.
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to hold. For example, if we arbitrarily set R = 1.0029, as in Hansen et al. (1999),
estimates of φ1 as different as φ1 = 0.1 and φ1 = 0.9 would each require the robust-
ness parameter to be very close to one (namely, equal to Φ = 0.99 and Φ = 0.97,
respectively). If, on the contrary, Φ is expected to lie within the above-suggested
acceptable range (say, below 0.5), the corresponding φ1 would need to be greater
than 0.997. In this case, however, the AR(1) consumption model would be very close
to a simple RW, and the RCPIH could not be unambiguously disentangled from the
benchmark REPIH model. As a result, it appears that the robust consumption
model in equation (5.23) embodies foibles that will bring about difficulties in the
estimation and interpretation. Worse still, this does not seem to provide a realistic
alternative to the empirically appealing REPIH model.

As a concrete illustration of this problem and to determine the exact shape
of the IRFs in our model, consider Figure 5.3, which shows the estimated IRF of
consumption to a one-unit shock in income using the same quarterly U.S. data and
samples as in the previous chapters.10 To avoid structural breaks (see Section 3.2.3),
to better compare with the previous estimation results (Sections 3.4 and 4.3.1), and
to investigate whether the consumer’s concern for robustness varies with the inflation
level, I report only the results for the high- and low-inflation subsamples, using both
the IPD and the CPI as inflation indexes.

The plotted IRFs, which show the sensitivity of consumption to an unexpected
income shock as well as the number of periods needed for consumption to return
to its long-term value, are obtained as follows. First, I estimate the AR(1) model
derived in equation (5.23) with OLS. This yields estimates for the different AR(1)
coefficients, φ̂1, as well as for the intercepts. In our case, the estimated φ̂1s are,
respectively, 0.47 and -0.02 for the high and low IPD models and 0.44 and 0.26 for
the high and low CPI models. While the intercepts are highly significant (at the
1% level) in all models, the estimated φ̂1s are significant at the 1% level for the two
high-inflation models, significant at the 5% level for the low-inflation CPI model and
not significant for the low IPD model.

Using these least squares estimates for φ1, we can calculate, for every model,
the half-life response, defined as h = log(0.5)

log(|φ̂1|)
. For any starting response value (i.e.,

the intercepts in Figure 5.3), the half-life response indicates the number of periods
needed for the consumption response to be reduced by half. Consequently, the half-
life response produces the shape of the IRF and indicates the speed of adjustment of
the endogenous variable after a shock in the error term. Finally, the starting response

10See Appendix A for a detailed description of the data.
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Figure 5.3: Impulse Response Functions of ct+1 to εt+1

The impulse response functions are obtained by estimating equation (5.23) with U.S. quarterly
data. Consumption is deflated with IPD inflation (left graph) and CPI inflation (right graph) over
two subperiods, one experiencing high inflation rates (dashed line) and the other one experiencing
low inflation rates (dash-dot line). The high-inflation period is from 1966Q1 to 1981Q3 for the
IPD model and from 1966Q1 to 1982Q3 for CPI, while the low-inflation period is from 1991Q1 to
2001Q1 for both deflators.
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values in Figure 5.3 are obtained by premultiplying the (unitary) income shock with
the corresponding multiplicator R

R−Φ . The robustness-capturing parameter Φ is
calculated by means of the slope parameter φ̂1 = R(1−Φ)

R−Φ and the arbitrarily chosen
R = 1.0029, corresponding to the benchmark β = 0.9971 of Hansen et al. (1999).

Looking at Figure 5.3, what is immediately clear are the unrealistic and excessive
starting values of the response of consumption to an income shock. This poor
result is valid for all four depicted models, since consumption immediately jumps
to values above ct+1 = 150 when εt+1 increases by one unit. The reason for this
over-sensitivity of consumption is that the different φ̂1s are all well below the above-
mentioned value of 0.997. These values lead to implausible Φs that are all very
close to one and, thus, are much higher than the suggested plausibility threshold.
Note, however, that the excessive consumption responses can be reduced to plausible
values when income is assumed to follow an AR(1) process instead of an RW (see
equation (5.24) and its interpretation below).

Comparing the different starting values and shapes of the IRFs across the mod-
els, we can nonetheless observe the predicted impact of robustness on consumption.
Disregarding the implausible starting response values, it appears that the IRFs di-
verge across the different subperiods but are similar for both inflation measures. In
particular, the IRFs of the low-inflation models have a much higher starting values,
but also have a faster speed of adjustment than their high-inflation counterparts.
The extreme case is represented by the low-inflation IPD model, in which consump-
tion reacts extremely aggressively to the income shock, but achieves its new long-run
level after less than two quarters (due to a half-life response of h = 0.18 periods).

The observed differences between the subperiods, which result from the lower
estimates for φ1s in the low-inflation periods (which yield higher Φs), are in line
with the predictions of the RCPIH model: namely, that robustness induces precau-
tionary savings. According to the theory, as well as to the Kalman filter estimation
results in Section 4.3.1, precautionary savings are expected to be higher in an overall
uncertain environment. Similarly, concerns about money illusion are assumed to be
higher within the high-inflation subperiods, induced by higher and more volatile in-
flation rates than those in the low-inflation period. In Figure 5.3, this phenomenon
is reflected by the lower immediate consumption responses and the smoother ad-
justments in the high-inflation models. Note that this result is confirmed by the
estimation of the robust model of Hansen et al. (1999) in Section 5.4.2, further sup-
porting the idea that the consumer’s concern about misspecification – and, hence,
about money illusion – is higher in the high-inflation subperiod.
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In light of the irreconcilable parameter values, it appears that the simple robust
consumption model derived in Section 5.3 and summarized by the simple AR(1)
model in equation (5.23) contains too many weaknesses to be able to efficiently
describe actual U.S. consumption data. Without abandoning the still-appealing
robust control framework, there are essentially three improvements that can be
considered to improve the fit of the model. First, the standard assumption that
βR = 1 could be relaxed, allowing for βR > 1. In this case, equation (5.20)
does not reduce to equation (5.21), and the AR coefficient remains equal to φ1 =
R(1−Φ)
βR2−Φ . Then, for a given β, setting R at high enough values allows for both φ1

and Φ to remain within a more plausible range of values. For example, setting
β = 0.9971 and R = 1.5 would be compatible with (φ1,Φ) values of (0.88,0.3),
(0.75,0.5) and (0.57,0.7), respectively. However, since the relaxing of the βR = 1
assumption requires implausibly high risk-free interest rates in our model, other
putative solutions might be more appropriate. Moreover, as shown in Section 5.4,
alternative specifications of the robust consumption model can greatly improve the
fit of the model, even when the assumption that βR = 1 is maintained.

Second, recall that we made the assumption, in Section 5.3.1, that income fol-
lows a RW, as described by equation (5.9). On one hand, this assumption was
used to rewrite the standard REPIH model as a univariate model, which greatly
simplified the derivation of the closed-form solution to the RCPIH model. On the
other hand, especially with regard to the poor performance of the RCPIH in fitting
actual data, this assumption might well be too restrictive and could be relaxed in
favor of an AR(1) process, as was assumed, for example, in Chapter 4. Leaving out
the constant, the income process can then be rewritten as yt+1 = γyt + εt+1. In
this case, permanent income becomes ypt = At + R

R−γ yt, such that equation (5.10)
can be rewritten as ypt+1 = R(ypt − ct) + R

R−γ εt+1. We see that the altered income
process has an impact only on the shock to permanent income. Consequently, if we
newly define the permanent income shock as ζt+1 = R

R−γ εt+1, all the derivations
of the closed-form solution to the RCPIH (presented in Section 5.3.2) remain valid
under the new income process. Nonetheless, the new ζ has a crucial impact on the
above-simulated consumption model under βR = 1 in equation (5.23), which now
becomes:

ct+1 =
(R− 1)Φ
a(R−Φ)

+
R(1−Φ)
R−Φ

ct +
R(R− 1)

(R−Φ)(R− γ)
εt+1. (5.24)

As we can see, changing the assumption with regard to the income process only
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affects the income shock multiplier R(R−1)
(R−Φ)(R−γ) , which now also depends on the

parameter γ, which determines the evolution of income. Contrary to the above-
presented RW case, which yields the implausible immediate consumption responses
to income shocks depicted in Figure 5.3, the case in which income follows an AR(1)
process can produce much more realistic consumption responses.

Compared to the shock multiplier under RW, R
R−Φ , the multiplier under AR(1)

dramatically lowers the immediate consumption response and, thus, yields much
more realistic shapes for the consumption responses and IRFs than those depicted
in Figures 5.2 and 5.3, respectively. For example, under the assumption that R =
1.0029 (see Hansen et al. (1999)) and with a robustness parameter as high as Φ =
0.999, the immediate response of consumption to a unitary income shock would
be lowered to 1.48, 2.46 and 7.25 for γs equal to 0.5, 0.7 and 0.9, respectively, as
compared to a consumption response of 256.6 in the RW case. Unfortunately, note
that, even though the assumption that income follows an AR(1) is able to remove
the problem pertaining to the implausible immediate responses of consumption to
unexpected income shocks, there remains the problem that the coefficient of the
autoregressive consumption process, equal to φ1 = R(1−Φ)

R−Φ in equation (5.24), is the
same as in equation (5.23). Consequently, the simulation of the model with actual
U.S. data would still engender Φ values close to one, which are not reconcilable with
realistic degrees of robustness.

The final improvement that can be envisaged for the RCPIH model presented
in Section 5.3 is to add further elements to the robust control problem to increase
the range of alternatives from which the representative consumer can choose. For
example, Hansen et al. (1999) suggested a more general robust PIH model that is not
only able to control for HF, different income processes and alternative production
technologies, but is also able to precisely determine realistic degrees of robustness
that actually fit to the U.S. consumption data, even when the standard assumption
of βR = 1 is maintained. Since this last solution seems most promising, Section 5.4
essentially focuses on the robust consumption model of Hansen et al. (1999) in order
to show that money illusion can be effectively modeled within the robust control
framework.

5.4 The Hansen et al. (1999) Robust Consumption Model

The closed-form RCPIH model derived in Section 5.3 contains too many weaknesses
to be efficiently used as an empirically robust consumption model in order to inves-
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tigate whether money illusion is present in aggregate U.S. consumption data. The
current section focuses on the robust PIH model developed by Hansen et al. (1999)
(henceforth referred to as HST), which takes the form of a robust dynamic stochastic
general equilibrium (DSGE) model (compared to all other models analyzed in this
thesis, which can be considered as partial equilibrium models).

This more general setup not only provides a framework that can simultaneously
take into account robustness, HF, investment and alternative income processes, but
also allows for to use DSGE-specific tools for the analysis and estimation of the
model.11 The ability to include HF is a great improvement over the RCPIH model
(derived in Section 5.3) because a significant impact of lagged consumption growth
on current consumption growth captures, not only consumption habits, but also
all other precautionary savings motives that are not related to inflation (see Sec-
tion 5.2.1).

Section 5.4.1 briefly presents the HST model and the observational equivalence
between robustness and the subjective discount factor. Section 5.4.2 estimates the
model and shows that money illusion, measured with robustness, is higher in periods
with high average inflation rates.

5.4.1 The Robust Consumer’s Problem

HST’s robust permanent income model uses the two-player game intuition suggested
by the robust control theory (see Section 5.2.2) to derive the following consumer
problem, which can be seen as an extension of the RCPIH model (presented in
Section 5.3.2). The robust consumer faces the following Bellman equation:

V (kt, yt) = max
{ct}

min
{ωt+1}

{
− (st − b)2 + β

(
θω2

t+1 + Et [V (kt+1, yt+1)]
)}

, (5.25)

11Specifically, I have implemented the model in Dynare, an open-source software that is particu-
larly convenient for handling DSGE models. A good starting point for programming HST’s model
is provided by the example in Barillas et al. (2010). I am also grateful to Professor Johannes Pfeifer
(University of Mannheim) for his helpful advice. For further examples and information on Dynare,
visit http://www.dynare.org.

http://www.dynare.org
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subject to the following set of constraints:

st = (1 + λ)ct − λht−1 (5.26)
ht = δhht−1 + (1− δh)ct (5.27)

ct + it = γkt−1 + yt (5.28)
kt = δkkt−1 + it. (5.29)

In the objective function (5.25), b represents the bliss point level of consumption,
corresponding to b = 1

a from the RCPIH (see equation (5.14) in Section 5.3.2). HST
further defined st as the “household service stream” characterized by equations (5.26)
and (5.27), where ct is real consumption and ht−1 is a weighted average of current
and past consumption. Note that δh ∈ (0, 1) and that if λ > 0, the consumer
presents some degree of HF. According to equation (5.28), the consumer faces a linear
production technology such that it is investment, yt is the exogenous income process
(to be defined further below), and kt is the capital stock defined in equation (5.29).
The constant parameters γ and δk are the marginal product and the depreciation
factor of capital, respectively.

Recall that the robust consumer, fearing model misspecifications, can alterna-
tively be seen as a money-illusioned consumer who wishes to control for his money
illusion, especially in times of high inflation or high model uncertainty. Just as in
the general case exposed in Section 5.2.2 and in the RCPIH in equation (5.14), the
fear of specification errors is captured by the penalty parameter θ and the distor-
tion parameter ωt+1. While the malevolent nature imposes a maximum distortion,
or maximum money illusion, on the set of optimal models from which the robust
consumer can choose, the consumer can restrict the distortion with the penalty
parameter to reflect the desired degree of robustness.

In their original setting, HST assumed that the income process yt is governed by
a permanent component ȳt and a transitory component ŷt, both of which follow a
second-order autoregressive AR(2) process. Thus, they defined:

yt = µy + ȳt + ŷt, (5.30)

where

ȳt = (φ1 + φ2)ȳt−1 − φ1φ2ȳt−2 + cȳ(ε
ȳ
t + ωȳt ) (5.31)

ŷt = (φ1 + φ2)ŷt−1 − φ1φ2ŷt−2 + cŷ(ε
ŷ
t + ωŷt ). (5.32)
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The innovations εȳt and εŷt are standard normal iid shocks, and ωȳt and ωŷt are
distortions to the means of the endowment processes that represent the misspeci-
fications due to money illusion. The autoregressive coefficients φ1, φ2, α1 and α2

represent the persistence of the endowment process.12

Before the model is solved, it can be further simplified by solving the capital
evolution equation (5.29) for it and substituting for it in equation (5.28). This
gives:

ct + kt = (δk + γ)kt−1 + yt, (5.33)

where the first term on the RHS yields a definition for the gross return on capital
R:

R = δk + γ, (5.34)

which also coincides with the gross return on a risk-free asset. Finally, following
Hall (1978), HST maintained the assumption that the subjective discount factor is
equal to the risk-free interest rate (i.e., βR = 1).

The crucial contribution of HST is that they showed that there is no need to solve
for the complete max-min problem of the robust consumer (as we do, for instance, for
the RCPIH in Section 5.3.2). In fact, they showed that, for any degree of robustness,
the solution is observationally equivalent to a solution of the same problem without
robustness when the discount factor has been adjusted accordingly. Recall that the
RCPIH already suggests that robustness has a similar impact to impatience on the
consumption response to an income shock (see Figure 5.2).

Though HST first established this observational equivalence proposition, its pre-
cise definition was derived by Hansen et al. (2002). Formally, they showed that, for
fixed values of all other parameters, every (β̂,θ) pair is observationally equivalent
to a corresponding (β,0) pair. In this context, for the (β̂,θ) and (β,0) pairs to be
observationally equivalent means that they yield both the same decision rule for
(ct,it) and can, thus, not be distinguished from one another. The result is a di-
rect relationship between the subjective discount factor β and the equivalent robust
discount factor β̂(θ), which can be summarized by the following equation:13

12In this section, φ1 should not be confused with the φ1 of Section 5.3.3, which characterizes the
robustness-induced persistence in consumption.

13The relationship in equation (5.35) is a simplification of the observational equivalence, which
Hansen and Sargent (2008) showed to be equal to:

β̂(θ) =
1
R
− σα2

R− 1 ,



132 Chapter 5. Seeking Robustness Against Money Illusion

β̂(θ) = β − β

θ(1− β)
. (5.35)

According to this relationship between β̂ and θ, an increase in the penalty pa-
rameter θ (i.e., a decrease in the distortion allowed by the robust consumer) leads
to an increase in β̂. In other words, the robust consumer has a higher β̂ than the
purely rational consumer. Moreover, letting θ → ∞ implies that β̂ → β, which is
the case for which the ambiguity circle disappears and the approximating robust
model and the benchmark REPIH models coincide.

For our purpose, the observational equivalence in equation (5.35) provides the
main tool to investigate for the presence of money illusion in aggregate consumption
data. In contrast to HST, who assumed that the robust consumer presents a fear of
misspecification that is time-invariant, the theoretical implications of money illusion
exposed in Section 5.2.1 suggest that the degree of robustness depends on the degree
of inflation uncertainty. Since a higher money illusion is accompanied by a higher
degree of robustness, θ (and thus β̂) should be higher in the high-inflation subperiod
than in the low-inflation subperiod. This conjecture is verified in Section 5.4.2.

Since the degree of robustness is nested within the subjective discount factor, as
suggested by the observational equivalence, the robust consumer’s max-min prob-
lem reduces to a simple maximization problem, in which the distortion is set to
ωt = 0. Attaching the Lagrange multipliers 2βtµst to equation (5.26), 2βtµht to
equation (5.27) and 2βtµct to equation (5.34), respectively, we obtain the following
FOC:

st : µst = b− st (5.36)

ct : µct = (1 + λ)µst + (1− δh)µht (5.37)

ht : µht = βEt(δhµh,t+1 − λµs,t+1) (5.38)

kt+1 : µct = βREt(µc,t+1), (5.39)

as well as the constraints 5.26, 5.27 and 5.33. Since we assume βR = 1, equa-
tion (5.39) implies that µct is a martingale. By equation (5.37), this, in turn, also
implies that µst and µht are martingales, leading to the precise definition of µst

where βR = 1, σ = −θ−1 is a risk-sensitivity parameter and α is some constant volatility parameter
representing the forecast error in the following representation of the marginal utility of services:
µst = µst−1 +αε̃t. Substituting for R, σ and α = 1 yields equation (5.35). See Hansen and Sargent
(2008, pp. 231-234) for a detailed proof of the observational equivalence proposition.
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(reported in Hansen and Sargent (2008, p. 231) and in footnote 13). As a matter
of completeness, note that, in the absence of HF (i.e., if λ = 0), equation (5.26)
implies that ct = st, such that utility depends only on consumption. In this case,
the FOC reduce to µct = b− ct and µct = Et(µc,t+1), resulting in the well-known
RW hypothesis derived in Section 2.2.1, where the Euler equation (2.12) is equal to
ct = Et(ct+1).

The just-derived ωt = 0 version of HST’s permanent income model is estimated
in Section 5.4.2 for the cases with and without HF. Recall that it does not exclude the
presence of robustness, since it can be measured by way of the subjective discount
factor β.

5.4.2 Estimation Results

The estimation results for HST’s permanent income model, which is characterized
by equations (5.26) to (5.34) and (5.36) to (5.39), are summarized in Table E.1
in Appendix E. They have been obtained using U.S. quarterly consumption and
investment data, in which consumption is measured by the personal consumption
expenditures of nondurables and services and investment is measured by the sum
of durable consumption and gross private investment.14 Both series are expressed
in per capita terms and in first log-differences. Using the same procedure as for the
previous estimations, the nominal series have been deflated by two distinct inflation
indexes: namely, the IPD and the CPI (see the data Appendix A). In order to
draw inferences about the presence or not, in the data, of robustness against money
illusion, the IPD and CPI models with and without HF have been estimated over
two subperiods, one presenting high average inflation rates (1966Q1 to 1981Q3 for
the IPD models and 1966Q1 to 1982Q3 for the CPI models) and the other presenting
low average inflation rates (1991Q1 to 2001Q1 for both IPD and CPI).

The estimates reported in Table E.1 have been obtained by maximum likelihood
using HST’s original parameter estimates (reproduced in the “HST” columns) as
initial values. The reason for this choice is that HST’s estimates represent plausible
benchmark values for each estimated model; moreover, this approach ensures that no
bias is introduced by arbitrarily choosing alternative sets of initial values. Further,
I followed HST’s example, fixing b and δk to b = 32 and δk = 0.975, and imposed
the restriction βR = 1. Recall that it is the latter assumption that allows us to use
the observational equivalence in equation (5.35) to investigate for the presence of

14The original series can be downloaded from the Federal Reserve Economic Data at http:
//research.stlouisfed.org/fred2.

http://research.stlouisfed.org/fred2
http://research.stlouisfed.org/fred2


134 Chapter 5. Seeking Robustness Against Money Illusion

money illusion. For this purpose, contrary to HST, I also estimated the parameter
β in order to evaluate the robust consumer’s behavior across the subperiods.

For model comparison, Table E.1 also reports the log-likelihood values resulting
from the maximum likelihood estimation. Since these log-likelihood values can only
be used to choose between two nested models (e.g., using a likelihood ratio test),
they should be considered separately so as to discriminate only between the models
with and without HF within each subperiod and inflation measure. According to the
log-likelihood values, the preferred models are those that are highlighted in bold in
Table E.1. Note that the table does not indicate the significance of each coefficient for
several reasons. First, since HST did not provide them, we cannot use the individual
significances for comparison with the HST’s original results. Furthermore, the aim
in this section is not to discriminate between the different parameters (since they
are all part of the needed system of equations). Third, the ultimate significance of
most parameters, though not their values, depends heavily on the initial values (as
well as on the estimation routine) chosen for the estimation. Note, however, that the
central coefficient of the present analysis, β, is highly significant in every reported
model.

To add emphasis to the main result of the estimation of HST’s model, Table 5.1
summarizes the estimates for β for the preferred models only. To avoid any confusion
with regard to the observational equivalence, it is important to clarify that the
reported estimates for the subjective discount factors represent the βs from the
(β,0) pairs and not from their (β̂,θ) equivalents. It is possible, however, to find
the equivalent pairs by solving equation (5.35) for θ and calculating its exact value
using the constant β̂ and the estimated βs from Table 5.1. Note, however, that
since the penalty factor θ is always positive, the assumed (fixed) β̂ needs to be lower
than the estimated βs. Consequently, the estimated βs from Table 5.1 suggest that
HST’s fixed β = 0.9971 is too high and should be set at lower values. Since it is
assumed that money illusion is virtually absent in the low-inflation period (i.e., the
consumer seeks no robustness in this period), the estimation results suggest that the
benchmark value for β is approximately 0.9937 for the IPD model and 0.9941 for
the CPI model.

The estimates for β reported in Table 5.1 clearly indicate that robustness is
higher in the high-inflation subperiod than in the low-inflation subperiod, as sug-
gested by the higher estimated values. Since this result is valid for both IPD and CPI
models, it strengthens the intuition that inflation plays an important role for the
robust consumer, independent of their choice of the inflation index. The obtained
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Table 5.1: Estimates of β in the Selected Subperidos

High Inflation Low Inflation
IPD CPI IPD CPI

β 0.9943 0.9944 0.9937 0.9941

The reported estimates for β provide from the preferred models of Table E.1, which summarizes
the maximum-likelihood estimations of HST’s robust consumption model. All βs provide from the
estimation of the model with HF, except in the case of the IPD low-inflation model, which excludes
HF.

difference in the estimated βs is central to our analysis because it clearly advocates
in favor of the presence of money illusion as a distortion to the benchmark REPIH
model. If there were no robustness, we would expect the discount factor to be the
same across the different subperiods. However, the fact that the estimated βs are
higher in the high-inflation subperiod endorses the assumption that model uncer-
tainty is higher during this period and that the consumers have a higher willingness
to hedge against the resulting misspecification in the benchmark model.

At this stage, it is important to recall that, while the presented estimation re-
sults concede little doubt about the higher degree of robustness in the high-inflation
period, this is not necessarily attributable to money illusion alone. As a matter
of fact, the indirect measure of money illusion adopted in this chapter does not
exclude that the difference in robustness is due to other model distortions that oc-
curred during the selected high-inflation subperiods. However, there is little doubt
that a non-negligible part of the robustified misspecifications stem from inflation-
related phenomena, especially when HF is directly controlled for in the model (see
Section 5.2.1). Moreover, note that neither HST nor Hansen and Sargent (2008) ever
provided any details regarding the source of the small misspecifications the robust
consumer wants to hedge against. In this respect, the present analysis provides a
first explanation by showing that robustness is closely related to inflation-related
model uncertainty, which can be interpreted as money illusion whenever the con-
sumer changes her consumption behavior in response to inflation (all other things
held constant).

Another criticism one could level against the argument that robustness is more
pronounced in the high-inflation subperiod is that the difference in the estimated βs
in Table 5.1 are relatively small (and, thus, negligible) between the selected subpe-
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Figure 5.4: Impulse Response Function of Consumption to Income Shocks

Impulse response functions of consumption to shocks in persistent (ȳ) and transitory (ŷ) income.
The red (solid) and blue (dash-dot) lines correspond to the preferred models in the high- and low-
inflation subperiods, respectively. The X and Y axes represent, respectively, the number of periods
and the consumption response in log deviations from the equilibrium.

riods. The fact that the differences in the subjective factor have, on the contrary,
a large impact on consumption can be seen in Figure 5.4, which draws, for all pre-
ferred models, the IRFs of consumption to innovations in both components of the
income process. While the absolute values of the consumption responses are not im-
portant for the present analysis, their relative values and shapes perfectly exemplify
the insights that can be gained from the estimation of HST’s robust consumption
model.

Figure 5.4 depicts three features that are particularly noteworthy: two pertaining
to the traditional permanent income theory and one new feature highlighting the
effect of money illusion on consumption. First, looking at the IRFs for the IPD
models in Figures 5.4a and 5.4b, we notice the different shapes of the high-inflation
model (solid line) and the low-inflation model (dash-dot line). This difference is due
to the fact that the preferred IPD model for the high-inflation period incorporates
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HF, whereas the preferred model for the low-inflation period is a simple REPIH
model. As we saw in Section 5.3.3, the IRF of the purely rational consumer is
always flat because she immediately and fully adjusts her consumption after an
income shock, such that her consumption instantly achieves its new long-term value.
The consumer presenting some degree of HF, however, partially bases her current
consumption on her past consumption, which explains the positive slope of the IRF
induced by both permanent and transitory income shocks.

With regard to the shape of the IRF of consumption to income shocks, it is
also interesting to highlight the apparently antagonistic predictions of HST’s robust
consumption model in Figure 5.4 and of the closed-form RCPIH model depicted
in Figure 5.3. Due to the observational equivalence proposition, the former model
implies IRFs that have exactly the same shape as the standard REPIH model (i.e.,
increasing under HF), whereas the latter model predicts a decreasing response of
consumption over time. In fact, both models are fully consistent in that they both
theoretically predict and empirically confirm that a concern for robustness activates
precautionary savings on the part of the consumer.

The second feature that can be observed in Figure 5.4 is that the immediate con-
sumption responses are much higher after permanent shocks than after transitory
shocks. Comparing Figure 5.4a with Figure 5.4b and Figure 5.4c with Figure 5.4d,
we notice that the persistent income shock contributes much more to consumption
fluctuations than does the transitory shock. This is totally is line with the origi-
nal idea of Friedman (1956) (see Section 2.2) and perfectly illustrates one central
assumption made in Chapter 4: namely, that aggregate consumption is essentially
affected by persistent shocks in aggregate income.

The last and most novel observation is the difference in the IRFs between the pre-
ferred models for the low-inflation subperiod (dash-dot line) and the high-inflation
subperiod (solid line). Comparing the immediate response of consumption between
the subperiods clearly shows that the consumption response is always lower in the
high-inflation subperiod than in the low-inflation period. This result is particu-
larly robust because it is valid for both shocks and for both inflation measures.
Looking at the IRFs for the shocks with the greatest impact (i.e., the permanent
income shocks in Figures 5.4a and 5.4c), we see that the values of the immediate
consumption responses to the shocks are only approximately half as important in
the high-inflation period as in the low-inflation period. This large difference between
the subperiods clearly shows that the impact of robustness on consumption is much
more pronounced than could be read from the relatively small differences in the
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estimated βs in Table 5.1. In fact, even small deviations in the subjective discount
factor can have large impacts on consumption.

The fact that the consumption responses to income shocks are significantly lower
in the period with high average inflation rates than in the period with low average
inflation rates allows us to draw two conclusions. First, robustness has a large
negative impact on consumption and, hence, induces precautionary savings. This
result summarizes the main findings by Luo (2008) and HST and can be explained
by the fact that the robust consumer is more prudent than the rational one and
reduces her consumption to prevent potential losses due to misspecifications.

Second, emphasizing the fact that at least some misspecifications are due to
money illusion, the presented estimation results suggest that the robust consumer
and the rational consumer are, in fact, the same money-illusioned consumer, whose
degree of robustness varies with the inflation level. Following this line of thought,
the money-illusioned consumer does not fear money illusion in the subperiod with
low inflation rates and behaves according to the standard REPIH. During the period
with high inflation rates, however, the same consumer fears that she might confuse
nominal values for real values and decides to increase her savings in order to hedge
against the potentially important negative impact of her money illusion. In light
of the large negative effect of robustness on consumption during the high-inflation
subperiod, the main insight to be gained from the empirical analysis of this chapter
is that money illusion has a large negative impact on consumption during periods
when inflation is particularly high.

5.5 Conclusion

This chapter has shown that money illusion can be effectively modeled as a form of
misspecification imposed on the benchmark REPIH model. Contrary to Chapters 3
and 4, which consider different types of consumers that suffer from the distortions
caused by their own money illusions, this chapter assumes that the money-illusioned
consumer is aware of her confusion between nominal and real values and is able to
fully account for it in her consumption behavior. To efficiently account for money
illusion, this robust consumer considers a distorted version of the benchmark model
in which the distortion is proportional to the degree of money illusion from which
she assumes she is suffering.

To analyze the implications for the consumption of this robustness against money
illusion, two different models are considered: a closed-form RCPIH model suggested
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by Luo (2008) and a robust DSGE model developed by Hansen et al. (1999). Both
models theoretically predict that robustness increases the consumer’s precautionary
savings, which can be interpreted as the consumer’s buffer against the distortions
engendered by her money illusion. Furthermore, despite certain empirical limita-
tions of the RCPIH model, both robust consumption models empirically show that
robustness is more pronounced in the selected subperiod characterized by high aver-
age inflation rates than in the subperiod with low inflation rates. Since the consumer
only seeks robustness when she might, indeed, suffer from money illusion, this result
suggests that money illusion is particularly pronounced when inflation is relatively
high. Moreover, the estimations of the robust model by Hansen et al. (1999) demon-
strate that the negative impact of robustness on consumption is very large during
the high-inflation subperiod, revealing that money illusion has a potentially large
negative impact on consumption.

In showing that the degree of robustness against money illusion is not time
invariant and depends on the level of inflation, the estimation results suggest that
the robust consumption model is a potentially more appropriate consumption model
than the restrictive REPIH model, which is used as a benchmark throughout this
thesis. Since the two models are nested, however, they coincide when inflation
uncertainty is particularly low, as is the case in the selected low-inflation subperiod.

Despite these encouraging results, a major drawback of using the robust con-
sumption model to analyze the impact of money illusion on consumption is that
we address money illusion only indirectly as a source of model misspecification and
distortion to the REPIH model. On one hand, the subperiods are selected in such
a way as to ensure that they are characterized by two distinct inflationary envi-
ronments (i.e., one period with high and volatile inflation rates, the other one with
low and stable inflation rates). Further, recall that the inflation extraction problem
estimated in Chapter 4 suggests that the money-illusioned consumer has a greater
consumption smoothing in the high-inflation period. Moreover, all specification
errors and sources of uncertainty not related to inflation are, typically, already cap-
tured by the HF coefficient, whenever HF is explicitly controlled for in the model.
For example, it is plausible to assume that the increase in the HF coefficient during
the high-inflation subperiods already captures the higher volatility in real GDP or
the increased unemployment rates that prevailed during the 1970s in the U.S. These
elements allow us to identify inflation uncertainty as the source of misspecification
and to interpret robustness as a way to hedge against money illusion. Consequently,
money illusion can be seen as providing an economically plausible justification for
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the desire for robustness, which is justified only through statistical arguments in the
robust models of Hansen et al. (1999) and Luo (2008).

On the other hand, we cannot exclude the possibility that the higher robustness
in the high-inflation period reflects other model misspecifications that are related to
inflation, but independent of money illusion. For example, the selected high-inflation
superiod was subject to important surges in the oil prices, which could have fostered
the consumer’s fear of misspecification during that period. Since it is unrealistic to
expect to find at least two periods – or two countries – that have distinct inflation
rates, but for which all other potential sources of uncertainty are the same, the
robust consumption model could be improved in such a way that would allow us
to better isolate the effect of money illusion from those of other distortions. For
example, an interesting extension to the models analyzed in this chapter would be
to use a robust Kalman filter to try to extract the inflation uncertainty from the
other uncertainties. This challenging extension, described in detail in Hansen and
Sargent (2008, Ch. 5, 17, 18), is left for future research.
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Appendix A

Data Description and Properties

A.1 U.S. Data Description

The estimations for the U.S. use quarterly time series, which have been calculated as
the averages of the three monthly values within each specific quarter. The considered
total sample period is from 1959Q1 to 2012Q1. Consumption (ct) is measured
as real personal consumption expenditures of nondurables and services per capita.
Aggregate income (yt) is measured as real disposable personal income per capita.
The wealth variable (at) represents the ratio of household net assets to permanent
income and is calculated as the ratio of financial assets to disposable income. Two
distinct price indexes are used for the variable pt capturing inflation: namely, the
implicit price deflator for the consumption of non-durables and services (IPD) and
the consumer price index (CPI). All the utilized time series are seasonally adjusted
and expressed in logarithms. Since the series are seasonally adjusted, the growth
rates are calculated as the difference from one quarter to the previous one.

Data for consumption, income, wealth and the IPD originate from the U.S.
National Income and Product Accounts. The CPI is published by the U.S. Bureau
of Labor Statistics. All original series are downloadable from the Federal Reserve
Economic Data at http://research.stlouisfed.org/fred2.

A.2 Properties

Table A.1 gives the relevant Augmented DIckey-Fuller (ADF) test statistics for both
the IPD-deflated and the CPI-deflated time series. In brackets are the p-values for
the null hypothesis of the presence of a unit root.
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Table A.1: Unit Root Tests of Selected U.S. Time Series

c ∆ c y ∆ y a ∆ a p ∆ p

IPD −0.50 −5.93 0.17 −13.62 −1.01 −12.39 −1.45 −5.40
[0.98] [0.00] [1.00] [0.00] [0.94] [0.00] [0.84] [0.00]

CPI −2.36 −5.26 −1.55 −14.23 −0.73 −12.41 −1.13 −2.97
[0.40] [0.00] [0.81] [0.00] [0.97] [0.00] [0.92] [0.04]

The statistics have been calculated over the entire sample period from 1959Q1 to 2012Q1. Small
caps represent the variables expressed in logarithms. The difference operator ∆ is the one-quarter
log difference. “IPD” uses the the implicit price deflator for p and for the deflating of all other
series, whereas “CPI” is based on the consumer price index. The reported statistics are the ADF
test statistics, based on the Akaike information criterion, which include constants and linear trends
for the series in levels and the constants only for the differenced series only. The numbers in square
brackets are the MacKinnon (1996) one-sided p-values.

Looking at the first column for each variable, it appears that the null hypothesis
of no unit root is strongly rejected for all series ct, yt, at and pt. The considered
time series are, thus, clearly non-stationary in their log-levels. However, all series
are stationary (AR) processes in their one-quarter log-differences, since the null
hypothesis is not rejected in the second lines. Consequently, to avoid any problems
related to non-stationarity, all estimations throughout the thesis are based on the
first-difference detrended time series ∆ct, ∆yt, ∆at and ∆pt.



Appendix B

Estimations of the
Inflation-Augmented RW Model

157



158 APPENDIX
Table

B
.1:

Linear
IPD

-Inflation
Effect

–
W

hole
Sam

ple

∆
c
t

=
α

+ ∑
Ii=

0
λ
i L
i(∆

p
t )

+
ε
t

(i)
(ii)

(iii)
(iv)

(v)
(vi)

(vii)
(viii)

(ix)
(x)

α
0.01

∗∗∗
0.01

∗∗∗
0.01

∗∗∗
0.01

∗∗∗
0.01

∗∗∗
0.01

∗∗∗
0.01

∗∗∗
0.01

∗∗∗
0.01

∗∗∗
0.01

∗∗∗

(0.00)
(0.00)

(0.00)
(0.00)

(0.00)
(0.00)

(0.00)
(0.00)

(0.00)
(0.00)

λ
0

−
0.71

∗∗∗
−

0.71
∗∗∗

−
0.71

∗∗∗
−

0.71
∗∗∗

−
0.71

∗∗∗
−

0.71
∗∗∗

−
0.70

∗∗∗
−

0.70
∗∗∗

−
0.69

∗∗∗
−

(0.03)
(0.03)

(0.03)
(0.04)

(0.04)
(0.03)

(0.03)
(0.03)

(0.03)
λ

1
0.07

0.07
∗∗

0.07
∗∗

0.07
∗∗

0.07
∗∗∗

0.08
∗∗∗

0.08
∗∗∗

0.08
∗∗∗

0.08
∗∗∗

−
(0.03)

(0.03)
(0.03)

(0.03)
(0.03)

(0.03)
(0.03)

(0.02)
(0.02)

λ
2

0.07
∗∗

0.07
∗∗

0.07
∗∗

0.08
∗∗∗

0.08
∗∗∗

0.09
∗∗∗

0.09
∗∗∗

0.10
∗∗∗

0.10
∗∗∗

−
(0.03)

(0.03)
(0.03)

(0.03)
(0.03)

(0.03)
(0.03)

(0.03)
(0.03)

λ
3

−
0.02

−
0.02

−
0.02

−
0.02

−
0.01

−
0.01

−
0.00

−
0.01

−
−

(0.04)
(0.04)

(0.04)
(0.04)

(0.04)
(0.04)

(0.03)
(0.03)

λ
4

0.03
0.03

0.03
0.04

0.04
0.05

∗
0.04

−
−

−
(0.03)

(0.03)
(0.03)

(0.03)
(0.03)

(0.03)
(0.03)

λ
5

0.03
0.03

0.03
0.04

0.04
0.04

−
−

−
−

(0.03)
(0.03)

(0.03)
(0.03)

(0.03)
(0.03)

λ
6

0.03
0.03

0.03
0.04

0.04
−

−
−

−
−

(0.03)
(0.03)

(0.03)
(0.03)

(0.03)
λ

7
0.02

0.02
0.02

0.02
−

−
−

−
−

−
(0.04)

(0.04)
(0.04)

(0.03)
λ

8
0.05

0.05
∗

0.05
−

−
−

−
−

−
−

(0.03)
(0.03)

(0.03)
λ

9
0.04

0.03
−

−
−

−
−

−
−

−
(0.03)

(0.03)
λ

10
0.02

−
−

−
−

−
−

−
−

−
(0.03)

ε
t−

1
0.53

∗∗∗
0.53

∗∗∗
0.51

∗∗∗
0.50

∗∗∗
0.50

∗∗∗
0.51

∗∗∗
0.49

∗∗∗
0.47

∗∗∗
0.46

∗∗∗
0.29

∗∗∗

(0.07)
(0.09)

(0.07)
(0.08)

(0.08)
(0.08)

(0.08)
(0.07)

(0.07)
(0.09)

R̄
2

0.75
0.74

0.74
0.74

0.74
0.73

0.73
0.72

0.72
0.07

A
IC

−
7.87

−
7.86

−
7.85

−
7.84

−
7.85

−
7.83

−
7.82

−
7.80

−
7.81

−
6.64

B
IC

−
7.65

−
7.66

−
7.67

−
7.68

−
7.71

−
7.70

−
7.70

−
7.71

−
7.73

−
6.61

D
W

1.77
1.80

1.77
1.77

1.74
1.76

1.74
1.75

1.72
2.02

F
P

50.48
54.06

58.86
63.98

72.27
80.40

91.47
106.52

133.07
16.42

[0.00]
[0.00]

[0.00]
[0.00]

[0.00]
[0.00]

[0.00]
[0.00]

[0.00]
[0.00]

T
he

presented
O
LS

estim
ates

are
calculated

for
quarterly

U
.S.

data
over

the
sam

ple
from

1959Q
1
to

2012Q
1.

T
hey

rely
on

the
IP

D
both

as
the

deflator
and

as
the

inflation
m
easure.

In
the

equation,
sm

all
caps

denote
the

variables
expressed

in
logarithm

s
and

L
denotes

the
lag

operator.
{ ∗, ∗∗, ∗∗∗}

indicate
statisticalsignificance

ofthe
coeffi

cient
at

the
{10,5,1}

percent
levels.

In
parenthesis

are
the

estim
ated

N
ew

ey-W
est

heteroscedasticity
and

autocorrelation
consistent

(H
A
C
)
standard

errors.
T
he

coeffi
cient

for
ε
t−

1
is
the

estim
ated

first-order
m
oving-average

(M
A
)

coeffi
cient

of
the

error
term

in
the

equation.
If

it
lies

inside
the

unit
circle,

the
M
A
(1)

process
is

stationary.
R̄

2,
A
IC

,
B
IC

and
D
W

denote,
respectively,the

adjusted
coeffi

cient
ofdeterm

ination,the
A
kaike

inform
ation

criterion,the
Schw

arz
criterion

and
the

D
urbin-W

atson
statistic.

F
P

gives
the

statistic
for

the
F-test

of
joint

significance
of

the
coeffi

cients,
w
hile

the
num

ber
in

squared
brackets

is
the

corresponding
p-value.

T
he

highlighted
m
odelis

the
one

chosen
for

the
analysis

and
for

Tables
(3.1)

and
(3.2)

in
the

text.



APPENDIX 159

Ta
bl
e
B
.2
:
Li
ne

ar
C
PI

-I
nfl

at
io
n
Eff

ec
t
–
W

ho
le

Sa
m
pl
e

∆
c t

=
α

+
∑ I i=

0
λ
i
L
i
(∆
p
t
)
+
ε t

(i
)

(i
i)

(i
ii)

(i
v)

(v
)

(v
i)

(v
ii)

(v
iii

)
(i

x)

α
0.

01
∗∗
∗

0.
01
∗∗
∗

0.
01
∗∗
∗

0.
01
∗∗
∗

0.
01
∗∗
∗

0.
01
∗∗
∗

0.
01
∗∗
∗

0.
01
∗∗
∗

0.
00
∗∗
∗

(0
.0

0)
(0

.0
0)

(0
.0

0)
(0

.0
0)

(0
.0

0)
(0

.0
0)

(0
.0

0)
(0

.0
0)

(0
.0

0)
λ

0
−

0.
40
∗∗
∗
−

0.
40
∗∗
∗
−

0.
40
∗∗
∗
−

0.
41
∗∗
∗
−

0.
42
∗∗
∗
−

0.
40
∗∗
∗
−

0.
39
∗∗
∗
−

0.
38
∗∗
∗

−
(0

.0
9)

(0
.0

9)
(0

.0
9)

(0
.1

0)
(0

.1
0)

(0
.1

0)
(0

.1
0)

(0
.0

9)
λ

1
0.

03
0.

03
0.

03
0.

02
0.

03
0.

03
0.

02
0.

04
−

(0
.0

9)
(0

.0
9)

(0
.0

9)
(0

.0
8)

(0
.0

8)
(0

.0
8)

(0
.0

8)
(0

.0
7)

λ
2

0.
08

0.
08

0.
08

0.
10
∗

0.
10
∗

0.
11
∗

0.
12
∗∗

0.
15
∗∗

−
(0

.0
6)

(0
.0

6)
(0

.0
6)

(0
.0

6)
(0

.0
6)

(0
.0

6)
(0

.0
6)

(0
.0

6)
λ

3
−

0.
17
∗∗

−
0.

18
∗∗

−
0.

19
∗∗

−
0.

18
∗∗

−
0.

17
∗∗

−
0.

17
∗∗

−
0.

17
∗∗

−
0.

15
∗∗

−
(0

.0
8)

(0
.0

8)
(0

.0
8)

(0
.0

9)
(0

.0
8)

(0
.0

8)
(0

.0
8)

(0
.0

7)
λ

4
0.

05
0.

06
0.

07
0.

09
∗

0.
09

0.
10

0.
10

−
−

(0
.0

7)
(0

.0
7)

(0
.0

7)
(0

.0
7)

(0
.0

7)
(0

.0
7)

(0
.0

7)
λ

5
−

0.
00

−
0.

01
−

0.
01

0.
03

0.
03

0.
04

−
−

−
(0

.0
6)

(0
.0

6)
(0

.0
6)

(0
.0

6)
(0

.0
7)

(0
.0

7)
λ

6
−

0.
03

−
0.

02
−

0.
01

0.
03

0.
03

−
−

−
−

(0
.0

7)
(0

.0
7)

(0
.0

6)
(0

.0
7)

(0
.0

6)
λ

7
−

0.
02

−
0.

02
−

0.
02

0.
01

−
−

−
−

−
(0

.0
7)

(0
.0

7)
(0

.0
7)

(0
.0

7)
λ

8
0.

13
0.

15
∗

0.
15
∗

−
−

−
−

−
−

(0
.0

8)
(0

.0
8)

(0
.0

8)
λ

9
0.

02
0.

03
−

−
−

−
−

−
−

(0
.0

6)
(0

.0
6)

λ
10

0.
04

−
−

−
−

−
−

−
−

(0
.0

5)
ε t
−

1
0.

47
∗∗
∗

0.
47
∗∗
∗

0.
45
∗∗
∗

0.
45
∗∗
∗

0.
45
∗∗
∗

0.
45
∗∗
∗

0.
44
∗∗
∗

0.
43
∗∗
∗

0.
41
∗∗
∗

(0
.0

7)
(0

.0
7)

(0
.0

7)
(0

.0
8)

(0
.0

8)
(0

.0
8)

(0
.0

7)
(0

.0
8)

(0
.0

7)

R̄
2

0.
38

0.
37

0.
37

0.
35

0.
35

0.
35

0.
35

0.
34

0.
16

A
IC

−
7.

92
−

7.
91

−
7.

91
−

7.
90

−
7.

91
−

7.
91

−
7.

91
−

7.
90

−
7.

70
B

IC
−

7.
70

−
7.

71
−

7.
73

−
7.

73
−

7.
76

−
7.

78
−

7.
80

−
7.

80
−

7.
66

D
W

1.
84

1.
87

1.
84

1.
84

1.
83

1.
83

1.
84

1.
84

1.
92

F
P

11
.0

6
11

.7
5

12
.7

9
13

.2
9

15
.0

5
17

.0
5

19
.5

4
22

.1
8

42
.6

8
[0

.0
0]

[0
.0

0]
[0

.0
0]

[0
.0

0]
[0

.0
0]

[0
.0

0]
[0

.0
0]

[0
.0

0]
[0

.0
0]

A
ll
th
e
no

te
s
fo
r
Ta

bl
e
B
.1

ap
pl
y
to

th
is

ta
bl
e
ex
ce
pt

fo
r
th
e
in
fla

tio
n
m
ea
su
re

(h
er
e:

C
P
I)
.



160 APPENDIX

Table
B
.3:

Linear
IPD

-Inflation
Effect

–
H
igh-Inflation

Subperiod

∆
c
t

=
α

+ ∑
Ii=

0
λ
i L
i(∆

p
t )

+
ε
t

(i)
(ii)

(iii)
(iv)

(v)
(vi)

(vii)
(viii)

(ix)
(x)

(xi)

α
0.01

∗∗∗
0.01

∗∗∗
0.01

∗∗∗
0.01

∗∗∗
0.01

∗∗∗
0.01

∗∗∗
0.02

∗∗∗
0.02

∗∗∗
0.02

∗∗∗
0.02

∗∗∗
0.02

∗∗∗

(0.00)
(0.00)

(0.00)
(0.00)

(0.00)
(0.00)

(0.00)
(0.00)

(0.00)
(0.00)

(0.00)
λ

0
−

0.74
∗∗∗

−
0.72

∗∗∗
−

0.73
∗∗∗

−
0.73

∗∗∗
−

0.73
∗∗∗

−
0.73

∗∗∗
−

0.76
∗∗∗

−
0.76

∗∗∗
−

0.78
∗∗∗

−
0.74

∗∗∗
−

0.72
∗∗∗

(0.08)
(0.08)

(0.08)
(0.08)

(0.07)
(0.07)

(0.07)
(0.08)

(0.08)
(0.09)

(0.07)
λ

1
0.02

0.01
0.00

0.00
0.00

−
0.01

0.00
0.02

0.00
0.05

−
(0.09)

(0.09)
(0.09)

(0.09)
(0.09)

(0.09)
(0.09)

(0.09)
(0.09)

(0.08)
λ

2
0.12

0.11
0.11

0.11
0.11

0.11
0.14

∗
0.17

∗∗
0.14

∗
−

−
(0.09)

(0.09)
(0.09)

(0.08)
(0.08)

(0.08)
(0.08)

(0.07)
(0.07)

λ
3

−
0.15

∗
−

0.16
∗

−
0.16

∗∗∗
−

0.16
∗∗

−
0.16

∗∗
−

0.15
∗

−
0.12

−
0.10

−
−

−
(0.07)

(0.08)
(0.07)

(0.07)
(0.07)

(0.07)
(0.08)

(0.07)
λ

4
0.07

0.08
0.07

0.07
0.07

0.08
0.10

−
−

−
−

(0.08)
(0.09)

(0.08)
(0.08)

(0.07)
(0.07)

(0.07)
λ

5
0.09

0.09
0.08

0.09
0.09

0.10
∗

−
−

−
−

−
(0.08)

(0.08)
(0.08)

(0.06)
(0.06)

(0.05)
λ

6
0.00

0.00
0.02

0.03
0.03

−
−

−
−

−
−

(0.08)
(0.08)

(0.08)
(0.07)

(0.08)
λ

7
−

0.05
−

0.02
0.00

0.00
−

−
−

−
−

−
−

(0.10)
(0.10)

(0.10)
(0.08)

λ
8

−
0.03

0.00
0.02

−
−

−
−

−
−

−
−

(0.13)
(0.12)

(0.12)
λ

9
0.05

0.07
−

−
−

−
−

−
−

−
−

(0.06)
(0.06)

λ
10

0.11
∗

−
−

−
−

−
−

−
−

−
−

(0.06)
ε
t−

1
0.44

∗∗∗
0.46

∗∗∗
0.48

∗∗∗
0.48

∗∗∗
0.48

∗∗∗
0.48

∗∗∗
0.49

∗∗∗
0.51

∗∗∗
0.48

∗∗∗
0.44

∗∗∗
0.46

∗∗∗

(0.09)
(0.10)

(0.09)
(0.10)

(0.10)
(0.10)

(0.10)
(0.11)

(0.10)
(0.10)

(0.10)

R̄
2

0.75
0.75

0.75
0.75

0.76
0.76

0.76
0.76

0.76
0.75

0.75
A

IC
−

7.92
−

7.91
−

7.93
−

7.96
−

8.00
−

8.02
−

8.03
−

8.03
−

8.04
−

8.01
−

8.04
B

IC
−

7.47
−

7.51
−

7.56
−

7.62
−

7.69
−

7.75
−

7.79
−

7.83
−

7.87
−

7.88
−

7.94
D

W
1.97

1.96
1.95

1.94
1.94

1.95
1.93

1.91
1.93

1.99
1.99

F
P

16.67
17.82

19.65
22.22

25.47
29.56

34.00
40.03

49.20
61.86

93.57
[0.00]

[0.00]
[0.00]

[0.00]
[0.00]

[0.00]
[0.00]

[0.00]
[0.00]

[0.00]
[0.00]

A
llthe

notes
for

Table
B
.1

apply
to

this
table

except
for

the
sam

ple
period

(here:
from

1966Q
1
to

1981Q
3).



APPENDIX 161

Ta
bl
e
B
.4
:
Li
ne

ar
C
PI

-I
nfl

at
io
n
Eff

ec
t
–
H
ig
h-
In
fla

tio
n
Su

bp
er
io
d

∆
c t

=
α

+
∑ I i=

0
λ
i
L
i
(∆
p
t
)
+
ε t

(i
)

(i
i)

(i
ii)

(i
v)

(v
)

(v
i)

(v
ii)

(v
iii

)
(i

x)
(x

)
(x

i)

α
0.

01
∗∗
∗

0.
01
∗∗
∗

0.
01
∗∗
∗

0.
01
∗∗
∗

0.
01
∗∗
∗

0.
01
∗∗
∗

0.
01
∗∗
∗

0.
01
∗∗
∗

0.
01
∗∗
∗

0.
01
∗∗
∗

0.
01
∗∗
∗

(0
.0

0)
(0

.0
0)

(0
.0

0)
(0

.0
0)

(0
.0

0)
(0

.0
0)

(0
.0

0)
(0

.0
0)

(0
.0

0)
(0

.0
0)

(0
.0

0)
λ

0
−

0.
66
∗∗
∗
−

0.
64
∗∗
∗
−

0.
63
∗∗
∗
−

0.
62
∗∗
∗
−

0.
62
∗∗
∗
−

0.
62
∗∗
∗
−

0.
62
∗∗
∗
−

0.
66
∗∗
∗
−

0.
73
∗∗
∗
−

0.
68
∗∗
∗
−

0.
66
∗∗
∗

(0
.1

4)
(0

.1
4)

(0
.1

4)
(0

.1
3)

(0
.1

2)
(0

.1
3)

(0
.1

2)
(0

.1
2)

(0
.1

0)
(0

.1
2)

(0
.0

9)
λ

1
−

0.
11

−
0.

11
−

0.
14

−
0.

14
−

0.
14

−
0.

13
−

0.
12

−
0.

04
−

0.
05

0.
04

−
(0

.1
9)

(0
.1

9)
80

.1
9)

(0
.1

9)
(0

.1
9)

(0
.1

8)
(0

.1
9)

(0
.1

7)
(0

.1
7)

(0
.1

2)
λ

2
0.

26
∗

0.
25
∗

0.
22

0.
22

0.
22

0.
25
∗

0.
24

0.
25
∗

0.
17

−
−

(0
.1

4)
(0

.1
4)

(0
.1

4)
(0

.1
4)

(0
.1

3)
(0

.1
3)

(0
.1

5)
(0

.1
4)

(0
.1

5)
λ

3
−

0.
18

−
0.

20
−

0.
20

−
0.

20
−

0.
20

−
0.

26
∗

−
0.

26
∗

−
0.

18
−

−
−

(0
.1

7)
(0

.1
6)

(0
.1

7)
(0

.1
7)

(0
.1

7)
(0

.1
5)

(0
.1

5)
(0

.1
3)

λ
4

0.
19

0.
20

0.
19

0.
19

0.
20

0.
18

0.
16

−
−

−
−

(0
.1

8)
(0

.1
8)

(0
.1

7)
(0

.1
7)

(0
.1

5)
(0

.1
4)

(0
.1

2)
λ

5
0.

07
0.

06
0.

07
0.

04
0.

05
−

0.
02

−
−

−
−

−
(0

.1
2)

(0
.1

2)
(0

.1
2)

(0
.1

2)
(0

.1
3)

(0
.1

5)
λ

6
−

0.
20

−
0.

20
−

0.
13

−
0.

13
−

0.
13

−
−

−
−

−
−

(0
.1

6)
(0

.1
5)

(0
.1

3)
(0

.1
2)

(0
.1

2)
λ

7
−

0.
03

0.
00

0.
04

0.
01

−
−

−
−

−
−

−
(0

.1
9)

(0
.1

6)
(0

.1
6)

(0
.1

4)
λ

8
−

0.
17

−
0.

16
−

0.
05

−
−

−
−

−
−

−
−

(0
.2

4)
(0

.2
4)

(0
.2

2)
λ

9
0.

15
0.

20
−

−
−

−
−

−
−

−
−

(0
.1

5)
(0

.1
3)

λ
10

0.
10

−
−

−
−

−
−

−
−

−
−

(0
.1

6)
ε t
−

1
0.

41
∗∗
∗

0.
42
∗∗
∗

0.
42
∗∗
∗

0.
41
∗∗
∗

0.
41
∗∗
∗

0.
40
∗∗
∗

0.
41
∗∗
∗

0.
43
∗∗
∗

0.
42
∗∗
∗

0.
40
∗∗
∗

0.
40
∗∗
∗

(0
.1

1)
(0

.1
1)

(0
.1

1)
(0

.1
1)

(0
.1

1)
(0

.1
2)

(0
.1

2)
(0

.1
2)

(0
.1

2)
(0

.1
2)

(0
.0

9)

R̄
2

0.
55

0.
55

0.
55

0.
55

0.
56

0.
56

0.
57

0.
57

0.
56

0.
56

0.
56

A
IC

−
7.

79
−

7.
81

−
7.

81
−

7.
84

−
7.

87
−

7.
89

−
7.

92
−

7.
92

−
7.

92
−

7.
92

−
7.

95
B

IC
−

7.
36

−
7.

42
−

7.
45

−
7.

51
−

7.
58

−
7.

63
−

7.
69

−
7.

73
−

7.
76

−
7.

79
−

7.
85

D
W

1.
94

1.
95

1.
92

1.
92

1.
92

1.
91

1.
91

1.
91

1.
91

1.
97

1.
97

F
P

7.
62

8.
38

8.
97

10
.1

1
11

.5
7

13
.1

7
15

.6
2

18
.3

1
22

.1
3

28
.4

8
43

.2
8

[0
.0

0]
[0

.0
0]

[0
.0

0]
[0

.0
0]

[0
.0

0]
[0

.0
0]

[0
.0

0]
[0

.0
0]

[0
.0

0]
[0

.0
0]

[0
.0

0]

A
ll
th
e
no

te
s
fo
r
Ta

bl
e
B
.1

ap
pl
y
to

th
is
ta
bl
e
ex
ce
pt

fo
r
th
e
in
fla

tio
n
m
ea
su
re

(h
er
e:

C
P
I)

an
d
th
e
sa
m
pl
e
pe

rio
d
(h
er
e:

fr
om

19
66
Q
1
to

19
82
Q
3)
.



162 APPENDIX

Table B.5: Linear IPD-Inflation Effect – Low-Inflation Subperiod

∆ct = α+
∑I

i=0 λiL
i(∆pt) + εt

(i) (ii) (iii) (iv) (v) (vi)

α 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

λ0 −0.62∗∗∗ −0.65∗∗∗ −0.66∗∗∗ −0.64∗∗∗ −0.67∗∗∗ −0.67∗∗∗
(0.10) (0.10) (0.09) (0.11) (0.09) (0.08)

λ1 0.11 0.13∗∗ 0.16∗∗ 0.19∗∗ 0.22∗∗∗ 0.21∗∗∗
(0.06) (0.06) (0.06) (0.07) (0.07) (0.07)

λ2 −0.10 −0.12∗ −0.09 −0.13∗∗ −0.11∗ −0.11∗
(0.07) (0.06) (0.06) (0.06) (0.05) (0.05)

λ3 0.12∗ 0.10 0.07 0.05 0.05 0.08∗
(0.06) (0.06) (0.05) (0.06) (0.06) (0.04)

λ4 −0.21∗∗∗ −0.18∗∗∗ −0.21∗∗∗ −0.20∗∗∗ −0.26∗∗∗ −0.30∗∗∗
(0.05) (0.05) (0.06) (0.07) (0.07) (0.05)

λ5 0.02 0.05 0.05 0.11∗ 0.17∗∗∗ 0.17∗∗∗
(0.04) (0.06) (0.05) (0.06) (0.06) (0.06)

λ6 0.09∗ 0.09∗ 0.14∗∗∗ 0.07∗∗ 0.08∗∗ 0.06∗
(0.05) (0.05) (0.04) (0.03) (0.03) (0.03)

λ7 0.00 −0.04 −0.09 −0.10∗ −0.07 −
(0.07) (0.06) (0.05) (0.05) (0.05)

λ8 0.10 0.14∗∗ 0.14∗∗ 0.11∗ − −
(0.06) (0.06) (0.06) (0.06)

λ9 −0.11∗∗∗ −0.10∗∗ −0.13∗∗∗ − − −
(0.04) (0.04) (0.04)

λ10 −0.11∗∗∗ −0.09∗∗ − − − −
(0.04) (0.04)

λ11 0.10∗ − − − − −
(0.06)

εt−1 0.17 0.17 0.10 0.21 0.11 0.05
(0.16) (0.15) (0.20) (0.13) (0.15) (0.18)

R̄2 0.74 0.72 0.71 0.68 0.66 0.66
AIC −9.12 −9.07 −9.05 −8.97 −8.93 −8.94
BIC −8.54 −8.53 −8.55 −8.51 −8.51 −8.57
DW 1.90 1.93 1.95 2.00 2.00 1.98
FP 9.59 9.50 9.82 9.44 9.62 10.68

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

All the notes for Table B.1 apply to this table except for the sample period (here: from 1991Q1 to
2001Q1).
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Table B.6: Linear CPI-Inflation Effect – Low-Inflation Subperiod

∆ct = α+
∑I

i=0 λiL
i(∆pt) + εt

(i) (ii) (iii) (iv) (v) (vi) (vii)

α 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

λ0 −0.34 −0.33 −0.34 −0.41∗ −0.44∗∗ −0.43∗∗ −0.52∗∗∗
(0.24) (0.24) (0.22) (0.20) (0.21) (0.20) (0.19)

λ1 0.25 0.24 0.30 0.37 0.33 0.33 0.23
(0.21) (0.23) (0.25) (0.27) (0.27) (0.26) (0.20)

λ2 −0.48∗∗ −0.42∗∗ −0.51∗∗∗ −0.48∗∗∗ −0.48∗∗ −0.49∗∗ −0.34∗∗
(0.17) (0.17) (0.17) (0.18) (0.19) (0.21) (0.14)

λ3 0.20 0.14 0.10 0.12 0.21 0.23 0.24
(0.18) (0.20) (0.18) (0.18) (0.16) (0.16) (0.16)

λ4 −0.57∗∗∗ −0.58∗∗∗ −0.58∗∗∗ −0.70∗∗∗ −0.83∗∗∗ −0.82∗∗∗ −0.70∗∗∗
(0.15) (0.16) (0.15) (0.18) (0.23) (0.22) (0.14)

λ5 0.01 −0.01 0.10 0.28 0.28 0.29 −
(0.16) (0.17) (0.18) (0.22) (0.24) (0.27)

λ6 0.27 0.34∗ 0.13 0.14 0.04 − −
(0.17) (0.17) (0.16) (0.19) (0.16)

λ7 −0.20 −0.31∗ −0.34∗ −0.22 − − −
(0.17) (0.17) (0.17) (0.19)

λ8 0.42∗ 0.41 0.30 − − − −
(0.23) (0.24) (0.18)

λ9 −0.30∗∗ −0.37∗∗ − − − − −
(0.15) (0.17)

λ10 −0.19 − − − − − −
(0.12)

εt−1 0.16 0.14 0.24∗∗ 0.13 0.07 0.07 0.09
(0.14) (0.14) (0.11) (0.14) (0.19) (0.18) (0.16)

R̄2 0.45 0.45 0.39 0.37 0.36 0.38 0.35
AIC −8.73 −8.74 −8.65 −8.62 −8.63 −8.68 −8.66
BIC −8.19 −8.24 −8.19 −8.21 −8.26 −8.34 −8.36
DW 1.94 1.93 1.99 1.98 1.97 1.97 1.97
FP 3.77 3.99 3.60 3.57 3.81 4.48 4.60

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

All the notes for Table B.1 apply to this table except for the inflation measure (here: CPI) and the
sample period (here: from 1991Q1 to 2001Q1).
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Table B.7: Nonlinear IPD-Inflation Effect – Whole Sample

∆ct = α+
∑I

i=0 λiL
i(∆pt) +

∑J

j=0 λ
∗
jL

j(∆pt)2 + εt

(i*) (ii*) (iii*) (iv*) (v*) (vi*)

α 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

λ0 −0.69∗∗∗ −0.68∗∗∗ −0.69∗∗∗ −0.69∗∗∗ −0.69∗∗∗ −0.69∗∗∗
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

λ1 0.10∗∗∗ 0.10∗∗∗ 0.10∗∗∗ 0.10∗∗∗ 0.11∗∗∗ 0.10∗∗∗
(0.03) (0.03) (0.03) (0.03) (0.03) (0.02)

λ2 0.10∗∗∗ 0.10∗∗∗ 0.10∗∗∗ 0.11∗∗∗ 0.11∗∗∗ 0.11∗∗∗
(0.03) (0.03) (0.03) (0.03) (0.03) (0.02)

λ3 −0.00 0.00 0.01 0.01 0.01 0.01
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

λ4 0.07∗∗ 0.08∗∗ 0.08∗∗∗ 0.08∗∗∗ 0.09∗∗∗ 0.09∗∗∗
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

λ5 0.07∗∗∗ 0.07∗∗∗ 0.07∗∗∗ 0.07∗∗∗ 0.07∗∗∗ 0.06∗∗∗
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

λ6 0.05∗∗ 0.05∗∗ 0.06∗∗ 0.06∗∗ 0.06∗∗ 0.06∗∗
(0.02) (0.02) (0.02) (0.03) (0.03) (0.03)

λ7 0.04 0.04 0.04 0.04 − −
(0.04) (0.04) (0.04) (0.04)

λ8 0.04 0.04 0.04 − − −
(0.03) (0.03) (0.03)

λ9 0.02 0.02 − − − −
(0.03) (0.03)

λ10 0.02 − − − − −
(0.03)

λ∗0 −1.98∗∗∗ −1.94∗∗∗ −2.10∗∗∗ −2.36∗∗∗ −2.31∗∗∗ −2.33∗∗∗
(0.53) (0.53) (0.50) (0.51) (0.50) (0.49)

λ∗1 −1.89∗∗ −1.90∗∗ −2.06∗∗ −2.06∗∗∗ −2.01∗∗∗ −2.17∗∗∗
(0.88) (0.84) (0.82) (0.79) (0.74) (0.72)

λ∗2 −1.23∗∗ −1.33∗∗ −1.28∗∗ −1.16∗∗ −1.17∗∗ −1.28∗∗∗
(0.57) (0.54) (0.52) (0.47) (0.47) (0.48)

λ∗3 −2.51∗∗∗ −2.51∗∗∗ −2.40∗∗∗ −2.36∗∗∗ −2.21∗∗∗ −2.07∗∗∗
(0.64) (0.64) (0.61) (0.63) (0.65) (0.67)

λ∗4 −1.21∗∗ −1.15∗∗ −1.12∗∗ −1.00∗ −0.81 −
(0.57) (0.56) (0.56) (0.57) (0.62)

εt−1 0.46∗∗∗ 0.47∗∗∗ 0.45∗∗∗ 0.44∗∗∗ 0.44∗∗∗ 0.44∗∗∗
(0.07) (0.07) (0.07) (0.08) (0.08) (0.08)

R̄2 0.77 0.76 0.76 0.76 0.76 0.76
AIC −7.94 −7.92 −7.92 −7.92 −7.92 −7.92
BIC −7.64 −7.65 −7.66 −7.67 −7.69 −7.72
DW 1.84 1.88 1.84 1.84 1.81 1.81
FP 40.40 41.97 44.68 47.04 50.29 54.45

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

All the notes for Table B.1 apply to this table.
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Table B.8: Nonlinear CPI-Inflation Effect – Whole Sample

∆ct = α+
∑I

i=0 λiL
i(∆pt) +

∑J

j=0 λ
∗
jL

j(∆pt)2 + εt

(i*) (ii*) (iii*) (iv*) (v*) (vi*) (vii*)

α 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

λ0 −0.22∗∗∗ −0.21∗∗∗ −0.21∗∗∗ −0.20∗∗∗ −0.20∗∗∗ −0.19∗∗∗ −0.18∗∗∗
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

λ1 0.23∗∗∗ 0.24∗∗∗ 0.24∗∗∗ 0.24∗∗∗ 0.24∗∗∗ 0.24∗∗∗ 0.23∗∗∗
(0.07) (0.07) (0.06) (0.06) (0.06) (0.06) (0.06)

λ2 0.18∗∗∗ 0.18∗∗ 0.19∗∗∗ 0.20∗∗∗ 0.20∗∗∗ 0.21∗∗∗ 0.22∗∗∗
(0.07) (0.07) (0.07) (0.06) (0.06) (0.06) (0.06)

λ3 −0.09 −0.09 −0.11 −0.10 −0.09 −0.10 −0.10
(0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.07)

λ4 0.12∗ 0.13∗∗ 0.14∗∗ 0.15∗∗ 0.14∗∗ 0.14∗∗ 0.14∗∗
(0.06) (0.06) (0.06) (0.07) (0.07) (0.07) (0.07)

λ5 0.01 0.00 0.01 0.01 0.01 0.02 −
(0.05) (0.05) (0.05) (0.06) (0.06) (0.06)

λ6 −0.03 −0.02 −0.02 0.00 0.00 − −
(0.05) (0.05) (0.06) (0.06) (0.06)

λ7 −0.01 −0.01 −0.02 −0.00 − − −
(0.07) (0.07) (0.07) (0.07)

λ8 0.08 0.10 0.09 − − − −
(0.08) (0.08) (0.08)

λ9 −0.04 −0.03 − − − − −
(0.06) (0.06)

λ10 0.04 − − − − − −
(0.05)

λ∗0 −10.21∗∗∗ −10.19∗∗∗ −10.06∗∗∗ −11.16∗∗∗ −11.23∗∗∗ −11.31∗∗∗ −11.37∗∗∗
(2.84) (2.80) (2.84) (2.65) (2.66) (2.54) (2.47)

λ∗1 −9.85∗∗∗ −10.19∗∗∗ −9.83∗∗∗ −9.90∗∗∗ −9.93∗∗∗ −10.08∗∗∗ −10.00∗∗∗
(3.76) (3.67) (3.57) (3.42) (3.40) (3.39) (3.39)

εt−1 0.43∗∗∗ 0.43∗∗∗ 0.41∗∗∗ 0.40∗∗∗ 0.41∗∗∗ 0.41∗∗∗ 0.40∗∗∗
(0.07) (0.07) (0.07) (0.08) (0.07) (0.07) (0.07)

R̄2 0.43 0.43 0.42 0.42 0.42 0.42 0.42
AIC −8.00 −7.99 −8.00 −8.00 −8.01 −8.01 −8.01
BIC −7.75 −7.77 −7.78 −7.80 −7.83 −7.85 −7.87
DW 1.84 1.86 1.85 1.84 1.84 1.84 1.85
FP 11.89 12.55 13.48 14.40 15.97 17.71 19.67

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

All the notes for Table B.1 apply to this table except for the inflation measure (here: CPI).
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Table

B
.9:

N
onlinear

IPD
-Inflation

Effect
–
H
igh-Inflation

Subperiod

∆
c
t

=
α

+ ∑
Ii=

0
λ
i L
i(∆

p
t )

+ ∑
Jj=

0
λ
∗j
L
j(∆

p
t ) 2

+
ε
t

(i*)
(ii*)

(iii*)
(iv*)

(v*)
(vi*)

(vii*)
(viii*)

(ix*)
(x*)

(xi*)

α
0.01

∗∗∗
0.01

∗∗∗
0.01

∗∗∗
0.01

∗∗∗
0.01

∗∗∗
0.01

∗∗∗
0.01

∗∗∗
0.01

∗∗∗
0.02

∗∗∗
0.02

∗∗∗
0.02

∗∗∗

(0.00)
(0.00)

(0.00)
(0.00)

(0.00)
(0.00)

(0.00)
(0.00)

(0.00)
(0.00)

(0.00)
λ

0
−

0.51
∗∗∗

−
0.46

∗∗∗
−

0.52
∗∗∗

−
0.51

∗∗∗
−

0.53
∗∗∗

−
0.54

∗∗∗
−

0.56
∗∗∗

−
0.56

∗∗∗
−

0.53
∗∗∗

−
0.52

∗∗∗
−

0.72
∗∗∗

(0.17)
(0.16)

(0.17)
(0.15)

(0.15)
(0.17)

(0.17)
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(0.19)
(0.18)

(0.07)
λ

1
0.20

0.16
0.00
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−

−
−

−
−
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(0.09)
(0.15)

(0.15)
(0.15)

λ
2

0.23
0.18

0.11
0.19
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−

−
−

−
−

−
(0.16)

(0.17)
(0.09)

(0.17)
(0.18)

λ
3

−
0.10

−
0.10

−
0.14

−
0.07

−
0.10

−
−

−
−

−
−

(0.13)
(0.13)

(0.08)
(0.14)

(0.13)
λ

4
0.19

0.22
0.08

0.24
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−
−

−
−

−
−

(0.19)
(0.18)

(0.09)
(0.17)

(0.07)
λ

5
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0.08

0.09
∗
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−

−
−

−
−

−
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(0.08)
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λ
6

−
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−
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−
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−
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λ

7
−

0.08
−

0.04
−

0.03
−

−
−

−
−

−
−

−
(0.11)

(0.10)
(0.11)

λ
8

−
0.02

0.01
0.02

−
−

−
−

−
−

−
−

(0.14)
(0.14)

(0.13)
λ

9
0.07

0.10
∗
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λ
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−
−

−
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−
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λ
∗0
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−
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∗
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∗
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∗
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∗
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−
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λ
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−
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−
4.21

−
−

3.43
−

3.41
−
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−
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−

0.32
0.28

−
−

(5.13)
(4.89)

(4.66)
(4.73)

(4.61)
(2.44)
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(2.26)

λ
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−
2.89

−
1.87

−
−

2.28
−

2.06
2.63
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∗
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λ
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−
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−
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−
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−
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−
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−
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λ
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−
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−
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−
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−
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−
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ε
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1
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0.43
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0.42
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0.42
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0.43
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(0.08)
(0.09)

(0.10)
(0.10)

(0.09)
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(0.10)

(0.10)
(0.10)

(0.10)

R̄
2

0.74
0.74

0.75
0.75

0.76
0.75

0.75
0.75

0.75
0.75

0.75
A

IC
−

7.82
−

7.82
−

7.91
−

7.93
−

7.94
−

7.97
−

7.99
−

8.01
−

8.00
−

8.03
−

8.04
B

IC
−

7.21
−

7.25
−

7.47
−

7.48
−

7.53
−

7.70
−

7.76
−

7.81
−

7.83
−

7.90
−

7.94
D

W
2.02

2.01
2.00

1.98
1.98

1.96
1.95

1.97
2.01

2.02
1.99

F
P

11.51
12.04

16.65
16.91

18.37
27.57

32.39
39.05

46.80
63.44

93.57
[0.00]

[0.00]
[0.00]

[0.00]
[0.00]

[0.00]
[0.00]

[0.00]
[0.00]

[0.00]
[0.00]

A
llthe

notes
for

Table
B
.1

apply
to

this
table

except
for

the
sam

ple
period

(here:
from

1966Q
1
to

1981Q
3).
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Table B.11: Nonlinear IPD-Inflation Effect – Low-Inflation Subperiod

∆ct = α+
∑I

i=0 λiL
i(∆pt) +

∑J

j=0 λ
∗
jL

j(∆pt)2 + εt

(i*) (ii*) (iii*) (iv*) (v*) (vi*)

α 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

λ0 −0.73∗∗∗ −0.74∗∗∗ −0.76∗∗∗ −0.74∗∗∗ −0.74∗∗∗ −0.76∗∗∗
(0.14) (0.14) (0.13) (0.14) (0.13) (0.11)

λ1 0.10 0.10 0.12 0.11 0.11 0.14∗∗
(0.16) (0.15) (0.12) (0.13) (0.13) (0.06)

λ2 −0.16 −0.15 −0.15 −0.11 −0.11 −0.10∗
(0.11) (0.10) (0.10) (0.10) (0.07) (0.06)

λ3 0.14 0.12 0.14∗ 0.06 0.06 0.06
(0.10) (0.08) (0.08) (0.06) (0.06) (0.06)

λ4 −0.13 −0.12 −0.16∗∗ −0.19∗∗ −0.19∗∗∗ −0.19∗∗∗
(0.14) (0.14) (0.06) (0.07) (0.07) (0.06)

λ5 0.07 0.08 0.06 0.06 0.06 0.05
(0.08) (0.07) (0.05) (0.05) (0.05) (0.04)

λ6 0.12∗∗ 0.16∗∗∗ 0.16∗∗∗ 0.15∗∗∗ 0.16∗∗∗ 0.16∗∗∗
(0.05) (0.04) (0.04) (0.04) (0.04) (0.04)

λ7 −0.09 −0.12∗∗ −0.12∗∗ −0.10∗ −0.11∗∗ −0.10∗
(0.06) (0.05) (0.05) (0.05) (0.05) (0.05)

λ8 0.16∗∗ 0.15∗∗ 0.16∗∗ 0.15∗ 0.15∗∗ 0.15∗∗
(0.07) (0.07) (0.07) (0.07) (0.06) (0.06)

λ9 −0.09∗∗ −0.10∗∗ −0.11∗∗ −0.13∗∗ −0.13∗∗ −0.13∗∗
(0.04) (0.04) (0.04) (0.05) (0.05) (0.05)

λ10 −0.05 − − − − −
(0.05)

λ∗0 13.78 15.37 15.56 14.32 14.32 14.88∗
(8.12) (9.45) (9.39) (9.06) (8.88) (8.08)

λ∗1 2.02 2.93 1.06 2.59 2.51 −
(11.39) (10.06) (7.73) (7.76) (7.99)

λ∗2 1.03 1.47 2.05 −0.18 − −
(6.04) (5.84) (5.02) (5.23)

λ∗3 −5.33 −5.73 −6.54∗ − − −
(3.98) (3.69) (3.53)

λ∗4 −1.36 −2.55 − − − −
(7.43) (6.70)

R̄2 0.69 0.69 0.70 0.69 0.71 0.72
AIC −8.92 −8.94 −8.99 −9.00 −9.05 −9.10
BIC −8.21 −8.28 −8.36 −8.42 −8.51 −8.59
DW 1.80 1.91 1.89 1.93 1.93 1.93
FP 6.46 6.96 7.71 8.26 9.28 10.42

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

All the notes for Table B.1 apply to this table except for the sample period (here: from 1991Q1 to
2001Q1).
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Table B.12: Nonlinear CPI-Inflation Effect – Low-Inflation Subperiod

∆ct = α+
∑I

i=0 λiL
i(∆pt) +

∑J

j=0 λ
∗
jL

j(∆pt)2 + εt

(i*) (ii*) (iii*) (iv*) (v*) (vi*) (vii*)

α 0.01∗∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

λ0 0.30 −0.40 −0.46 −0.61 −0.54 −0.44 −0.33
(1.22) (1.17) (1.12) (1.05) (1.02) (1.08) (0.24)

λ1 −0.75 −0.77 −0.43 −0.16 −0.30 0.25 0.24
(1.06) (0.99) (0.65) (0.76) (0.56) (0.24) (0.23)

λ2 −0.40 −0.38 −0.48 −0.79 −0.53∗∗ −0.43∗∗ −0.42∗∗
(0.51) (0.54) (0.60) (0.53) (0.20) (0.18) (0.17)

λ3 −0.61 −0.68 −0.48 0.14 0.19 0.14 0.14
(0.89) (0.91) (0.77) (0.26) (0.23) (0.21) (0.20)

λ4 −0.27 −0.36 −0.71∗∗∗ −0.60∗∗∗ −0.61∗∗∗ −0.58∗∗∗ −0.58∗∗∗
(0.95) (0.87) (0.20) (0.18) (0.16) (0.16) (0.16)

λ5 0.17 0.13 0.07 0.03 0.04 −0.02 −0.01
(0.27) (0.27) (0.20) (0.20) (0.19) (0.18) (0.17)

λ6 0.20 0.30 0.33∗ 0.37∗∗ 0.34∗ 0.34∗ 0.34∗
(0.19) (0.20) (0.18) (0.18) (0.17) (0.17) (0.17)

λ7 −0.14 −0.25 −0.28∗ −0.36∗∗ −0.34∗∗ −0.31∗ −0.31∗
(0.17) (0.18) (0.15) (0.16) (0.16) (0.17) (0.17)

λ8 0.35 0.36 0.41 0.43 0.44∗ 0.41 0.41
(0.31) (0.31) (0.28) (0.27) (0.25) (0.25) (0.24)

λ9 −0.29 −0.38∗ −0.41∗ −0.39∗∗ −0.39∗∗ −0.37∗∗ −0.37∗∗
(0.18) (0.20) (0.17) (0.18) (0.17) (0.17) (0.17)

λ10 −0.20 − − − − − −
(0.14)

λ∗0 −34.47 24.10 25.86 29.34 22.39 9.01 −
(97.47) (93.41) (87.73) (83.65) (80.17) (85.23)

λ∗1 70.35 73.45 50.27 26.59 36.52 − −
(67.31) (62.41) (36.44) (43.10) (27.21)

λ∗2 −16.12 −15.81 −6.35 16.01 − − −
(33.11) (34.39) (33.05) (30.43)

λ∗3 48.14 50.52 38.04 − − − −
(48.38) (48.40) (36.70)

λ∗4 −23.49 −20.06 − − − − −
(49.66) (45.52)

εt−1 0.21 0.11 0.07 0.09 0.10 0.14 0.14
(0.16) (0.18) (0.19) (0.17) (0.17) (0.15) (0.14)

R̄2 0.39 0.39 0.41 0.41 0.43 0.43 0.45
AIC −8.56 −8.58 −8.62 −8.63 −8.67 −8.69 −8.74
BIC −7.81 −7.87 −7.95 −8.01 −8.09 −8.15 −8.24
DW 1.99 1.96 1.96 1.94 1.94 1.93 1.93
FP 2.48 2.60 2.85 3.00 3.32 3.53 3.99

[0.02] [0.02] [0.01] [0.01] [0.00] [0.00] [0.00]

All the notes for Table B.1 apply to this table except for the inflation measure (here: CPI) and the
sample period (here: from 1991Q1 to 2001Q1).
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Appendix C

Description of the Kalman
Filter

The Kalman filter is a recursive procedure to compute the estimator of the state
vector ξ at time t, based on all information available at time t. Within the two
state-space models presented in Chapter 4, the Kalman filter is a method that can
help separate real income growth from inflation. Formally, for the measurement
equation ỹt = Axt +H ′ξt and the state equation ξt = µ̃+ Fξt−1 + υ̃t, the Kalman
filter takes the following general form. Define:

ξt|k = E(ξt|{ỹi}ki=1)

Pt|k = Var(ξt|{ỹi}ki=1),

where ξt|t−1 denotes, for example, the expected value of ξt at time t − 1, condi-
tional on all information available up to t − 1. Pt|t−1 is then the mean squared
error (MSE) matrix of the forecast of ξt|t−1. The Kalman filter is a function that
constructs the updated state estimate ξt|t and the updated estimate covariance Pt|t
from (ξt−1|t−1,Pt−1|t−1, ỹt). Suppose that ξt−1|t−1 and Pt−1|t−1 are known and that

[
ξt

ỹt

]
|{ỹi}t−1

i=1

is normally distributed. Then, following Hamilton (1994, pp. 380-384), the Kalman
filter for the state-space model presented above is characterized by the following
sequence of equations:
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ξt|t−1 = µ̃+ Fξt−1|t−1 (C.1)

Pt|t−1 = FPt−1|t−1F
′ +Q (C.2)

ỹt|t−1 = A+H ′ξt|t−1 (C.3)

ht = H ′Pt|t−1H (C.4)

Kt = Pt|t−1Hh
−1
t (C.5)

υ̃t = ỹt − ỹt|t−1 (C.6)

ξt|t = ξt|t−1 +Ktυ̃t (C.7)

Pt|t = Pt|t−1 −KtHPt|t−1. (C.8)

The first four equations represent the prediction step. In equation (C.1), the
general state equation is used to produce the forecast ξt|t−1, which can be thought
of as the predicted a priori state estimate. Using equation (C.2) for the predicted
estimate covariance, which makes use of the assumption regarding its error term υ̃t,
we can compute a forecast ỹt|t−1 of the observed variables in equation (C.3). This
forecast symbolizes the innovation MSE matrix, which is given by equation (C.4).

Equations (C.7) and (C.8) can be interpreted as the correction step yielding the
updated a posteriori state estimate and its covariance, where Kt and υ̃t are defined
in equations (C.5) and (C.6). Note that the Kt matrix is the so-called Kalman filter
gain, which places a weight on the sensitivity of the filter to the measurements.



Appendix D

Solving the Robust Dynamic
Programming Problem

D.1 Derivation of the Value Function

There are, fundamentally, two techniques to solve a robust control problem: “iter-
ation” and “guess and verify”. In this section, I adopt the latter procedure, which
consists of first formulating a particular guess for the form of the value function and
then determining the exact values for all the terms of the guess. For our present
problem, this technique implies extensive amounts of algebra, which I will go through
step by step in this appendix.1 Only if we show that there exists a solution for the
guess and that it is unique is the guess correct in the sense of satisfying the Bellman
equation.

To find the solution to the robust permanent income hypothesis model defined
by equation (5.14) and (5.15), I follow Luo (2008), who suggests, as a guess for the
value function V (ypt ), the following quadratic form V (ypt ) = −A(ypt )2 −Bypt − C,
where A, B, and C are yet-to-be-determined constant coefficients. Note that the
quadratic form of the guess for the value function is rather intuitive, since the utility
function is also quadratic and defined as u(ct) = ct − a

2c
2
t .

Substituting for this guess the Bellman equation for the robust consumer, equa-
tion (5.14) becomes:

1Note that solving the problem with iteration also implies a guess for the value function and
that this involves even more time and is even more algebra intensive.
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−A(ypt )
2 −Bypt −C = max

{ct}
min
{ωt}

{
ct −

a

2 c
2
t + βEt

[
θω2

t −A(ypt+1)
2 −Bypt+1 −C

]}
, (D.1)

subject to the distorted budget constraint (5.15). This min-max optimization can
now be solved using the standard procedures. Just as for the static case in Sec-
tion 5.2.2, formally, it makes no difference whether we start with the minimization
problem or with the maximization problem.

Substituting for ypt+1 into the objective, the FOC for ωt is:

βEt

{
2θωt − 2A

[
R (ypt − ct) + σζωt + ζt+1

]
σζ −Bσζ

}
= 0

2θωt − 2Aσ2
ζωt = 2AR(ypt − ct)σζ −Bσζ

ωt =
B+2AR(ypt−ct)

2
(
θ−Aσ2

ζ

) σζ . (D.2)

Plugging equation (D.2) into equation (D.1) gives the following robust Bellman
equation:

−A(ypt )
2 −Bypt −C = max

{ct}

ct − a

2 c
2
t + βEt

θ
B + 2AR (ypt − ct)

2
(
θ−Aσ2

ζ

) σζ

2

−A(ypt+1)
2 −Bypt+1 −C

]}
,

subject to the robust budget constraint:

ypt+1 =R(ypt − ct) + σζ

[
B + 2AR(ypt − ct)

2(θ−Aσ2
ζ )

σζ

]
+ ζt+1

=R(ypt − ct) +
ARσ2

ζ (y
p
t − ct)

θ−Aσ2
ζ

+
Bσ2

ζ

2(θ−Aσ2
ζ )

+ ζt+1

=
Bσ2

ζ

2(θ−Aσ2
ζ )

+
Rθ(ypt − ct)
θ−Aσ2

ζ

+ ζt+1. (D.3)

Inserting equation (D.3) directly into the robust Bellman equation, we can derive
the FOC for ct:
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(1− act)− 2βθ
[
B + 2AR(ypt − ct)

2(θ−Aσ2
ζ )

σζ

][
2ARσζ

2(θ−Aσ2
ζ )

]
+

2Aβ
[

Bσ2
ζ

2(θ−Aσ2
ζ )

+
Rθ(ypt − ct)
θ−Aσ2

ζ

](
Rθ

θ−Aσ2
ζ

)
+

BβRθ

θ−Aσ2
ζ

= 0.

Solving for ct and rearranging and collecting terms leads to the following simpli-
fications:

(1− act)−
(
AβRθσ2

ζ

θ−Aσ2
ζ

)[
B + 2AR(ypt − ct)

(θ−Aσ2
ζ )

]
+

2AβR2θ2(ypt − ct)
(θ−Aσ2

ζ )2 +
ABβRθσ2

ζ

(θ−Aσ2
ζ )2 +

BβRθ

θ−Aσ2
ζ

= 0

ct

[
2AβR2θ+ a(θ−Aσ2

ζ )
θ−Aσ2

ζ

]
=1 +

2AβR2θypt (θ−Aσ2
ζ ) +BβRθ(θ−Aσ2

ζ )
(θ−Aσ2

ζ )2

ct =
2AβR2θ

a(θ−Aσ2
ζ ) + 2AβR2θ

ypt +
(θ−Aσ2

ζ ) +BβRθ

a(θ−Aσ2
ζ ) + 2AβR2θ

. (D.4)

In line with the theoretical foundations of the PIH, it appears that consumption
corresponds to a constant fraction of permanent income ypt . However, we still need to
determine the values of A, B and C from our guess in order to uniquely determine the
value function and to confirm that the guess is correct. To do this, we first substitute
equation (D.4) back into equations (D.3) and (D.2), then insert the optimal ypt+1
and ωt back into the robust Bellman equation. For ypt+1, we now have:

E(ypt+1) =
Bσ2

ζ + 2Rθypt
2(θ−Aσ2

ζ )
− Rθ

θ−Aσ2
ζ

ct

=
Bσ2

ζ + 2Rθypt
2(θ−Aσ2

ζ )
− Rθ

θ−Aσ2
ζ

{
2AβR2θypt + (θ−Aσ2

ζ ) +BβRθ

a(θ−Aσ2
ζ ) + 2AβR2θ

}

=
aRθ

a(θ−Aσ2
ζ ) + 2AβR2θ

ypt +
aBσ2

ζ − 2Rθ(1 +BβR)
2[a(θ−Aσ2

ζ ) + 2AβR2θ]
. (D.5)

Similarly, plugging equation (D.4) into (D.2) yields the optimal distortion (i.e.,
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the optimal worst-case distribution ωt), which depends only on the state ypt :

ωt =
Bσζ + 2ARσζypt

2(θ−Aσ2
ζ )

−
2ARσζ

2(θ−Aσ2
ζ )

{
2AβR2θypt + (θ−Aσ2

ζ ) +BβRθ

a(θ−Aσ2
ζ ) + 2AβR2θ

}

=
σζ

2(θ−Aσ2
ζ )

{
aB(θ−Aσ2

ζ ) + 2aAR(θ−Aσ2
ζ )y

p
t − 2AR(θ−Aσ2

ζ )
a(θ−Aσ2

ζ ) + 2AβR2θ

}

=
aARσζ

a(θ−Aσ2
ζ ) + 2AβR2θ

ypt +
aBσζ − 2ARσζ

2[a(θ−Aσ2
ζ ) + 2AβR2θ]

. (D.6)

The next step is to substitute equations (D.4), (D.5) and (D.6) back into the
value function (D.1) and to solve for A, B and C. Since this implies a lengthy
equation, I first consider separately each element on the right-hand side (RHS) of
equation (D.1) and rearrange them to fit the left-hand side (LHS) of equation (D.1).

For the first term, inserting equation (D.4) into (ct − a
2c

2
t ) yields:

2AβR2θypt + (θ−Aσ2
ζ ) +BβRθ

a(θ−Aσ2
ζ ) + 2AβR2θ

−

a

2
[
a(θ−Aσ2

ζ ) + 2AβR2θ
]2

{
2AβR2θypt + (θ−Aσ2

ζ ) +BβRθ
}2

=

− 2aA2β2R4θ2

[a(θ−Aσ2
ζ ) + 2AβR2θ]2

(ypt )
2 +

2Aβ2R3θ2[2AR− aB]
[a(θ−Aσ2

ζ ) + 2AβR2θ]2
ypt+

(θ−Aσ2
ζ )[a(θ−Aσ

2
ζ ) + 4AβR2θ] +Bβ2R2θ2(4AR− aB)

2[a(θ−Aσ2
ζ ) + 2AβR2θ]2

. (D.7)

For the second term, we make use of equation (D.6) and get:

βθω2
t =

βθσ2
ζ

4[a(θ−Aσ2
ζ ) + 2AβR2θ]2

[2aARypt − (2AR− aB)]2

=
βθσ2

ζ

4[a(θ−Aσ2
ζ ) + 2AβR2θ]2

[
4a2A2R2(ypt )

2 − 4aAR(2AR− aB)ypt + (2AR− aB)2]
=

a2A2βR2θσ2
ζ

[a(θ−Aσ2
ζ ) + 2AβR2θ]2

(ypt )
2 −

aAβRθσ2
ζ (2AR− aB)

[a(θ−Aσ2
ζ ) + 2AβR2θ]2

ypt+

βθσ2
ζ (2AR− aB)2

4[a(θ−Aσ2
ζ ) + 2AβR2θ]2

. (D.8)
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The third term on the RHS is obtained by making use of equation (D.5):

−AβE[(ypt+1)
2] =− Aβ

4[a(θ−Aσ2
ζ ) + 2AβR2θ]2

{
2aRθypt + [aBσ2

ζ − 2Rθ(1 +BβR)]
}2

=− a2AβR2θ2

[a(θ−Aσ2
ζ ) + 2AβR2θ]2

(ypt )
2 −

aAβRθ[aBσ2
ζ − 2Rθ(1 +BβR)]

[a(θ−Aσ2
ζ ) + 2AβR2θ]2

ypt−

Aβ[aBσ2
ζ − 2Rθ(1 +BβR)]2

4[a(θ−Aσ2
ζ ) + 2AβR2θ]2

. (D.9)

The second-to-last term on the RHS of the value function in (D.1) follows directly
from equation (D.5):

−BβE(ypt+1) = − aBβRθ

a(θ−Aσ2
ζ ) + 2AβR2θ

ypt −
Bβ[aBσ2

ζ − 2Rθ(1 +BβR)]
2[a(θ−Aσ2

ζ ) + 2AβR2θ]
. (D.10)

The next step is to collect the appropriate terms from equations (D.8), (D.9)
and (D.10) to fit the value function V (ypt ) = −A(ypt )2 −Bypt − (1− β)C, after βC
has been subtracted from both sides and to solve for A, B and C. For A, we now
have:

−A(ypt )
2 =

{
−2aA2β2R4θ2 + a2A2βR2θσ2

ζ − a
2AβR2θ2

[a(θ−Aσ2
ζ ) + 2AβR2θ]2

}
(ypt )

2

A[a(θ−Aσ2
ζ ) + 2AβR2θ]2 =aAβR2θ[a(θ−Aσ2

ζ ) + 2AβR2θ]

A =
aθ(βR2 − 1)
2βR2θ− aσ2

ζ

. (D.11)

Equation (D.11) is the final definition of A because it depends only on the dif-
ferent parameters of the model. Collecting the terms for B and making use of
equation (D.11), we find the exact value for B:

−B =
2AβR2θ[a(θ−Aσ2

ζ ) + 2AβR2θ]− aBβRθ[a(θ−Aσ2
ζ ) + 2AβR2θ]

[a(θ−Aσ2
ζ ) + 2AβR2θ]2
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B[aβRθ− a(θ−Aσ2
ζ )− 2AβR2θ] =

2aβR2θ2[βR2 − 1]
2βR2θ− aσ2

ζ

B
aβRθ[2βR2θ− aσ2

ζ + aRσ2
ζ − 2βR3θ]

2βR2θ− aσ2
ζ

=
2aβR2θ2[βR2 − 1]

2βR2θ− aσ2
ζ

B = − 2Rθ(βR2 − 1)
(2βR2θ− aσ2

ζ )(R− 1)
. (D.12)

Finally, using equations (D.11) and (D.12) and collecting the remaining terms
allows us to derive the definition of C. Since its derivation implies a great deal of
algebra, it is presented separately in Section D.2.

Not only does fnding the exact values for A, B and C give us the exact form of
the value function V (ypt ), but knowing A and B also allows us to derive the robust
consumption function, the consumption growth (both derived in Section D.3) and
the following optimal distortion ωt. Substituting for A and B in equation (D.6)
yields, after simplification:

ωt =
aARσζ

a(θ−Aσ2
ζ ) + 2AβR2θ

ypt +
aBσζ − 2ARσζ

2[a(θ−Aσ2
ζ ) + 2AβR2θ]

=
aRθσζ(βR2 − 1)(2βR2θ− aσ2

ζ )
(2βR2θ− aσ2

ζ )[(2βR2θ− aσ2
ζ )− aσ

2
ζ (βR2 − 1)] + 2βR2θ(βR2 − 1)

ypt−

σζ(βR2 − 1)
β{θ[2 + a(βR2 − 1)]− aσ2

ζ}
.

D.2 Derivation of C

Recall that, in Section 5.3.2, I began with the conjecture that the value function
of the Bellman equation (5.14) for the robust permanent income consumer is equal
to V (ypt ) = −A(ypt )2 − Bypt − C. After finding the exact values for A and B in
equations (D.11) and (D.12), we can insert these into each last term on the RHS of
equations (D.7) through (D.10). Adding these terms up and setting them equal to
C(β − 1) allows us to solve for C.

Before deriving each component of C, it is helpful to first solve for some recurrent
elements of equations (D.7) to (D.10). In particular, consider the following equalities:
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θ−Aσ2
ζ =

βR2θ(2θ− aσ2
ζ )

2βR2θ− aσ2
ζ

a(θ−Aσ2
ζ ) + 2AβR2θ = aβR2θ

a(θ−Aσ2
ζ ) + 4AβR2θ =

aβR2θ[2θ(2βR2 − 1)]
2βR2θ− aσ2

ζ )

4AR− aB =
2aRθ(βR2 − 1)(2R− 1)
(2βR2θ− aσ2

ζ )(R− 1)

2AR− aB =
2aR2θ(βR2 − 1)

(2βR2θ− aσ2
ζ )(R− 1)

aBσ2
ζ − 2Rθ(1 +BβR) = −2R2θ(βR− 1)

R− 1 .

For the C-term of (ct− a
2ct) (i.e., equation (D.7)), inserting A and B and making

use of the needed above-mentioned pre-calculations yields:

(θ−Aσ2
ζ )[a(θ−Aσ

2
ζ ) + 4AβR2θ] +Bβ2R2θ2(4AR− aB)

2[a(θ−Aσ2
ζ ) + 2AβR2θ]2

=

2R2θ[(β2R2 − 1)− 2βR2(βR− 1)]
a(2βR2θ− aσ2

ζ )2(R− 1)2 −
σ2
ζ

2(2βR2θ− aσ2
ζ )2 . (D.13)

Then, the part of βθω2
t in equation (D.8) that is not dependent on ypt becomes,

after simplification:

βθσ2
ζ (2AR− aB)2

4[a(θ−Aσ2
ζ ) + 2AβR2θ]2

=
θσ2

ζ (βR
2 − 1)2

β(2βR2θ− aσ2
ζ )2(R− 1)2 . (D.14)

The last term of equation (D.9) can be rewritten as:

−
Aβ[aBσ2

ζ − 2Rθ(1 +BβR)]2

4[a(θ−Aω2
ζ ) + 2AβR2θ]2

= − θ(βR2 − 1)(βR− 1)2

aβ(2βR2θ− aσ2
ζ )(R− 1)2 . (D.15)

Extracting the C-term of equation (D.10) and substituting for A and B gives:

−
Bβ[aBω2

ζ − 2Rθ(1 +BβR)]
2[a(θ−Aω2

ζ ) + 2AβR2θ]
=

2Rθ(βR2 − 1)(βR− 1)
a(2βR2θ− aσ2

ζ )(R− 1)2 . (D.16)

We can now combine and simplify equations (D.13) through (D.16). First, adding
equations (D.15) and (D.16) yields:
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θ(βR2 − 1)(β2R2 − 1)
aβ(2βR2θ− aσ2

ζ )(R− 1)2 . (D.17)

Second, summing up equation (D.14) and the second term of equation (D.13)
gives:

σ2
ζ

{
2θ[2βR2(βR− 1)− (β2R2 − 1)] + aβσ2

ζ (R− 1)2)
}

2β(2βR2θ− aσ2
ζ )2(R− 1)2 . (D.18)

Third, adding (D.17) and (D.18) and rearranging terms yields:

2R2θ2(βR2 − 1)(β2R2 − 1)
a(2βR2θ− aσ2

ζ )2(R− 1)2 +
σ2
ζ [2R2θ(βR− 1)− β(β2R2 − 1)]

(2βR2θ− aσ2
ζ )2(R− 1)2 +

aσ4
ζ

2(2βR2θ− aσ2
ζ )2 .

(D.19)
Then, combining the first term of the RHS of (D.19) with the first term of

equation (D.13) gives, after some simplifications:

2βR4θ2(βR− 1)2

a(2βR2θ− aσ2
ζ )2(R− 1)2 . (D.20)

Finally, summing up (D.20) with the remaining terms of (D.19) allows us to find
the precise and final definition of C:

C(β − 1) =
2βR4θ2(βR− 1)2

a(2βR2θ− aσ2
ζ )2(R− 1)2 +

σ2
ζ [2R2θ(βR− 1)− β(β2R2 − 1)]

(2βR2θ− aσ2
ζ )2(R− 1)2 +

aσ4
ζ

2(2βR2θ− aσ2
ζ )2

C =
2βR4θ2(βR− 1)2

a(2βR2θ− aσ2
ζ )2(R− 1)2(β − 1)

+
σ2
ζ [2R2θ(βR− 1)− β(β2R2 − 1)]
(2βR2θ− aσ2

ζ )2(R− 1)2(β − 1)

+
aσ4

ζ

2(2βR2θ− aσ2
ζ )2(β − 1)

.

D.3 The Robust Consumption Function and Consump-
tion Growth

To precisely define the robust consumption function, we can substitute A and B from
equations (D.11) and (D.12) into the previously derived optimal robust consumption
equation (D.4):
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ct =
1

a(θ−Aσ2
ζ ) + 2AβR2θ{

2aβR2θ2(βR2 − 1)ypt
2βR2θ− aσ2

ζ

+ θ−
aθσ2

ζ (βR
2 − 1)

2βR2θ− aσ2
ζ

+
2βR2θ2

(2βR2θ− aσ2
ζ )(1−R)

}

=
2θ(βR2 − 1)
2βR2θ− aσ2

ζ

ypt +
(2βR2θ− aσ2

ζ )(βR− 1) + aσ2
ζ (βR

2 − 1)
aβR(2βR2θ− aσ2

ζ )(1−R)

=
βR2 − 1
βR2 −Φ

ypt −
(βR2 −Φ)(βR− 1) + (βR2 − 1)Φ

aβR(βR2 −Φ)(R− 1)
, (D.21)

where Φ =
aσ2
ζ

2θ .
Using equation (D.21) and the non-distorted budget constraint, as in equa-

tion (5.11), we can derive the precise consumption growth for the robust consumer:

∆ct+1 =
βR2 − 1
βR2 −Φ

(ypt+1 − y
p
t )

=
βR2 − 1
βR2 −Φ

(R− 1)ypt −
βR2 − 1
βR2 −Φ

Rct +
βR2 − 1
βR2 −Φ

ζt+1

=(R− 1)
[
ct +

(βR2 −Φ)(βR− 1) + (βR2 − 1)Φ
aβR(βR2 −Φ)(R− 1)

]
− βR2 − 1
βR2 −Φ

Rct +
βR2 − 1
βR2 −Φ

ζt+1

=
(βR− 1)(βR2 −Φ) + (βR2 − 1)Φ

aβR(βR2 −Φ)
+

(R− 1)(βR2 −Φ)− (βR2 − 1)R
βR2 −Φ

ct+

βR2 − 1
βR2 −Φ

ζt+1.

D.4 Proof that Φ < 1

Starting with the consumer problem in equation (D.1), the second-order condition
for the minimization of the Bellman equation with respect to ωt, under the known
constant A (see equation D.11) and the assumption that βR = 1 yields:

2βθ− 2Aβσ2
ζ > 0

1 >
aσ2

ζ (R− 1)
2Rθ− aσ2

ζ

1 >
Φ(R− 1)
R−Φ

1 > Φ.
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Table
E.1:

Estim
ation

ofthe
R
obust

C
onsum

ption
M
odelofH

ansen
et

al.(1999)

H
ST

IPD
H
igh

IPD
Low

C
PI

H
igh

C
PI

Low
H
F

N
o
H
F

H
F

N
o
H
F

H
F

N
o
H
F

H
F

N
o
H
F

H
F

N
o
H
F

β
0.9971

0.9971
0.9943

0.9941
0.9940

0.9937
0.9944

0.9943
0.9941

0.9940
δ
h

0.68
−

0.68
−

0.60
−

0.69
−

0.67
−

λ
2.44

−
2.44

−
2.43

−
2.44

−
2.44

−
α

1
0.81

0.90
0.81

0.88
0.94

0.90
0.82

0.95
0.82

0.93
α

2
0.19

0.24
0.19

0.23
0.23

0.24
0.20

0.23
0.21

0.24
φ

1
1.00

1.00
1.00

1.00
1.00

1.00
0.99

1.00
1.00

1.00
φ

2
0.70

0.45
0.70

0.43
0.79

0.45
0.54

0.34
0.76

0.46
µ
y

13.71
13.59

13.71
13.60

13.71
13.59

13.71
13.59

13.71
13.59

c
ŷ

0.16
0.17

0.16
0.17

0.18
0.20

0.20
0.17

0.20
0.19

c
ȳ

0.11
0.10

0.11
0.18

0.13
0.10

0.05
0.20

0.19
0.11

log-Lik
−

−
−

200.83
−

301.48
−

248.82
−

181.89
−

303.48
−

318.85
−

235.87
−

251.43

T
his

table
reports

the
m
axim

um
likelihood

estim
ates

for
the

m
odelparam

eters
defined

in
equations

(5.36)
to

(5.39)
and

(5.33),
using

quarterly
U
.S.consum

ption
and

investm
ent

data.
T
he

colum
ns

under
“H

ST
”
report

H
ST

’s
originalestim

ates
for

the
period

from
1970Q

1
to

1996Q
3
for

a
fixed

β
under

habit
form

ation
(H

F)
and

w
ithout

habit
form

ation
(no

H
F)

(see
Table

2
in

their
paper).

IP
D

and
C
P
I
indicate

the
deflators.

T
he

“high”
inflation

subperiods
are

from
1966Q

1
to

1981Q
3
and

from
1966Q

1
to

1982Q
3
for

IP
D

and
C
P
I,respectively.

T
he

“low
”
inflation

subperiod
is

from
1991Q

1
to

2001Q
1
for

both
the

IP
D

and
C
P
I
m
odel.

Log-Lik
reports

the
m
axim

um
ofthe

log-likelihood
function.
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