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The discrimination of immobilised superparamagnetic iron oxide nanoparticles (SPIONs) against SPIONs
in fluid environments via their magnetic relaxation behaviour is a powerful tool for bio-medical imaging.
Here we demonstrate that a gradiometer of laser-pumped atomic magnetometers can be used to record
accurate time series of the relaxing magnetic field produced by pre-polarised SPIONs. We have in-
vestigated dry in vitro maghemite nanoparticle samples with different size distributions (average radii
ranging from 14 to 21 nm) and analysed their relaxation using the Néel–Brown formalism. Fitting our
model function to the magnetorelaxation (MRX) data allows us to extract the anisotropy constant K and
the saturation magnetisationMS of each sample. While the latter was found not to depend on the particle
size, we observe that K is inversely proportional to the (time- and size-) averaged volume of the mag-
netised particle fraction. We have identified the range of SPION sizes that are best suited for MRX de-
tection considering our specific experimental conditions and sample preparation technique.

1. Introduction

Due to their unique magnetic properties, superparamagnetic
iron oxide nanoparticles (SPIONs) are very promising materials for
diagnostic and therapeutic biomedical applications [1–3]. SPIONs
are used, e.g., as contrast agents in magnetic resonance imaging
(MRI), where they enhance the local magnetic field, thereby im-
proving the proton magnetic resonance signals [4]. The bio-
compatibility of surface-functionalised SPIONs gives them a high
potential for therapeutic applications, such as hyperthermia
treatment [5] or drug delivery [6].

The SPIONs' superparamagnetism is due to their single domain
structure and the ensuing properties of low saturation magneti-
sation Ms and nonlinear M(H) response in low (mT) fields are key
properties for imaging SPION distributions in biological tissues.
Imaging may serve the purpose of representing specific biological
entities (organ, tumor, cell, etc.) when tagging those entities by
specifically coated SPIONS. On the other hand, SPION imaging is a
prerequisite for monitoring the efficiency of drug delivery in
therapeutic applications.

Magnetic particle imaging, MPI [7], is a rapidly developing
imaging method that builds on the generation of harmonic signals
M(t) when SPIONs are excited by a monochromatic field H(t) os-
cillating around H 0= . Recently, MPI devices have become com-
mercially available [8].

The present paper deals with magnetorelaxation, MRX, an al-
ternative SPION detection method [9] that is widely spread, and
whose extension to imaging SPION volume distributions is slowly
emerging. MRX consists in magnetising the SPIONS by a moderate
(mT) static external magnetic field HM during a time TM and de-
tecting the sample's decaying magnetisation M(t) following that
magnetisation. M(t) is monitored by one or several sensitive
magnetometers that record the induction B t M t( ) ( )MRX ∝ . Quan-
tities of interest are the initial amplitude B (0)MRX and the specific
time dependence of the decay process. For strictly monodisperse
particles with identical radii r one expects an exponential decay
law with an r-dependent time constant. In practice one deals with
samples that have specific size distributions f r( )NP

which implies a
non-trivial non-exponential decay, since both the magnetisation
process and the decay process are particle size dependent.

The magnetisation of immobilised SPIONs, i.e., nanoparticles
embedded in a solid matrix or bound to the surface of a biological
entity relaxes by an internal reorientation of the magnetisation
inside of the particle. The time dependence of this Néel relaxation

n Corresponding author. Fax: þ41 26 300 9631.
E-mail address: victor.lebedev@unifr.ch (V. Lebedev).
1 Now at ETH Zurich, Switzerland.

1

Published in 
which should be cited to refer to this work.

ht
tp

://
do

c.
re

ro
.c

h
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/43663869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


process [10] is characterised by a time constant

t e , (1)N
KV k T

0
/ Bτ =

where K is the anisotropy constant and V the particle core volume.
Conversely, SPIONs dispersed in a liquid of viscosity η, relax by
rotational diffusion of the particles (and hence their magnetic
moments) with a time constant given by [11]

V

k T
,

(2)
B

B

hydroτ
η

=

where Vhydro is the hydrodynamic volume of the nanoparticle. One
speaks of the Brownian relaxation in the latter case. Because of the
exponential particle size dependence, the Néel relaxation is orders
of magnitude slower than the Brownian relaxation for sufficiently
large particles (for reasonable material parameter values B Nτ τ≈ for
particles with radii of 10–11 nm). This feature allows the dis-
crimination of particles bound to specific biological entities [12]
from particles embedded in body fluids, thus forming the basis for
SPION imaging by MRX. The property was used, e.g., to image the
accumulation of intravenously injected SPIONs in the spleen and
liver of a mouse by MRX [13], or to quantify the aggregation of
magnetic nanoparticles in cell cultures [14]. Many of the earlier
studies used multi-core particles, while more recently larger
single-core magnetic particles have shown large magnetic signals
in observation windows ranging from 50 ms to 2 s [15]. Those and
others studies [16–18] have demonstrated that (SQUID-based)
MRX has a high potential for biomedical imaging applications.

In view of detecting SPIONs at the lowest possible concentra-
tions, MRX calls for sensors with a high magnetometric sensitivity.
In the past, SQUIDs (superconducting quantum interference de-
vices) have been the detectors of choice for detecting the weak
magnetic fields produced by the MRX process. Recent develop-
ments in the field of atomic magnetometry provide a promising
alternative to SQUIDs for detecting weak magnetic fields [19].
Atomic magnetometers do not require cryogenic cooling and offer
the potential for miniaturisation and easily configurable sensor ar-
ray structures. Atomic magnetometer arrays have been used to map
the dynamics of the magnetic field generated by the human heart
(magnetocardiography) [20] or by the human brain activity [21].
More recently they have been used for MRX detection [22,23], and
were shown to yield similar results than SQUID-based MRX [22].
Atomic magnetometers have also demonstrated a high sensitivity
for detecting cancer cells tagged by antibody-coated SPIONs [24].

MRX detection faces the following problem: small-sized
SPIONs are more easily magnetised than large-sized particles. At
the same time the magnetisation of the smaller particles decays
more rapidly than the larger SPIONs' magnetisation. The magne-
tisation typically occurs in ∼mT fields, while the MRX signals are
recorded down to the pT (or even fT) level. To our knowledge there
is no magnetometer whose dynamic range covers the corre-
sponding E10 orders of magnitude in detectable fields. In general
the magnetometers are strongly perturbed during the magneti-
sation pulse and need a recovery (dead) time Dτ , between
switching off the magnetising field and recording the time de-
pendent field of interest. This dead time is determined, e.g., by the
recovery of electronic feedback loops or the slow decay of eddy
currents in nearby conductors. MRX systems equipped with a
SQUID or fluxgate sensor have typically 100 sDτ > μ , while a novel
CMOS Hall-effect magnetometer has recorded relaxation after

100 nsDτ = [25], although at the cost of a strongly reduced mag-
netometric sensitivity. Long dead times therefore prevent the de-
tection of small particles because of their shorter relaxation times.
In order to determine the optimal SPION size distributions for
specific MRX measurements one has to consider the complex in-
terplay between the material constants (Ms and K) and the

experimental parameters (HM, TM, and Dτ ) that determines the
MRX signal, i.e., B t( )MRX .

For the studies described below, we have used a first order
gradiometer formed by two laser-driven optically pumped cesium
magnetometers and show that these magnetometers yield reli-
able, high accuracy MRX data. We have performed a systematic
study of oleic acid coated SPION samples of different size dis-
tributions and concentrations produced by thermal decomposition
of oleate complexes. In-house produced samples are compared to
commercial samples.

A model function describing the B(t) dependence is derived and
its fit to the experimental MRX data allows us to infer the aniso-
tropy constant K and the saturation magnetisation Ms for all
samples. In the range of investigated particle size distributions we
find a V1/ act dependence on the (time- and size-averaged) volume
Vact of the magnetically active particles. We have further analysed
the dependence of the absolute value of the recorded magnetic
field on the iron content of the different samples.

The paper is organised as follows. In Section 2 we describe the
methods used to produce and characterise the samples, and de-
scribe the working principle of the deployed magnetometer. In
Section 3 we derive the magnetisation build-up and relaxation
model used for interpreting the experimentally recorded magnetic
induction signals, while Section 4 describes the data treatment
and fitting procedures. In Section 5 we collect the results of the
measurements and their analysis and in Section 6 we summarise
the performed investigations.

2. Material and methods

2.1. SPIONs

The nanoparticles were synthesised following the method by
Park et al. [26]. The method relies on the thermal decomposition of
iron oleate complexes and results in oleate stabilised SPIONs.
Adjusting the reaction conditions, i.e., boiling point of the solvent
or oleic acid concentration, allows tailoring the particle size [27].
Briefly, sodium oleate and ferric chloride hexahydrate (Sigma-Al-
drich) were used to prepare the iron–oleate complex. In a next
step, the oleate was mixed with oleic acid at a molar oleate/oleic
ratio of 2.2 in trioctylamine or docosane. The mixture was then
heated to 320 °C (trioctylamine) or 340 °C (docosane) under vig-
orous stirring for 1 h at constant temperature, after which the
nanoparticles were separated by centrifugation, washed with
ethanol and dispersed in hexane. In addition to three sets of in-
house produced SPIONs (samples A, B, and C), three other sets of
SPIONs (SOR-25, SOR-30, and SOR-40) (referred to hereafter as D,
E, and F, respectively), with different size distributions were pur-
chased from Ocean Nanotech (AR, USA). The Ocean Nanotech
particles were also synthesised by a thermal decomposition route,
comparable to our in-house produced batches. The iron content of
all samples was determined by redox-titration with potassium
permanganate. SPION suspensions were filled into non-magnetic
flat 8 mm diameter cylindrical dishes and dried overnight at 60 °C
in an oven.

2.2. Characterisation of particle size distribution

A 75 kV transmission electron microscope (Hitachi, H-7100,
Tokyo, Japan) was used to determine the nanoparticle size dis-
tributions. Electron micrographs were recorded with a Morada
CCD digital camera (Olympus, Tokyo, Japan) and saved as 16-bit
TIFF images. These raw files were binarised using an IsoData-based
threshold method and analysed using the Fit Ellipse algorithm in
ImageJ. Because all samples showed a fairly spherical geometry
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(aspect ratios 1.15< ), effective radii were assigned to the particles
by assuming circular shapes of equal area as the measured ellipses.
At least five images of each sample were analysed resulting in a
total of more than 100 particle counts for each sample. The size
distributions are presented as histograms with a bin size of 0.5 nm
and fitted assuming one- or two-component Schulz–Zimm dis-
tribution functions (Fig. 1)
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1

avgΓ
= −−

where r rf r r( ) davg 0 SZ∫= ∞
is the average particle radius. The para-

meter k is related to the rms width of the distribution by
r r k/rms avgΔ = .

2.3. MRX measurements by atomic magnetometers

We have performed systematic series of magnetorelaxation
(MRX) measurements on all six SPION samples at different con-
centrations. The magnetic field produced by each SPION sample
following its magnetisation by a static field and the decay of that
magnetisation (MRX signal) was recorded by a first order gradi-
ometer formed by two laser-pumped Cs magnetometers (CsOPM)
as shown in Fig. 2. This single channel gradiometer is a subset of
the array of 19 (second-order) gradiometers that we have used in
the past to monitor the dynamics of human magnetocardiography
maps [20].

The magnetometer set-up is mounted in a double-walled alu-
minium chamber in which the geomagnetic field is compensated
and a vertical homogeneous offset field B0 of 10 μT is applied to
the magnetometers.

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

0 5 10 15 20 25
r nm

0 5 10 15 20 25
r nm

0 5 10 15 20 25
r nm

Fig. 1. Particles size distributions of samples A–F, together with (solid lines) fitted Schulz–Zimm functions f r( )SZ (Eq. (3)).

Fig. 2. Left: Principle of the first-order CsOPM gradiometer. The upper (reference) magnetometer is forced to oscillate at a frequency that is proportional to the ambient
magnetic field and thus tracks field changes in a phase-coherent manner. The lower (sensing) magnetometer measures the gradient that originates from the vertical
component of the SPIONs' magnetic field. LIA: lock-in amplifier; PID: proportional-integral-differential amplifier; VCO: voltage-controlled oscillator. Right: Single CsOPM
sensor with 30 mm diameter Cs vapour cell and printed circuit boards carrying the magnetic resonance driving rf coils. Laser light is brought to the sensor by a multimode
fibre (from top-right) and the miniature (from top-left) coax cables drive the rf coils and send the photocurrent to the control electronics.
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Each magnetometer uses optically detected magnetic re-
sonance in room temperature Cs vapour that is contained in a
paraffin-coated [28] 30 mm diameter Pyrex bulb. In itsMx-mode of
operation [29] each sensor produces an oscillatory voltage, Vi(t),
that represents the photocurrent from a photodiode detecting the
laser power transmitted by the cell. The oscillation frequency is
given by the magnetic resonance drive frequency νrf. On re-
sonance, i.e., when the Cs atoms' Larmor frequency

B B B B B( ) (4)L tot 0 MRX 0 0ν δ∝ |
→

| ≈ |
→

+
→

· ^ ^ |

matches νrf, the oscillation amplitude is maximal and the oscilla-

tion is dephased by �90° with respect to the rf drive. BMRXδ
→

re-
presents the magnetic field of interest and (4) shows that for

B BMRX 0δ|
→

|⪯¡|
→

|, the frequency change and hence the phase change is

proportional to the component of BMRXδ
→

along the offset field B0

→
.

The phase of Vi(t) with respect to the rf drive field is extracted
by a digital lock-in amplifier (LIA) [20] and drives, after suitable
amplification, a voltage-controlled oscillator (VCO) producing the
oscillatory current for the magnetic resonance coils (Fig. 2).

In the upper sensor (reference magnetometer) this phase-
locked feedback loop thus locks the magnetometer's oscillation
frequency to the magnetic field, thereby correcting any drifts of
the ambient and offset fields during data recording. The same
oscillation frequency is used to drive the magnetic resonance in
the lower sensor (sensing magnetometer) such that any field
gradient, i.e., difference of the magnetic fields at the two sensor
locations, results in a phase shift of the sensing magnetometer's
oscillation. The latter phase shift is then used in a second feedback
loop that controls the local field at the sensing magnetometer's
location (using compensation coils) in such a way as to stabilise
that field to the same value as the field seen by the reference
magnetometer. In this way the correction current through the
compensation coil is directly proportional to difference of the
fields at the two sensor locations, which is easily calibrated based
on the correction coils' geometry.

The dishes with the SPION samples were mounted at a distance
of 42(2) mm below the centre of the sensing magnetometer cell.
The samples were magnetised for T 3 sM = in a vertically oriented
magnetic field of H 27 mTM0μ = . The actual MRX recording was
initiated E1 ms after switching off the magnetising field.

3. Superparamagnetic relaxation model

In this section we will develop a quantitative model which
relates the experimentally recorded MRX signal B t( )MRX to the
sample properties and specific experimental parameters. The
model follows closely the one presented in the seminal work by
Chantrell et al. [30]. In the latter publication it was shown that
B t t( ) ln(1 / )CMRX τ∝ + under some simplifying assumptions. Our
high accuracy experimental B t( )MRX recordings showed deviations
from that simple logarithmic decay law for most of the in-
vestigated samples. For this reason we have dropped the simpli-
fying assumption and have applied the more complete underlying
model given in [30], also known as moment superposition model
(MSM) [31]. We will compare the MSM predictions with those of
the simplified model for specific particle size distributions.

3.1. Energy of a SPION in a magnetic field

A (single domain) superparamagnetic particle of volume V has
a permanent magnetic moment pμ→ that can be expressed in terms
of the particle's saturation magnetisation Ms

M V , (5)p p sμ μ μ μ→ = ^ = ^

where μ̂ is the moment's orientation. Because of their crystalline
structure, such particles have a magnetic anisotropy, characterised
by preferential directions, called easy axes. Those axes are a nat-
ural choice to describe the particle's orientation in space. The
magnetic moment minimises its internal potential energy (aniso-
tropy energy Ea) when it is oriented along one of those axes.

Maghemite has a cubic crystal lattice with three orthogonal
easy axes and the anisotropy energy, to lowest order, is given by
[32]

( )E KV e e e e e e , (6)a x y x z y z
2 2 2 2 2 2= + +

where e e e( , , )x y z is the magnetic moments' orientation in the co-
ordinate frame spanned by the easy axes. In the laboratory frame
the magnetic moment's orientation is described by ê′, related to
the orientation in the particle frame by

e R e( , , ) , (7)φ ψ^′ = ϑ ^

where R, with Euler angles φ, ϑ and ψ, is the rotation operator that
transforms the easy axes frame to the laboratory frame.

When the particle is exposed to an external magnetic field H
→

(chosen to define the laboratory z-axis), it acquires a magnetic
interaction energy:

E H H( ) cos (8)H p p0 0θ μ μ μ μ θ= − →′·
→

= −

that adds to the anisotropy energy, yielding

( )E KV e e e e e e h( , , ; ) 2 cos (9)tot x y x z y z
2 2 2 2 2 2φ ψ θ θϑ = ′ ′ + ′ ′ + ′ ′ −

where

h
H
H

H
K
M

with
2

,
(10)K

K
s0μ

= =

HK being the so-called anisotropy field.
Appendix A illustrates the relative importance of the anisotropy

energy and the magnetic energy in the simple case of a uniaxial
crystal.

3.2. SPIONs with random orientation: the Langevin function

For a sample with randomly distributed orientations the aver-
age total energy Etot is given by

E E( )
1

8
d d(cos ) d ( , , ; )

(11)tot tot2 0

2

1

1

0

2∫ ∫ ∫θ
π

φ ψ φ ψ θ= ϑ ϑ
π π

−

which yields, using (9),

E
KV

HM V( )
5

cos .
(12)tot s0θ μ θ= −

In thermal equilibrium at temperature T, E ( )tot θ obeys a Boltz-
mann distribution. Because of the axial symmetry imposed by the
magnetic field, only the magnetic moment component along the
field will have a non-vanishing equilibrium value:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

H

E
k T

M V

E
k T

M VL x

exp
( )

cos sin d

exp
( )

sin d

( ),

(13)

z p

tot

B
s

tot

B

s
eq

0

0

∫

∫
μ μ

θ θ θ θ

θ θ θ
≡ 〈→ · ^〉 =

−

−
≡

π

π

where

L x x
x

x
HM V

k T
( ) coth

1
with ,

(14)

s

B

0μ
= − =

is the Langevin function. In view of the particle size dependencies
addressed below we consider L(x) to be a function of particle
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radius, viz., L(r). We note that the argument of the Langevin
function does not depend on the anisotropy constant K, but does
depend on the saturation magnetisation Ms.

3.3. Time evolution of the sample magnetisation

When an unpolarised ensemble of particles is exposed to an
external magnetic field H H hHM K= ≡ during a time TM it acquires
an equilibrium magnetic moment given by [11]

⎡⎣ ⎤⎦H T H T( , ) ( ) 1 exp( / ) . (15)M M M z M M H
eqμ μ τ= − −

When HM is switched off at time t 0= , the magnetic moment
decays according to

t H T t( ) ( , ) exp( / ), (16)z M M M 0μ μ τ= −

where H0 0M
τ τ= = . Note that the relaxation time constants in both

cases differ, because of the H-dependent energy landscape illu-
strated in Fig. A13. We stress that the time constants also depend
on the particle size, an essential feature of the effects studied in
this work. Realistic nanoparticle samples are characterised by a
distribution function f r( )NP

according to

N r N f r rd ( ) ( ) d (17)tot NP=

where the total number of SPIONs in the sample, Ntot, can be ex-
pressed by the total sample mass, mtot, and the average mass, m〈 〉,
of a single particle as

N
m
m

m
V

.
(18)tot

tot tot

ρ
=

〈 〉
=

〈 〉

In the latter expression ρ is the maghemite density and the aver-
age particle volume is given by V V r f r r( ) ( ) d

0 NP∫〈 〉 = ∞
.

We assume that particles of radius r have been magnetised
during a time TM in a field HM that is switched off at time t 0= .
From Eqs. (13), (15) and (16) it follows that the (orientationally
averaged) magnetic moment per particle at time t is then given by

⎡⎣ ⎤⎦r t M VL r e e( , ) ( ) 1 . (19)z s
T t/ /M H 0μ = − τ τ− −

The total magnetic moment of particles with radii in the interval
r r dr[ , ]+ is

t r t N rd ( ) ( , ) d ( ) (20)z zμ μ=

t
m
V

f r M V r L r e e rd ( ) ( ) ( ) ( )[1 ] d ,
(21)z s

T ttot
NP

/ /M H 0μ
ρ

=
〈 〉

− τ τ− −

so that the total magnetic moment of the sample at time t be-
comes

t
m M

V
V r L r f r r t r( ) ( ) ( ) ( ) ( , ) d ,

(22)z
stot

0
NP∫μ

ρ
Λ=

〈 〉
∞

where

⎡⎣ ⎤⎦r t e e( , ) 1 (23)
t T/ /M H0Λ = −τ τ− −

is a function of central importance that we refer to as window
function.

The on-axis magnetic field detected in the MRX experiments by

a magnetometer located at distance R (R HM
^ = ^ ) in the far field of

the sample is

B t
t

R
( )

2

( )
.

(24)
z0
3

μ
π

μ
=

Inserting Eqs. (22) and (23) into (24) one obtains the final
expression for the magnetic field:

B t
R

m M

r
L r r t f r r r( )

2
( ) ( , ) ( ) d ,

(25)
s

MRX
0
3

tot
3 0

NP
3∫μ

π ρ
Λ=

〈 〉
∞

which represents the MRX signal at the sensor position.

3.4. Structure of the window function

The window function (23) can be written as

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦r t e e e e( , ) 1 1 . (26)
t T r t r/ / ( , ) ( )M H H0 0Λ = − ≡ −τ τ ξ ξ− − − −

For a uniaxial particle in a weak (h 1⪯¡ ) magnetic field oriented
along the easy axis the time constant Hτ in (26) is given by [11]

⎡
⎣⎢

⎤
⎦⎥t

h h e h e
1 1

(1 ) (1 ) (1 ) ,
(27)H

r h r h

0

2 ( )(1 ) ( )(1 )2 2

τ
= − − + +σ σ− − − +

where s depends on the anisotropy energy

E
k T

KV
k T

.
(28)

a

B B
σ = =

The constant τ0 in (26) becomes

t
e

1 2
,

(29)
r

0 0

( )

τ
= σ−

an expression that coincides with the result of Néel [10]. The
forefactor is given by

⎛
⎝⎜

⎞
⎠⎟t

VK
k T

1 4
,

(30)B0

2
3 1/2

γ η
π

≈

an expression valid for low-dissipation crystals, in which
M( )s

1η γ⪯¡ − , where γ is the particle's gyromagnetic ratio and η a
dissipation constant. With typical values for the particle volume V,
and K values from literature, one finds t 10 s0

9≈ − . Generalisations
(see, e.g., [33]) of Brown's expression (27) to other crystalline
structures lead to similar expressions in which t0 and e σ− also
appear as key constituents.

As illustrated in Fig. 3, the particle size dependencies of the two
factors in (26) are represented by two sigmoid functions, each
varying in the interval [0, 1], their product thus yielding a pulse-
shaped window that defines the range of particles contributing to
the MRX signal.

For particle size distributions f r( )SZ
that are much broader than

the widths of the window boundaries, one may replace those
boundaries by sharp step functions. This was actually done in the
approach described by Chantrell et al. [30], who derived

Fig. 3. Dashed and dotted lines represent the r-dependence of the two factors
defining the window function r t( , )Λ given by Eq. (26). All functions were calculated
for T 3 sM = , H 27 mTM0μ = , K¼3.75 kJ/m3, and M 19.2 kA/ms = . The solid lines re-
present the sharp-edged window introduced by Chantrell et al. [30].
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⎡
⎣⎢

⎤
⎦⎥r

k T
K

t
t

3

4
ln

(31)
B

0
0

1/3

π
=

for the lower window boundary, and

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥r

k T
K

T e t
t

3

4
ln ,

(32)
H

B M
h h2

0

1/3
0 0

2

π
= +σ σ−

for the upper boundary, where KV k T t t/ ln( / )B0 0 0σ = = is the aniso-
tropy energy ratio of particles with a volume V0 corresponding to the
lower boundary radius. The value of the upper boundary rH increases
with growing HM and TM, which reflects the fact that the application of
a strong field for a long time magnetises particles of ever larger size.

3.5. Window function dynamics and MRX decay

The upper window boundary, determined by r( )Hξ , does not
depend on time, while the lower boundary, determined by r t( , )0ξ ,
moves towards larger radii as time progresses, thereby narrowing
the range of particles contributing to the MRX signal. The upper

Fig. 4. Time evolution of the window function r t( , )Λ given by Eq. (26) evaluated for T 3 sM = , H 27 mTM0μ = , K¼3.75 kJ/m3, and M 19.2 kA/ms = (dashed lines). The solid
lines represent the corresponding sharp-edged window r t( , )CΛ used by Chantrell et al. [30].

Fig. 5. Time evolution of the left and right boundaries of the window function
r t( , )Λ for the MSM (dashed lines) and the Chantrell (solid line) models, respec-

tively. The dependencies were calculated with the same set of parameters as in
Fig. 4. For the Chantrell model the window boundaries are defined by r0 (Eq. (32))
and rH (Eq. (31)), while for the MSM the half-height radii were taken.

Fig. 6. Predicted MRX signals from nanoparticles with different hypothetical size distributions (left to right). Top: Size distributions (shaded surfaces) and window functions
of complete model (dashed lines) and in Chantrell approximation (solid bars) shown for t¼10 ms, 1 s and 100 s (T 3 sM = , H 27 mTM0μ = , K¼3.75 kJ/m3, M 19.2 kA/ms = ).
Bottom: Corresponding decay curves predicted by complete model (dashed lines) and Chantrell approximation (solid line).
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boundary is fully determined by the magnetisation process, and
the moving lower boundary reflects the faster relaxation of
smaller particles. In Fig. 4 we show the time evolution of r t( , )Λ for

a reasonable set of the relevant experimental parameters HM, TM,
Ms, and K. Note that time progresses in logarithmic steps in the
figure.

Fig. 7. MRX signals B t( )MRX of all investigated SPION samples in their highest concentrations, together with fit residuals B t( )MRXδ . Black dots: experimental data, black and
red lines represent fits by the MSM model (34) and Chantrell model (33), respectively. The three columns represent the same data in different combinations of linear and
logarithmic scales. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)

7

ht
tp

://
do

c.
re

ro
.c

h



Within the Chantrell approximation, the upper boundary also
moves towards larger radii as time progresses, in contrast to the
MSM model. Within that approximation it follows from (32) and
(31) that

⎜ ⎟⎛
⎝

⎞
⎠B t V r r

t
( ) ln 1 .

(33)H
c

MRX
3

0
3Δ τ∝ ∝ − ∝ +

The MSM expression differs from the result obtained with sharp
window boundaries in the sense that the constant τc in (33) is
effectively time-dependent.

In Fig. 5 we show, on a logarithmic time scale, the evolution of
the left and right boundaries (defined as their half-height points)
of the window function for a realistic set of system parameters.

3.6. MRX decay of SPIONs with finite size distributions

For particle size distributions f r( )NP
that are very broad com-

pared to the width of the window function during the MRX re-
cording time, the complete model and the sharp window approach
are expected to yield similar, albeit not identical, decay curves
B t( )MRX , for which (33) gives a good description. This is evidenced
by the left graph of Fig. 6. For narrower distributions in which one
of the window function boundaries coincides with, or moves
through the edge of the f r( )NP

distribution, significant deviations of
the two model predictions occur as evidenced by the middle and
right graphs of Fig. 6.

4. MRX data analysis

We consider a SPION sample of density ρ and mass mtot that
was magnetised during a time TM in an external field HM. The
magnetic induction B t( )MRX produced by the sample is detected by

a magnetometer placed at a distance R (R HM
^ = ^ ) from the sample.

As shown in Section 3 the magnetic induction B t( )MRX measured by
the sensor at time t (MRX signal) following the switching off of the
magnetising field HM is given by

B t

R

m M

r
L H M r H M K T r t f r r r

( )

2
( , ; ) ( , , , ; , ) ( ) d

(34)
s

M s M s M

MRX

0
3

tot
3 0 SZ

3∫μ
π ρ

Λ

=

〈 〉
∞

with

r f r r r( ) d .
(35)

3

0
SZ

3∫〈 〉 =
∞

In contrast to Eq. (25), we have introduced explicitly in the
function arguments the relevant experimental and system para-
meters, and have further replaced the general size distribution
f r( )NP

by the Schulz–Zimm distribution, f r( )SZ
, used for the char-

acterisation of our samples (cf. Section 2).
The analysis of the experimental MRX data is based on Eq. (34).

For computational purposes we replace the integrals in that ex-
pression by the finite sums

( )
B t aM

r L H M r H M K T r t f r

r f r
( )

( , ; ) , , , ; , ( )

( )
.

(36)
s

i i M s i M s M i i

i i i
MRX

3
SZ

3
SZ

Λ
=

∑
∑

Rather than using the particle size distributions given by the ex-
perimental histograms of Fig. 1, we use the fitted Schulz–Zimm
functions, discretised in steps r r ri i1Δ = −+ of 0.1 nm in the interval
from 1 to 30 nm. This step size is small compared to all relevant
spatial scales, i.e., widths of f r( )SZ and sharpness of the window
boundaries. Recalling that our magnetometers measure the field
on an absolute scale and comparing Eqs. (34) and (36) one sees
that the parameter a is proportional to the total mass mtot of
nanoparticles in the sample.

Our experimental data is a set of relaxation curves, each con-
sisting of a time series B B t( )j j= , recorded for the six samples (A–
F). We recorded MRX traces with four different iron contents
(ranging from 1 to 8 mg) in every sample, so that the total data set
consist of 24 MRX traces. In Eq. (36) the magnetising field and
duration are known experimental parameters with values
H 27 mTM0μ = and T 3 sM = , while K, Ms, and a are the parameters

of interest in this study that are determined by fitting Eq. (34) to
the experimental data. In order to avoid confusion further down
we denote the fit parameters and the fit function by a tilde ∼, viz.,

B t aM
r L H M r H M K T r t f r

r f r
b( )

( , ; ) ( , , , ; , ) ( )

( )
,

(37)
s

i i M s i M s M i i

i i i
MRX

3
SZ

3
SZ

Λ
=

∑
∑

+∼ ∼͠∼

where we have added a constant offset b
∼
that takes the laboratory

background field into account.
Below we will describe the fits of our data with the MSM

function (37), as well as with the logarithmic decay law of Chan-
trell

Table 2
Fit parameter of the Chantrell function (38) for the MRX curves.

Sample r (nm)act〈 〉 a (nT)C (s)cτ

A 15.2 0.97(5) 5.4(1.3)
B 14.4 1.55(10) 6.3(1.7)
C 14.3 0.84(8) 2.7(9)
D 14.4 0.48(11) 1.1(6)
E 18.0 2.1(9) 16(4)
F 21.1 0.51(3) 16(6)

Table 1
Major size-related parameters of the samples A–F and material parameters K and Ms obtained from fits of the MSM function (37) to the MRX curves. The anisotropy energy is
calculated according to E K Va act= 〈 〉 .

Sample r〈 〉 (nm) r3 1/3〈 〉 (nm) r act〈 〉 (nm) r3 act
1/3〈 〉 (nm) V (10 nm )3 3〈 〉 V (10 nm )act

3 3〈 〉 K (kJ/m3) Ms (kA/m) Ea (10 J)20−

A 8.0 9.5 15.2 15.2 3.58 14.85 6.03(10) 21(5) 8.96(15)
B 13.0 13.4 14.4 14.4 10.03 12.44 7.24(19) 21(2) 9.0(2)
C 11.5 12.1 14.3 14.3 7.45 12.30 7.1(3) 19(6) 8.8(3)
D 11.6 11.7 14.4 14.4 6.75 12.51 6.9(3) 24(14) 8.7(4)
E 17.2 17.3 18.0 18.1 21.6 24.6 3.75(5) 19(3) 9.24(12)
F 18.6 19.2 21.1 21.1 29.5 39.5 2.40(5) 20(65) 9.47(19)

Table 3
Definitions of the relevant average particle sizes and volumes, based on their size
distribution functions.

r f r r r( ) dNP∫〈 〉 = r f r r t r t r( ) ( , ) d d
r tact NP∫ ∫ Λ〈 〉 =

V f r r r( ) d
4

3 NP
3∫〈 〉 = π V f r r t r t r( ) ( , ) d d

r tact
4

3 NP
3∫ ∫ Λ〈 〉 = π

r V3 1/3 3

4
3⟨ ⟩ = ⟨ ⟩π r V3

act
1/3 3

4 act
3⟨ ⟩ = ⟨ ⟩π
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⎛
⎝⎜

⎞
⎠⎟B t a

t
b( ) ln 1 ,

(38)

C
C

c
CMRX

( ) τ= + +∼ ∼∼ ∼

introduced by Eq. (33).

5. Results

5.1. MRX decay

Fig. 7 shows the MRX signals from all the six samples in their
highest iron concentration. Data are shown as dots together with

4-parameter (K
∼
, Ms, a

∼, b∼) fits by the MSM function (37) (fit para-

meters collected in Table 1) and 3-parameter ( cτ∼ , aC
∼ , bc

∼
) fits by the

logarithmic decay law (38), whose parameters are collected in
Table 2. The lower parts of the individual graphs in Fig. 7 show the
corresponding fit residuals. For a better assessment of the fit

quality at different time scales we have represented all data on
lin–lin, log–lin, and log–log scales. One sees that the MSM function
(37) gives a better description of the experimental data at small
and large times than the logarithmic decay law (38).

In Tables 1–3 we also provide several parameters describing
the particle size distributions, where the subscript ‘act’ refers to
the magnetically active fraction of the particles that is selected by
the window dynamic.

5.2. Window function dynamics – experiment

With the experimentally determined parameters K
∼

and Ms we
can now visualise the window dynamics that underlies the MRX
decay. The red shaded areas in the graphs of Fig. 8 represent the
product f r r t( ) ( , )SZ Λ of the particle size distribution and the win-
dow function for five selected times ti during the observed mag-
netisation decay. The top graph shows the MRX signals in the
explored time interval ( t24 ms 87 s< < ) as well as the back-

Fig. 8. Top: Modelled decays of the SPION samples' magnetic induction (traces for the highest concentration for each sample type). Bottom: Schulz–Zimm size distributions
(solid lines) and distributions of active particles (shaded areas) that effectively contribute to the MRX signals at different times. The vertical dashed lines represent r act〈 〉 (cf.
Table 1).
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extrapolated fitted MRX functions and value B t( 0)MRX = (marked
by horizontal arrows). The leftmost column of the lower graphs
gives f r r( ) ( , 0)SZ Λ , i.e., the magnetised fraction of particles at the
end of the magnetisation process that is unobservable because of
the detector dead time.

5.3. Magnetised mass fraction and total sample mass
reconstrunction

From Eqs. (34) and (37) it follows that the fit parameter a∼ is
proportional to total mass of the nanoparticles mtot:

m
R

m a
R

V a
3

2

3

2
.

(39)
tot
MRX

3

0
NP

3

0μ μ
ρ= = 〈 〉∼ ∼

In Fig. 9 we compare, for each sample, the total mass of the
sample, mtot

MRX, inferred from the fit parameter a∼, to the sample
mass , m m /tot

tit
Fe
tit ε= , where ε= 0.7 is the fractional iron content of

an Fe2O3 molecule, and mFe
tit the iron mass in the sample deter-

mined by titration (cf. Section 2.1).
We first note that for all samples m mtot

MRX
tot
tit∝ . However, none

of the samples obeys the anticipated m mtot
MRX

tot
tit= dependence,

although m mtot
MRX

tot
tit< confirms that the results are physically

realistic (Table 4). This observation shows that the samples contain
particles that either do not produce a magnetic field or whose
magnetisation does not relax according to the MSM decay law. We
cannot rule out, although it is unlikely, that the samples contain
much larger particles that were not detected by the TEM char-
acterisation process.

The graphs of Fig. 9 reveal an increasing deviation from the
slope¼1 dependence with increasing particle size. One may as-
sume that the larger particles have a multidomain structure,
whose ferromagnetic behaviour is not described by our model.
However, we can rule out this hypothesis since maghemite is
known [34] to exist in single domain forms up to radii r 35 nm〈 〉 ∼ ,
larger than the particles in our experiments.

Another, also less likely hypothesis, is the assumption that the
samples contain a fraction of particles that obey a Brownian, rather
than a Néel relaxation law. In fact, the shell of SPIONs obtained by
thermal decomposition consists of oleic acid covalently bound to
the particle surface together with unbound free oleic acid [35,36].
This encapsulating liquid layer may act as embedding agent and
prevail after drying at low temperatures (60 °C) resulting in a
paste-like component with a high, albeit finite viscosity, leading to
fast relaxation that is unobservable with the dead-time of our
detector.

In our opinion, the most likely explanation of our observations
is the assumption that the larger samples contain a substantial
amount of magnetite [26], which cannot be magnetised as easily
as maghemite and thus cannot be observed in our experiments.

Despite of those discrepancies we may claim that our MRX
measurement and analysis method allows us to infer the samples'
iron content on an absolute scale within a factor of E5. We stress
that the relative scaling of the total sample mass under dilution
can be estimated with an accuracy of E10%.

5.4. Extracting the saturation magnetisation Ms and anisotropy
constant K

The 4-parameter fits of the MRX data by the MSM function
yield values for a∼, b∼, Ms, and K

∼
. In order to make sure that these

global fits do not converge to local minima we have performed the
following systematic study. We define a discrete grid of reasonable
values K2 10 kJ/mj( ) 3< < and M0 60 kA/ms

j( )< < and fit, for each
pair of fixed K j( ) and Ms

j( ) values the function (37) to the data. In

that case the two remaining fit parameters a∼ and b
∼
can be inferred

using a linear regression. We define the quantity B2
MRX
2χ δ= ∑ ≡

B B( )MRX
(exp)

MRX
2∑ − ∼
, and use 1/ min( )/ [0, 1]N

2 2 2χ χ χ≡ ∈ as a measure
for the fit quality.

Fig. 9. Dependence of the magnetically active mass fraction inferred from fits to the MRX signals on the maghemite mass determined by titration. Data are shown for
different dilutions together with linear fits. The dashed line represents m mtot

MRX
tot
tit= .

Table 4
Dependence of the magnetically active mass fraction inferred from fits to the MRX
signals on the maghemite mass determined by titration for evaluated samples.

Sample V (10 nm )act
3 3〈 〉 m m/tot

MRX
tot
tit

A 14.8 0.22
B 12.4 0.56
C 12.3 0.29
D 12.5 0.30
E 24.6 0.23
F 39.4 0.05
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We have applied this two-parameter fit procedure to all 24
experimental MRX traces. Fig. 10 shows the corresponding contour
plots of constant 1/ N

2χ values. The inserts of Fig. 10 for the highest

iron concentrations are zooms into the regions near the corre-
sponding minimal χ2 values. The black contour lines in the inserts
represent the contours for which 1/ 1/2N

2χ = , while the smooth

Fig. 10. Determination of K and Ms values from 2- and 4-parameter fits of 24 experimental data sets as described in the text. The contour lines represent 1/ N
2χ values when

the parameters a∼ and b
∼
are fitted on a mesh of fixed K and Ms values. Insets: The solid white lines represent the 1/ 1/2N

2χ = confidence region boundaries. The black dots and
black ellipses represent the best (K, Ms) values obtained by 4-parameter fits.
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ellipses represent the errors of the four-parameter fits of the MRX
data. The fact that the regions of confidence produced by the two
fit approaches show a large overlap demonstrates the consistency
of the methods.

For most of the samples the maximal 1/ N
2χ values are located in

a compact region of the K Ms– space. While the relative errors on
the anisotropy constant K are less than 5%, the corresponding re-
lative uncertainties on Ms are significantly larger. This effect is
particularly pronounced for sample D, for which no closed contour
lines are found in the studied parameter range. As expected, the
regions of confidence of all samples become wider as the iron
content is lowered. Within the uncertainties defined by the
1/ 1/2N

2χ = boundary, the Ms and K values show no dependence on
the particle concentration.

The values of K and Ms determined in this way are listed, to-
gether with their uncertainties, in Table 1. Fig. 11 shows that the
anisotropy constant K, usually considered as a particle in-
dependent material parameter, is proportional to the inverse of
the average volume of the magnetically active particles V act〈 〉 . As a
consequence, the anisotropy energy E K Va act= 〈 〉 of the active par-
ticles weakly depends on the particle volume (central graph of
Fig. 11) and is equal to 8.65(10) 10 J20× − as extrapolated to
V 0act〈 〉 = , defined in Table 3.

In contrast to the latter observation the right graph of Fig. 11
shows that the saturation magnetisation Ms is volume in-
dependent, with an average value of M 20.3(1.2) kA/ms = .

5.5. Figure of merit

In order to compare the relative merits of the different samples
in view of their use for MRX detection we introduce a figure of

merit defined by

FOM B t t( ) d ,
(40)t

t

24 ms

87 s

MRX
1

5∫=
=

=

where the integration limits t1 and t5 refer to the beginning and
end of the magnetisation recordings in Fig. 7. We have calcu-
lated this figure of merit for all samples based on the experi-
mental data, after subtraction of the fitted offset field value b

∼
in

Eq. (37). The results are represented in Fig. 12 and show that
sample E is the best suited under the used experimental
conditions. This result can be understood based on the fact that
sample E has the largest magnetisation, and thus produces the
largest induction BMRX at time t¼0. In addition, sample E
features, together with sample F, the longest relaxation time Cτ
(Table 2). The initial magnetisation of sample F is rather small
because of the large particle size that is reflected by the very
small active mass fraction of that sample (Fig. 9). Sample B has a
slightly lower initial magnetisation than sample E, while having
a significantly shorter relaxation time, a feature shared with
samples A, C and D. In consequence these particles have a
reduced FOM.

We have tried, without success, to record MRX signal from
samples with r 10 nm〈 〉 < and r 25 nm〈 〉 > . Considering our ex-
perimental parameters T 3 sM = , H 27 mTM0μ = , and 25 msDτ = , the
MSM shows indeed that the magnetic field B t( 0)MRX = is below
the detection limit of our magnetometer.

6. Discussion

We have shown that atomic magnetometers can be used to
record MRX data in the sub-nT range using a moderately
shielded environment. The high quality of the signals has al-
lowed us to infer material parameters of various SPION sam-
ples and to carry out a detailed study of the size dependence of
their magnetorelaxation behaviour. As a result, we have de-
termined the optimal size distribution under our experimental
conditions in which the particles were magnetised in a field of
27 mT for 3 s.

We stress that the optimal SPIONs' size for a given MRX
application depends very much on the magnetisation (HM and
TM) and detection ( Dτ ) conditions, and that it makes no sense to
speak about ideal particle size without specifying those ex-
perimental parameters.

The use of SPIONs for biomedical imaging based on MRX
measurements requires not only that biochemical/biophysical
properties fulfill the conditions of the targeted application but
also puts constraints onto the material parameters, such as the
saturation magnetisation MS and anisotropy constant K. The
magnetic field produced by the particles, i.e., their

Fig. 11. Dependence of the fitted anisotropy constant K on the inverse of the average particle volume (left), anisotropic energy Ea (centre) and saturation magnetisation Ms

(left) on the average particle volume.

Fig. 12. Figure of merit (FOM) defined by (40) of all investigated samples. Un-
certainties are defined by the error of the background level estimations in (37).
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magnetisation should decay on a time scale that is sufficiently
long to overcome the limitations imposed by the unavoidable
dead time of the magnetometer system. In principle, our mag-
netometer has a dead time of E1 ms. However, because of the
aluminium shield, our gradiometer senses residual magnetic
field gradients oscillating at 50 Hz at the level of E20 nT. These
oscillations are suppressed numerically in data processing. As a
result our system has an effective dead time of E24 ms.

Since the relaxation times grow with particle size (both in
the Néel and Brown cases), the finite magnetometer dead time
implies that only particles above a certain size effectively
contribute to the MRX signal. In imaging applications one
wishes to distinguish particles bound to biological entities
whose MRX is determined by the Néel relaxation time Nτ from
particles embedded in biological fluid assumed to show fast
Brownian relaxation ( )Bτ . An efficient distinction of the parti-
cles' environment calls for a ¢N Bτ τ̂ª , which therefore imposes a
certain minimal SPION size r 11 12 nm〈 〉 > – . On the other hand,
particles that are too large imply a longer relaxation time and
hence require a stronger magnetising field and a longer mag-
netisation time. Our studies have shown that particles with
r 18.6 nm〈 〉 > (sample F) yield practically no signal, while a
maximal signal and slowest relaxation was found for particles
with r 17.2 nm〈 〉 = . Our findings are well supported by model
calculations based on the Néel–Brown–Chantrell approach,
that describes the complex interplay of window function dy-
namics and particle size distributions.

As a surprising result we have found that the anisotropy
constant K is inversely proportional to the magnetically active
particle volume, implying an active volume independence of
the anisotropy energy Ea. We note that size dependent K-va-
lues have been reported before (see, e.g., [26,37] and refer-
ences therein), but that there is, to our knowledge, no sa-
tisfactory universal theoretical model explaining such a be-
haviour [34]. On the other hand we found that, within error

bars, the saturation magnetisation Ms is independent on par-
ticle size.
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Appendix A. Total energy of uniaxial SPIONs

In order to illustrate the relative importance of the anisotropy
energy and the magnetic energy, we consider the simplest case of
a uniaxial crystal for which the anisotropy energy is well ap-
proximated by [32]

E KV( ) sin , (A.1)a c c
2θ θ=

where K is the (first) anisotropy constant and θc the angle between

pμ→ and the easy axis ĉ . When ĉ is oriented along H
→
, the total energy

becomes

( )E KV h( ) sin 2 cos , (A.2)tot
2θ θ θ= −

a dependence illustrated in Fig. A13. For H 0= the total energy has
two distinct (equivalent) minima that occur at 0θ = and π,
respectively. For H 0≠ one sees that the anisotropy field HK

represents the external field value, above which E ( )tot θ has only a

single minimum, occurring at 0θ = , i.e., when H
→

is along the easy
axis.

Fig. A13. Angular dependence of the total energy Etot (solid magenta line) of a magnetic nanoparticle in an external magnetic field H. The dashed red and blue lines
represent the anisotropy energy and magnetic energy, respectively. (For interpretation of the references to colour in this figure caption, the reader is referred to the web
version of this paper.)
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