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Abstract

The concept of extreme events describes the above average behavior of a process, for instance, heat
waves in climate or weather research, earthquakes in geology and financial crashes in economics. It
is significant to study the behavior of extremes, in order to reduce their negative impacts. Key objec-
tives include the identification of the appropriate mathematical/statistical model, description of the
underlying dependence structure in the multivariate or the spatial case, and the investigation of the
most relevant external factors. Extreme value analysis (EVA), based on Extreme Value Theory, pro-
vides the necessary statistical tools. Assuming that all relevant covariates are known and observed,
EVA often deploys statistical regression analysis to study the changes in the model parameters.
Modeling of the dependence structure implies a priori assumptions such as Gaussian, locally sta-
tionary or isotropic behavior. Based on EVA and advanced time-series analysis methodology, this
thesis introduces a semiparametric, nonstationary and non-homogenous framework for statistical
regression analysis of spatio-temporal extremes. The involved regression analysis accounts explic-
itly for systematically missing covariates; their influence was reduced to an additive nonstationary
offset. The nonstationarity was resolved by the Finite Element Time Series Analysis Methodology
(FEM). FEM approximates the underlying nonstationarity by a set of locally stationary models and a
nonstationary hidden switching process with bounded variation (BV). The resulting FEM-BV-EVA
approach goes beyond a priori assumptions of standard methods based, for instance, on Bayesian
statistics, Hidden Markov Models or Local Kernel Smoothing. The multivariate/spatial extension
of FEM-BV-EVA describes the underlying spatial variability by the model parameters, referring to
hierarchical modeling. The spatio-temporal behavior of the model parameters was approximated by
locally stationary models and a spatial nonstationary switching process. Further, it was shown that
the resulting spatial FEM-BV-EVA formulation is consistent with the max-stability postulate and
describes the underlying dependence structure in a nonparametric way. The proposed FEM-B V-
EVA methodology was integrated into the existent FEM MATLAB toolbox. The FEM-BV-EVA
framework is computationally efficient as it deploys gradient free MCMC based optimization meth-
ods and numerical solvers for constrained, large, structured quadratic and linear problems. In order
to demonstrate its performance, FEM-BV-EVA was applied to various test-cases and real-data and
compared to standard methods. It was shown that parametric approaches lead to biased results if
significant covariates are unresolved. Comparison to nonparametric methods based on smoothing
regression revealed their weakness, the locality property and the inability to resolve discontinuous
functions. Spatial FEM-BV-EVA was applied to study the dynamics of extreme precipitation over
Switzerland. The analysis identified among others three major spatially dependent regions.
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1 Introduction

It is in our human nature to observe and to understand our environment. Observing a process en-
ables us to draw conclusions about its behavior, namely, to find a rule which explains the underlying
dynamics and can be used for future evaluations of the process. In some cases the aim is to study the
average behavior of a process, in other cases, we are interested in their outliers defined as events that
occur unexpected, rare and irregular. Such events are referred to as extreme events or just extremes.
In the context of a statistical model, extremes are usually located in the tails of the corresponding
distribution, referring to the illustrated "trunk" and the "tail" of an elephant, please see Figure [I.1]
The relevance of an extreme event can be measured by its social and/or financial impact. While

36

Figure 1.1. "A boa constrictor digesting an elephant.

we are pleasantly surprised by extremes with a positive impact, we are concerned about extremes
that result in social and financial losses. In order to reduce these potential losses, it is important
to study extremes of processes and systems surrounding our daily life, including environmental,
industrial and economical processes®42. In this thesis, we will focus on statistical description of ex-
tremes that describe the outliers of such processes, for instance, heavy precipitation in hydrological
systems, material strength in material sciences and financial crashes in economics. Of particular in-
terest are extremes that are defined either as partial maximal/minimal values or as excesses beyond



a predefined threshold, for instance, annual flood levels and large insurance claims, respectively.
Data-based analysis of such events is a challenging task. First, we have to solve an inverse problem
given only historical observations of extremes with the aim of finding the best descriptive model
of the underlying dynamics in a certain class. Secondly, the corresponding model should not only
describe the behavior of observed extremes, but also be sophisticated and reliable for drawing con-
clusions about the behavior of "more extreme" extremes. For example, dikes or damns for flood
control are designed to protect from the 100-year event, while the level of such an event is esti-
mated based on observations of 10-year events®>, Lastly, extremes are rare, occur irregularly,
and usually there is no known deterministic formulation based on obvious physical laws.

The first attempts to study the behavior of extremes were made in hydrological engineering focus-
ing on the level/intensity of floods and droughts, and date back to ancient times, where the agrarian
economy and the main system of communication were strongly dependent on the water flow. The
importance increased during the industrial age with the invention of hydro-electric plants®2. Un-
til the mid of the 20th century engineers applied the less successful empirical methods to study
the behavior of extremes. For instance, the frequency of a major flood was estimated by dividing
the number of such events by the corresponding time span. Then, the statistical nature of sample
extremes was recognized and Fréchet obtained in 1927 the first result: an asymptotic parametric
distribution of sample extremes, please review Figure [I.2]for an example. Fréchet also introduced
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Figure 1.2. The upper panel shows the deseasonalized daily temperature in Celsius measured at
location Lugano, Switzerland (46°N, 8.9667°E). The bottom left panel presents the histogram of
the same data. In both figures the annual maxima are circled in red. The histogram of the annual
maxima is shown in the bottom right panel. The red line is the estimated extreme value distribution.



the so called max-stability postulate, under which a distribution is qualified for predictions of "more
extreme" events*®2. Based on max-stability, Tippet and Fisher extended the result of Fréchet by
introducing another two limiting distributions for extremes**. The foundation for Extreme Value
Theory (EVT) was laid. Other fundamental results were obtained among others by deHaan in 1970
and Pickands in 1975, including asymptotic results for threshold excesses=>>2, With this, extreme
value analysis (EVA) results in fitting the appropriate extreme value distribution to observed ex-
tremes.

In order to complete the analysis of extreme events, it is important to analyze their occurrence. For
this purpose results from Point Process Theory can be deployed. Point processes such as the Pois-
son process estimates the probability of the number of events within a predefined period and the
duration time between the next event given the occurrence of the previous one“Z. This dissertation
thesis will focus on the analysis of the level of extremes in EVT and will not tackle the issues from
the Point Process Theory.

The application of EVT assumes that the observations of the process from which the extremes are
extracted are independent and identically distributed, implying stationarity of the underlying dy-
namics. In real applications, this assumptions may not always be true, for example, hydrological
processes like precipitation depend on the season. The most general way to account for the nonsta-
tionarity of the underlying process is to refer to the time dependent parameters of the corresponding
distribution of extremes. Further objective is to understand if the behavior of extremes is governed
by external influences. To study this question, the parameters of the distribution are expressed by
regression models, referring to statistical regression analysis of extremes. In this context, the aim is
to estimate the values of the regression parameters from historical observations. Standard state-of-
the-art methods in this field are divided into two groups: parametric and nonparametric regression
methods. In parametric approaches the model parameters are expressed as predefined functions
such as the sine/cosine functions to model the seasonal trends in meteorology?%. A disadvantage of
parametric approaches is the assumption that either all relevant covariates are known, or that the un-
known covariates are independent and identically distributed. As a result, these methods implicitly
assume time independence of the involved regression coefficients. But, due to the multiscale nature
of most realistic processes, for example, in climate research and economics, one would never be
able to guarantee that the set of the information collected about the analyzed process is complete.
One would also not be able to guarantee that all of the necessary probabilistic assumptions are
fulfilled a priori for the analyzed process. Nonparametric approaches for regression analysis of ex-
treme events are based, for instance, on Local Likelihood Smoothing=4 or Bayesian techniques 252,
The limitations of these methods are their locality, that is, the local stationarity assumption in some
local temporal window of predefined width, and a priori parametric assumptions about the distribu-
tions of the model parameters. Another strategy is to involve mixture models and Hidden Markov
Models (HMM)Z107% - Such approaches require a priori knowledge about the probabilistic model
for the time-dependent model parameters such as stationarity and the Markov assumption for the
hidden switching process.

Another relevant subject in extreme value analysis is the exploration of the relationship among ex-
tremes which are extracted from different processes. Here, the main goals are to investigate the



behavior of extremes for each single process and to study if and how the different processes influ-
ence each other in terms of the intensity of extremes. The latter is approached by the multivariate
EVT and is mainly applied to environmental, climatological and economical problems. In the case
when the different processes correspond to observations at different spatial locations, we refer to
spatial EVA. Here, the relationship among locations with respect to the occurrence of extremes is
denoted as the spatial dependence structure, measured by the joint probability. Unlike univariate
EVT, there exists no known closed probability distribution for the multivariate extremes, but rather
a wide range of different descriptions of the underlying dependence structure. The state-of-the-
art methods approximate the underlying dependence structure assuming, for instance, Gaussian,
stationary and isotropic behavior. In nonparametric approaches the dependence structure can be
approximated by a combination of predefined kernel functions2>31162,

Spatial extreme value analysis is a very active research field. Thereby, it is important to detect the
external factors that have the most significant influence on the dynamics of extremes and to de-
scribe the underlying dependence structure beyond strong a priori assumptions. The goal of this
thesis is to introduce a novel data-based framework for spatio-temporal statistical regression anal-
ysis of extremes based on EVT and advanced time series analysis techniques. We will approach
explicitly the task of what happens if significant covariates are missing in the deployed regression
model. In particular, we will show that unresolved covariates can be reflected by an additive non-
stationary offset. In order to resolve this nonstationarity in a nonparametric way, we apply the
Finite Element Time Series Analysis Methods with Bounded Variation of model parameters (FEM-
BV)=8/8 The resulting univariate FEM-BV-EVA approach goes beyond probabilistic a priori as-
sumptions of methods based, for instance, on nonstationary Bayesian mixture models, smoothing
kernel methods or neural networks. Furthermore, we are interested in a nonparametric description
of the underlying dependence structure among different locations. For this, we extend the FEM-
BV-EVA towards space-time clustering of extremes remaining consistent with the max-stability
postulate. The resulting spatio-temporal FEM-BV-EVA provides a pragmatic, nonparametric and
nonstationary description of the spatial dependence structure. Finally, based on FEM-BV-EVA we
provide a computationally efficient framework for statistical regression analysis of extremes that
can be straightforwardly applied to large real-world problems. Therefore, we consider different
optimization techniques including gradient free MCMC based methods and numerical solvers for
constrained, large, structured quadratic and linear problems, which can be straightforwardly im-
plemented as highly-scalable applications in HPC context, using existent parallel libraries. We will
demonstrate the proposed framework on test-cases and real data. For real applications we will focus
on climatological and meteorological data, as these data are easily accessible and can be tagged to
real geological locations. Further, in the context of anthropogenic climate change, an increase of
extremes in hydrological and climatological systems might be expected®?. Hence, analyzing ex-
tremes of such processes is a present and important problem.

This thesis is organized as follows: in Chapter 2] we review related work of univariate and multi-
variate EVT, discuss the limitations of state-of-the-art-approaches, and motivate the purpose of this
thesis. In Chapter [3] the methodology of the FEM-BV-EVA framework is proposed and derived in
details. Additionally, this chapter contains the conceptual comparison of FEM-BV-EVA and the



state-of-the-art-approaches in EVA. Chapter [ presents the extension of the FEM framework to-
wards spatial Extreme Value Analysis. In Chapter [5 we first demonstrate on test-cases and real
applications that parametric approaches provide biased results in the case of unresolved/missing
covariates. Further, we compare the proposed framework with nonparametric standard approaches,
based on smoothing regression. The performance of spatial FEM-BV-EVA is demonstrated on a real
application. Chapter[6]contains the conclusion of the thesis and provides ideas for the extensions of
the prosed methodology.






2 Statistical Extreme Value Analysis

In many real applications we intend to solve an inverse problem: given only the measurements of a
process the aim is to find the best descriptive model of the underlying dynamics. For some inverse
problems, the underlying dynamics can be described by physical laws, for example, in geophysics
and biophysics. In such a case, the inverse problem is solved by extracting the corresponding physi-
cal parameters from the measurements through the solution of a system of equations*'. However, in
cases where observed measurements do not follow some obvious physical laws, statistical concepts
provide an alternative to describe the underlying dynamics by a statistical model. A statistical model
is defined by a probability distribution of the particular measurements and summarizes the main de-
scriptive features like the average value and the range of values around it*1%L, A brief introduction
of some important concepts relevant for statistical modeling is given in Appendix [A]l In the case
where the underlying distribution is known, the aim is to estimate the most likely parameters for the
given data. Often the underlying distribution is unknown and so we focus on a certain class of dis-
tributions which satisfy some desirable properties. Such a class is the class of "stable distributions".
A distribution is considered as a "stable distribution", if the sum of #» > 0 independent random vari-
ables from this distribution preserves the shape and skewness while changing the scale and location
parameters. Stable distributions provide a wide range of robust models, for instance, the family of
Gaussian distributions 831216 Another approach is to approximate the underlying distribution ex-
ploiting statistical limit laws. A famous example is the Central Limit Theorem (CLT), which states
that for a set of random identically and independently distributed (i.i.d) variables X1, X5, ... with fi-
nite mean U and finite variance o2, the limit behavior of their normalized partial sums, X, = Zn: Xi,
is the Normal distribution =

X, —
N 0_“—>N(0,1) as 11— oo @.1)
X+ X+ .. X,
with = % (2.2)

In particular, for large n this result is often used to approximate the distribution of X,, by N (L, 072 )
Also the modeling of extreme events is an inverse problem, and since there is no known closed
formulation for the underlying dynamics based on physical laws, statistical modeling is widely

accepted. Let us first focus on sample extremes (also called block-extremes) defined by

Y =max (Xj,...,X,) or Y =min(Xy,...,X,) (2.3)



8 2.1 Univariate Extreme Value Analysis

as n — oo, where Xj, ..., X, are i.i.d with a common distribution function F(-). Then, the objective
of statistical modeling of sample extremes is not only to provide the most descriptive distribution
but also to predict likely events that lie beyond the observed range. That is, the considered class of
distributions should be valid with respect to more extreme events, e.g., a model for annual maxima
should stay valid for five-year maxima. This property is called max-stability and was introduce
by Fréchet in 1927. By definition, a distribution G(y) is max-stable if for n = 1,2... there exist
constants a,, > 0 and b,, such that

(G(any+bn))" =G(y), (2.4)

where "stability" indicates that the shape and the function class of the distribution is not changing for
"more extreme" extremes%. Based on max-stability, Extreme Value Analysis (EVA) is a standard
tool in statistics for describing the probability distributions of sample extremes?2**4V Inline with
CLT, an asymptotical result was obtained by studying the limiting behavior of sample extremes: for
a sequence of real constants a, > 0, b, and for n = 1,2, ... the nondegenerate limit distribution for
normalized extremes is given by

Y—b Xi—b X,—b
Pl <y =P[5 <y,..., <y (2.5)
a, a, ay
iid
X —b X,—b
P <)L P <) (2.6)
a ay
= (F(any+by))". 2.7)
The corresponding limit distributions, defined by

(F(any+by))" = G(y), asn — oo, (2.8)

are called the extreme value distributions. The key statements of EVA are described next, for a
detailed discussion please compare232122,

2.1 Univariate Extreme Value Analysis

It has been shown by Fisher & Tippet in 1928 that the limit distribution (2.8) of sample maxima or
minima defined by |i is the Generalized Extreme Value (GEV) distribution®>*2, defined by its
cumulative distribution function (cdf)

exp(— [1+&2E] é) £#0, (2.9)

G(y:u,0,8) = °

exp(—exp[-2]). " £

with location, scale and shape parameters, U, o, & € R, respectively, subject to {1 —i—é%} >0
and o > 0. The corresponding GEV probability density function (pdf) that is estimated as the
derivative of (2.9): g (y;u,0,&) =dG(y;u,0,8) /dy, is illustrated in Figure GEV is a max-
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GEV Probability Density Function

—pu=10=1,£6=-04
n=20=1£6=04

0.4- —#=0,0=18=0
0.3
;:
0.2

0.1

0 -5 0 5 10 15

Figure 2.1. The GEV probability density function g(y;|t,0,E) combines Weibull, Gumbel and
Fréchet probability distribution families corresponding to & < 0, & =0 and & > 0, respectively.

stable distribution, the reverse is also true: if a distribution is max-stable, then it is a GEV as was
shown by Gnedenko in 194323252 Thus, for a series of block-maxima we refer to the GEV as the
appropriate distribution. The optimal model parameters can be obtained by maximizing the corre-
sponding log-likelihood function as described in Appendix [A.T] Please note that in the following
we focus on block-maxima only, analogue results are obtained for block-minima by referring to
Y =max (—Xj,...,—Xy).

However, by considering block-maxima only, we neglect other extreme events. An alternative
approach is to define extremes as excesses over/under a predefined higher/lower threshold: con-
sidering the above sample of i.i.d variables Xi,...,X, with Y ~ G(y;u,0,&) and a large enough
threshold u, threshold exceedances are all those variables X; with X; > u,i = 1...,m. Conditioned
on X; > u the threshold excesses are defined as X; —u,i = 1...,m. Balkema & de Haan (1974)
and Pickands (1975) showed that the distribution of the threshold excesses P[X; — u < x|X; > u]
can be approximated by the Generalized Pareto Distribution (GPD)#!, defined by its cumulative
distribution function

H(x6,8) = 1—(”%)7%’ 5 #0, (2.10)
o 1—exp(—§>, E=0.

where 6 = 0 + & (u— ) with &, 1,6 defined by (2.9). GPD is parametrized by scale and shape
parameters with respect to 6 > 0 and |1 —Hﬁg} > 0. The corresponding GPD pdf i (x;5,&) =
dH (x;6,&) /dx is illustrated in Figure GPD is threshold-stable??: threshold excesses for any
higher threshold v > u also follow a GPD distribution with the same shape parameter &, = £ and a
shifted scale parameter 0, = 0 + & (v — u). This property is significant for simulating likely thresh-
old excesses that lie beyond the observed range. Please note that the threshold # must be sufficiently
high to fulfill the asymptotical behavior. There exist different techniques as how to choose the ap-
propriate threshold#%. In this thesis the threshold will be fixed a priori, for instance, referring to
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GPD Probability Density Function
1 T T T

0.8

<50.61 1
Iy

Figure 2.2. The GPD probability density function. In the case that the shape parameter & is zero,
the GPD corresponds to the exponential distribution.

the 0.95 quantile of the observed series.

The optimal model parameters in GEV or GPD are obtained by maximizing the cor-
responding log-likelihood function. However, the direct fitting of block-maxima or threshold ex-
cesses, respectively, implies independence and identical distribution of the sample X, ..., X,. This
assumption refers to a non-changing behavior of the underlying dynamics (stationarity) and is ob-
viously not always the case, for example, in context of climatology/meteorology the dynamics of
monthly temperature or precipitation are affected by the seasonality. The most general way to
release this stationarity assumption is to incorporate the time dependent behavior of model param-
eters, i.e., to express the model parameters in (2.9) and by time-dependent functions. Please
note that by "model parameters" we refer to both the GEV and the GPD model parameters, unless
explicitly specified otherwise.

Further aim is to understand if the behavior of extremes is governed by some external influence.
The interest lies in finding the most explanatory variables (denoted as covariates, modes or factors)
that significantly influence the parameter dynamics and hence the distribution of extremes. There-
fore, in this thesis the model parameters are constructed as functions of covariates, i.e., as regression
models. The aim of data-based regression analysis of extreme events will be to infer the values of
the regression parameters from observed data. Standard state-of-the-art methods applicable to this
task can be roughly divided into two groups: parametric and nonparametric regression approaches.
In the following, a review of standard approaches for parametric and nonparametric regression anal-
ysis of extremes will be given, methods which are addressed more often in this thesis are explained
in more details.

2.1.1 Parametric Regression Analysis

In parametric regression analysis the model parameters are expressed as a priori defined func-
tions depended on covariates. Thereby, as covariates we can involve explicitly known functions
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such as sine/cosine functions for modeling the seasonal trends in meteorology, as well as climate
phenomena where only measurements are given (in order to study their linkage to the dynam-
ics of extremes). For example, for the location parameter u(7) in (2.9) and a set of covariates
U(t) = (ui(t),...,up(t)), denoted in the following as U;, we get

u(t) = f(U,0), 2.11)

where f (U;, 0) is the given parametric function, described by the vector of parameters 6. A widely
used example is the linear regression, with f (U;,0) defined by

P
F(UL0) = o+ tpuy(t), (2.12)

p=1
where the regression coefficients are summarizes in 6 = (U, ..., p). The main advantages of a

linear regression are (a) the simple description of the underlying parameter dynamics and (b) the
direct interpretation, since the contribution of each covariate is measured via the corresponding re-
gression coefficient*>Z, Linear regression might be not appropriate in the case that the influence of
the covariates is nonlinear. The linearity can be relaxed by involving nonlinear terms, describing
the interacting couplings of the covariates (e.g., u3(t), u1(t) - ua(t), ...) as additional covariates.
However, the most general parametric approach is to deploy standard tools from machine learning,
e.g., Artificial Neural Networks (ANNs)?>% and Support Vector Machines (SVM)L,

The combination of GEV with a special form of ANN, called Conditional Density Estimation Net-
work (CDN) has led to a creation of the GEV-CDN!#12 3 robust and flexible approach for non-
stationary and nonlinear approximation of the GEV model parameters. CDN is an extension of the
multilayer perceptron neural network (MLP) for probabilistic models1®®, where MLP refers to a
feed-forward artificial neural network (ANN)2. In context of ANN, the covariates are called the in-
put and the model parameters the output. Referring to this notation, the basic idea of ANN applied
to regression models is to describe the output by a composition of nonlinear functions dependent on
the input. Each nonlinear function is defined by a transformed linear regression

(ijpup +Wﬂg>) j=1,...M, (2.13)

where the superscript (1) refers to the first layer and w%) is the offset. The nonlinear transformation

function m(+), e.g., hyperbolic tangent function, and the number M are defined a priori, referring
to the activation function and the nodes of a network, respectively. In more complex networks the
nonlinear functions can be again constructed by a composition of further functions, referring to a
multiple hidden "layer" network”. The GEV-CDN approach is based on a simple network, having
just three different layers; the input layer, one hidden layer, and the output layer. The output is
defined as the composition of /;(U;) by

Zwk iU +wig (2.14)
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with appropriate weights w,(j.), where the superscript (2) refers to the output layer and k refers to the

output dimension, k = 3 for the GEV and k = 2 for the GPD model. Further, GEV-CDN transforms
the output according to

u(U;) = o1(Uy), (2.15)
o(U;) = exp(02(Uy)), (2.16)
E(U,) = Kktanh (03(U,)). (2.17)

The transformation is chosen such that the scale parameter takes positive values and the shape pa-
rameter takes values in (—x, k) only.

The clear advantage of parametric regression analysis is that by inserting the parametric models
into (2.9) or (2.10) the optimal model parameters, e.g., linear regression coefficient or the ANN
weights, are obtained by maximizing the resulting log-likelihood function. Moreover, the explicit
parametrization of the model parameters can be used for simulation and postprocessing, e.g., pre-
diction of the averaged intensity and the frequency of extremes??. However, GEV-CDN as well
as all other parametric nonstationary extensions of (2.9) and (2.10) rely on the explicit availability
of all of the relevant covariates and some strong probabilistic assumptions about the systematically
missing/unresolved covariates, e.g., i.i.d. assumption for unresolved covariates. As a result, these
methods implicitly assume time independency of involved offset, e.g., in the offset w,({(z)).

2.1.2 Nonparametric Regression Analysis

Parametric regression analysis makes explicit assumptions about the dynamics of the model param-
eters. However, in many real applications the underlying dynamics is unknown and the a priori
assumptions could imply biased results. Moreover, the aim of regression analysis is not only to
identify the significant set of covariates, but also to investigate their kind of influence on parameter
dynamics. A parametric approach might be inappropriate, and tools for describing the parameter
dynamics beyond a priori assumptions are required. The appropriate techniques are called nonpara-
metric™.

Well-known examples of nonparametric regression analysis are the Local Likelihood Smoothing
and nonparametric Bayesian techniques“*%2, Local Smoothing based techniques provide at each
time step a local estimator by considering only weighted values in the direct neighborhood (win-
dow) of a predetermined size. The weights are assigned according to a priori chosen kernel function.
There is no closed formulation for the nonstationary parameter dynamics but rather a sequence: a
value for each parameter for each time step. In addition, the results depend strongly on the choice
of the kernel function and the size of the window. Classical Bayesian techniques rely on a priori
assumption about the distribution of the model parameter 6, the so called prior is denoted by 7 (6).
This a priori information is incorporated into the parameter estimation by applying the Bayes’ The-
orem resulting in the posterior distribution for the model parameters. Please see Appendix [A.2] for
more information. Often there is no closed formulation for the posterior and sampling techniques
such as Markov Chain Monte Carlo methods (MCMC)= are used to obtain the main characteristics
of the posterior. The results of Bayesian statistics rely strongly on the choice of the prior.
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Another strategy is to involve mixture models and Hidden Markov Models (HMM) ™07 Such
approaches require a priori knowledge about the parametric probabilistic model class for the time-
dependent model parameters as well as stationarity and Markov assumptions for the hidden parameter-
switching process.

Besides, for nonparametric nonlinear regression Generalized Additive Models (GAM) can be ap-
plied56‘57= 110
dynamics and to account for nonstationarity by a linear combination of smooth nonparametric func-
tions of covariates. The GAM approach is widely used to study the dynamics of extremes in context
of EVAIS8014 T the following we briefly outline the main idea of GAM. Let ¥; be the output and

This class of models provides a general approach to approximate the underlying

denote the covariates U; = (u;(t),...,up(t)) as the input, each measured at time steps r =t1,...,Ix;.
Then, an additive regression model has the following structure’
P
Yo=fU)+e, with f(U)=)_fp(up(r)), (2.18)
p=1
where € is the error term with zero expectation and f,,(.) € W2([t1,tn,]), p = 1,..., P, is an arbitrary,

nonlinear and nonparametric smooth function with

1, Nt

W2l ) = LFp(0) 2 () € €Ot ]), [ 1 (0T <=} 2.19)

13

For simplicity we will assume that P = 1, then the optimal smoothing functions for the additive
model in (2.18)) is obtained by minimizing>®

Nr

> (- W) +2 [1f @ (2.20)

Jj=1

Thereby, the first term minimizes the distance between the observations and the function f(U;),
while the second, the regularization term, penalizes the curvature of f(U;). The optimal solution is
a natural cubic spling”®HOUL! vith

a;
fU) = Bjibi(Uy), (2.21)
i—1

where bj;(.) are the basis functions e.g., cubic or thin splines, and 3;; are the corresponding coef-
ficients. Parameter g; should be chosen large enough in order to fit the underlying dynamics. The
solution depends on the degree of penalization; for A > 0 it refers to a smoothing rather then to
an interpolating function, i.e., ¥; and f(U;) do not necessarily match. Correspondingly, for A — o
the solution is a linear function, since we get f”(.) =0, and for A — 0 we are searching for an
interpolating function f(U;) € W?2. Consequently, the smoothing spline is "approximately a kernel
smoother"2%. The optimal choice of A depends on underlying data and can be chosen with respect
to information criteria, as will be discussed in Section[4.1]
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Minimization of (2.20) for P > 1 is carried out by the iterative "backfitting" Algorithm [I] as de-
scribed in°®H: in an alternating order, the smoothing function of each covariate f,,(u,(t)) is fitted
to the "partial residual". Thereby, the "partial residual” is the difference between the data and the
current GAM model that does not contain the estimate of f,(u,(¢))"". The algorithm stops when

the changes of the estimates are negligible. The generalized additive regression models can be

Algorithm 1: The Backfitting Algorithm for Generalized Additive Models2%11
Initialize: f,E"ld)(u,,(z)) forp=1,...,P;

while |3 (uy (1) — £ (up(1)))] > eps do

for j=1:P do
. . L ~old)
1 partialResidual =Y — 3 fp " (up(t))
p=1
2 Fit f,S”eW) (up(1)) to the partialResidual applying e.g., the gradient based
Newton-Raphson, or any other appropriate method>'H,

directly applied to study the nonlinear and nonstationary impact of covariates on the GEV/GPD
model parameters, as exemplified on the scale parameter

o(U;) =exp (pr (“p(t))> . (2.22)

p=1

The exponential transformation ensures that 6 (z) > 0 for all time steps. For more details of GAM
models in context of extreme events we refer to 188014,

2.2 Spatial Extreme Value Analysis

In this section, we review the standard approaches for statistical modeling of spatial extreme events.
We focus only on one quantity, for example, extreme precipitation measured at different locations.
The objective in spatial modeling of extremes is (a) the detection of spatio-temporal changes in
frequency and intensity and (b) the dependency structure of extremes. The dependency structure,
which describes the relationship between different locations with respect to the occurrence of ex-
tremes measured, for instance, by the joint probability, can depend on direction and/or time, refer-
ring to an anisotropic and a nonstationary behavior, respectively. While the spatio-temporal changes
within the observed region can be studied exploiting the univariate EVA (referring to marginal dis-
tributions), the spatial dependence structure is approached with the application of spatial statistics.
The classical spatial statistics (geostatistics) is not appropriate for spatial analysis of extreme events
because it handles only the mean behavior and does not capture the dynamics of extremes, referring
to the tails of the distribution. The state-of-the-art methods for statistical modeling of spatial ex-
tremes comprise of extreme value theory and geostatistics and are classified into max-stable spatial
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processes, copula based approaches, and spatial hierarchical models%392 In the following, we
briefly discuss the latest developments in the statistical modeling of spatial extreme events. For a
more comprehensive overview please see /223116292

2.2.1 Max-stable Processes

Let Y (s,7) be a series of extremes observed at location s and time 7, for s = s1,...,sn, and t =
t1,...,tn;, €.2., maximal annual temperature at Ns locations observed for Ny years. Referring to
block-maxima, the spatial extension of GEV provides a class of max-stable processes®>*%%. The
resulting max-stable models are not only verified for simulating the joint behavior of spatial block-
maxima, but also of the spatial exceedances over a higher threshold>®%. Thereby, the standard
approach is to first estimate the marginals F(+) by fitting either the GEV or the GPD distribution to
each location s and second, to transform the marginals to a common distribution. For the first step
often the unit Fréchet distribution is chosen

P[Z <z] =exp <—i> . (2.23)

The observed sample of extremes has to be standardized with respect to

1
log (R (Y(s.1))

Then, the dependence structure of the spatial extremes across different locations is modeled by
fitting the series of the standardized max-stable random vectors Z(s,t) = (Z(s1,t),...,Z(sng,t))
fort =1,...,tn, to the chosen max-stable process. A general formulation of a spatial max-stable
process is given by

Z(S,I): =S81---ySNg, =11, ,INs- (2.24)

Z(s,t) = sup y;Wi(s,t), withs = (s1,...,sn,), and fixed (2.25)

i>1

where 0 < y; < )2 < ... are points from a Poisson process with intensity éd xi and W;(s,t) are
independent samples from any stochastic spatial process W (s,z) with E[W (s, )] = 1°%. One possible
interpretation of (2.25)), given by Smith, is the "rainfall-storm" model: Denote W(s,) as the shape

of arandom storm in space and ; as its intensity, then Z(s,#) defines the point-wise maximal rainfall

over all storms for each location. The joint distribution of Z(s,) with z(s1,t),...,z(sng,2) > 0 is
described by
W(sj:t)
PZ(s1,t) < z(s1,1),...,Z(sng,1) < z(sng,1)] =exp [ —E[ max 1l (2.26)
j=1....Ns z(s;,t)

There is no finite parametrization of Z(s,?), since for any appropriate random process W (s,?) we
obtain a closed formulation of the max-stable process by evaluating the right hand side of (2.26).
The most frequently used parametric models for W (s, ) are based on Gaussian distribution includ-
ing the resulting Smith, Schlather and Brown-Resnick processes®*®Z, In order to model anisotropic
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and/or nonstationary dependence structures of extremes, the process W (s, ) incorporates parametric
spatio-temporal covariance functions>1'°%, However, the fitting of a max-stable process to the data
is in general not applicable for Ny > 3. The two main reasons are: (a) closed formulation of the in-
volved multidimensional integral in (2.26) exists in general for low dimensions (Ns < 2) only and (b)
since the full likelihood is formed by differentiation of with respect to z(s1,t),...,z(sn, 1),
the number of terms involved in the log-likelihood explodes combinatorially with Ng©%. Hence,
the standard likelihood-based inference for such models is computationally infeasible for most
real applications, e.g., in climate and weather research?>“%3l Instead, an approximation of the
log-likelihood, the so-called composite log-likelihood, is considered®1% The composite log-
likelihood is the sum over the possible pairwise distributions, corresponding to the bivariate density
f(Z(si,t),Z(sk,t),0) for any s;,s;. Assuming their existence and eligibility for model parameter
inference, i.e., the log-likelihood can be estimated, the composite log-likelihood is given by

Le(Z(s,1),0)= > znjlog £ (Z(siyt),Z(s1,1),0), (2.27)

jAkeK i=1

where K is the set of all pairs®. The composite log-likelihood based inference can be successfully
applied to spatial extremes=002104,

Another possibility to model the dependence structure of multivariate extremes is the application of
extremal copulas®?: for the random max-stable vector Z(s,¢) with univariate max-stable marginals
Fi,...,Fy, and joint distribution F (Z(sy,t),...,Z(sns,t)) an extremal copula C : [0, 1]% — [0, 1]
characterizes the dependence structure of Z(s,) by

F(Z(s1,t),...,Z(sng,t)) = C(Fi(Z(s151)),- -, Fng(Z(sng, 1)) (2.28)
subject to C (u’l”, . ,ul’(’,s) =C(uy,...,un,)",0 <ui,...,uys and with the exponent m € N, The

resulting joint distribution is max-stable. The extremal copula belongs to the class of max-stable
processes and sharing the same difficulties when applied to real data2>=031,

2.2.2 Bayesian Hierarchical Models

Another often used parametric approach for statistical modeling of spatial extremes is based on
Bayesian Hierarchical Models (BHM). Thereby, by exploiting the probability chain rule and the
Bayesian Theorem, hierarchical models describe the dynamics of a complex system by decompos-
ing it into different layers of parameter variation*’, compare Appendix The two main layers are
usually the data model, which describes the distribution of the data given a process, and the process
model, which describes the true underlying process. The final layer defines the prior distribution for
parameters of the process model*/2°

7 (process, parameters|data) o< 7r (data|process, parameters) (2.29)
X Tt (process|parameters)

X 7 (parameters) .
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The application of BHM for modeling spatial extreme events requires the parametric specification
of the involved layers. For a given process and the parameter layers it is often assumed that the
extremes among different locations are independent, referring to conditional independence. As a
consequence, the data model, which defines the joint likelihood, is the product of the likelihood
functions for each location®>*!. The process model refers to either the GEV or to the GPD distribu-
tion. The parameter model reflects the spatial variations. For example, we can express the location
parameter in GEV as a function of space and time: p(s,t) = f(s,;8) + S (s, ¥), where f(s,z; 3) is
a deterministic function dependent on covariates, and S (x, ) is a stationary Gaussian process with
predefined covariance v, describing the linear relationship between locations”?.

The above BHM formulation provides a flexible tool for modeling spatial variation in marginal dis-
tributions of extremes and can deal with large problems. However, it can not capture the underlying
spatial dependence structure due to the conditional independence assumption in the data model
layer. In order to account for the dependence structure as well, more sophisticated formulations
of the data model layer should be approached, based, e.g., on Gaussian copula models®>. Further,
classical hierarchical models do not fulfill the max-stability.

A max-stable extension of hierarchical models was recently presented®”: The main idea is first to fit
the marginal GEV/GPD distributions to spatial block-maxima or threshold excesses, respectively,
and then to approximate the residual dependence structure by a combination of kernel basis func-
tions. Because this thesis deploys max-stable hierarchical models, this idea will be discussed in
more detail: Under the assumption that Y (s,¢) is max-stable, the corresponding marginal distribu-
tions are GEV for each single location. Equivalently, the residual process estimated by

Y(s,t)—,LL(s))r:(lx)

o(s) (2.30)

X(s,1) = (1+§(s)

is max-stable and has the univariate Fréchet distributions (2.23) as marginals®Y. The dependence
structure of X (s,¢) called the residual spatial dependence structure is denoted by 0(s,?), and is ap-
proximated by a linear combination of positive kernel basis functions w;(s), e.g., Gaussian kernels,

such that we obtain
3 L 1 L
6(s) = D> _Ai()wi(s)=]%, with > wy(s) =1, and &t € (0, 1). (2.31)
=1 =1

The parameter o controls the smoothness of the process; for & ~ 0 the resulting process is smooth,
while o & 0 refers to a noisy process®”. In order to satisfy max-stability of the spatial process and to
provide Fréchet marginal distributions, the approximation coefficients A;(¢) must follow a positive
stable distribution, which has a Laplace transformation of the particular form

/exp (—Ar)p(Ala)dA = exp (—t%). (2.32)
0
In the following, the appropriate distribution for A;(¢) is denoted by PS(a). Given the coefficients
Ai(1),...,AL(t) the observed extremes are conditionally independently distributed, i.e.,

P[Y (s1,1),....Y (ss,)|A1 (1), .., AL(£)] = P[Y (s1,1)] ... Y (s5.1)]. (2.33)
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In line with the notation in®? this can be rewritten as

Y(s.0)A1(0)..... L) "N GEV (1 (5,1), 07 (5.1).E7(5)). (2.34)
At E PS(a) (2.35)

where the GEV parameters have the following formulation

u(s,1) = p(s)+ ggs))[e(s,t)im —1], o =ac(s)0(s,1)°(s), E(s)=aé(s).  (2.36)
For the final layer it is assumed that (L(s), o(s),&(s) are Gaussian distributed. Thereby, the mean
value can be represented by a regression model in order to describe the parameter dynamics depen-
dent on some covariates. The resulting model parameters are obtained exploiting MCMC sample
techniques and the joint distribution of the residual spatial process is given by®”

PIX(s51) < c1,..., X(52) < c] = exp{— Z 3 (chlsl))]a}. 2.37)

=1 i=1

The max-stable hierarchical model provides a flexible approach for spatio-temporal modeling of
extremes which enables also a nonstationary description of the dependence structure. However, the
resulting description of the underlying dynamics of extremes depends on the choice of the kernels
and the a priori probabilistic assumption of the approximation coefficients and the marginal model
parameters [ (s), 6(s),&(s). Further, models based on hierarchical formulation may suffer from
the assumption of conditional independence. It was shown in°! that such models can not simulate
dependence of very rare events at two different locations regardless of the distance between them.

2.3 Conclusion

The main aim of the spatio-temporal modeling of extreme events is to study (a) the spatio-temporal
variability of the model parameters, referring to the marginal distribution and thus to the univari-
ate extreme value analysis, and (b) the spatial dependence structure. On one hand, the univariate
extreme value analysis is well investigated and established, often times deploying the statistical
regression analysis where the choice of the covariates depends on a priori knowledge about the
investigated system. On the other hand, modeling of the dependence structure in extremes is an
active research field. Most of the approaches in this area (as explained above) are based on some
parametric a priori assumptions. For example, Smith and Schlather max-stable processes assume
Gaussian behavior of the underlying spatial process, whereas Bayesian hierarchical models are
based on conditional independence and a priori assumptions about the distribution of the model
parameters >, Mixture models, e.g., the max-stable hierarchical model® and the Dirichlet-based
copula*?, provide nonparametric approaches. Thereby, the dependence structure is approximated by
a linear combination of a priori defined kernel functions and a priori parametric assumptions on the
distribution of the approximation coefficients are made®”. Further, the maximization of the corre-
sponding spatio-temporal likelihood function is computationally infeasible in real-world application
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and so the inference is based on approximations, e.g., considering only the pair-wise interactions
between the different spatial locations, bivariate densities are deployed for the composite likelihood
function®111V2,

In order to approach some of the above problems in spatio-temporal modeling of extremes, a non-
stationary and semiparametric framework for spatio-temporal statistical regression analysis of ex-
tremes will be introduced. Special emphasis will be done on the issues of systematically missing

covariates, numerical instability and computational efficiency.
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2.3 Conclusion




3 FEM-BV-EVA Methodology

In this chapter, we present a methodology for the nonstationary spatio-temporal regression analysis
of extremes that accounts for the issues of systematically missing covariates, ill-posedness, and nu-
merical complexity. The methodology investigates the main objectives of data-based extreme value
analysis, namely, (a) the changes in marginal distributions and (b) the description of the underlying
dependence structure among the observed locations. For the investigation of marginal distributions,
we exploit univariate EVA and express the model parameters in GEV and GPD distributions as linear
combinations of covariates. We will show that the involved regression model becomes nonstation-
ary if some of the relevant covariates are systematically missing. The resulting nonstationarity and
the ill-posedness of the inverse problem are resolved by deploying the recently introduced Finite
Element Time Series Analysis Methodology with Bounded Variation of model parameters (FEM-
BV)=870078 Tt will be demonstrated that the proposed FEM-BV-EVA approach allows a well-posed
problem formulation and goes beyond probabilistic a priori assumptions of methods for analysis of
extremes based on, e.g., nonstationary Bayesian mixture models, smoothing kernel methods or neu-
ral networks. Based on max-stable hierarchical models and advanced time-series techniques, spatial
FEM-BV-EVA extension provides a pragmatic, nonparametric, and nonstationary description of the
underlying spatial dependence structure.

3.1 Data-based regression analysis of univariate extremes

This section addresses the issue of unresolved covariates in statistical univariate regression analysis
of extremes based on our results proposed in®. Here we will focus on univariate data-based
regression analysis of block-maxima first.

3.1.1 Regression analysis of block-maxima

In order to account for the nonstationarity of the underlying dynamics of extremes, we focus on the
fully time-dependent GEV distribution defined by its probability density function (pdf)

cyexp (~[1+ & () S ) &) £0
o(t)exp (—exp{~1}) &) =0,

flop(),0(t),6 ) = 3.1

21
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where ¢ denotes the time variable and ¢(¢) the normalization constant where

g (@ St () £ 0

c(r)y =4 °W o (3.2)
siyexp (—[L))) &) =0.
The model parameters must fulfill the constraints:
1 +§(t)w] >0, and o(r)>0 Vi (3.3)

o)
The aim is to investigate if the parameter dynamics is influenced by some external factors. For
this purpose we express each GEV parameter as a function dependent on a vector of covariates.
Let us denote all covariates with significant influence on the parameter dynamics by the vector
U¥l(t) = (u‘l’” (t),...,uy (t)) Under the assumption that U%!(¢) is known, we focus on linear
regression as exemplified on the location parameter,

J
w(U(e)) = po+ > s (1), (3.4)
=1

where u;, j=1...,7, are the regression coefficients. However, in real applications, one is usu-
ally confronted with the problem that some (or most) of potentially relevant covariates are missing
in the measurements. One possible source for the systematically missing covariates is the multi-
scale dynamics nature of the underlying process, e.g., processes in climate or molecular dynamics
may involve multiple time and length scales“%/>/Z That is, by only observing covariates on a
slow time scale (resolved covariates) we neglect covariates on the faster scale (unresolved covari-
ates). An additional reason for the missing covariates is that, even on just one single time scale
we can not resolve all covariates due to the interest in regression models with finite numbers of
degrees of freedom. In particular, this is true for regression analysis of extremes because of the
relatively small statistics. We have to select a set of resolved covariates, usually based on expert
knowledge, and have to account for the effect of the systematically unresolved/missing covariates.
Several disciplines cover the issue of missing information, e.g., in statistical regression analysis the
issue of unresolved information is often addressed as the "unobserved heterogeneity"!%. The unob-
served covariates are included in the regression model via a stationary probabilistic error term. The
posterior distribution of extremes is obtained by exploiting the Bayesian inference as discussed in
Appendix and depends on the a priori assumption about the distribution of this error term. Fur-
thermore, there is often no closed expression of the posterior. In this thesis we reduce the involved
linear regression model to resolved covariates only, and express the influence coming from unre-
solved covariates by a nonstationary additive offset. Considering the involved covariates U%/(t),
we now split them into resolved U; = (u;(t),...,up(t)) and unresolved U/" = (u‘l‘”(t), N (t))
covariates. Without loss of consistency, we normalize the unresolved covariates and rewrite (3.4)

P 1 0
w (U U™ = o+ ppitp () + g D Vel (0), (3.5)
g=1

p=1
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where p,, p=1...,Pand v,,g = 1...,Q are the regression coefficients. Based on the assumption
that vqug”(t) are i.i.d for all time steps, we can apply the Central Limit Theorem to reduce their
influence approximately to an additive Gaussian noise, i.e., the reduced formulation of (3.5)) is
given by

P

WU = Ho+ 3" pttp (1) + (1), with & ~ N (1, 6(1). (3.6)
p=1

In real applications where the i.i.d assumption may be too strong, we adjust by applying the Central
Limit Theorem for independent variables in a formulation that requires a much weaker Lindeberg
condition’?. This condition reveals that the contribution of a random standardized variable to a sum
is small relative to the total sum®*. Then, under the assumption that the Lindeberg condition holds

we rewrite (3.3)

P
1 (U U™) = o+ ) ppup(t) (3.7
p=1
1 2 1 2
+ ézvq (s (1) — B[ (1)) —i—équE[uZ"(t)].
q=1 qg=1

—e(t)
For cases in which the covariates are not independent, the Karhunene-Loe¢ve transformation can
be used to provide a orthogonal representation of the covariates, i.e., to decorrelate them®73, By
Q
inserting Lo(t) = Ho —i-é > VyElug ()] into 1} we obtain the reduced, nonstationary regression
qg=1

model
P
w(t,Up) = po(t) + > tpup(t) + (1), with e ~ N (0,6). (3.8)
p=1

Please note that in the offset py() is a time-dependent function and not a constant number
as in the case of parametric statistics (3.6). In presence of systematically missing covariates, the
application of parametric approaches could lead to biased results, then requiring nonparametric
statistical methods. Further, we generalize (3.8)) by releasing the stationarity assumption of the
coefficients u, for p=1,...,P and get

P
w(t,Up) = po(t) + > pp(t)up(t) +£(2). (3.9)
p=1

This generalization is significant, especially in situations when we observe a long time period the
influence of covariates can change with time. Analogous to (3.9), we express the scale and shape
parameters by focusing on the same set of covariates as for the location parameter, such that we
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obtain

o(1,U,) = +Zc,, uy(t) +&(t), &(t) ~N(0,6()), (3.10)

E(1,U) = +25p up(t) +E(1), (1) ~N(0,5(1)): (3.11)

The regression models in (3.943.1043.11])), reduced to resolved covariates only, become stochastic
due to their normally-distributed additive noise terms. The normal additive noise corresponds to a
prior in Bayesian inference context (compare Appendix [A.2)) and there exists no closed formulation
for the resulting posterior>
focus on the mean behavior of parameters. Consequently, we neglect the normally-distributed noise
terms in (3.913.T0H3.T1)). Please note that by considering the mean behavior we obtain deterministic
model parameters, which still account for the unresolved information through the nonstationary
off-set terms (), 0p(t),Ep(¢). The consideration for complete stochastic regression model with
explicit noise terms remains for future study. Finally, the nonstationary GEV distribution (3.1) is
parametrized by

. However, in the interest of simplicity, the current manuscript we

Ocev (1) = (Ho(?), .-, up(t),00(t), ..., 0p(t),E0(t), ..., Ep(1)) - (3.12)

The reduced regression model (3.8)) is a general example of how to reflect the unresolved covariates
in context of linear regression. In the following section, we will directly apply this model to the
regression analysis of threshold excesses as summarized in the next section.

3.1.2 Regression analysis of threshold excesses

In the following we aim to model the behavior of threshold excesses as defined in Section[2.1{by a
fully nonstationary GPD described by its pdf

1)x 7771
Fes).E@)= 4o (T em) T 020 (.13
strexp (—55) JE(1) =0,

where ¢ denotes the time variable and the following constraints are satisfied

t
{ 5 )x] >0 and &(t)>0 Vi, x>0. (3.14)
(1)
The extension to statistical regression analysis of threshold excesses based on resolved covariates

is straightforward. Under the assumption that the Lindeberg condition holds, we summarize the
reduced regression behavior of the GPD model parameters in line with (3.93.1043.11) and obtain

6(t,U;) = Z 8p()uy(t) +&(t), E(t) ~N(0,5(t)), (3.15)

&(1,U) = +Z<§p up(t) +E(1), E(t) ~ N(0,6(1)). (3.16)
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The deterministic formulation of the resulting model parameter is given by

G)GPD(I) = (60(1),. . .,6p([),§o(l>,. . .,(;:p(l‘)), (3.17)

and where the offsets 6y(¢) and &y(r) reflect the nonstationary impact from unresolved covariates.

3.1.3 Univariate FEM-BV-EVA

Given the series of extreme events, X;, observed at time steps t =11,...,#y, and referring either to
block-maxima or to threshold excesses, we aim to estimate the most descriptive model parameters
OgEev () or Ogpp(t). In the following, O(r) will refer to both the GEV and the GPD model pa-
rameters, unless noted otherwise. To get the optimal parameters, we minimize the corresponding
negative log-likelihood function (NLL)

Nr
L£(X,0() => 2 (x,,0(1)) (3.18)

j=1

with respect to ©(z), where g (X;,0(t)) refers to the NLL for a fixed z. Before doing so, we must
parametrize the model parameter O(¢). As discussed in the application of a parametric ap-
proach implies a constant offset and could produce biased results. Nonparametric statistical methods
are more appropriate in these situations. Exploiting smoothing regression>*H%MY the nonstationar-
ity in ©(¢) can be resolved by a smoothing spline according to . For example, we can resolve
the nonstationary offset term &y(¢) in by

q
So(t) = Bibi(t), (3.19)
i=1

where b; (1) represents the basis function e.g., cubic or thin spline, f3; is the corresponding coefficient
and ¢ is the dimension of the basis functions. Estimation of the optimal coefficients f3; involves pe-
nalizing of the "wiggliness" of &y(¢). However, as already outlined in Section[2.1.2] the smoothness
of the spline implies the locality property of a kernel smoother and becomes a drawback in the case
that the underlying function is discontinuous.

In this thesis the resulting nonstationarity is handled by applying the Finite Element time series
analysis methodology (FEM)>%"%0. FEM formulates the inverse problem for a nonstationary dynam-
ical systems as a regularized variational clustering problem. The nonstationarity is approximated
by a set of locally stationary models and a nonstationary convex switching process. To ensure
well-posedness of the inverse problem the switching process discretized with Finite Elements is
restricted, for instance, to the class of functions with bounded variation. For a detailed introduction
into the FEM approach, we refer the interested reader to>%9%/8 In the following we will formulate
the FEM-BV-EVA approach in two steps (i) approximation and (ii) regularization.

The FEM approach assumes that the model parameter ®(¢) changes slower than the observed se-
ries of extremes. Then, the underlying dynamics can be approximated by a set of K > 1 locally
stationary models, each parametrized by 6; for k= 1,...,K and a nonstationary switching process
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I['(t)=(n(),...,y(t)). FEM interpolates the nonstationary model "distance" function g(X;,®(7))
by a linear convex combination of K locally stationary model distance functions

8(X,© Zyk (X, 6r) (3.20)
k=1

with corresponding constraints on ® and convexity constraints on I'(¢)

> n()=1, t=11,..., 1Ny, (3.21)
% (1) > 0, t=1,..., 0Ny, k=1,....K. (3.22)
By inserting (3.20) into (3.18) we obtain the average (interpolated) model distance functional
Nt K
LOT(1) =Y %(t)g (X, 6) (3.23)
j=lk=1

In contrast to mixture models and HMMs 1% FEM avoids a priori assumptions on I'(¢) like sta-
tionarity, Gaussian or Markovian behavior, but deploys a nonparametric and nonstationary hidden
switching process. Elimination of a priori assumptions implies ill-posedness of the optimization
problem in sense of Hadamard>*. FEM regularizes the ill-posed problem by exploiting the ob-
servation that many realistic problems demonstrate a persistent (metastable or regime-switching)
behavior for their parameters. In the general FEM formulation, the persistence property/condition
on I'(7) can be imposed by referring to the space of weakly differentiable functions or to the space
of functions with bounded variation (BV)=82, The latter can also account for a binary switching
process, i.e., ['(f) € {0,1}. In this case, the underlying parameter dynamics is directly interpolated
by K locally stationary models

k
O~ %)k, (3.24)

and the average model distance function interpolates the true negative log-likelihood function
78. Because of these considerations, this thesis refers to the space of functions with bounded
variations only and incorporates this property by
Nr—1
%O BV v, = Z We(tjer) = ()| < Ce(Nr), k=1,....K, (3.25)

where C; denotes the maximal number of allowed transitions between the model k and all the other
models in the time interval [t1,zy,]. Later on, we will refer to C = max{C;(Nr),...,Cx(Nr)}=5.
For the observations at finite discrete times, the natural boundary of C is given by Ny (the length
of the series of extremes), and thus including constraint into the optimization problem will
not a priori confine the solution space. We will denote the resulting minimization problem as the
"FEM-BV-EVA" approach. The minimization of (3.23) with convexity and persistency constraints
(3.21 3.25) on I'(t) becomes well-posed with respect to I'(¢)7. In the following, we consider
the explicit formulation for both the GEV and the GPD approach.
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Univariate FEM-BV-GEV

We apply the FEM approach to resolve the nonstationarity in the regression analysis of block-
maxima by considering following parametrization for each local GEV model

P
1 (Uy) = tho+ Y tipup(1), k=1,... K, (3.26)
p=1
and analogue expressions for oy (U;) and & (U;),

and define the local model distance function as the local negative log-likelihood function with 6, =
(Hk0s - - - Hip, Ok0; - - -, OkP S0, - - Skp) s k = 1,... K, for §(Uy) # 0

X, — 1 (Up))\ 5@
gGev (Xr, 6¢) = log (or(Uy)) + <1+§k(UI)(“"())) e (3.27)
ox(Ur)
1 (Xz—/»lk(Ut)))
1 1 1 U)————= |,
# (1 gl (14800 2
and for & (U;) =0
_ (X — e (Ur)) X —m(Uy)
gcev (X;,6k) =log (ox(U;)) + ol +ex ( A ) . (3.28)
Then for Oggy = (61, ..., 0k) the average model distance functional is defined by
Nr K
L£(Ocry,T(1)) = 3> w(t)) garv (X, 6. (3.29)
j=lk=1

with constraints on model parameters

(Xi — e (Ur))

[1+§k(Ut) Gk(Ut>

>0, o(U)>0 for t=ty,....,tn,, k=1,...,K, (3.30)
and with convexity and the persistency constraints on I'(¢) = (y1(¢),..., Y (¢)).

Univariate FEM-BV-GPD

In the next step we apply FEM to resolve the nonstationarity in regression analysis of threshold
excesses. Let us first consider a locally stationary parametrization for the GPD model parameters

P
8 (Ur) = 6o+ > Gipup(t), k=1,....K, (3.31)
p=1

and an analogue expression for & (U;). Then, the local model distance function is defined as
the local negative log-likelihood function with 6; = (&yo, - -, Gks, Exos - -+, Exs) , k = 1,...K. For
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& (Uy) # 0 we get

8GPD (Xt, Gk) =log (6 (Ut)

)+ (14 £ ) oe (1425055, (332)
S (Un)x

ith 6 (U;) >0 and |1 0 3.33
with 6 (U;) > 0 an {+6(U,)}>’ (3.33)
and for & (U;) = 0 we get
- 1
gcpp (X:,6;) =log (6 (U;)) —|—th’ (3.34)
with 6 (U;) > 0. (3.35)
For ®gpp = (64,..., k), the average model distance functional is defined by
Nr K
Larp (Ocen,T(1)) = > > 1 () garn (X, 6) . (3.36)
j=1k=1

with constraints (3.33)) or (3.35) on model parameters, convexity and persistency constraints on
L) =n@),.... 7))

3.1.4 Conceptual Comparison with the State-of-the-Art Methods

In the following we provide a conceptual comparison between the univariate FEM-BV-EVA and
state-of-the-art methods for univariate regression analysis of extremes by adopting the discussions
in®#78  The FEM-BV-EVA provides a tool for nonstationary statistical regression analysis of ex-
tremes based on resolved covariates only. FEM-BV-EVA is a semiparametric approach as a combi-
nation of the parametric GEV/GPD and the nonparametric FEM description of the hidden switching
process. The influence of unresolved factors, expressed as the nonstationary offset term in GEV or
GPD model parameters, compare (3.93.10}3.11)) or (3.15}(3.16), respectively is reflected by I'(z).
Please note that the key issue that makes the FEM-BV-EVA problem well-posed, is the fact that
decreasing the value of C in results in shrinking of the parameter space for I'(¢), limiting the
number of the local minima for £ (®,T°(¢)).

FEM-BV-EVA approach includes some state-of-the-art approaches as special cases: In the case that
the whole information is provided for the regression analysis of extremes, the FEM-BV-EVA with
C = 0 (no transitions between models, i.e., K = 1) corresponds to stationary parametric regression
models and results in a well-posed inverse problem. The presence of different models (K > 1) in-
dicates the presence of systematically missing covariates in the statistical regression analysis (in
contrast to other methods, e.g. based on moving window"? where the kernel is a priori chosen
as some fixed local parametric function like a Gaussian of a certain width). FEM-BV-EVA goes
beyond strong a priori probabilistic and deterministic assumptions typical for standard approaches
deploying, for instance, Hidden Markov Models (HMM)72374 In particular, being a part of the
FEM-BYV model family it includes methods based on parametric regression, HMM and local kernel
smoothing as special cases /5.
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The deployed linear regression of the model parameters becomes a weakness as soon as the influ-
ence of covariates is strongly nonlinear, although, this can be relaxed by involving nonlinear terms,
describing the interacting couplings of the covariates (e.g., u3(t),u; (t) - ua(t), . ..), as additional co-
variates. The proposed linear and nonstationary FEM-BV-GEV will be compared to the nonlinear
and stationary GEV-CDN methodology, which exploits a conditional density network (CDN) for
nonlinear regression analysis based on time dependent covariates with stationary neuron weights
and offsets1?.

Further, FEM-BV-GPD will be compared to the state-of-the-arts methods based on generalized
additive models!8>786114  These methods are able to resolve the involved nonstationarity in a
nonparametric way. We will refer to the gamGPD approach!®, as discussed in detail in Section
The gamGPD approach accounts for the nonstationary offset term in ® by a smoothing spline
regression dependent on time, inheriting the locality property and the inability to describe discontin-
uous functions. In contrast, the FEM-BV-GPD approach also accounts for discontinuous functions
and provides for K > 1 a nonlocal extension of the nonparametric smoothing approach, where the
nonstationary process I'(¢) allows us to consider all observations that belong to the similar dynamics
as a single ensemble.

3.2 Data-based spatial extreme value analysis

Let us denote Y (s,7) as an extreme event observed at location s and time ¢ for r =1¢y,...,ty, and
§=81,...,5N,. Let Us‘fgl = (u‘l‘”(s,t), ... ,uf%l(s,t)) be the set of all covariates that significantly in-
fluence the dynamics of Y (s,7). We distinguish between local covariates observed at each location
like temperature and humidity and global covariates such as global oscillation patterns like the Arc-
tic Oscillation index (AO), being the same for all locations. In the following, we focus on regression
analysis of extremes by exploiting the Bayesian hierarchical approach: in order to model the dy-
namics of spatial extremes, we incorporate the spatio-temporal variability, namely, the marginal
behavior and spatial dependence, into the model parameters. We will refer to a max-stable hierar-
chical formulation® as outlined in Section[2.2.2]

Let us assume that all the significant covariates Us‘fﬁl are known and observed. Then, the process
Y (s,t) is independent for all time steps ¢ and all locations s

pendent

Y (5,0) U2 "L Model (o(s,us)), (3.37)

where Model refers either to GEV or to GPD and ® (s, Uffl) describes the spatio-temporal parame-
ter dynamics. The optimal Model parameters are obtained through constrained minimization of the
corresponding negative log-likelihood function (NLL). Since Y (s,#) is conditionally independent
for given Us‘ffl, the corresponding likelihood is the product, and NLL the sum, of the corresponding
marginal likelihood over all locations

Ns Nr

NLL (¥ (5,):0 (.04 ) ) = =33 gutoaer (Yo © (s, U21)) (3.38)

i=1 j=1
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However, as discussed in Section [3.1.1] in real applications we have to deal with systematically
missing covariates. For this issue, we will extend the univariate FEM-BV-EVA towards spatio-
temporal regression analysis of extremes. In order to resolve the resulting nonstationary spatio-
temporal behavior beyond a priori assumptions, we adapt the spatial FEM formulation“®. In line
with the univariate FEM, spatial FEM resolves the involved nonstationarity by interpolating the
resulting distance function gp,4¢/(.) by locally stationary distance functions and a nonstationary
spatial switching process. It will be shown that we obtain a max-stable hierarchical formulation for
the spatial FEM-BV-EVA. In the following we propose the spatial FEM-BV-GEV and FEM-B V-
GPD formulations.

3.2.1 Spatial FEM-BV-GEV

Let Y(s,t) fort =1y,...,ty, and s = s1,...,5¥, be a series of block-maxima observed over a re-
gion. Assuming that the observed process Y (s,) is max-stable, the marginal distribution for each
location is the GEVS??, A further assumption is that the spatio-temporal variability (marginal
behavior and spatial dependence) can be described by the GEV model parameters with Y (s,7) ~
GEV (u(s,1),0(s,t),&(s,1)). We now express each GEV parameter as a function of resolved co-
variates only and account for unresolved covariates by extending the univariate reduced regression
formulation towards spatial variability. The behavior of each model parameter, for instance,
the location parameter, is described by

P
(5,0, Us) = po(s,0) + > tp(s,0)up(s,t) +€(s,1), withe(s,1) ~N(0,6(s,1)),  (3.39)
p=1

fort =1,...,ty, and s = s1,...,sn;. Inline with the univariate FEM-BV-EVA we neglect the noise
term €(s,7) and obtain a deterministic formulation of the model parameters. With this, the nonsta-
tionary spatio-temporal behavior of Y (s,7) is described by

O(s,1,Usy) = (Ho(s,1),...,up(s,1),00(s,1),...,0p(s,t),E0(s,1),...,Ep(s,1) ), (3.40)

with appropriate constraints on the scale and shape parameters. In max-stable Bayesian hierarchical
models the nonstationary spatio-temporal behavior of the model parameters is approximated by a
set of kernel functions with a priori probabilistic assumptions regarding the approximation coeffi-
cients®®. To go beyond such a priori assumptions, i.e., the appropriate choice of the kernel function
and the a priori distribution of the approximation coefficients, we adapt the idea proposed in“®: the
underlying parameter dynamics is approximated by K > 1 locally stationary models and a hidden
spatio-temporal switching process I'(s,7) = (7i(s,1),...,Yk(s,7))" with convexity constraints

K
%(s,t) >0,¥k,t,s and > ¥l(s,r)=1,V1,s. (3.41)
k=1
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That is, the model parameters are approximated as follows:

K P
(s, t,Uss) =Y s, ) e(Us) with iy (Us) = o + Y Mipitp (s, 1), (3.42)
k=1 p=1

and analogue expressions for o (s,t,Us;), & (s,t,Us,).

The deterministic parametrization of the resulting spatio-temporal behavior of Y (s,7) is (0,I(s,7))
with ® = (91 yeeny 9[() and 6, = (‘le(), ..oy lMgp, Ok0, - - -, OkpP, §k07 ceey é:kp). We avoid probabilistic a
priori assumptions on I'(s,#) like stationarity, Gaussian or Markovian behavior but consider I'(s,)
as a spatio-temporal deterministic process. The resulting hierarchical description of the underlying
dynamics of ¥ (s, ) is summarized in Corollary [3.2.1]

Corollary 3.2.1 Under the assumption that Y (s,t) is a max-stable process and the underlying
spatio-temporal dynamics can be described by a set of covariates U ; together with a convex spatio-
temporal process I'(s,t), Y (s,t) is conditionally independent and its distribution is a hierarchical
GEV with

de pend ent
( ) in

Y(Sat)‘US.IvFS GEV(H'(s7t7US‘,l‘)7G(s7t7UY,l‘)7§(Sat7U9,t))7 (343)

where the parameters [(s,t,Us;), 0(s,t,Us,), &(s,1,Us,) are defined according to . Further,
the hierarchical formulation in (3.43)) fulfills the properties of a max-stable process.

Proof: The first statement is a direct consequence of considerations made in (3.37) and (3.39|-
[3.42). Next, we show that (3.43) fulfills the properties of a max-stable process. For this, according
to Resnick® (Proposition 5.10), we have to show that the resulting residual process

E(s,2,Usy)

Y(s,t)— or) 31/ 500U 44
G(S,Z,US’;){ (S7t) /J(SJ,UJ)}] (3 )

X(s,t) =14+
has Fréchet marginals, i.e., GEV(1,1,1), and is max-stable. First, we show that X (s,7) has unit
Fréchet marginal distributions by computing for a fixed s* P[X (s*,7) < ¢] with respect to (3.43)

f(s,t, Usy)

PIX(s7o0) < =exp{=[1+ 20

{ — (s, 1, Uy )}V /o0 Uy (3.45)

where the model parameters are expressed according to . Taking into account that for X (s,7)
we have Wy (Us) = 0x(Usy) = & (Usy) = 1 fork = 1,...,K and exploiting the convexity constraints
onI'(s,7) we get

PX(s*,t) < c] = exp{—[1 + %{c— Ny~ = exp{—%}. (3.46)

Since we assume that the dependence structure is completely resolved by the deterministic descrip-
tion of the model parameters, the residual process X (s,¢) is independent and the joint distribution is
given by

Ns
PIX(51,0) < 1, X (snu1) < en) = exp{— 3+, (3.47)
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Following, it fulfills the max-stability, since a process is max-stable if for every time step, any set
of locations and for any n > 0 the following equation

PX(s1,t) < ncy, ..., X (sng, 1) < neng|" =P[X(s1,1) < iy, X (Sng,1) < O] (3.48)

holds ™=, O
Describing the dynamics of Y (s,7) by the set of parameters (®,'(s,#)) results in an approximation
of the model defined in (3.37), where I'(s, 7) reflects the unresolved covariates, while also describing
the nonstationary spatial dependence structure.

Remark 3.2.2 The hierarchical model in does not provide a formulation of a max-stable pro-
cess in the classical sense, please see (2.25). The nonparametric description of the spatio-temporal
dependence structure has no closed formulation. Consequently, without additional analysis on
['(s,1), (3.43) can not be used for inference like measuring the strength of the spatial dependence or
interpolating missing locations. Instead, provides a pragmatic description of the underlying
spatio-temporal dynamics of extremes, which is consistent with the max-stable postulate.

In the next step we aim to estimate the optimal parameter set (®,I(s,)) for (3.43)) by minimizing
the resulting NLL

Ns Nr

NLL(Y (s,1);0,T(s,1)) ZZgGEV( i 0,1 (s, t)) (3.49)

i=1 j=1

with respect to (®,I(s,7)). There is no analytical solution and the minimization problem becomes
more complex with an increase in Ng and Nr. In the following, we restrict I'(s,#) to binary values,
i.e., I'(s,r) € {0,1} and obtain

Ns Nr

NLL(Y (5,1):©,I(s,1)) ZZZn si17)868v (Yo 06 ) (3.50)

i=1 j=1k=1

which provides a locally stationary approximation of the true NLL (3.38]). Formulation (3.50)) allows
a more efficient minimization than (3.49), as will be discussed in detail in Section [4.2]

Remark 3.2.3 The idea of direct interpolation of NLL, instead of interpolating the model param-
eters, comes from the original FEM approach®. In cases when the distance function gyodel is
convex, we can also consider T'(s,t) € [0,1]%5. Then, exploiting the Jensen’s inequality we get

K K
8Model (Xz,ZYk(t)9k> Z t)&Modet (X1, 6k) (3.51)

k=1

where X, is the analyzed data, gpoqei(.) is a convex distance function. In this particular cases the
interpolation of the NLL provides an upper bound for the original NLL. For I'(s,t) € {0,1},
becomes an equality for any gyroqei. However, the model distance function in the FEM-BV-EVA
context is not convex and we have to stick with a binary switching process.



33 3.2 Data-based spatial extreme value analysis

In order to ensure well-posedness of the inverse problem (constrained minimization of (3.50) with
respect to (®,I(s,7)), the temporal FEM persistency constraint on I'(s,#) is incorporated

Hyk(sJ)HBV([tl,tNT]) SC(NT)7VS’k' (3.52)

The resulting spatial FEM-BV-GEV approach results in the minimization of

Ns Nr K

LO,(s,1)) ==Y > > nlsitj)gcev (Ys,-,zj, 9k> ; (3.53)

i=1 j=1k=1

with convexity (3.41]) and temporal persistency (3.52) constraints on I'(s,), and with constraints on
model parameters

(Xz - Hk(Us,t))

[1+&(Us.) ok (Us;)

1>0, 0i({Uy)>0 for t=1,....ty,, k=1,...,K. (3.54)

3.2.2 Spatial FEM-BV-GPD

In the next step we refer to Y (s,7) as a series of threshold excesses observed at location s for
§ = $1,...,5Ng and time 7 with 7 =1y,...,ty, . Please note that in order to extract the threshold
excesses, we fix a quantile and estimate the threshold according to this quantile individually for
each location. Consequently, each location has different length of observed threshold excesses. The
results obtained in Section can be applied directly for spatio-temporal regression analysis of
threshold excesses by expressing the GPD model parameters analogous to (3.39). In order to avoid
a priori probabilistic assumptions, we employ the spatial FEM approach and obtain in line with
spatial FEM-BV-GEYV a nonstationary parametrization of the GPD model parameters

K P
&(s,1,Uss) = Y Y(s,1) 81 (Usy) with 8¢ (Us1) = Sro+ Y _ Gipitp (s, 1), (3.55)
k=1 =1
and analogue expression for & (s,,Us,),
with
O(s,t,Us;) = (6o(s,1),...,6p(s,1),80(s,t),...,Ep(s,1) ). (3.56)
Conditioned on Uy, and I'(s,), the process Y (s,) is independent
Y (5,0)|Uss, T(s,1) ™08 GPD (6 (5,1, Usy), E (5,1, Usy)).- (3.57)

Then, analogous to the FEM-BV-GEV formulation, (3.57) provides a max-stable description with
Fréchet margins for the residual process obtained by transforming Y (s,¢) with respect to

1

X(S,t) = _log (Fs (Y(S,t);@(s7t7US,[)))7

(3.58)
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for s = s1...,5N5,¢t = t1,...,tn;, and F(.) are the GPD marginals with ©(s,#,Us,) as defined in
(3.56). For a binary I'(s,#) the corresponding NLL, which is given by

NS NTS‘

NLLO (500,050 = = 23S o 26D (Ysi;,6k) (3.59)

i=1 j=1k=1

provides a locally stationary approximation of the true NLL (3.38)). The resulting spatial FEM-BV-
GPD approach results in the minimization of

Ng NTS

L(0,I(s,1) ZZZn sitj)gen (Yiyi;,0c) (3.60)

i=1 j=1k=1

with convexity and temporal persistency constraints on I'(s,7) and with

§k( )X

0 d Us 0 for t=1,...,t k=1,...,K. 3.61
Gk(Ust) > an O'k( ) > or 15 s IN7p ) ) ( )

In total, the application of spatial FEM-BV-EVA approach to a spatiotemporal series of extremes
results in a set of K > 1 locally stationary model parameters ® = (6y,...,6x) and a spatiotem-
poral switching process. FEM-BV-EVA is a max-stable hierarchical description of the underlying
dynamics of extremes. And while the model parameters are accessible for all locations, the nonsta-
tionary switching process is assigned to each location separately (each location s* is associated with
a I'(s*,1), which describes the temporal affiliation to one of the models).

3.2.3 Conceptual Comparison with State-of-the-Art Methods

The spatial FEM-BV-EVA approach can be ranged into the class of max-stable hierarchical models.
The spatial dependence in a kernel-based max-stable hierarchical model is approximated by some
predetermined kernels and a priori assumptions about the involved coefficients®?. Spatial FEM-
BV-EVA approximates the dependence structure via a nonparametric and nonstationary switching
process with bounded variation. Spatial FEM-BV-EVA goes beyond a priori assumptions commonly
made in geostatistics of extremes, for instance, Gaussian assumptions about the dependence struc-
ture. Standard techniques approximate the underlying true likelihood by the composite likelihood
while FEM-BV-EVA interpolates it by the means of convex linear combination of locally stationary
likelihoods. A consequence of a nonparametric description of the spatial dependence structure is
that there is no model which can be used for further investigation of the spatial dependency. For in-
stance, neither it is possible to measure the strength of the spatial dependence, nor can the resulting
description be used for spatial interpolation of missing locations without additional analysis of the
resulting switching process. In contrast, these issues can be directly approached by the parametric
max-stable models®**L, The appropriate analysis of the FEM-BV-EVA switching process remains
for future work. In this thesis, in order to understand the underlying spatial dependence structure
in more detail, we will analyze I'(s,7) by exploiting the results obtained in the field of complex
networks’®, please see Section



35 3.3 Conclusion

3.3 Conclusion

In this chapter we proposed the nonstationary, nonparametric FEM-BV-EVA approach for univari-
ate and spatial regression analysis of extreme events based on resolved covariates only. Exploiting
theoretical aspects of extreme value analysis (EVA) and the FEM time series analysis methodology
for approaching the involved nonstationarity, the resulting FEM-BV-EVA avoids some a priori as-
sumptions made in state-of-the-art approaches. Although, the fully nonstationary and nonparametric
modeling of univariate extreme events is widely used, compare Section [2.1.2] the formulation for
the reduced regression model proposed in this thesis is new. Based on resolved covariates only, the
reduced regression model goes beyond i.i.d assumptions of the unobserved covariates by exploiting
Lindeberg and Karhunene-Lo¢ve Theorems. In particular, this result emphasizes the significance
of nonparametric nonstationary regression analysis of extreme events, since in real applications we
often have to deal with unresolved covariates. The spatial FEM-BV-EVA extension is a hierarchical
max-stable formulation that describes the spatio-temporal dynamics of extremes by expressing the
parameters as spatial and nonstationary regression models based on resolved covariates only. The
nonstationarity is resolved by incorporating the spatial FEM formulation, i.e., describing the under-
lying dynamics by a set of locally stationary models and a spatial nonstationary switching process
['(s,¢). In addition, I'(s,t) provides a pragmatic nonparametric and nonstationary description of
the underlying spatial dependence structure by grouping together all locations that exhibit similar
behavior via the model-affiliation function I'(s,?).

In conclusion, FEM-BV-EVA provides a purely data-driven, space-time clustering approach to study
the spatio-temporal dynamics of extremes beyond strong a priori assumptions. However, a clear lim-
itation is that there is no closed formulation for the dependence structure and further investigations,
for instance, analysis of the strength of the spatial dependence, can not be carried out directly. In
the next chapter we present the FEM-BV-EVA framework.
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3.3 Conclusion




4 Computational/Algorithmic Aspects of
FEM-BV-EVA Framework

In this chapter we present the FEM-BV-EVA framework to be integrated into the object-oriented
FEM MATLAB toolboxﬂ Applied to a series of extremes, the FEM-BV-EVA framework describes
their underlying dynamics by the following set of parameters: the number of models K, the cor-
responding switching process I'(s,#), the model parameter ® and the maximal number of switches
between the models C(Ny). Thereby, for every fixed set of K and C(Nr) FEM-BV-EVA results in
minimization of the following objective functional

Ns Nr K

LOT(s,1) == >33 Welsistj) gntoder (Yoray ) (@.1)

i=1 j=1k=I

where guoqer () is either the GEV or the GPD log-likelihood and 6y, k = 1,...,K, fulfills either
(3.30) or (3.33}[3.35)), respectively. Further, I'(s,#) fulfills the convexity constraints:

K

Z’}/k(s,l‘)zl, S =581y ySNg» IZZ‘],...,INT, (42)
k=1

’}/k(s,l)zo, S=S1,.--y8Ng, [ =1I1,..,INp, k=1,...,K, 4.3)
and the persistency constraint:
HYk(s?t)HBV([tl,lNT]) SC(NT), S =S81,---,8Ng, k=1,... K. “4.4)

As the objective functional is not convex, there exists no global solution of this constrained
minimization problem. A local optimal solution can be found through alternating optimization with
respect to I'(s,#) and O, as will be discussed in Section In order to obtain the global optimal
solution, we need to explore the whole solution space as far as possible. Deterministic exploration
becomes computationally infeasible with increasing dimension of the problem, for instance, when
the number of observed locations is increasing. Thus, random exploration is required'?!. In the

IThe FEM MATLAB toolbox combines the family of FEM-based methods developed in the working group of Illia
Horenko at the Institute of Computational Science (Universitd della Svizerra Italiana) in Lugano. The toolbox was
implemented by Dimitri Igdalov.
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FEM framework the random exploration is implemented by starting the local optimization several
times with random initializations of the switching process (assuming that the chosen number of
trials is hight enough to provide the global optimal parameter set).

The selection of optimal K and C(Nr) from a set of all possible combinations is carried out ac-
cording to the information criteria (IC) of a model?. The significant subset of resolved covariates
is determined either by considering all possible combinations and deploying IC, or by employing
shrinkage techniques!’”. For instance, deploying the Lasso shrinkage approach: by constraining
the L1 norm of the model parameters ®, the coefficients of insignificant covariates are set to zero.
In the following sections we discuss the implementation of the FEM-BV-EVA framework in detail.

4.1 Model Selection and Lasso Regularization

In many real applications not only one, but a set of candidate models is considered for a given data
set. In FEM context, such a set is obtained for different combinations of the parameters K and C.
The comparison of the candidate models or rather the selection of the most appropriate one is an
important issue. Often, the principle of "parsimony" also called the "Ockam’s razor" is applied! .
Indicating that the less complex and at the same time the most informative model should be chosen.
Based on the Kullback-Leibler "distance"-measure between probability distributions, Akaike de-
rived in 1973 a model selection criteria for probabilistic models; the Akaike Information Criteria
(AIC) el

AIC = —2L+2|M|, (4.5)

where L is the log-likelihood function for the estimated model M and |M| denotes the number of
parameters in this model. AIC is viewed as an extension of the classical maximum likelihood
approach and coincides with the "parsimony" principle: maximizing the likelihood L and at the
same time penalizing the number of parameters |M|.

Since FEM-BV-EVA is minimizing a negative log-likelihood function, we can straightforwardly
apply AIC. In FEM-BV-EVA formulation the objective functional (4.I]) corresponds to the averaged
negative log-likelihood (NLL) and the number of parameters is dependent on K, C(N7) and the
number of involved covariates P. We obtain that —L = £(I'(r),®) and |M| = |M (K, C(Nr), P)|.
Please note that the derivation of AI/C assumes that the number of the sample, N, is sufficiently
large. This is not always provided, particularly when studying extreme events. Therefore, FEM-
BV-EVA also incorporates the second-order AIC (AIC,)%Y as a valid estimate for the information
content of a sample with a (small) finite length?. AIC, is defined by

2|M|(|M] +1)

AIC. = AIC :
¢ + Nr—|M|—1

(4.6)
and converges to AIC for large Nr. We compute the appropriate IC for each model M, and choose the
best model, denoted by M*, with respect to min(/C). Estimating IC values for N different models,
we see that some have a relatively small discriminant A, = IC(v) —min(IC),v=1...,N and other
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values can have a large discriminant. In order to explain the differences A,, one can compute the
corresponding Bayesian posterior model probabilities known as Akaike model weights? by

€X —4
pi) = P

(K,C.S)

2 exp(—3)

withv=1,...,N, A.7)

where the denominator specifies the normalization constant. The most accurate, i.e., [C-minimal,
model gets the maximal weight!2. Further, we aim to detect the most significant set of covariates
out of Uy, € R”. One approach is to start FEM-BV-EVA with all possible combinations of Uy, in
total:

P

pzl

=7 p‘, (4.8)

and to choose the optimal one according to model selection criteria, e.g., AIC,. In the cases when P
is big, the number of models M increases quickly and attempting to test all possible combinations of
Us; becomes computationally expensive. Alternatively, the significant subset of resolved covariates
can be determined by incorporating shrinkage techniques on model parameter ® such as the Lasso
and Ridge techniques!’”. The Ridge technique shrinks the parameters by constraining their L2 norm
and the Lasso technique by constraining their L1 norm. Additionally, Lasso shrinkage selects the
most significant covariates by setting the insignificant coefficients to zero*’1Y, In the FEM-BV-
EVA framework, both shrinkage techniques are implemented. In this thesis the Lasso shrinkage is
deployed, i.e., it is required that

[1O]|L1 < Cp. 4.9)

By incorporating the L1 constraints on ® via Tikhonov regularization, we obtain the final FEM-B V-
EVA minimization problem for A > 0

S T
L£(©,I(s,1)) ZZZn sis17) &odet (Ysra;» 66) + A[|0] L1, (4.10)

i=1 j=1k=1
with constraints on @: (3.30) or (3.33)[3.33), for GEV and GPD respectively
and constraints on I'(s,7): (4.2 4.4).

Please note that in case we incorporate some shrinkage on @, i.e., A # 0, the number of model
parameters, |M|, includes only "nonzero" coefficients of ® (all coefficients with an absolute value
above some predefined threshold, €g, are considered as "nonzero").

Concluding, the "Lasso FEM-BV-EVA" formulation aims to find the optimal set of K, C(N7), A. We
start the minimization of for different values of K, C(Nr), A and obtain the optimal model by
applying either AIC or AIC,. In the next section we describe the general FEM framework and the
deployed algorithms for estimating the optimal EVA model parameters.
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4.2 Implementation

The main steps of the general FEM formulation are outlined in Algorithm 2} In the first step a candi-
date model M is estimated for different values of K, C(Ny) and A, summarized in Ky, C(N7)1ist, Aiist
(see Algorithm [2] line {)). The second step is to select the optimal model M*: choose the optimal
K*, C*(Nr), A* according to the appropriate IC (see Algorithm 2] line[5).

For a fixed set of {K, C(Nr), 2} model M is obtained by solving (4.10). As already mentioned,

Algorithm 2: The general FEM algorithm
input : Observed series Y, covariates Uy 1, Kjisr, C(NT )iist> Atist
output: Optimal model M* consists of optimal K*,C*(Nr),A* and (@*, " (s,t))

1 for A do
2 for K list do

3 for C list do
4 Stepl: (©*, I (s,t)) = getOptimal ParameterSet(A,K,C(Nr)); For fixed A,
K and C(Ny) estimate the global optimal parameter set (@*,I"™(s,7))
(compare Algorithm .
5 Step2: M* = updateOptimalModel (®*,T*(s,t),A*); Estimate the IC value
according to (4.3) or (#.6)) for every model M. If the current IC value is
| smaller then the previous one assign M* = M.

there is no global solution of (#.10). To obtain a local optima, the general FEM framework solves
the minimization problem in an alternating order>578, It exploits the fact, that for fixed ®
the minimization of with respect to I'(s, ) results either in a constrained linear or constrained
quadratic problem, referring to BV and H1 regularization respectively. Analogues, for fixed I'(s,)
@]} can be minimized with respect to ®. In some FEM settings, for instance, in the FEM-Markov
approach, an analytical solution is available®V'’8, in some others, such as in the presented FEM-EVA
approach, gradient- or MCMC-based techniques are required.

In the following, this proceeding, also denoted as the subspace iteration, is explained in more details
(see Algorithm : beginning with a randomly initialized I'(s,#) in an alternating order we estimate
© for a fixed I'(s,7) and then I'(s,) for a fixed ®. In each alternating step the value of £ (I'(s,7),0®)
in {@.10) is reduced. The subspace iteration converges to a local optimum when the decrease in
L (I'(s,t),0) is less then a predefined minimization threshold, denoted in the following by Tol. In
order to obtain the global optimum, FEM framework is started with random initializations several
times’® when I'(s,?) is initialized randomly (see Algorithm line .

The two steps of the subspace iteration are carried out as follows. For a fixed parameter ©, I'(s,?) is
discretized by the Finite Element Method and estimation of I, (s,7) results in a linear constrained
minimization problem that can be solved using standard numerical tools, e.g., simplex method>>75,
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Algorithm 3: getOptimalParameterSet(); Annealing and subspace iteration

input : Observed series Y;,, covariates Uy, fixed {K, C(Nr), A }, minimization
threshold value, Tol, number of random initializations numberlnit, annealing,
maximal number of subspace iterations, maxSubspace

output: Global optimal parameter set (@*,I"*(s,?))

L0, (s,1)) = inf
2 for r = I:numberlnit do

3 L'ya(s,t) generate random wrt constraints 1 b

4 0O,y = argmin £ (0,T4(s,1))
e

—

5 while | £ (@, Lopi(5,1)) — L(Opia; Lota(s,t)) | > Tol or maxSubspace do

6 Stepl: I, (s,7) = argmin £ (®,;4,1'(s,1)); The constrained minimization wrt.
['(s,t) results for BV-regularization in a linear problem, standard methods, e.g.,
simplex method, can be applied.

7 Step2: ©,,, = argmin £ (I, (s,7),®); The required numerical optimization
method wrt ® depends on the model distance function gasoge(-). In

FEM-BV-EVA gp/0401(.) is the GEV or GPD negative log-likelihood and the
minimization is carried out by applying MCMC method (compare Algorithm [)).

8 if £(0*,T7(s,1)) > L(Oppt,Tope(s,1)) then
9 ®* - ®0pt
10 B *(s,1) = Tope(s,1)

For a fixed I'(s,t), ®,, is obtained by constrained minimization of £ (I'(s,t),®) with respect to ©.
Exploiting the fact that £ (I'(s, ), ®) is uncoupled for different k = 1,...,K, ®,, can be estimated
separately for each k by solving

Ns Nr

mind > % (1) 8ode (Yosn66), k=1,....K (4.11)
i=1 j=1

with constraints (#.214.3}4.4),

with standard likelihood maximization techniques?*4", Note that the corresponding function in
(@.TT) is strongly nonlinear and non-convex. Additionally, in practical applications it may be non-
differentiable (or may exhibit very large values of the first derivative). Therefore, minimization us-
ing standard gradient-based methods like Newton’s method and gradient descent approaches would
be strongly dependent on the initial value and on the boundedness of the first derivatives (e.g., as in
the case of the Levenberg-Marquardt optimization algorithm deployed in GEV-CDN'#). To avoid
these difficulties, we will consider a gradient-free optimization technique based on the Metropo-
lis algorithm, which is a Markov Chain Monte Carlo (MCMC) method. In particular, we employ
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the adaptive MCMC methodology proposed in“Z, where the adaptive MCMC optimization method
considers the Boltzmann distribution as the target density

()= iexp(—ﬁh(.)), 4.12)

with normalization constant z, inverse temperature parameter 3 and some energy function A(.). For
B — oo Boltzmann distributed samples converge towards the minimal energy of 4(.). The adaptivity
of the MCMC in“” comes from adjusting the noise, used for proposing the next sample, and from
increasing 8. This approach can be used as an optimization method to obtain ©,,,, for fixed I'(s, ).
For that we set 2(®) = L (I'(s,?),0®), modify the MCMC by adjusting the "initialization" and the
"proposing the next sample" steps (taking into account the constraints on and the dimensionality of
®)*Z. The main steps of the deployed adaptive MCMC are sketched in Algorithm |4 The imple-
mentation of the deployed MCMC algorithm was carried out in C++. We would like to emphasize
that in each run of the MCMC algorithm, it is sufficient to sample a parameter ®,,,, that provides a
smaller value of £ (0,,,,['(s,7)) rather than sampling the entire distribution (refer to the algorithm
M]lines 2 [5). The subspace iteration deployed by FEM-BV minimizes in each step £ (®,I(s,#)) and
provides the optimal parameter set (©,,;,1,(s,?)) for each annealing step. Moreover, the deployed
MCMC optimization technique does not depend on the initial start values: since MCMC algorithm
also accepts parameters with higher value of £ (®,I(s,#)), there is a chance to obtain the global
minima starting from any initial value. Further, as will be demonstrated on the numerical examples
in Chapter [5] the deployed MCMC optimization technique is efficient in terms of computational
time.

4.2.1 Details on the adaptive MCMC algorithm

In the following, we show the main steps of the deployed MCMC-based optimization proposed
in Algorithm The algorithm is based on the work of*” and differs mainly in two steps;
line [T] and line [] (as explained in the following sections). Note that the convergency conditions
for this algorithm are fulfilled if the MCMC proposes a new parameter set that provides a smaller
L (®pe, I'(s,2)) value for a fixed I'(s,). It is recommended to limit the number of samples, since as
soon as we get into to the area of the local optima it becomes difficult to propose an improved param-
eter set. In FEM-BV-EVA the number of samplings is limited by the parameter sampleSizeMCMC
(see Algorithm 4] line[3). Should the algorithm fail, meaning it does not provide an improved set of
parameters, it returns with ©,,, = 0,4 (compare Algorithm line @)
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Algorithm 4: MCMC-based optimization algorithm for fixed I'(s,¢)
input : Y, series of extremes, covariates Us;, A, I'(s,1), £ (®pq,I(s,1))
output: ©,,

1 Oy, = generatelnitial Value(I'(s, 1), Yy, Uy )

i £ (@ews T(5,1)) < L£ (O, T(s,7)) then
®opt = Opew
2 return ©,,,

Initialize: 8, B, X, counterAccept = 0;

(]

for sampleStep=1:sampleSizeMCMC do

4 Opext = proposeNext(®ey, I'(s,1), Y54, Us s, X, noise, B)
if £(Opex,['(5,1)) < L(Op4,I(5,2)) then

®opt = Onext

5 return ©,,,

6 else if checkAcceptance(B, ®pexr, Opeyy) then
®new = G)next

counterAccept= +1

7 | updateCovMatrix(® ., X)

if sampleStep >= 50 then
8 L [8, B] = adaptStep(S, 3, counterAccept, sampleStep)

9 ®0pt = ®old

Generating initial value

The first step of the MCMC sampling is the generation of an initial value (refer to AlgorithmM] line
[I). In FEM-BV-EVA the scale and shape parameters fulfill the following constraints

P

0 < 0k(Us;) = Ok + Z Okpltp(s,t) < const,k=1,...,K,Vs,t, (4.13)
p=1
P
—0.5 <&(Uss) =&+ > &ipup(s,1) <0.5,k=1,....K,Vs.t. (4.14)

p=1

The constraint ensures a regular likelihood estimator®*®8, That is, for a large sample, the
obtained model parameter follows a normal distribution where the mean is the true parameter and
the variance corresponds to the observed information matrix, which is the negative Hessian matrix
of the log-likelihood with respect to the model parameters>222.

An initial value, which is sampled from a uniform distribution, does not necessarily ensure the
constraints . In order to hold the constraints, we reformulate them: Since ék(Uw) and
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ox(Us,), for k =1,... K, attain their unique maxima/minima values in one of the corners of the
convex hull defined by Uy, 0 it is sufficient to fulfill the constraints on all corners of
the convex hull of Uy,. Using the matrix A € R(P +1)X2P, which contains all combinations of max-
imal/minimal values of U (s,t) for s = s1,...,s5, and t =11,...,1y,, we reformulate the constraint

for & = (&, - -, &p) by
—A& < —lbg, Ibs=-0.5-1€R?, (4.15)
A&, < tubg, ubg=0.5-1€R?, (4.16)
for k=1,...,K. The same applies for . Lastly, if we strengthen the constraints slightly we get
ox(Us,) € [e,const], & (Us,) €[-0.5+¢€,05—¢], k=1,...,K, 4.17)

with € > 0, and const € R to be some high value. We can use a convex sampler to get random,
uniform distributed values within this convex hull. When studying the behavior of block-maxima,
we must also provide a start value for the location parameter, for instance, by applying a similar
procedure to sample t; = (Lo, .., k), k=1,...,K, in a way that the constraint is fulfilled.
An alternative is to estimate the initial value for p; by applying ordinary least squares>>. Note
that this estimation is not considered as the trend estimate for the GEV distribution, but rather a
procedure to generate an initial value that is adjusted within the MCMC and the subspace procedure
(compare Algorithm 3]). Both possibilities are implemented in the FEM-BV-GEV framework.

Propose Next Sample

The performance of the Metropolis algorithm can be improved with an appropriate proposal dis-
tribution "%, However, it might not be obvious which proposal density should be chosen for the
current target density. In this work we deploy the Adaptive Metropolis algorithml, where the next
proposal, denoted here as Y;,+1, is sampled according to a mixture distribution with respect to the
information of all previous accepted samples, denoted here as Xj, ..., X,,. That is, we obtain the next
sample by

2.382
Yo~ (1=8)N | Xy, Tzn + 6N (X,,Xo), (4.18)

where d is the dimension of X, and ¥, € R4*4 corresponds to the empirical covariance matrix of
Xo, . .., X,. The parameter 0 < § < 1 controls the acceptance rate of the Metropolis algorithm, the
acceptance rate is increasing for 8 — 1 and decreasing for 6 — 0. Details on this adaption step can

be seen in>Z.

4.3 Postprocessing of FEM-BV-EVA Results

The proposed FEM-BV-EVA toolbox can be applied for spatio-temporal statistical regression analy-
sis of extreme events. The resulting optimal model parameters are used for further analysis, such as
parameter sensitivity, model validation, and estimation of return levels. The following two sections
concentrate on postprocessing of the FEM-BV-EVA results.
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4.3.1 Descriptive Statistics

In addition to the optimal parameter set, we are also interested in the sensitivity of the involved
estimator with respect to observed measurements. We aim to provide the confidence intervals for
the model parameters. For artificial test cases, where a repetition of the experiment is possible, we
obtain the confidence intervals via a bootstrapping procedure“!: we resample the series of interest
according to the underlying dynamics N times and apply FEM-BV-EVA each time. Each optimal
result (@*,T*(s,7)) is then accounted for estimating the averaged parameters as well as the con-
fidence intervals. In many real applications we dispose of only one realization, for instance, in
climate research only one observed realization of the process is available. However, we can exploit
the fact that the optimal FEM-BV-EVA model parameters are obtained by minimizing the NLL, and
that the constraints on the scale parameter insure the regularity condition of the estimator. That is,
for large samples, each local model parameter 6;, k = 1,..., K, is normally distributed as discussed
in Section From here, we can evaluate the confidence intervals (as standard errors) for each
0 as the root of the diagonal of the corresponding covariance, i.e., observed information matrix.
Please note that in contrast to univariate FEM-BV-EVA, where the constraint on large sample might
be not fulfilled, the size of the sample is increasing with an increasing number of considered loca-
tions in spatial FEM-BV-EVA.

Further, using the FEM-BV-EVA model parameters, we can construct the marginal cumulative dis-
tribution function (cdf) for each location s, s = s1,...,sn,, by the convex combination of local
functions, as exemplified for the FEM-BV-GEV model

K
fres-av-cev (60.0(s5,0) = 3 w(s.)exp (—[1 + & (U ) g ) @19
k=1 Gk(Us,t)
where U (Us;), 0k (Us,),E(Us,) are defined according to . The cdf can be used for stan-
dard inference such as computing the time-dependent probability of an event A by P[Y,, > A,1]
and/or estimating the return levels and periods. A return level x, is the expected value, with
frem—Bv—cev (xp;0,T(s,1)) = 1 — p, to be exceeded every 1/p years#?., The return level is es-
timated by inverting the FEM-BV-GEYV distribution function (4.19).

4.3.2 Spatial Dependence

The application of spatial FEM describes the underlying model by a set of appropriate local models
and a spatio-temporal switching process I'(s,#). The switching process reflects not only the nonsta-
tionarity of the underlying dynamics (resolving so the unobserved covariates) but also describes the
spatial dependence structure. Since the description of the switching process is nonparametric, we do
not obtain a closed formulation of the underlying dependence structure. In order to draw conclusion
about the underlying dependence structure, further analysis of I'(s,#) is required. One possibility is
to consider all locations that exhibit similar values in I'(s,7) as adjacent. For example, the degree of
spatial dependency for any two locations s; and s; is strong if I'(s;, 1) = I'(s;,t), element-wise.

However, this procedure is not directly applicable in the context of extreme events: here we have
to account for time delay in the occurrence of extremes among locations. As an alternative, we
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exploit results coming from the field of complex networks, referring to the event synchronization

(ES) measure’®: consider the event occurrence for each location s, that is t(s) =t,... sINp (- Then,

for each pair s; and s; the number of times an event appears first at s; and then at s; is denoted by

Nr(sj) Nrs;)
c(jly=">>" i, (4.20)
=1 m=1
where
1, if  0<ls)) —tu(s) <7l
Jii=q%, it u(s;) =tu(s) 4.21)
0, else,

and lel; describes the minimal time lag between two events

ol =min{t41(s;) — 11(5;)s11(57) = =1 (87) s L1 (51) = (1) s (1) — a1 (57), }- (4.22)

Analogous we obtain ¢(i| j) and compute

(4.23)

The symmetric matrix Q is a measure for the relative strength of event synchronization among
all locations. In the context of FEM-BV-EVA, we estimate the ES matrix for each local model
k=1,...,K according to the temporal affiliation to this particular model. Following, we obtain an
extended description of the ES measure: for each local model £k = 1,...,K the correlation among
locations is described by the matrix Q.

Further, a detailed investigation of the switching process I'(s,#) can reveal the spatio-temporal prop-
agation of extremes. For this purpose, the recently proposed FEM-BV-Causality approach enables
to study the spatio-temporal interaction of discrete state models in a multiscale context and can be
applied to analyze I'(s, )", However, this remains for future work.

4.3.3 Prediction

Another important aspect of extreme value analysis is prediction. This is a very challenging task,
containing the prediction of the intensity and the occurrence of extremes. Detailed considerations
at this point would go beyond the aims of this thesis. However, a couple of considerations that are
relevant in current thesis context will be described in the following.

The classical EVA was designed to study the intensity of extremes and to provide a model that en-
ables one to "predict" more extremal events in terms of return levels. Based on EVA, the proposed
FEM-BV-EVA framework approaches the same issue and can be applied straightforwardly to the
space-time clustering of extreme events. The resulting FEM-BV-EVA cdf can be used to describe
the behavior of return levels and periods in the past in such a manner that possible trends become
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visible. However, FEM-BV-EVA is not directly applicable for predictions of the return levels in the
future. This task is hampered by two factors. First, the underlying dynamics is described by a set
of local model parameters and a nonparametric, nonstationary switching process. Following, there
is no closed formulation for the underlying dynamics of I'(s,#) which is required for prediction. To
avoid this problem, one can try to find an extended set of covariates in order to resolve the observed
dynamics, such that the optimal model is obtained for K = 1. An alternative approach is to consider
['(s,t) as a discrete process and to apply time-series analysis methods, e.g., the FEM-BV-Markov or
FEM-BV-Causality methods>Y?, for studying the underlying dynamics. The resulting parametric
model for I'(s,#) could then be used for making predictions about the affiliation to one of the local
models. However, the prediction remains uncoupled from the true continuous timeline resulting in
the second challenge.

Nevertheless, regression analysis of extremes allows the identification of the most significant covari-
ates that influence the dynamics of the extremes. We are particularly interested in the identification
of covariates that precede the occurrence of extremes. For instance, it has been found that the
occurrence of US heat waves is likely preceded by 15-20 days "by a pattern of anomalous atmo-
spheric planetary waves with a wavenumber of 5"192, linked to the tropical heating. In this context,
FEM-BV-EVA can be employed as a robust exploratory regression analysis tool for spatio-temporal
extremes as will be demonstrated in Section[3l

4.4 Spatial Regularization

Spatial FEM was first introduced as an approach for spatio-temporal Markov regression analysis
of discrete/categorical dynamical processes=S. Another example of spatial FEM is the FEM-BV-
EVA formulation, defined by (#.1I0). The resulting spatial FEM toolbox can be generalized by
appropriately replacing the distance function gso4/(.). Then, for an observed series and a set of
covariates, the application of spatial FEM results in an optimal descriptive model (parametrized
by K, the switching process I'(s,7), C(Nr) and model parameters ®). As previously discussed,
the model parameters ® are accessible for all locations, but in contrast the switching process is
assigned to each location separately. The latter also implies that the estimation of I'(s,7) can be
carried out separately for each location, i.e., in parallel, compare Algorithm [3] line [l However,
because we released a priori assumptions on I'(s,7), minimization of £(0,I'(s,7)) with respect to
I'(s,7) might become ill-posed. To handle the ill-posedness, the FEM framework in this thesis was
extended towards spatial regularization by assuming persistent behavior in space. This assumption
is reasonable, in particular in climate or weather research. For instance, the occurrence of spatially-
persistent blocking anticyclones might be responsible for heat waves over the affected area3,
The spatial persistency is incorporated into the FEM framework by adding an additional constraint
on I'(s,t)

Hyk(svt)HR([shst])SC(NS)> I=1,...,Ing, k=1,...,K, (4.24)

where I'(s,) is either in the space of functions with bounded variation or in the space of weakly dif-
ferentiable functions, i.e., R([s1,sng]) = BV ([s1,5n]) or R([s1,sn5]) = H'([s1,5n;]), respectively.
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The temporal dimension of I'(s,#) is discretized by applying the Finite Element method exploiting
the sequential flow of time”°?. In order to discretize the spatial dimension in real applications, we
have to account for the region under consideration. Considering geographical distances, e.g., the
bee-line between locations, might suppress the topographical properties such as mountains and/or
valleys. An alternative approach, for describing the spatial pairwise connectivity among all loca-
tions, is to refer to the pairwise correlation between the locations. For example, we can refer to
the classical correlation or the cross-correlation matrix of the observed series among all locations
in order to account for either the linear or the "time-lagged" relationship, respectively. Please note
that the cross-correlation should be applied with caution when dealing with asynchronous mea-
surements. Evaluation of cross-correlation does not account for an asynchronous behavior in the
measurements. Consequently, the results refer to a time-lagged relationship where the time-lag has
different time-scales and such no direct interpretation is possible. Further, in cases when the un-
derlying relationship between the locations is nonlinear, cross-correlation might be misleading®.
Instead, one can refer to the "event synchronization measure”, which describes the nonlinear rela-
tionship between different locations with respect to event occurrence’®, compare Sectionm
Finally, both the spatio-temporal BV and H1 regularizations result in a linear or a quadratic con-
strained minimization problem with respect to I'(s, 7). Compare Appendix for a detailed deriva-
tion. Standard methods, e.g., simplex method and constrained quadratic programming, can be ap-
plied. Both possibilities, BV and H1 regularizations, were implemented in the FEM toolbox. In
order to solve the corresponding linear or quadratic problems FEM-BV-EVA gets use of the follow-
ing standard toolboxes: (a) Matlab Optimization Toolbox 103/ and (b) Gurobi Optimization Toolbox,
which allows to solve the optimization problems in parallel>=.

The choice of an appropriate spatial "distance measure" is not obvious and corresponds in any case
to some a priori assumption about the relationship among different locations. Further, incorporation
of spatial regularization disables the parallel computation of I'(s,#) for each location s. In cases
in which we refer to BV regularization, we must account for a further increase of the constrained
linear problem dimensionality, as shown in Appendix 4.4} Those aspects lead to an increasing com-
putational complexity, especially in the case of FEM-BV-EVA (where the theoretical aspects are
based on a binary switching process). Therefor, for the practical applications examples in this thesis
only the time regularization, i.e., without an additional space regularization, was considered. Ap-
plication and adaptation of a computationally-feasible spatial regularization in the FEM-BV-EVA
context remains for future work.

4.5 Conclusion

The FEM-BV-EVA toolbox was presented in this chapter. FEM-BV-EVA implementation deploys
a gradient-free MCMC-based optimization technique and numerical solvers for large structured
quadratic and linear problems with constraints. FEM-BV-EVA can be easily extended towards
highly-scalable applications in HPC context. There are several possible levels of parallelization,
for instance, the level of model parameter estimation: for a more wider exploration of the param-
eter space, the involved MCMC-based optimization can be started simultaneously with random
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initializations. Further, in cases in which only time regularization is considered the switching pro-
cess is uncoupled in space and thus in every iteration of the optimization algorithm I'(s,7) can be
estimated for each location separately, that is, embarrassingly parallel, since no communication be-
tween different processors is required. In cases of spatial and temporal regularization the resulting
linear or quadratic problem is then fully coupled and existent parallel libraries can be deployed.
The resulting FEM-BV-EVA toolbox provides a computationally efficient framework for statistical
spatio-temporal regression analysis of extremes and can be directly applied to real world problems.
In the next chapter we demonstrate the performance of FEM-BV-EVA framework on test cases and
real data.
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4.5 Conclusion




S Application

In this chapter, we demonstrate the performance of the FEM-BV-EVA framework on various ex-
amples and compare it to the state-of-the-art methods in statistical regression analysis of extremes.
These include methods based on neuronal networks and smoothing regression. The comparison is
performed according to the four criteria: (1) information content of the models (jointly measuring
complexity and quality of the models), (2) robustness with respect to the systematically missing in-
formation, (3) computational complexity, (4) understandability/interpretability of the models. First,
we demonstrate the performance of the univariate FEM-BV-EVA on test-cases and real applications.
We will shown that parametric standard approaches provide biased results in cases when significant
covariates are missing. Second, by comparing FEM-BV-GPD to methods based on smoothing re-
gression, we emphasize the weakness of smoothing regression as discussed in Section [3.1.4] Fi-
nally, we demonstrate the performance of spatial FEM-BV-EVA on a real application analyzing the
dynamics of threshold excesses of daily accumulated precipitation over 17 different locations in
Switzerland.

5.1 Univariate FEM-BV-GEV

In this section we demonstrate the univariate FEM-BV-GEV methodology on two test cases and
on the real data. The two test cases are used to investigate the robustness with respect to the sys-
tematically missing covariates, the approximation of nonstationary behavior and the computational
performance of the framework (with respect to accuracy and computational time). In the real data
example we analyze a series of block-maxima surface temperatures for locations Lugano (Switzer-
land) and Berlin (Germany). Further, to each application we apply the parametric GEV-CDN ap-
proach. GEV-CDN exploits a conditional density network (CDN) for nonlinear regression analysis
based on time dependent covariates with constant weights and offsets#, please see Section m
for more details. In order to demonstrate the performance of parametric regression analysis in a
presence of systematically missing observations, we apply the GEV-CDN approach to test cases.
By applying the GEV-CDN approach to real data, we study either the underlying dynamics of ex-
tremes for the considered locations is rather nonlinear than nonstationary. The GEV-CDN analysis
is performed using the package GEV-CDN provided in the statistical toolbox R!#13. The main tun-
ing parameters of GEV-CDN are: the number of hidden neurons in the network (here denoted by
Npg), the hidden layer transfer function (identity or logistic function) and the number of trials (to

51



52 5.1 Univariate FEM-BV-GEV

avoid the local optima). An optimal configuration of the GEV-CDN with respect to these tuning
parameters was determined according to the AIC, criterion, i.e., deploying the same information
criterium that was also used to find the optimal FEM-BV-GEV model.

5.1.1 Stationary Test Case

The first example is aiming to verify the regression analysis of block-maxima based only on resolved
covariates. We would like to roughly mimic the true underlying dynamics of block-maxima in real
meteorological applications. Therefore, as covariates we consider a linear trend, a periodic func-
tion with one year period and daily averaged measurements of the Total Solar Intensity (TSI)47"48H
In general the TSI factor describes the total amount of the solar radiative energy that is hitting the
Earth’s upper atmosphere®. However, for this example we consider only a segment of the TSI mea-
surements (staring from the year 1950) of length 7" = 800 and hence this factor is only responsible
for more fluctuation in the generated block-maxima. Now, with covariates U; = (u; (t),u2(t),u3(t))
defined by

1 T 2
t)=—-t t) =sin(- + —t t)=TSI 5.1
Ml() 400 ) MZ() s”/l(2+365 )7 M}() S ) ( )
we generate a series of block-maxima using following parametrization of the GEV model (3.1))
w(0) =+1—5uy(t) +2uz(t) + lus (1), (5.2)
o(U;) =+2.1018 — 0.7132u; (1) — 0.8203u5 (1) + 0.1356u3(1), 5.3)
E(U,) =—0.0627 — 0.4051u; (¢) +0.0022u5 (¢) — 0.0026u3(t). 5.4

By assigning a relatively high coefficient to the factor u (¢) in (5.2) we stress the linear trend behav-
ior in the dynamics of block-maxima. The coefficients in (5.3}5.4) were generated randomly. We
use MATLAB function gevrnd () for sampling

X, ~GEV(u(0,),0(0,),E(0,)) fort =1,...,800. (5.5)

In the next step we split the covariates U, into resolved and unresolved subsets, U; = (u(t),u3(t))
and U"* = u(t), respectively, and apply FEM-BV-GEV and GEV-CDN methods for solving the
inverse problem: for given X; and U; fit the model parameters to describe the distribution of X;. We
want to emphasize that by purposely missing the most relevant covariate, the linear trend, we would
expect both methods to react on this issue by exploiting the nonlinearity in case of the GEV-CDN
and the nonstationarity in case of the FEM-BV-GEV.

The FEM-BV-GEV is supplied with Kj;; = {1,2,3}, Ciiy = {2 : 1 : 6} and following configu-
rations: Number of annealing steps is fixed to 100, the maximal number of the subspace itera-
tions is set to 150 and the minimization threshold to Tol = 5.0e — 05. The GEV-CDN approach
is configured with Ny = {1,2:2: 18}, hidden transfer function is the logistic function, number
of trials is 100. The results are summarized in Table [3;1'], featuring the minimal AIC, values as
been achieved by the respective methods. Resulting optimal models are K = 3,C = 4 for FEM-
BV-GEV and Ny = 12 for CDN-GEV. The regression analysis of X; based on resolved covariates

IThe data were retrieved from http: //www.pmodwrc. ch/pmod . php?topic=tsi/composite/SolarConstant!
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optimal Models for stationary test case
Settings NLL |M] AIC,

FEM-BV-GEV | K=3,C=4 17173 38 3514.4
GEV-CDN Ny =12 2111.6 75 4370.3

Table 5.1. Optimal results for FEM-BV-GEV and GEV-CDN for the stationary test case. By using
the original model parameters, we obtain the true negative log-likelihood NLL;y,, = 1704.2. As
described above in the text, smaller values of NLL indicate the models with a better fit, whereas
smaller values of AIC, indicate more informative models.

only was performed better by the FEM-BV-GEV than by the GEV-CDN approach (with a smaller
NLL and a less total number of model parameters). As we can see from the left upper panel of
the Figure the optimal switching process I'*(¢), expressed by the affiliation A(¢) € R (with
A(t)={i:i=argmaxy’(r) overi=1,...,K}), assigns X; to three different models. FEM-BV-GEV
explicitly resolves the implicit linear trend in the systematically missing covariate U*" via a switch-
ing process that subsequently goes through three local parameter regimes. We can not compare
the original and the resulting coefficients for the regression models explicitly. Instead, we evalu-
ate the approximated p*(U;), £*(U;), 0*(U;) according to the FEM-BV-GEV and the GEV-CDN
models and compare them with the original evaluations according to (5.2}{5.3}{5.4). The comparison
is shown in Figure The top right, bottom left and bottom right panels represent the shape, the
scale and the location parameters, respectively. The parameters obtained from the FEM-BV-GEV
resolve the underlying trend very reliably. In contrast, due to the assumption that the neuron weights
and offsets are constant, the GEV-CDN is not able to recover the impact of this missing covariate.

5.1.2 Nonstationary Test Case

In this section, we consider a nonstationary test case and use it to verify the accuracy and the per-
formance of the FEM-BV-GEV. We generate X; according to a mixture model with a nonstationary
switching process

X; ~ 7 (t)GEV) 4+ 1(t)GEVy, 5.6)
where GEV; is parametrized according to (5.2}{5.3}{5.4)) and GEV; according to

p2(U;) = — 0.5 —3u; (t) +0.5u (1) + 0.5u3(2), (5.7
02(0;) =+0.6729 +0.0183u; (1) — 0.4131uy(¢) +0.1378us(¢), (5.8)
& (U,) = —0.0780 — 0.1398u; (1) — 0.1608uy (¢) + 0.0266u3(t). (5.9

We consider the same covariates U; as in the stationary case. The nonstationary switching pro-
cess I'(t) = (71(2),7(¢)) is generated artificially with C = 6 switches. Now, for given X; and
U, = (u1(t),ua(t),u3(t)), we apply FEM-BV-GEV and the GEV-CDN approach to capture the non-
stationarity of . The FEM-BV-GEV is supplied with Kj;, = {1,2,3}, Cjjy = {2: 1: 14}, re-
maining configurations are the same as for the stationary test case. Also the configurations of the



54 5.1 Univariate FEM-BV-GEV
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Figure 5.1. Stationary test case: This figure shows the results for the application of FEM-BV-GEV
and GEV-CDN to (5.3). The upper left figure shows the artificially generated series of extremes
X, vs. the optimal switching process T'*(t), expressed by the affiliation vector A(t). The remaining
panels represent the evaluation of the shape, scale and location parameters according to the orig-
inal (black solid line), optimal FEM-BV-GEV (dashed dotted line) and GEV-CDN (grey solid line)
parameters.

GEV-CDN approach do not change. Because we provide the full information, U, = U,, to both

optimal Models for nonstationary test case
Settings NLL |M]| AIC,
FEM-BV-GEV | K=2,C =12 1204.1 37 2485.9

GEV-CDN Ng =7 12545 52 2620.3

Table 5.2. Optimal results for FEM-BV-GEV (K = 2,C = 12) and GEV-CDN (Ny = 7) for the
nonstationary test case. By using the original model parameters, we obtain the true negative log-
likelihood NLL,,, = 1228.9.

methods, they both perform well, compare Table [5.2] and Figure 5.2} FEM-BV-GEV approximates
the dynamics of X; with less parameters and a smaller NLL. The inconsistency of the number of
switches in I™*(z) with C = 12 (compare Figure upper left panel) and the original I'(r) with
C = 6 can be neglected due to the relatively large confidence intervals for I'*(z) and ®* (note dis-
played here, we refer the interested reader to®*). Also the GEV-CDN captures the regime switches
and the underlying trend in parameters, compare Figure [5.2] The computational performance of
FEM-BV-GEV and GEV-CDN is compared by considering the CPU time for one annealing step
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Figure 5.2. Non-stationary test case: This figure shows the results for the application of FEM-
BV-GEV and GEV-CDN to (5.6). The upper left figure shows the artificial generated series of
extremes X, vs. the optimal switching process I'*(t), expressed by the affiliation vector A(t). The
remaining panels represent the evaluation of the shape, scale and location parameters according to
original (black solid line), optimal FEM-BV-GEV (dashed dotted line) and GEV-CDN (grey solid
line) parameters.

dependent on the increasing number of parameters (configurations do not change). The results are
shown in Figure [5.3] The plots contain the average CPU time over 100 runs. FEM-BV-GEV ob-
viously outperforms the GEV-CDN approach with respect to the computational performance for

the growing number of parameters (e.g., corresponding to the larger number of involved covariates,
hidden neurons, etc.)

5.1.3 Real Data Application

In this section we apply FEM-BV-GEV and GEV-CDN to real data, where we do not have a priori
the knowledge about the underlying dynamics. Moreover, we have to account for unresolved co-
variates because it is not clear a priori which weather/climate covariates are potentially relevant for
the analyzed data and which are not. In the following, we consider historical daily records of tem-
perature from 1950-01-01 till 2011-01-01 for locations Lugano, Switzerland (46°N, 8.9667°E) and
Berlin, Germany (52.4649°N, 13.3017°E)1%, Data were retrieved from NOAAs National Climatic
Data Center (NCDC) Web-pageﬂ We restrict the data to this period because observations for some

of the involved covariates are available starting from 1950 only. We consider the following set of
covariates:

2Data were retrieved from http://gis.ncdc.noaa.gov/map/cdo/?thm=themeDaily,


http://gis.ncdc.noaa.gov/map/cdo/?thm=themeDaily
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Figure 5.3. Non-stationary test case: This figure compares the computational time performance of
FEM-BV-GEV (diamonds marker for K = 2 and circles for K = 3) and GEV-CDN (squared markers)
using logarithmic time scale (seconds). The number of covariates is fixed, thus the increase of
number of model parameters is due to increasing of C for FEM-BV-GEV and number of hidden
neurons for GEV-CDN.

1. Arctic Oscillation (AO)?,

2. North Atlantic Oscillation (NAOY}

3. Total Solar Irradiance (TSI), averaged over one day47‘48ﬂ

4. ENSO, represented trough mean sea surface temperature anomalies in the Nino3.4 region''%%,

5. log(C0O2), with logarithmic dependence according to®Z,

6. Seasonal Periodical Phase: Per; = sin(%t),

7. Seasonal Periodical Phase: Perj; = sin(%H + %I),

8. Madden-Julian Oscillation (MJO), contains the first two empirical orthogonal functionﬂ

In order to interpret and compare the relative influences of covariates on trends in model parameters,
U, € R is scaled to [—1, 1] according to (5.10)

uy(t) —max(uy)
=2Fr P 1, forp=1,...,8 5.10
uP<t) max(up) —min(up) + 1) Orp ] y Oy ( )

where max(u,) and min(up,) are the maximal and the minimal values of the covariate p over the time
from 1950-01-01 till 2011-01-01. Further, before extracting 30 days block-maxima we remove the

3Data were retrieved from|ftp: //ftp.cpc.ncep.noaa.gov/cwlinks/,
“4Data were retrieved from http: //www.pmodwrc . ch/pmod . php?topic=tsi/composite/SolarConstant,
SData were retrieved from http://cawcr.gov.au/staff/mwheeler/maproom/RMM/|


ftp://ftp.cpc.ncep.noaa.gov/cwlinks/
http://www.pmodwrc.ch/pmod.php?topic=tsi/composite/SolarConstant
http://cawcr.gov.au/staff/mwheeler/maproom/RMM/
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seasonal trend in the data. For this, we estimate the yearly trend by averaging over all values corre-
sponding to the same day and month and then subtract the yearly trend from the data. The dedicated
series of block-maxima for each location contains 742 maxima in the observed period. For the re-
gression analysis we refer to covariates measured at the same time steps when the maxima in each
block is observed.

In the following, we want to extract the most significant combination of covariates out of all possi-
ble, in total 255. For this task, we use the FEM-BV-GEV framework with following configurations:
Kiise = {1,2,3}, Cjiy = {5:5: 100}, number of annealing steps is fixed to 100, the number of the
subspace iterations is set to 250 and the minimization threshold to 7ol = 5.0e —05. Then, according
to the minimal AIC,, we obtain for each location the optimal model including the most significant
combination, denoted by u .. For location Lugano u,, , is [NAO,log(CO,), Pery, Pery], and for
location Berlin u},,,, = [AO,NAO, Per;]. In the second step, we compare the FEM-BV-GEV and
GEV-CDN applied to two different settings: (a) we provide the complete set of optimal covariates
for the regression analysis u,,, and (b) we provide an incomplete set i, = [NAO, Pery, Pery;| and
keep back log(CO;) for location Lugano, and &} NAO, Per;] and keep back AO for location

comb — [

Berlin.
Location Lugano with Location Lugano with
ul .y = INAO,log(COy), Pery, Pery] | @i}, = INAO, Pery, Peryy]
NLL  |M]| AIC, NLL |M| AIC.
FEM-BV-GEV | 1573.9 70 3302.6 1608.9 64 3358.0
GEV-CDN 1494.0 115 3260.6 1672.9 45 3441.6

Table 5.3. Comparison of FEM-BV-GEV and GEV-CDN according to AIC, model selection criteria
for locations Lugano according to the resolved and unresolved covariates. The optimal models for
resolved covariates are: FEM-BV-GEV K =2,C =40 and GEV-CDN Ny = 14. The optimal models
for unresolved covariates are: FEM-BV-GEV K = 2,C =40 and GEV-CDN Ny = 6.

Location Berlin with Location Berlin with

ul,.» = [AO,NAO, Pery] i, = [INAO, Pery]
NLL  |M]| AIC, NLL |M| AIC,

FEM-BV-GEV | 1642.8 109 3541.5 | 1675.6 89 3553.8

GEV-CDN 1781.8 45 3659.5 | 17927 39 3667.8

Table 5.4. Comparison of FEM-BV-GEV and GEV-CDN according to AIC, model selection criteria
for locations Berlin according to the resolved and unresolved covariates. The optimal models for
resolved covariates are: FEM-BV-GEV K =2,C = 85 and GEV-CDN Ny = 6. The optimal models
for unresolved covariates are: FEM-BV-GEV K =2,C =70 and GEV-CDN Ny = 6.
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Note that u,,, is significant according to the FEM-BV-GEV approach and one could argue
that for the GEV-CDN approach an other set of covariates could be more importanlﬂ In return, in
real applications we will never know a priori which covariates may be important and in any case
the complete set of potentially-relevant covariates will never be available a priori. The results for
settings (a) and (b) are shown in Table [5.3]for location Lugano and in Table [5.4]for location Berlin.
The optimal GEV-CDN model is chosen out from Ny = {2 :2: 16}. Additionally, we compute the
expectation value of block-maxima with the corresponding quantiles for both locations and discuss
its behavior. Comparing the optimal FEM-BV-GEV and GEV-CDN models, we can conclude that
in the case when the set of covariates is "complete” the nonlinear GEV-CDN provides a better de-
scription of the block maxima for location Lugano in terms of information theory (as measured by
AIC,.). Consequently, the underlying dynamics is rather nonlinear than nonstationary. In contrast,
FEM-BV-GEYV provides a better description of block-maxima for location Berlin. Moreover, in the
particular case when some information is "missing", the nonstationary FEM-BV-GEV approach ap-
proximates the underlying dynamics better by reflecting the unresolved modes trough the switching
process for both of the considered cases (Berlin and Lugano).

Postprocessing

In the following, we discuss the postprocessing for location Lugano and Berlin according to the
optimal FEM-BV-GEV and GEV-CDN models. Local linear FEM-BV-GEV model allows direct
interpretation of the influence of covariates on the dynamics of GEV parameters, compare Table[5.5]
and Table [5.6] For the GEV-CDN approach the fitted parameter dynamics is not easy to interpret
and understand; we obtain a matrix of weights, and have to evaluate the parameters according to
the nonlinear transfer functions (being a logistic functions in our particular case). The identifica-
tion of these factors is physically-meaningful. Positive phase of AO causes dry and hot conditions
in Mediterranean regions. AO has a direct impact on atmospheric circulation blocking events: it
induces a ridge of high pressure in the mid latitude jet streams that can cause persistently high
temperatures (as well as cold conditions)>>. Positive phases of NAO cause warm, wet winters in
Northern and dry winters in Southern Europe. The anthropogenic influence of CO; concentration,
and so log(CO,) holds a positive trend with an oscillating dynamics (with maximum value in May
and minimum in October)®. The relevance of Per; and Pery; points to a strong seasonal depen-
dence of block-maxima in both locations (this is obvious since we consider monthly maxima). In
order to study the long-term trend in distribution of block-maxima, we evaluate the nonstationary
expectation value

2 JETCORY
Ex— Xt, - 1 iUt iUt 5 (5-11)
sttt = 30 o,
Ecpn[X:,t] = uepn (Ur) + GCDN(Ut)F(l ~Seon(U) ~ 1 (5.12)

Eeon (Uy) ’

6 Application of GEV-CDN to identify the most significant combination of covariates is not feasible because of pro-
hibitively high computational cost to get through all 255 covariates combinations (please see Figure[5.3]for computational
cost comparisons of the two methods).




59 5.2 Univariate FEM-BV-GPD

with r = 1,...,742. Here K = 2 corresponds to FEM-BV-GEV (with parametrization according
to (3.26)), CDN to GEV-CDN and I" denotes the gamma function. Figures [5.4] and [5.5] show the
results according to FEM-BV-GEV and GEV-CDN. The 0.99- and 0.10-Quantiles are the confi-
dence intervals, containing 89% of the distribution. In particular, the 0.99-Quantile corresponds to
the 100-year return level. According to the FEM-BV-GEV results, the mean for location Lugano

Model Parameters for location Lugano with u* [NAO,log(CO,), Pery, Peryj]

comb —
} Ho W1 p s pa oy o o, o on & & & & &
429 -0.19 197 0.74 -1.39 1.99 -0.10 0.05 0.21 -0.61 -0.37 0.39 0.40 -0.15 -0.09
3.92 078 -2.12 1.70 -0.34 1.71 0.60 -0.17 0.39 -0.42 -0.05 0.16 0.03 -0.19 -0.09

o
6

Table 5.5. The table contains optimal parameters 0; and 05 for location Lugano (the values are
rounded to two places behind the decimal point).

comb —
H M1 H2 H3 Op O (o} 03 &o &1 &S &
473 1.89 0.1 0.38 2.59 -0.52 -0.03 0.6873 -0.22 -0.27 -0.40 0.17
8.43 2.00 -1.13 0.59 2.15 -0.21 0.69 -0.12 -0.32 0.01 -0.10 0.00

Model Parameters for location Berlin with u, [AO,NAO, Perj]

o
6

Table 5.6. The table contains optimal parameters 0 and 05 for location Berlin (the values are
rounded to two places behind the decimal point).

shows a slightly negative trend in the second model. After the 1980-ies the first model dominates,
here log(CO;) has a positive influence, inducing an increasing trend in block-maxima. In contrast,
according to GEV-CDN model, there is no obvious trend: however, the confidence intervals for
the GEV distribution increase in the last ten years. For location Berlin the trend of the expectation
value is separated according to two FEM-BV-GEV models, one model corresponds to higher block-
maxima. The GEV-CDN model averages this dynamics, and provides an unchanging behavior with
some (few) outliers.

5.2 Univariate FEM-BV-GPD

In this section we demonstrate the robustness of FEM-BV-GPD approach with respect to systemat-
ically missing covariates on a test case and on real data. Performance of the introduced FEM-B V-
GPD is compared to the gamGPD approach, implemented in the statistics toolbox R188899 The
gamGPD framework is used to resolve the involved nonstationarity of the bias/off-set according
to (3.19). The framework offers following possibilities: (a) to choose between cubic or thin plate
spline basis, denoted by bs = cr or bs = tp, respectively, (b) to run over different dimensions of the
bases for the smooth spline as defined in (3.19), denoted by ¢ and (c) to compute a spline with and
without regularization, denoted as fx = fs or fx = tr, respectively®*117L3 The optimal model
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Figure 5.4. Location Lugano: The figure contains the plot of the expectation value for the optimal
FEM-BV-GEV model, K =2,C = 40.

is chosen with respect to the AIC/AICc criterion (4.5H4.6). In order to interpret the differences in
obtained AIC/AICc values, we refer to the Akaike model weights as defined by (4.7).

5.2.1 Nonstationary Test Case

In the following, we construct a test case where the underlying dynamics of extremes is governed
by a discrete switching process. We proceed in two steps. First, we generate an artificial series of
threshold excesses X; according to a mixture model with a nonstationary switching process

X, ~ 1(0)GPD (01(0)),&(01)) + 1(1)GPD (02(01), & (D)) , fort =1,...,1000.  (5.13)

The model parameters depend on a fixed set of covariates: U; = (uy(t),ua(t),u3(t)) with

uﬂﬂzﬁdé%ﬂ,uﬁﬂ:Tﬂ, (5.14)
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Figure 5.5. Location Berlin: The figure contains the plot of the expectation value for the optimal
FEM-BV-GEV model, K = 2,C = 85.

where TSI (Total Solar Intensity) 47:4 is responsible for more fluctuation in the data. The series of
threshold excesses is generated using the following parametrization

61(0;) =3.0+3.0u; (t) — 0.5uz (1) + 0. 1us (1), (5.15)
E1(0;) =0.240.001u; (£) — 0.1up(¢) — 0.01u3(t), (5.16)
0>(0;) =1.0+0.001u; (1) — 0.5u5(¢) +0.1u3(t), (5.17)
& (U;) =0.1+0.1uy () — 0.001uz (1) 4+ 0.01us (). (5.18)

We use MATLAB function gprnd() for sampling. Second, we ignore the knowledge about the
hidden switching process and apply FEM-BV-GPD and gamGPD for solving the inverse problem:
for given X; and U; = U, find the optimal model parameters.

The FEM-BV-GPD is supplied with Kj;; = {1,2,3}, Cj;y = {2: 1:20}, A =0 (i.e., no Lasso reg-
ularization) and following configurations: number of annealing steps is fixed to 150, the maximal
number of the subspace iterations is set to 500 and the convergency criterion is set to 1.0 x 1073,
We deploy the gamGPD framework for two purposes: (a) for linear regression with a nonstationary
offset term and (b) nonlinear regression by expressing the model parameters as additive regression
models. We denote the first purpose as gamGPDy, and the second one as gamGPDj;. The involved
additive regression models are resolved by default spline functions as described in" 113, For both,

"The data were retrieved from http: //www.pmodwrc . ch/pmod. php?topic=tsi/composite/SolarConstant,
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the gamGPD framework is configured with bsj;, = {cr,tp}, qiiy =4 : 25 and fx;;y = {tr, fs}. The
maximal number of iterations for the involved backfitting Algorithm [I]is set to 1000 and the con-
vergency criterion is set to 1.0 x 1072, The results are summarized in Table |5.7. FEM-BV-GPD

optimal Models
Model M Settings NLL AlC p (M)
FEM-BV-GEV K=2,C=6 2096.8 4239.7 0.99

gamGPD; bs=cr,q=15, fx=fs 2099.4 4270.8 1.76x107°
gamGPDy; bs=cr,q=7, fx=fs 2092.8 42856 1.08x 107°

Table 5.7. Optimal results for FEM-BV-GPD and gamGPD for the test case in Section For the
original model parameters the true negative log-likelihood is NLL,. = 2064.5. Smaller values of
NLL indicate the models with a better fit, whereas smaller values of AIC indicate more informative
models. The values of the model weights p(M), estimated according to ([7]) are rounded to two
places behind the point.

outperforms gamGPD; and gamGPDy; in terms of the posterior model weight. As can be seen
from the Table gamGPDj; describes the underlying dynamics by a bigger set of model param-
eters and thus overfits the data in a sense of AIC. The unregularized gamGPD, i.e., fx = tr, is an
ill-posed inverse problem. The optimal result for this setting is obtained for g = 22, bs = cr with
NLL =2050.5 and AIC = 4270.8. However, the regression coefficients are not bounded: the values
of the scale parameter are in the interval [—219.733,1941.244] and the values of the shape parame-
ter in [—1545.644,1368.124]. In the following, we refer to the regularized formulation only.

We can not compare the original and the resulting coefficients for gamGPD regression model explic-
itly. Instead, we evaluate the approximated model parameters according to the optimal FEM-B V-
GPD and gamGPD; models and compare them with the original evaluations according to (5.15))-
(5.18). The comparison is shown in Figure[5.6] lower left and right panels represent the shape and
the scale parameters, respectively. In the upper right panel we see I'*(¢) expressed by the affiliation
A(t) e R (with A(¢) = {i : i = argmax ¥/ (r) overi = 1,...,K}). Concluding, we can state that the
switching process and the model parameters obtained from the FEM-BV-GPD resolve the underly-
ing dynamics of both model parameters very reliably. The gamGPD; approach approximates the
underlying nonstationarity well for the scale parameter, but performs worse in approximating the
dynamics of the shape parameter.

5.2.2 Real Data Application

In this section, FEM-BV-GPD and gamGPD are applied to real data. We consider daily accumulated
precipitation from 1981-01-01 till 2013-01-01 for Lugano, Switzerland (46°N, 8.9667°F) ﬂ As
threshold excesses we define the peaks over the 0.95 quantile of the total rainfall. The dedicated
series of threshold excesses contains 539 events. We refer to the following set of covariates for the

8Data were retrieved from MeteoSwiss (www.meteoswiss.admin. ch).
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Threshold Excesses X; Affiliation to a model A(t)
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Figure 5.6. This figure shows the results for the application of FEM-BV-GPD and gamGPD to X;
and U; described by (5.13). The upper left figure shows the artificially generated threshold excesses
X;, the upper right the optimal switching process I (t), expressed by the affiliation vector A(t).
The remaining panels represent the evaluation of the shape and scale parameters according to the
optimal gamGPD (solid gray line), the original (dark grey solid line) and the optimal FEM-BV-GPD
(dash-dotted black line) models.

regression analysis:
1. Wind at location Lugano®,
2. Temperature at location Lugano®, in the following abbreviated by Temp,
3. Total Solar Irradiance (TSI), averaged over one day 47’48E|,
4. Seasonal Periodical Phase: Per; = sin(%t),
5. Seasonal Periodical Phase: Per;; = sin(z%H + %t),

6. North Atlantic Oscillation (NAO)™]

7. Arctic Oscillation (AO)!0,

9Data were retrieved from http: //www.pmodwrc. ch/pmod. php?topic=tsi/composite/SolarConstant,
19Data were retrieved from ftp://ftp.cpc.ncep.noaa.gov/cwlinks/,
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8. ENSO, represented trough mean sea surface temperature anomalies in the Nino3.4 region''%%,

We want also to analyze a time delayed influence of ENSO, with a time lag of 3,12 and 24
month®28423 each denoted in the following as ENSO3, ENSO1; and ENSO»4 ,

9. log(C0O2), with logarithmic dependence according to®Z,

The covariates U, € R!! are scaled with u,(t) € [—1,1] for p=1,...,11, so we can interpret their
relative influences on trends in model parameters. For regression analysis, the covariates are taken
at the same time steps as the threshold excesses are observed, minus the corresponding time lags, re-
spectively. Further, we aim to incorporate only uncorrelated covariates. By deploying the Pearson’s
linear correlation coefficients and considering all covariates with |corr(u,,up)yp—1,.. 13| > 0.33 as
correlated, we can reduce the set of involved covariates to

Uy(t) = {Wind,Temp,TSI,NAO,ENSO3,ENSOy4}. (5.19)

The FEM-BV-GPD models are inferred for all combinations of Kj;; = {1,2,3}, Cjiy = {10: 10 :
100} and Az = {0,1.0x 107,1.0 x 1074,1.0 x 1072,1.0, 10, 100}. The number of annealing steps
is fixed to 150, the maximal number of the subspace iterations is set to 1000 and the convergency
criterion is set to 1.0 x 1073, Here, we refer to regularized gamGPD only. The dimensions of the
bases for the smooth spline are set to k =4 : 10 and the convergency criterion for the shape param-
eter is set to 1.0 x 1072, The remaining configurations are the same as for the test case. Note that
the application of gamGPDy; failed with an error output "This most likely comes from non-finite
weights in the call to adjustD2()". The function "adjustD2()" is responsible for the estimation of
the second derivative. This case emphasizes the robustness of the gradient-free MCMC-based opti-
mization method deployed for a numerical minimization of the constrained FEM-BV-GPD problem
as discussed in Section 4.2l The results are summarized in Table[5.8]

optimal Models
Model M Settings NLL AlCc p (M)
FEM-BV-GPD | U;(1), K =2,C=40,A=0.1 2017.71 4196.67 0.99
gamGPDy Ui(t), k=4, fx=fs,bs=tp 2089.81 4221.24 4.61x107°

Table 5.8. Results for the statistical regression analysis of threshold excesses. Smaller values of
NLL indicate the models with a better fit, whereas smaller values of AICc indicate more informative
models. The values of the model weights, estimated with respect to (4.7), are rounded to two places
behind the point.

FEM-BV-GPD provides a more descriptive and informative model for threshold excesses as mea-
sured by NLL and AICc, respectively, and has the maximal posterior model weight, see Table
Where K = 2 points out the intrinsic nonstationarity of the model induced by the presence of missing
covariates in the involved regression model. The evaluation of the corresponding model parameters
is shown in Figure The relative influence of the covariates on FEM-BV-GPD model parame-
ters is summarized in Table [5.9] The appropriate clusters clearly distinguish between two different
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dynamic behaviors of the threshold excesses.

The dynamics of extremes spends more time in the first cluster with large values for the scale pa-
rameter and dominating negative values for the shape parameter, implying a bounded upper tail of
the corresponding GPD distribution. The first cluster is clearly associated with a strong seasonal
behavior, because of the strong influence coming from the temperature, compare Table [5.10] The
strong correlation with the wind refers probably to heavy rain during thunderstorms. In contrast, the
dynamics of threshold excesses in the second cluster exhibits small values for the scale and positive
values for the shape parameter, implying a heavy tail of the corresponding GPD distribution and a
higher probability of extremes. The behavior of the shape parameter reveals a periodicity associated
with the T'ST index, rather then with seasonal effect, see Table @[ In particular, negative scaled
TSI index, i.e., low solar activity, increases the value of the shape parameter and so the probability
for larger threshold excesses.

Threshold Excesses X, Affiliation to a model A(t)

1501 . ] 2
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Figure 5.7. This figure shows the optimal results for the statistical regression analysis of extreme
precipitation over Lugano for the period 1981 to 2013 performed by FEM-BV-GPD (in the figure
abbreviated as FEM-GPD) and gamGPD. In this figure we projected the results to the real time
scale and thus, chose a discrete representation of the model parameters for a better visualization.
The top left figure shows the threshold excesses X;, the top right demonstrates the optimal affiliations
A(t) as computed from the optimal switching process I'*(t) of FEM-BV-GPD. The remaining panels
represent the evaluation of the shape and scale parameters according to the optimal gamGPD (gray
markers) and the optimal FEM-BV-GPD (black markers) models.
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Relative influence of the covariates on GPD parameters
off-set Wind Temp. TSI NAO ENSOs ENSOy
F1-0.0675 0.2238 02596 0.0131 0.0154 -0.0391  0.0206
5| 03330 0.5144 0.2032 -0.0453 0.0013 -0.0146 -0.0053
o/ | 30.1295 -09715 6.6261 -4.5324 0.4571 0.0076  -0.4093
o5 | 27.1608 23.1403 -8.8449 0.0707 -0.2810 0.2425  0.2004

Table 5.9. The table contains optimal FEM-BV-GPD model parameters for threshold regression
analysis of extreme rainfall for location Lugano.

Pearson’s linear correlation coefficient
Wind Temp. TSI NAO ENSO3; ENSOy
1 0.6048 09183 0.0275 -0.0176 0.0391  0.0715
> | 0.8299  0.7192 -0.0569 -0.1061 -0.0417 -0.0601
o; | 0.0476 0.6506 -0.7948 -0.1021 0.0808  0.3088
o, | 0.7503 -0.4576 0.0711 0.0253 0.0795 -0.0170

Table 5.10. The table contains the Pearson’s linear correlation coefficients between the optimal
FEM-BV-GPD model parameters and the covariates.

5.3 Spatial FEM-BV-GPD

In this section, we demonstrate the performance of the spatial FEM-BV-GPD on real data. We
consider daily accumulated precipitation over 17 different locations in Switzerland from 1981-01-
01 tll 2013—01—01@ For each single location we estimate the threshold as the 0.95 quantile of
the accumulated rainfall and define accordingly the threshold excesses. As a result, each location
contains different number of involved threshold excesses. For spatial-temporal regression analysis
we refer to the a set of local covariates, measured at each location'! and a set of global covariates,
being the same for each locations. The set of local covariates contains

* Wind; hourly maxima,
* Temperature at 2 meters above the ground; hourly average,
* Humidity at 2 meters above the ground; hourly average.

The set of global covariates is the same as considered in Section[5.2.2] In line with Section[5.2] we
reduce the full set of covariates to the set of uncorrelated only:

U(s,t) = {Wind, Temp, TSI, NAO,ENSO3,ENSO»4}. (5.20)

Data were retrieved from "MeteoSwiss" (www.meteoswiss.admin. ch).
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We apply the spatial FEM-BV-GPD approach with following configurations: K, = {1,2,3}, Cjisy =
{10:10: 100} and Aj;; = 0. The number of annealing steps is fixed to 400, the maximal number
of the subspace iterations is set to 2000 and the convergency criterion is set to 1.0 x 1073, The
optimal result was obtained for K =2 and C = 50. That is, FEM-BV-GPD describes the underlying
dynamics of threshold excesses over the 17 different location by two different locally stationary
GPD-regression models and a nonstationary switching process for each single location. The maxi-
mal number of switches for each of the locations is C = 50.

The optimal FEM-BV-GPD parameters and their confidence intervals are presented in Table [5.11]
We estimated the confidence intervals as the values of the corresponding empirical Fisher Informa-
tion matrix, for this purpose the MATLAB function mlecov() was deployed. The realization of

Optimal FEM-BV-GPD model parameters
offset Wind Temp. TSI NAO ENSO; ENSOy
& | -0.0619 -0.0680 -0.4974 -0.0399 0.0161 -0.0168 -0.0094
+ | (0.11) (0.14) (0.15) (0.04)  (0.07)  (0.06) (0.05)

& | 0.2876  0.2763 -0.1053 -0.0038 0.0003 -0.0010 0.0018
+ | (0.08) (0.11) (0.09) (0.05) (0.07)  (0.06) (0.06)

op | 289111 129651 -0.0967 -1.9201 0.1589 0.3906 -0.0106
+ | (2.82) (3.71) (2.49) (1.11)  (1.67) (1.49) (1.37)

oy | 3.0935 -23666 27117 -0.0444 0.0297 -0.0989 -0.0369
+ | (0.29) (0.42) (0.45) (0.25)  (0.34) (0.27) (0.20)

Table 5.11. The table contains optimal FEM-BV-GPD model parameters and their standard errors

(corresponding to the rows indicated by *) for threshold regression analysis of extreme accumu-
lated rainfall for 17 locations in Switzerland with respect to U (s,t) as defined in .

the optimal switching process, as the affiliation to one of the models, for each location is shown
in Figure [5.84] for the first model and in Figure [5.8D] for the second model. Both figures indicate
that the switching process at location Lugano, and thus also the dynamics of threshold excesses,
behaves very differently to the remaining locations. Given the overall optimal parameters (&, 07)
and (&, 0,) we can evaluate for each location s;, for i = 1,...,17, the temporal behavior by in-
corporating the corresponding switching process I'(s;,#). For instance, for each location we can
evaluate the return levels. In order to illustrate the main differences in dynamics of extremes north
and south of the Alps, the time dependent values of the FEM-BV-GPD model parameters for loca-
tions Lugano and Basel are shown in Figure [5.9] Further, we estimate the correlation between the
evaluated model parameters and the covariates deploying the Pearson’s linear correlation, compare
Table [5.13] and Table[5.12] According to this analysis, the dynamics of threshold excesses for daily
accumulated precipitation measured at location Lugano spends more time in the first cluster. Here,
the scale parameter exhibits large values, the dominating negative values for the shape parameter
imply a bounded upper tail of the corresponding GPD distribution and lower probabilities of ex-
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(a) The temporal affiliation to the first local model

(b) The temporal affiliation to the second local model

Figure 5.8. The figures display the switching process for each single location.
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Figure 5.9. This figure shows the evaluation of the optimal FEM-BV-GPD model parameters for
two different locations: Lugano and Basel. The top right and left panels represent the scale and the
shape parameters for location Lugano, respectively. The black markers correspond to the first and
the red to the second model. Analogues, the model parameters for location basel are shown in the
bottom right and left panels.
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tremes. While the scale parameter is positive correlated with the wind, the shape parameter has a
negative correlation with wind and temperature. The dynamics in the second cluster is marked by
small scale parameters and a mainly positive shape parameter. The scale parameter shows a positive
correlation with the temperature. The shape parameter is positively correlated with the wind and
negatively with the temperature.
The dynamics of threshold excesses for location Basel exhibits a different behavior. The dominat-
ing behavior is represented by the second model, with smaller values for the scale parameter and
mainly positive values for the shape parameter.
Further, in the first model, which is responsible for the more extreme events, of interest could be the
correlation between the scale parameter and the T'SI index. This correlation points to an 11-year
periodical behavior of threshold excesses for both locations; in years of low TSI indices the proba-
bility for extreme precipitation increases.

To study the underlying spatial dependence we refer to the nonlinear correlation among locations

Pearson’s linear correlation coefficient for Location Lugano

Wind Temp. TSI NAO ENSO;3 ENSOy4

1 -0.3750 -0.9885 -0.1036 0.1160 -0.1404 -0.0053

> | 0.7584 -0.5059 0.0541 0.0730  0.0925 -0.0192
of | 0.8999 0.2833 -0.3229 -0.0560 0.1618 0.0572
o, | -0.2524  0.9069 -0.0657 -0.1070 -0.2592 -0.0448

Table 5.12. The table contains the Pearson’s linear correlation coefficients between the optimal
FEM-BV-GPD model parameters and the covariates for location Lugano.

Pearson’s linear correlation coefficient for Location Basel
Wind Temp. TSI NAO ENSO3; ENSOy
| 0.0104 -0.9805 -0.2967 0.0775 0.0657 -0.0103
> | 09084 -0.5607 0.0503 0.1071 -0.0495  0.0065

o/ | 0.8485 -0.2064 -0.4049 -0.0320 0.2273  0.1738

o, | -0.6339 0.8651 -0.1545 -0.0568 -0.0147  0.0601

Table 5.13. The table contains the Pearson’s linear correlation coefficients between the optimal
FEM-BV-GPD model parameters and the covariates for location Basel.

measured by the event synchronization measure (ES)”®, compare Chapter First, we estimate
the stationary ES measure referring to the raw occurrence of extremes. The corresponding matrix
is presented in Figure [5.10] Second, we estimate the nonstationary ES measure, i.e., for each local
model we estimate a ES measure with respect to the corresponding switching process. The matrices
are presented in Figure[5.11]

The stationary ES matrix determines mainly only weak correlation among locations. In contrast, the
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nonstationary ES identifies strong correlated regions for each local model pointing to three major
climatological regions of Switzerland: Tessin, Rhone Valley, pre-Apls. These results correspond
to the scientific report of MeteoSwiss, where the seasonal variability of extreme precipitation were
analyzed'"®, In the first model that is responsible for more extreme precipitation, strong correlation
is observed between locations in adjacent geographic areas, for instance, with values higher then 0.5
(a) Chur, Davos, Scoul as well as (b) Genéve/Cointrin and Nyon/Changins. The ES for the second
model exhibits larger correlated regions. Here location Lugano, representing the region south of
the Alps, has only a weak correlation with the rest of Switzerland. Concluding, the stationary ES
matrix does not capture the underlying spatial correlation, while the nonstationary extension repre-
sents the underlying correlation pointing to three major correlated regions. The above analysis of
extreme precipitation over Switzerland revealed different dependent regions on a coarse grain. For
future work remains the analysis of spatial extremes on a finer grid for the study of local dependence
structure of extremes.

ALTEENY
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Figure 5.10. The figures display the strength of event synchronization between the locations. Com-
plete synchronization is ensured when the ES entry reaches the value 1 (the values are rounded to
two decimal places).
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(a) Event synchronization according to the first local model
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(b) Event synchronization according to the second local model

Figure 5.11. The figures display the strength of event synchronization between the locations ob-
tained from the results of FEM-BV-GPD. Complete synchronization is ensured when the ES entry
reaches the value 1 (the values are rounded to two decimal places).



6 Conclusion

Extreme events describe the above average behavior of a dynamical system. In order to reduce their
negative social and financial impact, analysis and prediction of extreme events is significant in a
wide range of areas such as civil engineering and risk management?42. The main focus in data-
based analysis of extreme events is to investigate their occurrence and intensity. The the latter point
is studied in this thesis.

Focusing on statistical modeling of extremes, the appropriate statistical model should describe the
extremes and be capable of predicting the "more extreme" extremes. The latter requirement is also
known as the max-stability of a statistical model. Based on max-stability, the theoretical founda-
tions for univariate extreme value analysis (EVA) were laid in the beginning of the 19th century,
when the asymptotic distribution for sample maxima, called the Generalized Extreme Value distri-
bution (GEV), was introduced**40>2. [ater on, EVA was extended towards analysis of threshold
excesses: their asymptotic behavior is described by the Generalized Pareto Distribution (GPD)=>>2,
These limiting distributions were obtained under the assumption that the behavior of the underlying
sample, from which the extremes are extracted, is stationary in time. The stationarity assumption
can be released by incorporating the time dependence into the model parameters of the GEV and the
GPD distributions“*. The nonstationarity is often approached by expressing the model parameters
as regression models?2. The identification of the most significant covariates enables a better under-
standing of the causality relations in the underlying dynamics. Standard methodologies in statistical
regression analysis of extremes are divided into parametric and nonparametric approaches. Para-
metric approaches are appropriate in the cases when either all the significant covariates are known,
or when one can assume that the unresolved covariates are identically independently distributed.
Those assumptions might be too strong for many real applications, for example, in climate research
and economics we have often to account for the multiscale nature of the underlying process. Follow-
ing, we can not always ensure that the set of the information collected about the analyzed process
is complete. Standard nonparametric regression approaches include techniques based on Bayesian
statistics, Mixture Modeling, or smoothing regression”%/4, The first two approaches are based on
a priori assumptions such as a priori known parametric distribution family for the model parame-
ters and local stationarity. Smoothing regression can be assigned to the class of kernel smoothers,
thereby inheriting the locality property.

In addition to the analysis of extremes that are extracted from one single process, a further subject
of interest in EVA is the investigation of the relationship between extremes from different processes.
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However, in contrast to the univariate EVA, there is no closed formulation for the asymptotic be-
havior of multivariate extremes. In particular, there exists no closed description of the underlying
dependence structure. Standard approaches approximate the dynamics of multivariate extremes un-
der some a priori assumptions about their dependence structure. For instances, in cases when the
extremes are extracted from different spatial locations, referring to spatial extreme value analysis,
results from geostatistics can be deployed. Under the assumption that the underlying dependence
structure can be described by a Gaussian spatial process, Smith and Schlather max-stable processes
were introduced?*102, Reich and Shaby introduced recently a nonparametric max-stable hierarchi-
cal approach, which approximates the dependence structure by a combination of predefined kernel
functions®.

In order to contribute to the current state of research in extreme value analysis, the goal of this
dissertation thesis was to address primarily the following questions. First of all, the aim was to in-
vestigate what happens if some of significant covariates are systematically missing and to examine
new ways of capturing the resulting nonstationarity. The second goal was to provide a nonpara-
metric description of the underlying dependence structure, which accounts for nonstationarity and
non-homogeneity. Third main task was the implementation of a framework which can appropri-
ately address the issues of numerical instability and computational efficiency arising in the context
of spatial extreme value analysis. The obtained results and conclusions are discussed in the next
section.

6.1 Summary of Results and Conclusions

In the first part of this thesis, we presented an extension of the GEV and GPD models able of han-
dling the situations with systematically missing covariates. We focused on linear regression and
reduced the influence which is coming from missing covariates to an additive nonstationary offset
by exploiting the Lindeberg and the Karhunen-Loeve Theorems. In order to resolve the resulting
nonstationarity beyond a priori assumptions, we deployed the Finite Element Time Series Analysis
Methodology (FEM)>878_ Deployment of FEM in EVA-context allowed to approximate the un-
derlying nonstationarity by K > 1 local EVA models and a nonstationary/nonparametric persistent
hidden switching process. Following the general methodology of FEM, the persistency of the hid-
den switching process is ensured by assuming that it belongs to the space of functions with bounded
variation (BV), where the number of switches is measured by a positive number C. In order to iden-
tify the most significant covariates for each local regression model, Lasso and Ridge shrinkage
techniques were deployed. The resulting methodology is denoted as the univariate FEM-BV-EVA.
The optimal FEM-BV-EVA model parameters K, C and the shrinkage parameter are chosen with re-
spect to information criteria such as the Akaike Information Criteria. We discussed that the resulting
univariate FEM-BV-EVA interpolates the underlying nonstationarity of the model parameters and
goes beyond a priori assumptions typical for standard EVA approaches deploying, for instance,
parametric regression, Hidden Markov Models or Local Kernel Smoothing. Additionally, the in-
volved locally linear and stationary regression provides an easily interpretable and understandable
statistical model in contrast to methods based on Neural Networks and smoothing regression.
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The spatial extension of the FEM-BV-EVA formulation deployed the idea of hierarchical modeling.
In order to describe the spatio-temporal variability in the dynamics of extremes, the EVA model
parameters are expressed as spatial and nonstationary regression models based on resolved covari-
ates only. The nonstationarity of the spatial regression was resolved by applying the spatial FEM
formulation, where the underlying dynamics is described by a set of locally stationary models and
a spatial nonstationary switching process. It was shown that the resulting spatial FEM-BV-EVA
formulation is consistent with the max-stability postulate. FEM-BV-EVA describes the underly-
ing spatial dependence structure through a data-driven nonstationary spatial clustering of extreme
events.

The proposed FEM-BV-EVA methodology was integrated into the existent FEM framework - a
MATLAB library containing time series analysis tools developed in the research group "Compu-
tational Time Series Analysis" of I. Horenko at ICS/USI Lugano. We extended the spatial FEM
framework towards spatial regularization by additionally assuming persistent behavior in space.
The implementation of FEM-BV-EVA deployed a gradient-free MCMC-based optimization tech-
nique and numerical solvers for large structured quadratic and linear problems with constraints.
The performance of the FEM-BV-EVA framework was tested on various test cases and on real ap-
plications. The univariate FEM-BV-EVA approach was compared to standard approaches based on
Neural Networks and smoothing regression with respect to the four criteria: (1) information con-
tent of the models; (2) ability to handle unresolved covariates; (3) computational complexity; (4)
interpretability of the models. The results showed that in presence of missing covariates parametric
approaches lead to biased description of the underlying dynamics. However, it was also discussed
that regression analysis based on Neuronal Networks is more appropriate when the underlying dy-
namics is rather nonlinear then nonstationary. Further, we compared FEM-BV-GPD to methods
based on smoothing regression. The latter was used for (a) resolving the nonstationarity coming
from the unresolved covariates and (b) expressing the influence coming from the resolved covari-
ates by smoothing splines. In the first case smoothing regression failed to capture the nonstationary
influence coming from resolved covariates. The second case resulted in over-fitting. Additionally,
based on linear regression FEM-BV-EVA provides an easily interpretable and understandable sta-
tistical model as was demonstrated on numerical examples.

Demonstration of spatial FEM-BV-EVA was performed on real data. For this, we considered daily
accumulated precipitation over 17 different locations in Switzerland and defined the extremes as
threshold excesses. The optimal FEM-BV-GPD description of the dynamics of extremes was ob-
tained for two different models and a nonstationary switching process for each location. The switch-
ing process for location Lugano exhibits a completely different behavior as all the other locations.
The underlying dependence structure was investigated by the nonstationary event synchronization
measure revealing three major climatological regions of Switzerland: Tessin, Rhone Valley and pre-
Apls. Standard stationary approach to synchronization measure inference has failed to recover this
regional distinction in the analyzed data.
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6.2 Future Work

Although the proposed framework is self-contained and can be directly applied for regression anal-
ysis of extremes, it could be further extended in a number of ways. In this section we address the
most important ones from our point of view.

On a small scale, some of this issues were addressed directly in the thesis. For instance, in the
present FEM-BV-GPD approach the threshold was chosen a priori and fixed for the entire sample,
instead one could define and use a nonstationary threshold?Z. Also the consideration of a complete
stochastic regression model with explicit noise terms remains for future study. In addition, FEM-
BV-EVA could be extended towards nonlinear regression analysis by incorporating, for instance,
Neural Networks based regression'®. On a larger scale, analysis of the underlying dependence
structure, that is of the switching process, should be approached in more details in a future research.
Of particular interest is the spatial interpolation of the dynamics of extremes between observed loca-
tions and the spatio-temporal propagation of extreme events. The first issue could be, for instance,
approached by referring to the switching process as a discrete process. Then its underlying dy-
namics could be analyzed by deploying methods such as the FEM-BV-Markov approach®¥8, The
second issue could be addressed, for example, by applying results from the complex network theory,
where among others the delay behavior of a process is studied’®. An alternative approach is to apply
the FEM-B V-Causality approach for the analysis of the spatio-temporal causality interaction of dis-
crete state models®’. FEM-BV-EVA provides a robust regression analysis tool of spatio-temporal
extremes and can be used to identify the preceding external factors. Also concepts and methods
from the theory of point processes could be taken into account for a more accurate prediction of
the occurrence of extremes. From computational point of view, the proposed framework could be
extended towards highly-scalable applications in HPC context; the several possible levels of paral-
lelization were discussed in detail in the thesis. The parallelization will improve the computational
efficiency of the FEM-BV-EVA framework and enable regression analysis of extremes over larger
regions with a finer spatial resolution.



A Appendix

A.1 Key Statistical Concepts

Let Y be a random variable, i.e., the output is uncertain. Further, let denote the set of all possible
realizations of Y by the sample space Q. In case Q is continuos, for instance, Q = R, Y describes
a continues random variable. Each realization y € Q is assigned to Y by a probability distribution,
which is given by the probability distribution function#7

F(y)=PlY <y], yeQ. (A.1)

Please note, if Q is a discrete sample space, for example, Q = {0, 1}, the probability distribution
is given by the so-called probability mass function. Because in this work we focus on continuos
random variables, we will omit the descriptions of respective concepts for the discrete case. For
details on discrete random variables we refer the interested reader to”?. The probability distribution
in is also denoted as the cumulative distribution function (cdf)™. In cases when the cdf is
differentiable, the corresponding probability density function (pdf) is defined by

dF(y)
= A2
) dy (A2)
such that
y b
F(y) = / f(w)dw and Pla<y <b]— / F(w)dw. (A3)
—oo a
A pdf can be completely characterized/described by its main features, the so-called statistics“%7.
The most commonly used are the expectation
ElY] = / yf(y)dy, (A4)
Q
and the variance
Var(v) = [ (v=EIY)? f()d. (A3)
Q

77



78 A.1 Key Statistical Concepts

The expectation, the value of ¥ on average, is also denoted as the location of a distribution. The
variance, describing the spread from the expectation, is referred to as the scale parameter of a
distribution. Some further statistics are the shape and the skewness parameters of a distribution”.
In cases when the descriptive statistics contains a finite number of parameters, summarized by 0,
the corresponding probability density function f(y) = f(y;0) is parametric2?. Then, for fixed f(-)
and varying parameters 0 the parametric family of probability distributions is defined by

F={f(:0)|6 € Qo}, (A.6)
where Qg is the space of all possible values for 6.

Example A.1.1 (Gaussian Distribution) The probability density function of a Gaussian distribu-
tion with mean L € R and variance ¢ > 0 is defined by

N2
{_(y 1) )

- (A7)

1

;0) = ex
f:0)=— o
The Gaussian distribution is described by 6 = (W, 0), thus the family of Gaussian distributions is
givenby F ={f(y;0)|6 € R xR}

When the distribution f(y) of a sample of random variables Yi,...,Y, is known, it can be used for
estimating the descriptive statistics for summarizing the behavior of the sample, for instance, the
value on average can be estimated by evaluating (A.4). Yet, in many real applications the underlying
distribution of a sample Y1,...,Y, is unknown and we have to solve an inverse problem. Thereby,
the aim is to find the most descriptive statistical model, i.e., an appropriate set {F,60}. Assuming
that the parametric family of probability distributions F is known, the inverse problem is reduced
to the estimation of the optimal 6 for the corresponding sample. A widely used approach for
estimating the optimal 6 is based on the idea that the original parameter denoted by 6y maximizes
the likelihood of the joint occurrence of Y1, ...,Y,. Following, we are searching for a parameter 0
which maximizes the likelihood function defined by

L(G;Yl,...,YN):P[Yl,...,YN‘Q]. (A8)
Assuming independence and identical distribution (i.i.d) of the sample we get
iid n
L(6:Yy,....Yy) =P[Y1,..., Yy|0) = ][ £ (¥::0). (A.9)

i=1
Because it is more convenient to deal with the logarithm of (A.9), we refer to the log-likelihood
function

1(0;Y1,...,Yy) =1logL(0;Y,...,YN). (A.10)
We get the optimal parameter by maximizing the log-likelihood function (A.10) with respect to 6
0* = argmax!(0;Y,...,Yy) (A.11)
6

= argmaleogf(Y,-; 0). (A.12)
0

i=1
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The function, which depends on the random sample and is used for estimating 6%, is usually called
the estimator, for instance, corresponds to the maximum log-likelihood estimator®”. Since
the sample Y1,...,Y, is the result of a random process, we will get a different estimates for 6*
for different realizations of the sample. In order to measure the uncertainty of the estimate, the
experiment is repeated N times (by drawing a new sample) and for each sample an estimate for 6,,
i=1,...,N, is obtained. In the next step, the sample of 6},..., 0y can be used for estimating the
distribution of the parameters, in particular, the empirical expectation and variance. These quantities
are used to measure the quality of an estimator. The bias of an estimator is defined as the deviation
between the expected optimal and the original parameter

Bias(6*) =E[6*] — 6. (A.13)

An estimator is said to be unbiased when on average the estimate 6* is the true parameter 6y, i.e.,
Bias (6*) = 0. To measure the variability/uncertainty of an estimator, the mean-square error is
frequently used

MSE(6*) = E[(6* — 6)*] = Var[6*] + Bias® (6*). (A.14)

In cases when the estimator is unbiased, the mean-square error is the variance of the estimator
and the model parameter distribution is described by the set of parameters {E[0*], MSE(6*)}. In
cases, when the estimator is unbiased, the root of MSE(0*) corresponds to the standard error of an
estimator. Following, hence we are interested in estimators that are more precise and less biased, we
choose the ones with the smallest standard error. However in real application we often do not know
the underlying distribution of the model parameters. Consequently, we can not estimate directly
the corresponding variability. Moreover, in real applications, for instance, in weather and climate
research, just one realization of the underlying process is available for statistical analysis. In such
cases the variability of an estimator can be described by the empirical confidence intervals, which
are estimated exploiting resampling/bootstrapping techniques=®.

The above approach to describe the uncertainty of the estimate in terms of confidence intervals
obtained by applying repeating or resampling techniques is also called the "frequentist approach"
in the literature’??,

A.2 Bayesian Inference

An alternative to distribution estimation of the model parameters, exploiting e.g., bootstrapping
techniques, is provided by the "Bayesian statistics"202?'”, In the Bayesian approach one assumes
a priori that the model parameters are defined by some a priory fixed distribution families. Then,
this information can be incorporated into the statistical inference procedure by means of the Bayes’
Theorem“?”?. The resulting conditional posterior distribution is then used for inference. In this
section we briefly discuss the Bayesian approach to statistics.

Following the notation in Definition the a priori assumption about the distribution of the
model parameters is summarized in the prior and the resulting conditional distribution of parameters
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is the posterior™. Further, in contrast to Section where 6 is an unknown constant and the
probability distribution is given by f (y;0), here 6 is a realization of a random variable and we

write f (y|0).

Definition A.2.1 (Prior and posterior distributions) The distribution 7 (0) is called the prior dis-
tribution. The resulting density of the model parameter 0, conditioned on 7 (0) and given thatY =y,
is denoted by f (0|y) and is called the posterior distribution.

Theorem A.2.1 (Bayesian Theorem) Given two random variables A and B with P[B] > 0, the
probability of A conditioned on B, i.e., P[A|B], is given by

P[B|A]P[A]

PA|B| = A.l
A8 =~ (A15)
Applying the Bayesian Theorem [A.2.T| we obtain the posterior distribution of parameters by
fO[0)7(6)
f(6ly)= : (A.16)
(6b) o)

The posterior distribution is proportional to the likelihood and the prior. The proportionality con-
stant is given by

1) = [ r0le)m(6)as. (A.17)
o

and is also called the marginal distribution, which is the distribution of the observed data averaged
over the prior distribution of all values of 6. The random behavior arising from 6 is "integrated
out", In some special cases the integral in can be evaluated and we obtain a closed expres-
sion for the posterior. In particular, this is the case when the prior and the posterior are conjugate,
i.e., coming from the same family of distributions*2°, The posterior distribution £ (6|y) accounts
for the a priori knowledge and can be used for postprocessing, for example, the estimation of the
expectation and the variance for 6. However, in general there is no closed expression of (A.17).
To obtain this distribution practically in numerical simulation, for instance, based on Monte Carlo
methods, can be deployed“%4*”®. One of the main issues in Bayesian inference, is the choice of
an appropriate prior; a wrong a priori assumptions about the distribution of the model parameters
might lead to biased conclusions about the underlying dynamics. In case no a priori knowledge is
available the easiest way is to refer to a prior where the values for 0 are identically distributed, such
a prior is called uninformative®. For more detailed discussions please refer to2226129L79,

A.3 FEM Spatial Regularization

In the spatial FEM setting, first introduced for spatio-temporal Markov regression analysis of dis-
crete/categorical dynamical processes=°, the following objective functional
Ns Ny K

L(O,T(5,0)) = 3> nlsint)2uoder (Ysrs; 0k) (A.18)

i=1 j=1k=1
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is minimized with respect to the model parameters ® and I'(s,#). Thereby, guoqe (-) describes the
"distance measure" between the data Y;; and the appropriate Model, which is characterized by ©.
For example, in context of this thesis Model corresponds either to GEV or to GPD distributions
and gproqe () to the negative log-likelihood. Further, the switching process I'(s,#) has to fulfill the
convexity constraints

M =

%(s,t)=1 and %(s,t) >0, (A.19)
k=1
fort =1,...,tn;, S =51,...,8n, and k= 1,..., K and the temporal persistency constraint
||W€(S7t)||R([1,NT])gC(NT)v §=81,---35Ng; k=1,...,K, (A.20)

with R([a,b]) = BV ([a,b]) or R([a,b]) = H'([a,b]). Additionally we can impose spatial persistent
behavior involving

H’}/k(svt)HR([l,Ns])gC(NS)7 I=1n,...,In, k=1,...,K, (A.21)

please compare Section {.4] for a detailed discussion. In the following sections we derive the corre-
sponding linear and quadratic problems, referring to a spatio-temporal BV and spatio-temporal H1
regularization, respectively.

A.3.1 H1 regularization in time and space

In the following, we extend FEM=8°88 towards H1 regularization in space, i.e., we consider the
following spatio-temporal persistency constraints for the switching process:

H’}/k( )||H1 tllNT)gc(N )’ §=3581,---,5Ng; kzla"'aKa (A22)
H’}/k( S, )||H1(51,SNS) C(N )7 t:tlw"vtNr> k:177K (A23)
In line with the FEM methodology~®, where the temporal H1 regularization is incorporated by a

Lagrange multiplier 812, using an additional Lagrange multiplier 822 we insert the constraint li
and obtain the spatio-temporal H1 regularized average distance functional:

Ny Nr K

K
E(@,F(s 1),€ ,82) ZZZ’Yk Siytj gModel( si ,],Gk) Z Wk S, t HHI (t1.n7) (A.24)
k=1

i=1 j=1k=1

K
Zrm ()15 5yy)- (A25)

The above functional can be reformulated in a quadratic one. For this purpose, the switching process
is discretized by the Finite Elements as was proposed for the original FEM-H1 formulation°®. Let
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us first consider €7 = 0, then we can directly adapt the formulation in"% and after some algebraic
reformulation obtain

K
£(e,0(s,n),el) => | a(0) T+ enHuy |, (A.26)

k=1
time regularization

with the vector

a(6c) = (gmodet (Ysy 115 0k) ;- - - s&Model (Ysl.,tNT,@k) ; (A.27)
8ol (Vo1 06) s 8atodet (Yoo 0k) (A.28)

(A.29)

8Model (YxNS,z] ; 9k) s+ 8Model ( oo ek) ; (A.30)

(A.31)

and 7,1 is the spatio-temporal discretized switching process with

7= (%lsi,t1), -, Felstotng ), (A.32)
Vi(s2,t1)5 - Te(s2: 0 ), (A.33)
. (A.34)
Te(sngst1)s - o Te(Sngstny) ) - (A.35)

The discretization matrix Hy is given by

Hy,
Hi = € RNsNrxNsNT (A.36)
HSNS
where each block matrix Hy, s = s1,...,Sy,, corresponds to the temporal discretization for each
location s
1 -1
-1 2 -1
H, = € RNNT | (A.37)
-1 2 -1

By applying a similar idea for spatial regularization, we discretize also the spatial dimension and
obtain

K
E(@,F(st 81,82> Z al yk+ slyk”H]kyk + ezyk”HZkyk ) (A.38)
k=1

time regularization  space regularization
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where ¥, and Hy; are defined in (A.32) and (A.36), respectively. The matrix Ho; € RNsNT*NsNr
describes the spatial pairwise connectivity among all locations, referring thereby, for instance, to
the classical correlation or the cross-correlation matrix of the observed series among all locations.

In cases if we refer to the classical correlation, then each pair of s;, s, is correlated equally for each
time step and the computation of Hy is given by the Algorithm[5] Matrix Hj is symmetric and we

Algorithm 5: An example for computation of Hy;

Initialize: compute correlation matrix corr(Y;,) for a given series Yy ;

fort=1:Nrdo
L Hy(t : Ny :end,t : Ny : end) = corr(Yy,);

can also ensure symmetry for H,; by considering only symmetric connectivity. By summing up the
matrices Hy = €2Hx + €Hy and using a(®) = (a(6y),...,a(6k)) and H = diag (Hy,. .., Hk),
i.e., H is a block-diagonal matrix, we can rewrite into

£(0,1(),6},6) =T HT +a' (©)T (A.39)
with Aegl” = beq and T > 0. (A.40)

The equality constraint in (A.40) summarizes the equality constraint in (A.T9) for all locations at

each time step. Standard methods for quadratic programming’#> can be applied for minimizing

(A.391A.40).

A.3.2 BV regularization in time and space

The class of function with bounded variation allows to preserve sharp transitions of the switching
process, while smooth transitions are not excluded since: H' ([0,Nr]) C BV ([0,N7])78. In this
section FEM®82378 i5 extended towards BV regularization in space, i.e., we refer to the following
constraints:

||yk(s7t)”BV(tl7tNT)SC(NT)v §=581,---,5Ng; kzla"'7K7 (A41)
||Yk(s7t)”BV(sl,sNS)SC(NS)v t=11,...,INg, kIl,...,K. (A.42)

In the next two steps we adapt the strategy of reformulating the temporal regularization constraint
by using slack variables as was proposed in”®: (A.41)) can be rewritten for each model k and each
location s towards

Nr—1
> mi(s,1;) < C(Nr), (A43)

1=j
}’k(s,t+1)—Yk(s,l‘)—nk(s,l‘) <0, (A.44)
—Ye (8,2 + 1)+ % (s,t) — Ni(s,2) <0, (A.45)

Mk(s.1) >0, (A.46)
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fort =1ty,...,ty,—1. Further, the spatial BV regularization (A.42) imposes
Ns—1

> (s +1,1) = w(s,1)] < C(Ns), (A.47)
i=1

for each model k and each time step . Analogue, exploiting slack variables constraint (A.42)) can
be reformulated

Ng—1
> Gls,t) < C(Ns), (A.48)

i=1
Ye(s+1,1) — %e(s,t) — G (s,2) <0, (A.49)
—W(s+ 1,t) +%(s,t) — G(s,1) <0, (A.50)
Ck(s,1) >0, (A.51)

for s =s1,...,sn,—1. However, constraints imply that only direct adjacent locations are
connected. In order to account for interactions among all locations, consider a symmetric matrix
W € RNs>*Ns where the weights w;, describe the connection between the location s; and location
sy, for i,y =1,...,Ng. For example, the matrix W can be chosen as the classical correlation or the
cross-correlation matrix of the observed series (further discussion how to choose W can be found in

Section[4.4). Then, instead of we consider the weighted BV regularization

Ns Ns ¢
Zziwivh/k(s,-,t) — 7(sy,1)] < C(Ns). (A.52)
i=1v=1

The factor % is due to the symmetry of matrix W. Constraint li has to be adopted in line with

(1A.48HA.49HA.50HA.5 1[); taking the symmetry into consideration (thus the factor % is vanishing), we
obtain

Ng—1 Ng
>3 Glsivse,t) < C(Ns), (A.53)
i=1 v=i+1
Wiy (Yk(sht)_yk(swt))_Ck(siaswt) SO) (A54)
—Wiy (Yk(si,t) + '}/k(s\/)t)) - Ck(S[,SV,[) S 07 (ASS)
G (siy8v,1) > 0. (A.56)

Concluding, when referring to spatio-temporal persistent behavior the optimal I'(s,#) for fixed ®
is obtained by linear minimization of (A.I8) with constraints (A.19), (A.43}{A.44}{A.45}{A.46) and
(A.53HA.54HA.55{A.56)). In order to rewrite this minimization problem as a closed linear constrained
problem, we define in line with”® the vector of all the unknowns, i.e., I'(s,¢) and the involved slack
variables, by

Q.:(0)1,...,COK,al,...,EK,(Z)],...,(DK), (A.57)
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with

O = (51,11)s - (STt )y Ye(SNgs 1)+ -+ Vi (S 2y ) ) € RSN (A.58)

[ :(nk(s17tl)7- . -»le(Slafer)w . -ank(stvtl)v-- '7nk(statNT*1)) € RNS(NT_I)X17 (A59)

@ = (Ce(s1,v2,t1), -, Ce(s1,v2, 00 )5 -+ oy Ce(SNg—15 VNG 11) 5+ - - Ci(Svg—1, Vg, I ) ) € RO-5Nr (Ng—Ns) <1,
(A.60)

Further, we define the vector of NLL values for all time steps and all locations by ® = (¢y, ..., k)
with

O = (gModel (Y5161, 6k) 5 - - s 8Model (Ys1,tNT , 9k> e (A.61)
8Model (Yst,tl : Gk) s+ 8Model (Y Sty ek)) € RIXNSNT (A.62)

for k=1,...K. Then, we can rewrite the functional (A.T8) as
L(0,I(s,1)) = (P(0),Q), (A.63)

and the constraints (A.19), (A.434A 44 A 45HA 46) and (A53HA3AHAS3lA56) as equality and

inequality constraints

AeqQ = beq, AneqQ < bneq, Q>0. (A.64)

To minimize (A.63HA.64) standard methods for linear programming can be applied, for instance,
the simplex method!'®*> which is available, for example, in the GNU Scientific Library and also in
MATLAB.
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