

Systems Ingineering

Infotronics

Thesis 2014

Michael Schmid

Multispectral photograph for the
detection of skin cancer

Expert Martial Geiser

Sion, 5. July 2014

INDEX

1 PREFACE .. 1

2 INTRODUCTION .. 1

2.1 What is the problem ... 1

2.2 Similar projects .. 1

2.3 Our solution ... 2

2.3.1 Melanin detection ... 2

2.3.2 Blood analysis (hemoglobin detection) .. 3

2.3.3 Deep view .. 3

3 SPECIFICATIONS ... 4

4 HARDWARE .. 4

4.1 Image acquisition - Camera ... 4

4.2 .. 5

4.2 Optpical setup .. 6

4.3 Illumination .. 7

4.3.1 LED ring ... 7

4.4 Casing ... 8

4.4.1 Reference regions ... 8

5 SOFTWARE ... 9

5.1 Image acquisition ... 9

5.1.1 Main window .. 9

5.1.2 Analysis window .. 10

5.1.3 Settings window ... 11

5.2 Analysis ... 12

5.2.1 Optimisation ... 12

5.2.2 Measurement ... 17

6 FUTURE EXTENSIONS ... 21

6.1 Optical system ... 21

6.2 Image acquisition ... 21

6.3 Data storage .. 21

6.4 Analysis ... 21

6.5 Casing ... 21

7 CONCLUSION ... 22

8 SOURCES ... 22

8.1 Literature ... 22

8.2 Figures... 22

9 DATE & SIGNATURE .. 22

10 APPENDIX ... 23

10.1 Hardware ... 23

HES-SO Valais / Michael Schmid
10.06.2014

2

10.1.1 LED controller .. 23

10.1.2 LED ring ... 31

10.1.3 Parts list ... 35

10.2 Software - general .. 36

10.2.1 Class diagram .. 36

10.2.2 MainTimer .. 37

10.3 Software - code .. 38

10.3.1 IdsSimpleLiveDlg (main window) ... 38

10.3.2 Analysis .. 44

10.4 Tests .. 53

10.4.1 Melanin and hemoglobin tests ... 53

10.4.2 Prove of melanin detection .. 54

10.5 Future extensions ... 56

10.5.1 Image acquisition ... 56

10.5.2 Data storage .. 57

10.5.3 Analysis .. 57

10.5.4 Developement tips ... 59

10.5.5 Contact informations .. 59

HES-SO Valais / Michael Schmid

09.07.2014 1

1 PREFACE

The results of this project aren't just my earnings. Therefore I first want to thank everyone
who helped me with patience and competence. A special thanks to my expert Martial
Geiser, who particularly supported me with my work. He was always there to answer
questions, and to acquire solutions together. A thanks to Frederic Truffer and Helene
Strese, they gladly answered questions, and gave me convenient tips. I also want to thank
Olivier Walpen and Serge Amoos for helping me with electronics and casing. Finally an
acknowledgement to Dr. Gianadda Elisabeth, who supported us with valuable ideas and
standards.

This project was a great experience doing a step in the direction of the real working world.
Finding different solutions, deciding for one, and then handling the ramifications was an
exiting experience, which can't be taught in regular class. Due to the vast scope of this
project, it was really interesting to participate the different domains of biology, optics,
hardware and software development, and combine them to one extensive project.

2 INTRODUCTION

2.1 What is the problem

Since skin cancer is the most common kind of cancer in Switzerland, its detection and
treatment consumes a high amount of time and money. Due to subjective diagnosis by
eye, based on experience of the dermatologist, a surgical operation will take place - or
not. Here the product can show his strengths. Substantiate the decision of the
dermatologist, or maybe indicate another view. It will be possible to avoid unnecessary
surgery, sparing a lot of trouble. A meeting with Dr. Gianadda helped to understand the
problem, and led the project into the right direction. We got a view on the FotoFinder,
which will be described on the next chapter.

2.2 Similar projects

A commonly used system is the FotoFinder. It is a highly developed device with a broad
spectrum of sophisticated functionalities. The aviable full body scan, and the vast
database are just two of its strengths. The body scan will indicate critical points, wich then
can be scanned with the additional fullHD camera. Of course those measurements have
an outstanding quality, yet it just provides one RGB image with the entire light spectrum.

Figure 1: FotoFinder

HES-SO Valais / Michael Schmid

09.07.2014 2

Here comes the opportunity of our device, which provides a multispectral imaging. This
multispectral imaging not only shows the surface, but also allows a deeper view itno the
skin. A melanin analysis, and also a oxy/deoxy - hemoglobine determination is possible
with those capabilities.

This project is based on a previous solution, which was developed with a similar
specification and the same purpose. The initial goal was to make the device smaller, and
to develop further software. Yet the result is a completely independent solution. [1]

2.3 Our solution

The main method lies in the melanin, but also in the hemoglobin detection. It can be
achieved by illumination with particular light spectrums. The camera measures the amount
of reflected/scattered light, which can give indications to a possible risk.

2.3.1 Melanin detection

The melanin detection becomes possible through the known absorption behaviour of the
entire light spectrum. Specific wavelengths can be measured, and then compared to the
original absorption function. Following graph shows the chosen wavelengths for the
measurement. A point below 390nm can't be implemented because of the sensivity of the
camera. Nevertheless, the avaiable wavelengths are perfectly adequate.

390nm

470nm

520nm

610nm

Figure 2: Absorption spectrum of melanin

HES-SO Valais / Michael Schmid

09.07.2014 3

2.3.2 Blood analysis (hemoglobin detection)

The blood analysis uses a procedure quiet similar to the melanin detection. The known
graph of oxy and deoxy-hemoglobin transmission is essential. A smart choice of two
specific wavelengths already enables the possibility to distinguish oxygene rich, and
oxygene poor hemoglobin. One point is set where the sensivitys are very close, the other
point stands for a maximal difference. The ratio of these two values then indicates the
amount of oxy and deoxy-hemoglobin.

Figure 3: hemoglobin transmission

2.3.3 Deep view

Beside the methods shown, the remarkable feature of looking into the different layers of
the skin is definetly worth to mention. Especially the infrared LED with 880nm wavelength
enables a really deep view beyond the epidermis. This should allow locating aberrations
even deep under the skin. Following measurement shows the speciality of every LED.
Note the vein, which was found in deeper regions.

Figure 4: Measurement example

0

0.2

0.4

0.6

0.8

1

1.2

500 550 600 650 700

reduced (Hb)

oxygenated (HbO2)

wavelength [nm]

se
n

si
vi

ty
 /

 t
ra

n
sm

is
si

o
n

520nm

610nm

HES-SO Valais / Michael Schmid

09.07.2014 4

3 SPECIFICATIONS

This project attends to the task of taking a multispectral image acquisition of a specific
skin region, with a diameter of 1 Inch (about 25mm). The five images will pass trough an
analysis algorithm, which confirms or disproves the suspicion of skin cancer. The product
should provide following functions:

Calibration: The device has two calibration functions. One essential main calibration with
a reference, but also a small gauging with each measurement.

Image acquirement: A measurement should be very simple. A button on the camera will
provide maximal usability. Also the procces should not take longer than a second.

Display: After the measurement a brief overview of the taken images will be shown.
Which images exactly, (raw data / analyzed data / combo) will be determined in a later
instance.

Analysis: The software provides an evaluation with following criteria:

- Determination of melanin amount.

- The ratio of Oxy- and Deoxyhemoglobine.

- Analysis of contours.

Database: Every measurement will be stored properly.

Properties: The software contains different setting possibilities. (such as contrast,
exposure time ect.)

4 HARDWARE

4.1 Image acquisition - Camera

The recent semester project intensively approached the choice
of the right camera. The decision fell to the UI-1222E from the
german company "uEye". It is a CMOS camera, also aviable with
mono technology. This is a big advantage for our purposes, due
to its improved dynamic range. The goal was to go with the
newest and best aviable technology. The reward was a
professional camera with outstanding characteristics and very
good documentation, which allowed determined and effective
developement. Following table shows the most important
technical specifications. For more details and a very detailed
documentation explore the CD.

 Figure 5: UI-1222E CMOS camera

HES-SO Valais / Michael Schmid

09.07.2014 5

The relative sensor sensivity is definitely worth a special mentioning. This camera can
see widely beyond the human eye, or other similar cameras. It allows the usage of a
880nm LED. The detailed graph is shown below.

4.2

Figure 6: Camera specifications

Figure 7: Quantum efficiency

HES-SO Valais / Michael Schmid

09.07.2014 6

Optpical setup

4.2.1.1 Lense setup

The first prototype in the semester project [2] showed that a single lens can't achieve the
desired quality demands. Therefore a system with two lenses was calculated, and
implementated. This time an achromatic lens was used, due to the error correction of
different wavelengths. Following two lenses were used:

 AC 050 - 010 - B

 Bi. +; 50/12,7 gef.

The distance between object and first lens is 83mm, the distance sensor <-> second lense
amounts to 2mm. Yet it can't be measured properly, since the montage doesn't allow it.
The same for the distance between the two lenses, which is around 10mm. Nevertheless
those values are not important, since a new optical system would require a new
calculation anyway.

The assembly of the optical system was a challenging task, because a small variation in
the distance between the optical elements already affects the image quality. The laser
cutting machine was used to create the required parts. The plans are aviable on the CD.

HINT! The lenses are clamped with screws, which should hold fine. Still, I recommend a
careful usage. Never shake the device! A very small shift of a lense could already have
impact on the image quality.

4.2.1.2 Pinhole

Already in the semester project we had too much light on the sensor. This problem was
solved by a pinhole, which also improved the image quality. Different versions between
0.5mm and 2mm were tried, while the 2mm had the best acuity. The pinhole is directly
attached to the inner side of the second, big lense.

Figure 8: Optical system simulation

HES-SO Valais / Michael Schmid

09.07.2014 7

4.3 Illumination

4.3.1 LED ring

The key to a good measurement is the proper lighting of the object. The assembly of the
LED's plays a crucial role to a homogenous picture. After some tests it has been shown
that a specific angle of the LED's is not absolutely required. This enables the possibility to
design the LED ring with a simple PCB. Still, the assembly has to be a perfectc circle. It
led to some major problems with PCAD (software for PCB design) since it is not intended
to work with round objects. Nevertheless the board was created. It is shown in the picture
below. For schematic, PCB layout, calculations and partlist see appendix_10.1.2.LED

controller

The camera provides a very useful feature with its given inputs/outputs. Unfortunately it
hasn't enough outputs to actuate every LED separately. Therefore a simple solution with a
PIC was found. The trigger button is connected with the camerea as well as the PIC. Now
the start signal will launch both parallel. The PIC is programmed to power on each LED
group for 200ms. This gives the camera enough time to take the picture. The PIC was
implemented on a seperate PCB, which can be easily connected with the LED-Ring, as
shown in the following picture. For schematic, PCB layout, partlist and details about the
PIC programming see appendix_10.1. The Led ring and the PIC controller share the same
partlist.

Figure 9: LED ring PCB

Figure 10: LED controller PCB

HES-SO Valais / Michael Schmid

09.07.2014 8

4.4 Casing

The casing was realised with the 3D printer. Serge Amoos created the plans in Autodesk
Inventor. They are avilable on the CD. Following picture shows a view of the 3D model.

4.4.1 Reference regions

The white regions are crucial for the gain adjustment
of each measurement. This part is basically made out
of a simple ring, created with the laser cutting
machine (plans on CD). Two stripes of thick paper
are glued to this ring. They have a width of 10mm. It
is very important to keep the ring on the right angle
during the masurement.

HINT! The raw data will include the reference regions. A black rectangle indicates the
region used for the adjustment. Make sure that the entire rectangle only contains the
designated white region.

Figure 11: 3D model of casing

Figure 12: Calibration
region

HES-SO Valais / Michael Schmid

09.07.2014 9

5 SOFTWARE

5.1 Image acquisition

5.1.1 Main window

The data acquisition should be as simple as possible. Pushing the button will trigger the
camera and the Illumination. A user-friendly and simple GUI will help to take pictures and
make an analysis with a minimum effort. Following picture shows the user interface that
will appear when the user opens the program. It provides a big display window for a live
video stream, an optimal preview for measurements. The window provides following
options:

 Next: Make a quick measurement, without the need of opening the analysis
window. It will make the analysis automatically and save the results. When the
"Show quick Result" checkbox is open, it will display the result of the melanin and
blood analysis.

 Analyze: This button will open the Analysis window for further options.

 Patient Informations: Please enter the patient information here.

 Calibration Mode: This enables the calibration mode. In this mode an absolutely
homogenous and white surface is needed. The images will be saved into
images/Calibration, where they can be used as reference for a proper calibration.

 Settings: Open the settings for exposure time adjustment, or loading parameters.

 Exit: Close the program.

Figure 13: main window

HES-SO Valais / Michael Schmid

09.07.2014 10

5.1.2 Analysis window

This window allows custom options for the measurement. An example body represents
the patient, where the location of the measurement can be indicated. The patient
informations will be taken automatically from the main window.

The window provides following options:

 Homogenity Adjustment: Since the homogenity adjustment is the most time
consuming procedure, it is hereby available to perform voluntary. After the
adjustment the results will be shown. They can all be closed at once with the
"Close" button near the initial button.

 Melanin Analysis: This button will do the melanin analysis, and show the results.
Also these images can all be closed at once with the nearby "Close" button.

 Blood Analysis: Same procedure for the oxy/deoxy-hemoglobine determination.

 Show / Close Images: This button will show or close all taken pictures.

 Save and Close: Be sure to use this button to save your results.

Figure 14: analysis window

HES-SO Valais / Michael Schmid

09.07.2014 11

5.1.3 Settings window

This window is supposed to perform desired changes to the exposure times. Try not to
vary too much from the recommended values since they are well balanced. Of corse the
gain adaption will always correct the difference, still it would bring unwanted noise into the
system. The exposure times will be saved in settings.txt in the Parameters folder. With the

"Load Parameters" button, it is possible to load earlyer saved camera parameters from the
Software "uEye Cockpit". It is recommended to stop the livestream for that. Note that this

option hardly was investigated because it wasn't needed at all. There may be further
adjustements needed to properly load given parameters.

 Figure 15: settings window

HES-SO Valais / Michael Schmid

09.07.2014 12

5.2 Analysis

Since important operations are pretty much implemented with fitting methods, almost
every capture will be closely linked to an actual function. If so, the name of the method will
be mentioned right under the title.

5.2.1 Optimisation

Before an actual measurement can take place, the images need to be optimized. Even
with good balanced exposure times and proper illumination, there are slight differences
between the images, which would decrease the accuracy of the measurement. The
optimisation takes place in two steps. First the gain will be adjusted, to put all images on

the same level. Secondly the homogenity will be evened. The exact procedure is

explained in this chapter. An overview is shown in the following exaggerated picture, to
emphasize the process.

5.2.1.1 Set gain of an image

Software solution in appendix_10.3.2.2

This Method has a really simple task. It takes an image (Mat), adjust its gain, and then
returns the newly calculated image. There are two parameters available (alpha, beta).
Following formula shows how they work:

g
a

in

h
o
m

o
g

e
n
it
y

Figure 16: example of gain and homogenity adjustment

HES-SO Valais / Michael Schmid

09.07.2014 13

The function will recalculate every single pixel with this formula. Alpha is the gain factor,
while beta works as offset.

5.2.1.2 Even out the images with gain adaption

Software solution in appendix_10.3.2.3

The goal of this method is to ajust the gain of all images to a common level. Each image
has two white calibration regions on its right and its left. The average value of this regions
will be calculated. Usually these values should be quiet similar. If they vary by an
increased amount, there are two possibilities of irregular lighting. Either a LED is not
working or illuminating weak, or there is an external lightsource disturbing the lighting. It
could also be that the calibration papers are not attached propperly or with a different
angle, the rectangles will hit a part of skin instead of paper. A warning message will show
if one of these problems occurs. If everything runs right the mean of these two avarage
values will provide the proper gain adjustment.

The intended gain can now be easily calculated by following formula:

Now a call of the setGain() Method will do the actual gain adjustment. The value was
carefully chosen to bring the white calibration region of each image into saturation (max
value = 255).

Figure 17: reference regions

HES-SO Valais / Michael Schmid

09.07.2014 14

5.2.1.3 Homogenity issue

One of the most important requirements for a proper measurement is a good homogenity
of the image. It is almost only influencted by the lighting. Since the solution for the
illumination already attempts to achieve an optimal result, there must be an additional
software support for an optimized homogenity of the picture. This will be achieved with the
help of a calibration. Threfore an image of a clean white surface will work as a reference.
From this reference a pattern will be created which can be utilized to even out further
measurements.

The actual procedure works like a compressor (in audio domain). There will be a certain
treshold, in this case the mean (average) value of the picture. So every value that lies
above the treshold, will be attenuated. Every value below it, will be increased. In the end
the dynamic range will be much smaller, the values are closer to each other, which means
the picture has a better homogenity.

Figure 18: overview of homogenity adjustment

Figure 19: example of reduced dynamic range

HES-SO Valais / Michael Schmid

09.07.2014 15

5.2.1.4 Create the stamps

Software solution in appendix_10.3.2.4

The name of this method was chosen, because it creates a file comparable to a stamp.
The stamp then can be used on an image, to alter its appearance (in this case
homogenity). So the goal is having a specific correction-factor for each single pixel. The
created textfile will contain all this information.

First the calibrationImage will be loaded. They are stored in /images/Calibration. Then the

average value of all picture will be calculated individually, and stored in the mean[] Array.
(Don't confuse it with the mean for melanin detection, which is a mean of all the images
together)

∑

Now a loop will go through the entire image, calculating the correction factor for each pixel
with following formula:

Because of the fraction, the correction now is a value around 1 with several decimal
places, which results in a double. Considering that the images just have a Byte per pixel,

the output can't be another image. Since there is the need of a permanent accessibility of
this data, there has to be another way to store it. Unfortunately the installed Visual Studio
does not support many database possibilities. Therefore the data is stored in stamp-
textfiles, which will be created in the /Parameters folder.

Please note the need of an absolute exact and unambiguous format of the textfiles.
Already the slightest change can result in absolute unreadability. Like the following little
example shows, the values are just seperated with a space " ".

Figure 20: flowchart of stamp creation

HES-SO Valais / Michael Schmid

09.07.2014 16

5.2.1.5 Adjust the homogenity

Software solution in appendix_10.3.2.5

Now that the stamps are ready to use, this method finally takes an image, uses the
stamp(correction) on it, and returns a proper homogenity-adjusted result. It again loops
through all the pixels, and makes a division of the pixelValue by the correction.

There is a chance that the adjusted value can hit a higher value than the maximal allowed
(> 255). This would result in a glitch, where the value becomes zero (black). To avoid this

problem, a factor and offset was added. With a suggested factor of 0.8 the function won't

hit any saturation.

HINT! If the image shows randomly spread black dots, try to use a factor < 1, and/or a
negative offset, to not hit saturation!

Since the adjustment is really time consuming, the parameter "i" allows to take a specific

image.

Following picture shows a successful homogenity adjustment on a test image.

Figure 21: Flowchart of homogenity adjustment

Figure 22: Homogenity adjustment test

HES-SO Valais / Michael Schmid

09.07.2014 17

5.2.2 Measurement

In this chapter we will see the actual analysis of the measurement. These functions will
implement the investigation of signs for skin-cancer. There are three important symptoms,
which will be the focus of this Project:

 high amount of Melanin

 anomaly of oxy-and deoxy-hemoglobin

 irregular shapes of birthmark

Again, every of these procedures is implemented with a fitting method.

5.2.2.1 Melanin analysis

Software solution in appendix_10.3.2.6

One of the most important symptoms, a highly increased amount of melanin. The most
obvious sign of a mutation of melanocytes. Now the first and most important task is the
detection of the melanin in the first place. The chosen solution is to compare the taken
pictures with the known light absorption graph of melanin (see 2.3.1). For better access,
the Graph was imported to excel with help of WebPlotDigitizer [3]. Since it makes more

sense to work with the permeability instead of the absorption, a transformation with
following formula took place:

 The transformation itself would result in a value between zero and one. So the factor of
255 is used to stretch the value over the available range of a Byte. Also the values below
380nm were removed, since the lowest available wavelength is 390nm. The camera
probably would not be able to get any lower. Following picture shows the before-after
Graph.

Now the interesting part about the import into Excel is the possibility to create an
approached trendline polynomial function. Already a function with 4th order turned out to
be quiet accurate. So here is the final function:

 y = -2.0126E-08x4 + 4.6262E-05x3 - 3.9755E-02x2 + 1.5632E+01x - 2.2747E+03

Figure 23: Melanin absorption to permeability transformation

wavelength [nm]

ab
so

rp
ti

o
n

p
er

m
ea

b
ili

ty

HES-SO Valais / Michael Schmid

09.07.2014 18

For easy use, there is a method implemented which will return the permeability value in
function of the wavelength: double melaninFunction(double wavelength)

Now we have everything to get the factor between the desired curve, and the actual
measured image. The factor can be calculated with following formula:

The value of the factor will roughly vary between 0 and 2, where 1 means that the
measured and the intended melanin value are identical. Now for a better visual overview,
the function above will be extended, and now saved in an image instead of an array.

Assuming a 100% match, the entire factorImage would be
grey-> 128. If it goes more in direction of white, (128+) it
means that the measured value is higher than the melanin
value. If it goes in direction of black (128-), the measurement
is lower than the melanin value. Of corse this will count for
every pixel, and result in an image.

Now the five images will be merged to only one image, to gain
some better overview. Following function calculates the mean
(average) of all images, and saves it to a single new image.

∑

Last but not least, there has to be a little calibration to adapt the values to real world
environment. This is achieved with the calibration factor melaninIndex. This index is based

on a dark skin sample.

And there we have a result! The brighter the Image, the more melanin was detected.

Beside the mean of the melanin, there is another result image available. It represents the
standard deviation. Every pixel will be calculated with following formula:

 √

 ∑

lower higher match!

0 128 255

Figure 25: Dial for the factorImage

Figure 24:example of
melaninMean

HES-SO Valais / Michael Schmid

09.07.2014 19

5.2.2.2 Prove of melanin detection

This chapter will prove that the analysis detects actual melanin. Of course there will be
always other factors that can influence the measurement, but following tests should show
that it really focuses on melanin. Please consider that the last image (610nm) is not very
much affected by melanin, so its value is rather negligible. The excel files with the
calculations and graphs can be found on the CD. For more details about the tests see
appendix_10.4.2.

Following graph shows a summary of the important measurements. It is clearly visible that
the two "tricked" examples are way off, where the actual skin scan shows a surprisingly
high accuracy.

5.2.2.3 The evaluation

After the validating tests we can assure that the measured graph represents pretty much
the melanin permeability. But since it is a relative value, how do we determine the
effective amount of melanin? For this procedure a calibration with help of the
calibrationFactor is necessary. Following graph shows just two measurements - a brown

and a white skin.

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

300 350 400 450 500 550 600 650 700 750

melanin permeability

brown paper

black plastic

skin

Figure 26: Measurement of different surfaces

wavelength [nm]

p
er

m
ea

b
ili

ty

HES-SO Valais / Michael Schmid

09.07.2014 20

The very simple solution is to chose a calibrationFactor setting, so that the darkest skin

example exactly matches the melanin permeability curve. It now represents the reference.
Now every measurement with less melanin will be above this value. Since it is a dark skin
color, it is unlikely that a regular measurement will go much deeper than this value. If the
value has a distinct low value, it can be considered as potential hazard. To simplify the
result, a average value of the 4 wavelengths is sufficient. This procedure will be done for
every single pixel, and finally be accessible in the melaninMean result image.

5.2.2.4 Blood analysis

Software solution in appendix_10.5.3.1

Since the focus of the project was on the melanin detection, the blood analysis is held
very simple. One single operation will take the 520nm, and the 610nm image for a ratio
calculation (see 2.3.2). Following formula is used:

The factor of 128 has the same purpose like the melanin measurement before, it displays
a value between roughly 0 and 2 with grayscales. For proper use there is a need of some
tests and a calibration, which is not implemented yet.

0.00

50.00

100.00

150.00

200.00

250.00

300.00

300 350 400 450 500 550 600 650 700 750

Melanin permeability

Brown skin

white Skin

avg. white Skin

avg. brown Skin

Figure 27: Evaluation of melanin measurement

wavelength [nm]

p
e
rm

e
a
b
ili

ty

HES-SO Valais / Michael Schmid

09.07.2014 21

6 FUTURE EXTENSIONS

Unfortunately the scope of this project often exceeded the available timeframe. Therefore
compromises had to been made. Since this project will be continued, this chapter will
mention a few points worth of improvement.

6.1 Optical system

The lenses are assembled in a construction rather determined for test purposes. Surely it
absolutely accomplishes its task, yet the system could be smaller. Also most of the weight
of the device comes from the optical system. The camera has additional connection
possibilities to support a much smaller system. I would highly recommend a new
customised optical system.

6.2 Image acquisition

The camera currently needs 200ms per image. However, if a faster acquisition is needed,
there would be the possibility to use the camera intern buffer. Also a I2C communication
between PIC and camera processor would optimize the duration of the illumination. For
details see appendix_9.5.1.

6.3 Data storage

The current project creates a folder for each patient, and saves the measurements with
the actual date and time. A more professional solution would be a SQL database, which
would allow a wide range of customisation. Also online access for further analyses,
processing or just data exchange would be possible. For an already worked out concept
see appendix_9.5.2.

6.4 Analysis

Fortunately the melanin analysis could be finished with great results. Yet the hemoglobin
and conture methods are just prototypes. They definitely need some further development.
This is probably the most important task to begin with. Still, with some tests and a proper
calibration, the hemoglobyne procedure already may yield some usable results.

6.5 Casing

Unfortunately the time run out to improve the casing. An increased diameter of the tube
would allow a larger usable image. Also the height should be slightly increased for a better
montage. An additional fixture of the reference regions would prevent them from shifting.
Nevertheless I would recommend a revised optical system, which would imply an entire
new casing.

HES-SO Valais / Michael Schmid

09.07.2014 22

7 CONCLUSION

The choice of the camera turned out to be rewarding, and also the range of wavelengths
brought good results. The setup was changed to 390nm, 470nm, 520nm, 610nm and
880nm, where especially the infrared LED enables some interesting opportunities. The
final results are very persuasive, a melanin determination with such high accuracy is a
solid cornerstone for this device. I see great potential for the future, where targeted
development for optimized oxy and deoxy - hemoglobin determination will complement the
device to a great product. The outline analysis may be redundant, since the FotoFinder
already includes this feature. A redesign of the optical system will allow a much lighter and
smaller case, allowing it to be competitive to other products.

8 SOURCES

8.1 Literature

[1] Documentation of previous project, available on CD in illustrations folder

[2] Semester Project available on CD in illustrations folder

[3] WebPlotDigitizer: Program for graph transcription http://arohatgi.info/WebPlotDigitizer/

8.2 Figures

Figure 1: http://www.fotofinder.de

Figure 2: http://www.cl.cam.ac.uk/~jgd1000/melanin.html

Figure 3: http://biomedicaloptics.spiedigitallibrary.org/article.aspx?articleid=1102785

Figure 6: uEye Documentation

Figure 7: uEye Documentation

Figure 8: Simulation

Figure 16: Photoshop

Figure 19: http://www.youtube.com/watch?v=91qs3fux5HY -> Audio Compressor
explained

9 DATE & SIGNATURE

Sion, 11. July 2014 Michael Schmid

HES-SO Valais / Michael Schmid

09.07.2014 23

10 APPENDIX

10.1 Hardware

10.1.1 LED controller

10.1.1.1 PIC Programming

10.1.1.1.1 Timer
For further easy to use timing, a timer with a 10ms elapse will be implemented. To achieve this
interval, a Timer0 Value of 0x63BF is used. With this timer every exposuretime can be achieved
with a factor of 10ms.

10.1.1.1.2 Interrupts
Following picture helps configuring the Interrupt Registers.
GIEH = 1 for global Interrupt enabling.
We use the first Pin for interrupts, so INT0, INT0IE has to be 1.
Also for the Timer TMR0IE is 1. For being High Priority with Timer0, TMR0IP also goes 1.

HES-SO Valais / Michael Schmid

09.07.2014 24

10.1.1.1.3 Inputs / Outputs
Following Picture helps configure the ANSELx Registers. For geting outputs, ANSELA, will be
entirely 0's.

Also since Port B consists of digital inputs, ANSELB will be entirely 0's.

HES-SO Valais / Michael Schmid

09.07.2014 25

10.1.1.1.4 Code

10.1.1.1.4.1 User.c
This method is basically used to initialize the PIC. IT defines Inputs/Outputs with TRISx and ANSELx,
configures the timer with T0CON, and sets the timer elapsing time with TMR0H and TMR0L. Also the

Interrupts will be enabled and configured with GIEH/PEIE/INT0IE/INTEDG0. With LATA = 0x00 we

make sure that all leds are disabled at the beginning.

HINT! Use LATA to define all outputs/inputs at once everytime, instead of PORTA.RAx. Yes you
have to reasign all outputs everytime instead of just one, but you will avoid some unwanted
behaviour.

void InitApp(void)
{
 //Port Declarations
 TRISA = 0b00000000;
 ANSELA = 0b00000000;
 TRISB = 0b11000001;
 ANSELB = 0b00000000;
 // Timer 0
 T0CON = 0b00001000;
 TMR0H = 0x63;
 TMR0L = 0xBF; // 0x63BF = 10ms
 //Interrupts
 GIEH = 1;
 PEIE = 1;
 INT0IE = 1; // Enables the INT0 external interrupt
 INTEDG0 = 1; // Set to interrupt on rising edge
 // Timers & Interupts
 TMR0IE = 1; // Enables the TMR0 overflow interrupt
 TMR0IP = 1; // Timer0 -> High priority

 LATA = 0x00;
 start = false;
 counter = 0;
}

10.1.1.1.4.2 System.c
This method is used to set the oscillator frequency. It is common use to just let the oscillator run on
his maximal frequency, which in this case is 16 MHz (0b11110010).

void ConfigureOscillator(void)
{
 OSCCON = 0b11110010;
 while(!HFIOFS)
 {
 // do nothing until Oscillator is stable
 }
}

10.1.1.1.4.3 Interrupts.c
This method is essential for the work with timers. Everytime the timer elapses, it will call the
interrupt sub routine. This will restart the timer, and also increment the counter wich then can be
used to determine the illumination time.

void interrupt high_isr(void)
{
 if (INT0IF)
 {

HES-SO Valais / Michael Schmid

09.07.2014 26

 TMR0ON = true; //Enable Timer0
 start = true;
 INT0IF = false; //clear flag
 }

 if (TMR0IF)
 {
 TMR0H = 0x63;
 TMR0L = 0xBF;
 TMR0IF = false; //clear flag
 counter++;
 }
}

10.1.1.1.4.4 main.c
This method will actually set the LED states to on or off. Depending on the value of the counter, it
will chose the fitting LED. Unfortunately the case parameters have to be static. They are basically
x*lightTime + offset. So if a change of the illumination time is desired, every case has to be updated

separately. The offset parameter is there to help synchronize the camera and the PIC. It is possible
to play around with the offset to get better results. -5 is a good value for an illumination time of
200ms. After 1150ms the cycle is over, and everything will be resetted to be ready for the next
measurement.

/**/
/* User Global Variable Declaration */
/**/
 static int lightTime = 20; // factor 10ms!
 static int offset = -5; // offset for camera synchronisation

/**/
/* Main Program */
/**/

void main(void)
{
 // init values
 ConfigureOscillator();
 InitApp();
 LATA = 0x04; // let green LED on as default
 //LATA = 0x00; // set all LEDS off
 while(1)
 {
 if(start)
 {
 switch(counter)
 {
 // lightTime + offset
 case(15):
 LATA = 0x01;
 break;
 // 2*lightTime + offset
 case(35):
 LATA = 0x02;
 break;
 // 3*lightTime + offset
 case(55):
 LATA = 0x04;
 break;
 // 4*lightTime + offset
 case(75):

HES-SO Valais / Michael Schmid

09.07.2014 27

 LATA = 0x08;
 break;
 // 5*lightTime + offset
 case(95):
 LATA = 0x10;
 break;
 // 6*lightTime + offset
 case(115):
 //LATA = 0x00; // turn all LED's off
 LATA = 0x04; // turn green LED's on
 TMR0ON = false; // stop timer
 start = false; // reset start flag
 counter = 0; // reset counter
 break;
 }
 }
 }
}

10.1.1.2 Schematic

Following page will show the entire schematic of the LED Controller. The core of this PCB clearly is
the PIC18 who is controlling the entire illumination process. Since the PIC would not have enough
output power, he triggers five MOSFETS, which will then supply the actual LED's.
Each of this MOSFETS has two dedicated resistors to enhance their performance:

The connectors are from left to right: connection to LEDs, connection to camera, and programming
interface.

C1 and R11 are part of the basic circuit needed for the PIC18, while R12 is a Pull-up resistor for
the button.

HES-SO Valais / Michael Schmid

09.07.2014 28

HES-SO Valais / Michael Schmid

09.07.2014 29

10.1.1.3 Layout

The next page will contain detailed information about the Top and Bottom layer, and also a version
with placed components. Following picture shows a overview of all the layers combined.

HES-SO Valais / Michael Schmid

09.07.2014 30

HES-SO Valais / Michael Schmid

09.07.2014 31

10.1.2 LED ring

10.1.2.1 Schematic

Following page will show the entire LED ring schematic. Each domain consists 4 parallel LED's
with their pre-resistors. The calculation of the resistors is shown in following Table.

Vcc = 5V

R = (Vcc-UDx)/I

 LED1: 390nm
 UD1 =3.2V

 ID1 = 20mA
 RV1 = 90Ω
 Appropriate resistor: 91Ω

 LED1: 470nm
 UD1 =3.7V (3.4V typ.)
 ID1 = 20mA

 RV1 = 65Ω
 Appropriate resistor: 68Ω

 LED1: 520nm
 ID1 = 20mA

 UD1 = 3.2V
 RV1 = 90Ω
 Appropriate resistor: 91Ω

 LED1: 610nm
 ID1 =20mA

 UD1 = 2V
 RV1 = 150Ω
 Appropriate resistor: 150Ω

 LED1: 880nm
 ID1 = 20mA

 UD1 = 1.32V
 RV1 = 184Ω

 Appropriate resistor: 180Ω

HES-SO Valais / Michael Schmid

09.07.2014 32

HES-SO Valais / Michael Schmid

09.07.2014 33

10.1.2.2 Layout

The next page will contain detailed information about the Top and Bottom layer, and also a version
with placed components. Following picture shows a overview of all the layers combined.

HES-SO Valais / Michael Schmid

09.07.2014 34

HES-SO Valais / Michael Schmid

09.07.2014 35

10.1.3 Parts list

Following Table contains the Part List of both components, the LED ring and the LED Controller.

LED's
 Quantity Description Value Art-Nr. vendor Price

4 SMD LED 390nm 1890331 Farnell SFr. 12.15

4 SMD LED 470nm 8529965RL Farnell SFr. 3.67

4 SMD LED 520nm 1716766RL Farnell SFr. 0.42

4 SMD LED 610nm 8530009 Farnell SFr. 0.30

4 3mm LED 880nm L-7104SF4BT Distrelec SFr. 0.81

 Resistors
 Quantity Description Value Art-Nr. vendor Price

4 pre - resistor for 390nm 91Ω STOCK

4 pre - resistor for 470nm 82Ω STOCK

4 pre - resistor for 520nm 91Ω STOCK

4 pre - resistor for 610nm 150Ω

 STOCK

4 pre - resistor for 880nm 180Ω STOCK

7 resistor for PIC/MOSFET 10kΩ STOCK

5 resistor for MOSFET 51Ω STOCK

 Capacitors
 Quantity Description Value Art-Nr. vendor Price

2 decoupling 100nF STOCK

 Transistors
 Quantity Description Value Art-Nr. vendor Price

5 Mosfet: supply for LED's MMBF170 STOCK

 PIC
 Quantity Description Value Art-Nr. vendor Price

1 PIC18(L)F2X/4XK22 PIC18F2XK22-/SO STOCK

 Connectors
 Quantity Description Value Art-Nr. vendor Price

1 straight 6 Pins STOCK

1 90° angle 6 Pins STOCK

1 90° angle 4 Pins STOCK

HES-SO Valais / Michael Schmid

09.07.2014 36

10.2 Software - general

This chapter will cover some issues considered to specific for the main document.

10.2.1 Class diagram

Fortunately it was possible to implement the software with a simple class constellation. The
IdsSimpleLiveDlg includes all GUI informations, and also the entire connection to the camera,
which makes the image acquirement possible. It includes the huge uEye.h, which provides all the
comfortable methods from uEye. Both other classes are also windows, which contain their own
variables and methods. They will be instanced in the IdsSimpleLiveDlg class. Please note that just
the most important entries are listed.

The IdsSimpleLive class is not mentioned at all. Since most of the methods need direct access to
the GUI, the entire implementation took place in IdsSimpleLiveDlg.

HES-SO Valais / Michael Schmid

09.07.2014 37

10.2.2 MainTimer

The main timer plays an essential role in this software. He will be started right at the initialisation of
the main window (at the end of the InitDisplayMode method). The timer then will create an event

every 10ms. The OnTimer method (appendix_10.3.1.2) will handle that event, and check if the

button is triggered. If so, the measTimer will be startet, which will create an event every 200ms.
Also this event will be handled from the OnTimer method, which can distinguish the events, and
handle it properly. The process is shown in the flowchart below.

The timer also needed to be debounced. Beside the usual debouncing rules for a button, a new
trigger is disabled until the measurement is finished. So it is impossible to accidently start another
measurement, while the the current one is still in process.

HES-SO Valais / Michael Schmid

09.07.2014 38

10.3 Software - code

10.3.1 IdsSimpleLiveDlg (main window)

Please note that IdsSimpleLive was a given sample project from the uEye company. It contained a
mainwindow with frame for the videostream. This example was taken because of the already
existing connection between camera and Windows software, to save time. Following methods were
already given, and were just slightly changed:

 OnPaint() // draws window

 startLive() // starts live display

 stopLive() // stops live display

 loadParameter() // loads parameter file

 OnButtonExit() // exit the program

 OpenCamera() // start connection to camera

 OnUEyeMessage() // handles message from camera

 ExitCamera() // closes connection to camera

 InitDisplayMode() // initializes the display mode

 InitCamera() // initializes the camera

 GetMaxImageSize() // gets the max supportet image size of camera

Of corse there are also own written methods in this class. The most important ones will be
described in this chapter.

10.3.1.1 Initialize dialog

This is the very first method that will be called. When the main windows is created, it will call this
method to initialize all his variables. The exposure times now are loaded with the method
loadSettings(). Yet the static values are still mentioned for emergency cases.

BOOL CIdsSimpleLiveDlg::OnInitDialog()
{
 CDialog::OnInitDialog();
 // Set the icon for this dialog. The framework does this automatically
 // when the application's main window is not a dialog
 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon
 // get handle to display window
 m_hWndDisplay = GetDlgItem(IDC_DISPLAY)->m_hWnd;
 m_pcImageMemory = NULL;
 m_lMemoryId = 0;

m_hCam = 0;
m_nRenderMode = IS_RENDER_FIT_TO_WINDOW;
m_nPosX = 0;
m_nPosY = 0;
m_nFlipHor = 0;
m_nFlipVert = 0;

 //debouncing button
 debouncing = true;
 // Calibration mode Checkbox
 calibrationMode = false;
 // Quick result mode Checkbox
 quickResult = false;
 // open a camera handle
 OpenCamera();

HES-SO Valais / Michael Schmid

09.07.2014 39

 /*
 // Set exposure Times, Max = 34
 exposureTime1 = 15; // exposure time of 390nm LED , 15 recommended
 exposureTime2 = 34; // exposure time of 470nm LED , 34 recommended
 exposureTime3 = 30; // exposure time of 520nm LED , 30 recommended
 exposureTime4 = 34; // exposure time of 610nm LED , 34 recommended
 exposureTime5 = 10; // exposure time of 890nm LED , 12 recommended
 */
 loadSettings();
 return true;
}

10.3.1.2 Timer

This very important method is the core of the image acquirement. It administrates the two
important timers mainTimer, and measTimer. The mainTimer will check the button state every 10

milliseconds. When the button was triggered, it will start the measTimer, which will take a picture
every 200ms. Both values are defined in the IDsSimpleLiveDlg.h file with:

#define MAINTIME 10
#define MEASTIME 200

void CIdsSimpleLiveDlg::OnTimer(UINT_PTR nIDEvent)
{
 CDialog::OnTimer(nIDEvent);
 if(nIDEvent==mainTimer)
 {
 // read the digital (trigger) input
 m_nDin = is_SetExternalTrigger(m_hCam, IS_GET_TRIGGER_STATUS);
 // start measurement if button pushed
 if (m_nDin!= 0 && debouncing == true)
 {
 debouncing = false;
 counter = 0;
 //Take the first Picture
 takePicture();

 //Timer init & start
 measElapse = MEASTIME;
 measTimer = SetTimer(2,measElapse,NULL);
 }
 }
 if(nIDEvent==measTimer)
 { // take the rest of the pictures when timer ticks
 takePicture();
 }
}

10.3.1.3 Take picture

In this function the camera gets the pictures, and saves them to the desired destinations. First
there are quiet a few parameters necessary to enable the image acquisition. Then the system
completely relies on the counter. Each time an image was taken, the counter will increment. So
each cycle the camera should save the image to a new directory. It is noticeable that there are
actually 6 images instead of just 5. This behaviour solves two problems at once. First: If the picture
gets taken exactly in the instance the user triggers the button, there is a chance that his movement
accidently relocates the device. Therefore we wait 200ms until every motion should be decayed.
Secondly the exposure time can only be changed for the after next picture. The next taken picture
will still have the initial one. So with depositing the first image into a temporary folder, it helps with
both problems, even if it will never be used.

HES-SO Valais / Michael Schmid

09.07.2014 40

void CIdsSimpleLiveDlg::takePicture()
{
 // prepare camera settings to take picture
 IMAGE_FILE_PARAMS ImageFileParams;
 ImageFileParams.pwchFileName = NULL;
 ImageFileParams.pnImageID = NULL;
 ImageFileParams.ppcImageMem = NULL;
 ImageFileParams.nQuality = 0;
 int nRet = NULL;
 ImageFileParams.nFileType = IS_IMG_PNG;
 ImageFileParams.nQuality = 80;

 switch(counter)
 {
 case(0):
 nRet = is_Exposure(m_hCam, IS_EXPOSURE_CMD_SET_EXPOSURE,
 (void*)&exposureTime1, sizeof(exposureTime1));
 ImageFileParams.pwchFileName = L"imgsource\\tempImg.png";
 nRet = is_ImageFile(m_hCam, IS_IMAGE_FILE_CMD_SAVE, (void*)&ImageFileParams,
 sizeof(ImageFileParams));
 counter++;
 break;
 case(1):
 //set the exposure time
 nRet = is_Exposure(m_hCam, IS_EXPOSURE_CMD_SET_EXPOSURE,
 (void*)&exposureTime2, sizeof(exposureTime2));
 // choose fitting folder
 if(calibrationMode)
 ImageFileParams.pwchFileName =
 L"images\\Calibration\\image1_390nm.png";
 else
 ImageFileParams.pwchFileName = L"images\\image1_390nm.png";
 // save image
 nRet = is_ImageFile(m_hCam, IS_IMAGE_FILE_CMD_SAVE, (void*)&ImageFileParams,
 sizeof(ImageFileParams));
 counter++;
 break;
 case(2):
 // similar to case(1)
 nRet = is_Exposure(m_hCam, IS_EXPOSURE_CMD_SET_EXPOSURE,
 (void*)&exposureTime3, sizeof(exposureTime3));
 if(calibrationMode)
 ImageFileParams.pwchFileName =
 L"images\\Calibration\\image2_470nm.png";
 else
 ImageFileParams.pwchFileName = L"images\\image2_470nm.png";
 nRet = is_ImageFile(m_hCam, IS_IMAGE_FILE_CMD_SAVE, (void*)&ImageFileParams,
 sizeof(ImageFileParams));
 counter++;
 break;
 case(3):
 nRet = is_Exposure(m_hCam, IS_EXPOSURE_CMD_SET_EXPOSURE,
 (void*)&exposureTime4, sizeof(exposureTime4));
 if(calibrationMode)
 ImageFileParams.pwchFileName =
 L"images\\Calibration\\image3_520nm.png";
 else
 ImageFileParams.pwchFileName = L"images\\image3_520nm.png";
 nRet = is_ImageFile(m_hCam, IS_IMAGE_FILE_CMD_SAVE, (void*)&ImageFileParams,
 sizeof(ImageFileParams));
 counter++;
 break;

HES-SO Valais / Michael Schmid

09.07.2014 41

 case(4):
 nRet = is_Exposure(m_hCam, IS_EXPOSURE_CMD_SET_EXPOSURE,
 (void*)&exposureTime5, sizeof(exposureTime5));
 if(calibrationMode)
 ImageFileParams.pwchFileName =
 L"images\\Calibration\\image4_610nm.png";
 else
 ImageFileParams.pwchFileName = L"images\\image4_610nm.png";
 nRet = is_ImageFile(m_hCam, IS_IMAGE_FILE_CMD_SAVE, (void*)&ImageFileParams,
 sizeof(ImageFileParams));
 counter++;
 break;
 case(5):
 if(calibrationMode)
 ImageFileParams.pwchFileName =
 L"images\\Calibration\\image5_880nm.png";
 else
 ImageFileParams.pwchFileName = L"images\\image5_880nm.png";
 nRet = is_ImageFile(m_hCam, IS_IMAGE_FILE_CMD_SAVE, (void*)&ImageFileParams,
 sizeof(ImageFileParams));
 // stop the measurement timer (since this was the last picture)
 KillTimer(measTimer);
 // reset debouncing
 debouncing = true;
 // reset counter
 counter = 0;
 if(calibrationMode)
 {
 // open an instance of analyze window
 OnBnClickedAnalyze();
 // create the stamp
 analysisWindow->createStamp();
 }
 break;
 default:
 // if something goes wrong, this default statement will reset everything.
 KillTimer(measTimer);
 debouncing = true;
 counter = 0;
 break;
 }
}

10.3.1.4 Analyze button

This method will be called when the user clicks the Analyze button. It will create a new instance of
the Analysis class. After an error check it can be displayed. At the end it gets the patient
informations and intializes the window.

void CIdsSimpleLiveDlg::OnBnClickedAnalyze()
{
 // Create new instance of Analysis Window
 analysisWindow = new Analysis(this);
 if(analysisWindow != NULL)
 {
 // Create analysis Window, return error if necessary
 BOOL ret = analysisWindow->Create(IDD_ANALYSIS, this);
 if(!ret)
 {
 AfxMessageBox(_T("Error creating Dialog"));
 }
 // Display Analysis Window

HES-SO Valais / Michael Schmid

09.07.2014 42

 analysisWindow->ShowWindow(SW_SHOW);
 }
 getPatientInfo();
 analysisWindow->initAnalysis(patientInfoStr, lastnameStr, prenameStr, false);
}

10.3.1.5 Get patient informations

This rather simple method will take the patient informations out of the textBoxes and combine them
to one CString named 'patientInfoStr'. The string then can be accessed from the Analysis Class.

void CIdsSimpleLiveDlg::getPatientInfo()
{
 CString streetStr;
 CString cityStr;
 // Get prename from Editbox to String
 CEdit * prenameEdit;
 prenameEdit = reinterpret_cast<CEdit *>(GetDlgItem(IDC_PRENAME));
 prenameEdit->GetWindowTextA(prenameStr);
 // Get last name from Editbox to String
 CEdit * lastnameEdit;
 lastnameEdit = reinterpret_cast<CEdit *>(GetDlgItem(IDC_LASTNAME));
 lastnameEdit->GetWindowTextA(lastnameStr);
 // Get street from Editbox to String
 CEdit * streetEdit;
 streetEdit = reinterpret_cast<CEdit *>(GetDlgItem(IDC_STREET));
 streetEdit->GetWindowTextA(streetStr);
 // Get city from Editbox to String
 CEdit * cityEdit;
 cityEdit = reinterpret_cast<CEdit *>(GetDlgItem(IDC_CITY));
 cityEdit->GetWindowTextA(cityStr);

 // Combine all Strings to final Patient info String
 patientInfoStr = prenameStr + "\r\n" + lastnameStr + "\r\n" + streetStr + "\r\n" +
cityStr + "\r\n";
}

10.3.1.6 Settings button

Works exactly like OnBnClickedAnalyze(). Opens the Settings Window.

void CIdsSimpleLiveDlg::OnBnClickedSettings()
{
 // Create new instance of Settings Window
 settingsWindow = new Settings(this, this);
 if(settingsWindow != NULL)
 {
 // Create analysis Window, return error if necessary
 BOOL ret = settingsWindow->Create(IDD_SETTINGS, this);
 if(!ret)
 {
 AfxMessageBox(_T("Error creating Dialog"));
 }
 // Display Analysis Window
 settingsWindow->ShowWindow(SW_SHOW);
 }
}

HES-SO Valais / Michael Schmid

09.07.2014 43

10.3.1.7 Load settings

This method opens the settings textfile in the Parameters folder to get the given exposure times. It

will take the first line, and then gets value after value.

HINT! The counter has to be absolutely specific about the amount of values to get. Otherwise it
would read uninitialized values out of the textfile which would result in unreadable gibberish.

void CIdsSimpleLiveDlg::loadSettings()
{
 // open settings textfile
 ifstream inData;
 string fileLine;
 inData.open("Parameters//settings.txt");
 int counter = 0;
 // get first line of textfile
 getline(inData, fileLine);
 istringstream iss(fileLine);
 // go trough the textfile
 while (iss)
 {
 // get each number...
 double n;
 iss >> n;
 if(counter < 5)
 {
 // ... and assign it to the appropriate exposure time
 switch(counter)
 {
 case(0): exposureTime1 = n;
 break;
 case(1): exposureTime2 = n;
 break;
 case(2): exposureTime3 = n;
 break;
 case(3): exposureTime4 = n;
 break;
 case(4): exposureTime5 = n;
 break;
 default:
 break;
 }
 }
 // the counter is needed to restrict the region. So just the needed numbers
 are loaded.
 counter++;
 }
 // close textfile
 inData.close();
}

10.3.1.8 Next button

This is the shortcut button for quick measurements without opening the Analysis Window. Since
the Analysis is needed to make the optimisations and measurements, this method will create an
instance of Analysis, without displaying it. It will then get the patient informations, intitialize the
window, make a melanin and blood analysis, and finally save the calculated results. At the end it
will close the instance. If the user activated the quickResult checkbox, it will display the results of
the melanin and blood analysis.

HES-SO Valais / Michael Schmid

09.07.2014 44

void CIdsSimpleLiveDlg::OnBnClickedNext()
{
 // create a new Analysis instance
 analysisWindow = new Analysis(this);
 if(analysisWindow != NULL)
 {
 // Create Analysis Window, return error if necessary
 BOOL ret = analysisWindow->Create(IDD_ANALYSIS, this);
 if(!ret)
 {
 AfxMessageBox(_T("Error creating Dialog"));
 }
 // In this case: dont display Analysis Window
 //analysisWindow->ShowWindow(SW_SHOW);
 }
 getPatientInfo();
 // intitialize the analysis
 analysisWindow->initAnalysis(patientInfoStr, lastnameStr, prenameStr, true);
 // make melanin and blood analysis
 analysisWindow->melaninAnalysis();
 // close the windows
 analysisWindow->bloodAnalysis();
 if(!quickResult)
 {
 analysisWindow->OnBnClickedMelaninclose();
 analysisWindow->OnBnClickedBloodclose();
 }
 analysisWindow->OnBnClickedBtnClose();
}

10.3.2 Analysis

The images on their different stages are the core of this Class. For the use with OpenCV they are
accessible in [Mat] format. This little overview should help to not confuse them. The images are

always stored in an array, where the indexation works like this:

 index[0] = 390nm image

 index[1] = 470nm image

 index[2] = 520nm image

 index[3] = 610nm image

 index[4] = 880nm image

 Mat calibrationArray[5]: The calibration images are stored in this array. They have
nothing to do with the other arrays and work completely independent.

 Mat imgArray[5]: This array contains the raw data. The first taken pictures, without any
changement.

 Mat gainArray[5]: After the gain adjustment, the imgArray will be stoder here.

 Mat finalArray[5]: This array contains the gainArray, but without the reference regions on
the left and the right, since they are cut away.

 Mat homogenityArray[5]: Contains the finalArray after a homogenity adjustment.

 Mat smallImgArray[5]: Due to performance isussues, the melanin analysis will be made
with just a 10th of the actual size. So the smallImgArray contains either the finalArray, or
the homogenityArray with a much smaller size.

 Mat resultArray[5]: Contains the calculated results. on index 0 and 1 the melanin results,
on index 2 the blood result.

HES-SO Valais / Michael Schmid

09.07.2014 45

10.3.2.1 Init Analysiy

This method will be called on the very beginning, when the instance of Analysis is created. First it
will get the patient informations, and then all the images are loaded into the imgArray. Next is the

gain adaption, and depending on the homogenityMode it will make a homogenity adjustment.

With the homogenityadjusted parameter the program knows if it should use the finalArray or the

homogenityArray for further operations.

void Analysis::initAnalysis(CString patientInfo, CString lastnameStr, CString prenameStr,
bool homogenityMode)
{
 // incur patient Informations
 CEdit * display;
 display = reinterpret_cast<CEdit *>(GetDlgItem(IDC_EDIT1));
 display->SetWindowText(patientInfo);
 prename = prenameStr;
 lastname = lastnameStr;
 homogenytyadjusted = false;

 // get all images in Array
 imgArray[0] = imread("images\\image1_390nm.png", CV_LOAD_IMAGE_GRAYSCALE);
 imgArray[1] = imread("images\\image2_470nm.png", CV_LOAD_IMAGE_GRAYSCALE);
 imgArray[2] = imread("images\\image3_520nm.png", CV_LOAD_IMAGE_GRAYSCALE);
 imgArray[3] = imread("images\\image4_610nm.png", CV_LOAD_IMAGE_GRAYSCALE);
 imgArray[4] = imread("images\\image5_880nm.png", CV_LOAD_IMAGE_GRAYSCALE);

 // rectangle for calibration region removal
 Rect rec = Rect(imgArray[0].cols/4, 0, (imgArray[0].cols)/2, (imgArray[0].rows));
 for(int i=0; i<5; i++)
 {
 // tweak all gains to optimal setting
 gainArray[i] = adaptGain(imgArray[i]);

 // remove the calibration region
 finalArray[i]=gainArray[i](rec);

 // adjust homogenity
 if(homogenityMode)
 {
 homogenityArray[i] = adjustHomogenity(finalArray[i], i,
 HOMOGENITYFACTOR, 0);
 }
 }
}

10.3.2.2 Set gain

The setGain method convinces with its simplicity. It takes an image, and returns the result after it
calculated the factor and offset of every pixel.

Mat Analysis::setGain(Mat image, double alpha, int beta)
{
 // create new image
 Mat new_image = Mat::zeros(image.size(), image.type());
 // calculate new gain of every single pixel
 for(int y = 0; y < image.rows; y++)
 {
 for(int x = 0; x < image.cols; x++)
 {
 // set the new gain
 new_image.at<uchar>(y,x) = saturate_cast<byte>(

HES-SO Valais / Michael Schmid

09.07.2014 46

 alpha*(image.at<byte>(y,x)) + beta);
 }
 }
 return new_image;
}

10.3.2.3 Adapt gain

In this method the needed gain will be calculated with help of the reference regions, to ultimately
adapt it with the setGain method. The key of this method are the two rectangles Rect: rec1 and rec2,
which will take exactly the wanted areas out of the reference regions in the image. For further
informations see 5.2.1.2 Even out the images with gain adaption.

The limits for the waring message are defined in the Analysis.h fie:

#define DEVIATIONMIN 0.8
#define DEVIATIONMAX 1.2

Mat Analysis::adaptGain(Mat img)
{
 double val1 = 0;
 double val2 = 0;
 double avgVal1;
 double avgVal2;
 double avgValTotal;
 double neededGain;
 Mat calibrationImg = img;
 // get roi (region of interest)
 Rect rec1 = Rect((img.cols)/8+10, (img.rows)/3, (img.cols)/10, (img.rows)/5);
 Mat roi1(img, rec1);
 for(int y = 0; y < (roi1.rows/2); y++)
 {
 for(int x = 0; x < roi1.cols; x++)
 {
 val1 += roi1.at<uchar>(x,y);
 }
 }
 //calculate the avarage value of the region
 avgVal1 = val1/(roi1.cols*(roi1.rows/2));
 // draw first calibration region rectangle
 rectangle(calibrationImg, rec1, Scalar(0, 255, 0), 1, 8, 0);
 //get second roi (region of interest)
 Rect rec2 = Rect((img.cols)*6/8+20, (img.rows)/3+20, (img.cols)/10, (img.rows)/5);
 Mat roi2(img, rec2);
 for(int y = 0; y < (roi2.rows/2); y++)
 {
 for(int x = 0; x < roi2.cols; x++)
 {
 val2 += roi2.at<uchar>(x,y);
 }
 }
 // calculate the avarage value of the second region
 avgVal2 = val2/(roi2.cols*(roi2.rows/2));
 // draw second calibration region rectangle
 rectangle(calibrationImg, rec2, Scalar(0, 255, 0), 1, 8, 0);
 // give out warning if values vary too much
 if(avgVal1/avgVal2 < DEVIATIONMIN || avgVal1/avgVal2 > DEVIATIONMAX)
 {
 AfxMessageBox(_T("Uneven lighting! \nPlease ensure the LED's work properly,
 and no external light is disturbing the measurement!", MB_ICONEXCLAMATION));
 }
 // calculate the result

HES-SO Valais / Michael Schmid

09.07.2014 47

 avgValTotal = (avgVal1 + avgVal2)/2;
 // calculate the needed gain to bring the reference region into saturation
 neededGain = 255/avgValTotal;
 //get new gain for the image
 Mat resultImage = setGain(img, neededGain, 0);

 //imshow("img", calibrationImg);
 return resultImage;
}

10.3.2.4 Create stamp

This method will create the stamps, which includes the needed correction values for a homogenity
adjustment. Each image will get its own textfile stamp, saved in the Parametsrs/stampX.txt. Please
notice that also in this case only a rectangle Rect without the reference regions is used. For more

information about the concept see 5.2.1.4 Create Stamp.

void Analysis::createStamp()
{
 char tempString[40];
 string stampDirectory;
 string imgDirectory;
 // calculate the size of the image
 double size = finalArray[0].rows*finalArray[0].cols;
 // sum and mean for every single image, initialized with 0
 double sum[5] = {0,0,0,0,0};
 double mean[5] = {0,0,0,0,0};
 double tempDouble = 0;
 // define the rectangle. Only this rectangle will be used for the adjustment!
 Rect rec = Rect(imgArray[0].cols/4, 0, (imgArray[0].cols)/2, (imgArray[0].rows));
 // go through all 5 images...
 for(int i = 0; i < 5; i++)
 {
 // chose fitting image and stamp
 switch(i)
 {
 case 0 :
 stampDirectory = "Parameters\\stamp390.txt";
 imgDirectory = "images\\Calibration\\image1_390nm.png";
 break;
 case 1 :
 stampDirectory = "Parameters\\stamp470.txt";
 imgDirectory = "images\\Calibration\\image2_470nm.png";
 break;
 case 2 :
 stampDirectory = "Parameters\\stamp520.txt";
 imgDirectory = "images\\Calibration\\image3_520nm.png";
 break;
 case 3 :
 stampDirectory = "Parameters\\stamp610.txt";
 imgDirectory = "images\\Calibration\\image4_610nm.png";
 break;
 case 4 :
 stampDirectory = "Parameters\\stamp880.txt";
 imgDirectory = "images\\Calibration\\image5_880nm.png";
 break;
 default:
 break;
 }
 //load image
 calibrationArray[i] = imread(imgDirectory, CV_LOAD_IMAGE_GRAYSCALE);
 // take the rectangle out of the image

HES-SO Valais / Michael Schmid

09.07.2014 48

 calibrationArray[i]=calibrationArray[i](rec);
 //Calculate the sum, preparing for average value (mean)
 for(int y = 0; y < calibrationArray[0].rows; y++)
 {
 for(int x = 0; x < calibrationArray[0].cols; x++)
 {
 tempDouble = calibrationArray[i].at<byte>(y,x);
 sum[i]+= tempDouble;
 }
 }
 // start the stream (open textfile)
 ofstream fout(stampDirectory);
 // calculate average value (mean)
 mean[i] = sum[i]/size;
 // write value of each pixel into textfile
 for(int y = 0; y < calibrationArray[0].rows; y++)
 {
 for(int x = 0; x < calibrationArray[0].cols; x++)
 {
 // correcture = value / mean
 tempDouble = (calibrationArray[i].at<byte>(y,x))/mean[i];
 sprintf(tempString, "%.2f ", tempDouble);
 fout << tempString;
 }
 fout <<endl;
 }
 fout.close();
 }
}

10.3.2.5 Adjust homogenity

The stamp textfile will be loaded, and used for the homogenity adjustment. It is again solved with
the ifstream, that reads line by line from the textfile. while(iss) means he reads until he reaches the

last line. Again the counter is really important, so only intended values will be processed. (See
5.2.1.5 Adjust the homogenity)

Mat Analysis::adjustHomogenity(Mat img, int i, double factor, int offset)
{
 // create a new empty image, filled with zeros
 Mat result = Mat::zeros(img.size(), img.type());
 // open textfile
 ifstream inData;
 string fileLine;
 // open the fitting stamp file
 switch(i)
 {
 case(0): inData.open("Parameters//stamp390.txt");
 break;
 case(1): inData.open("Parameters//stamp470.txt");
 break;
 case(2): inData.open("Parameters//stamp520.txt");
 break;
 case(3): inData.open("Parameters//stamp610.txt");
 break;
 case(4): inData.open("Parameters//stamp880.txt");
 break;
 default:
 break;
 }
 // do it for each row of the textfile...
 for(int y = 0; y < result.rows; y++)

HES-SO Valais / Michael Schmid

09.07.2014 49

 {
 double counter = 0;
 // get a line from textfile
 getline(inData, fileLine);
 istringstream iss(fileLine);
 // go through the line, and get a value
 while (iss)
 {
 double correction;
 iss >> correction;
 // get values, until the line is finished
 if(counter < result.cols)
 {
 double tempval;
 tempval = img.at<byte>(y,counter);
 // calculate the new value, with value/correction ... there is a
 *factor correcture to avoid saturation
 // factors around 0.8 seem to work pretty well
 result.at<byte>(y,counter) = (tempval/correction*factor +
 offset);
 }
 // the counter is used to stop reading when the line is finished!
 Otherwise it would read empty bytes
 counter++;
 }
 }
 // close the textfile
 inData.close();
 // sets fag, so the program knows now there are homogeny adjusted images aviable
 homogenytyadjusted = true;
 // reconstruct initial image
 return result;
}

10.3.2.6 Melanin analysis

This is the most important and sophisticated class. Please read 5.2.2.1 Melanin analysis carefully,
before you start working with this class.
Since the calculated factor is a double, the factorArray is needed. For convenient calculations also

the byte Array melaninArray is used. The analysis takes a 10 times narrowed image due to

performance issues. Feel free to experiment with Size sizeSmall() for better resolution, but mind the

time it will take. The first loop just resizes the image. The second loop creates the 5 images with
the ratio between measurement and melanin permeability function. The next two loops will
calculate the mean and the standard deviation Image.

void Analysis::melaninAnalysis()
{
 int counter = 0;
 // resize the images by factor 10
 byte melaninArray[5][1776];
 double factorArray[5][1776];
 Mat factorImage[5];
 // define the small size
 Size sizeSmall(finalArray[0].cols/10,finalArray[0].rows/10);
 for(int i=0; i<5; i++)
 {
 // init factoreImage Mat
 if(homogenytyadjusted)
 {
 // create small image array
 resize(homogenityArray[i],smallImgArray[i],sizeSmall);

HES-SO Valais / Michael Schmid

09.07.2014 50

 }
 else
 {
 // create small image array
 resize(finalArray[i],smallImgArray[i],sizeSmall);
 }
 factorImage[i] = Mat::zeros(smallImgArray[0].size(), smallImgArray[0].type());
 }
 int rows = smallImgArray[0].rows;
 int cols = smallImgArray[0].cols;
 for(int y = 0; y < rows; y++)
 {
 for(int x = 0; x < cols; x++)
 {
 for(int i=0; i<5; i++)
 {
 // put value into melaninArray
 melaninArray[i][counter] = smallImgArray[i].at<byte>(y,x);
 //calculate factor between melanin absorption function and actual
 pictures
 // then show it in images. white = good fit, black = bad fit.
 switch(i)
 {
 case 0:
 factorArray[i][counter] = melaninArray[i][counter] /
 melaninFunction(390);
 factorImage[i].at<byte>(y,x) =
 factorArray[i][counter]*128;
 break;
 case 1:
 factorArray[i][counter] = melaninArray[i][counter] /
 melaninFunction(470);
 factorImage[i].at<byte>(y,x) =
 factorArray[i][counter]*128;
 break;
 case 2:
 factorArray[i][counter] = melaninArray[i][counter] /
 melaninFunction(520);
 factorImage[i].at<byte>(y,x) =
 factorArray[i][counter]*128;
 break;
 case 3:
 factorArray[i][counter] = melaninArray[i][counter] /
 melaninFunction(610);
 factorImage[i].at<byte>(y,x) =
 factorArray[i][counter]*128;
 break;
 case 4:
 factorArray[i][counter] = melaninArray[i][counter] /
 melaninFunction(880);
 factorImage[i].at<byte>(y,x) =
 factorArray[i][counter]*128;
 break;
 default:
 break;
 }
 }
 counter++;
 }
 }

 // calculate the mean value
 Mat melaninMean = Mat::zeros(smallImgArray[0].size(), smallImgArray[0].type());

HES-SO Valais / Michael Schmid

09.07.2014 51

 for(int y = 0; y < rows; y++)
 {
 for(int x = 0; x < cols; x++)
 {
 double tempvalue = 0;
 for(int i=0; i<5; i++)
 {
 tempvalue+= factorImage[i].at<byte>(y,x);
 }
 melaninMean.at<byte>(y,x) = tempvalue/5;
 }
 }
 // resize, show and save image to results
 Size size(finalArray[0].cols,finalArray[0].rows);
 resize(melaninMean,melaninMean,size);
 imshow("melaninMean", melaninMean);
 resultArray[0] = melaninMean;

 // calculate the standard deviation value
 Mat melaninSD = Mat::zeros(smallImgArray[0].size(), smallImgArray[0].type());
 double arraySD[47][37];
 for(int y = 0; y < rows; y++)
 {
 for(int x = 0; x < cols; x++)
 {
 double tempvalue = 0;
 for(int i=0; i<5; i++)
 {
 double sum = smallImgArray[i].at<byte>(y,x) -
 melaninMean.at<byte>(y,x);
 tempvalue+= pow(sum, 2);
 }

 double StandardDeviation = sqrt(tempvalue/5);
 //arraySD[y][x] = sqrt(tempvalue/5);
 melaninSD.at<byte>(y,x) = sqrt(tempvalue/5);
 }
 }
 // resize, show and save image to results
 resize(melaninSD,melaninSD,size);
 imshow("melaninSD", melaninSD);
 resultArray[1] = melaninSD;
}

10.3.2.7 Melanin Function

This method will return the permeability value in function of the wavelength.

double Analysis::melaninFunction(double wavelength)
{
 double polynom1 = - 0.000000024257 * pow(wavelength, 4);
 double polynom2 = + 0.000054677 * pow(wavelength, 3);
 double polynom3 = - 0.046066 * pow(wavelength, 2);
 double polynom4 = + 17.699 * wavelength;
 double polynom5 = - 2525.4;
 double result = polynom1 + polynom2 + polynom3 + polynom4 + polynom5;
 return result;

}

HES-SO Valais / Michael Schmid

09.07.2014 52

10.3.2.8 Save measurements

Usually this method will be called when the user closes the Analysis window with "Save & Close".
First the current time has to be defined in a string. Then after creating all the folders, the different
images will be saved into their designated directory.

void Analysis::saveMeasurement()
{
 // get time and date
 struct tm *newtime;
 time_t long_time;
 time(&long_time); /* Get time as long integer. */
 newtime = localtime(&long_time); /* Convert to local time. */
 char timeStr[80];
 sprintf(timeStr,"%i-%i-%02i_%02i-%02i-%02i",(newtime->tm_year+1900), newtime->tm_mon,
 newtime->tm_mday, newtime->tm_hour, newtime->tm_min, newtime->tm_sec);
 CString theTime = timeStr;
 // Create define directories
 CString directory = "Measurements\\";
 CString patientFolder = directory + prename + (" ") + lastname;
 CString measFolder = patientFolder + ("\\") + theTime;
 CString rawDataFolder = measFolder + ("\\raw_data");
 CString optimizedFolder = measFolder + ("\\optimized");

 // Create the folders
 CreateDirectory(patientFolder,NULL);
 CreateDirectory(measFolder,NULL);
 CreateDirectory(rawDataFolder,NULL);
 CreateDirectory(optimizedFolder,NULL);

 // Save raw data
 string rawimg1 = rawDataFolder + ("\\image1_390nm.png");
 string rawimg2 = rawDataFolder + ("\\image2_470nm.png");
 string rawimg3 = rawDataFolder + ("\\image3_520nm.png");
 string rawimg4 = rawDataFolder + ("\\image4_610nm.png");
 string rawimg5 = rawDataFolder + ("\\image5_880nm.png");
 imwrite(rawimg1 , imgArray[0]);
 imwrite(rawimg2 , imgArray[1]);
 imwrite(rawimg3 , imgArray[2]);
 imwrite(rawimg4 , imgArray[3]);
 imwrite(rawimg5 , imgArray[4]);

 // Save the optimized images
 string optimg1 = optimizedFolder + ("\\390nm.png");
 string optimg2 = optimizedFolder + ("\\470nm.png");
 string optimg3 = optimizedFolder + ("\\520nm.png");
 string optimg4 = optimizedFolder + ("\\610nm.png");
 string optimg5 = optimizedFolder + ("\\880nm.png");
 imwrite(optimg1 , finalArray[0]);
 imwrite(optimg2 , finalArray[1]);
 imwrite(optimg3 , finalArray[2]);
 imwrite(optimg4 , finalArray[3]);
 imwrite(optimg5 , finalArray[4]);

 // save the result images
 string resultimg1 = measFolder + ("\\melanin_mean.png");
 string resultimg2 = measFolder + ("\\melanin_SD.png");
 string resultimg3 = measFolder + ("\\blood.png");
 imwrite(resultimg1 , resultArray[0]);
 imwrite(resultimg2 , resultArray[1]);
 imwrite(resultimg3 , resultArray[2]);
}

HES-SO Valais / Michael Schmid

09.07.2014 53

10.4 Tests

10.4.1 Melanin and hemoglobin tests

Following pictures will compare measurements from a rather brown, and a rather white skin. The
melaninMean clearly shows a noticeable difference. The white skin has a much brighter result.
Also an interesting observation of the first example is the vein, that was already detected from the
hemoglobin test. Even without a specific calibration.

HINT! Feel free to explore the Measurements folder of the software, it already contains quiet a few
example measurements from different volunteers.

HES-SO Valais / Michael Schmid

09.07.2014 54

10.4.2 Prove of melanin detection

10.4.2.1 Test 1: "skin colored" paper

Does the Device really detect melanin? Or can it be tricked with a skin-similar surface?
Following graph shows the melanin permeability curve, and the measurement of the
paper.

The graph shows that it is obviously a very bad match. Even a calibration factor would
change nothing. We just proven: There is probably no melanin in paper.

10.4.2.2 Test 2: Black plastic

One thing is for sure: The more melanin, the darker the skin. Is it possible to simulate a
malignant melanoma with black plastic?

Even after a tremendous boost of 300% the measurement hardly comes close to the
desired result. The black plastic just absorbs all the light.

Wavelength

Wavelength

Permeability

Permeability

HES-SO Valais / Michael Schmid

09.07.2014 55

10.4.2.3 Test 3: actual skin

Since i captured some sunbeams lately, there should be a little melanin aviable. So i
considered myself legitime as a test person. As is generally known, a picture says more
than a thousand words.

Please consider that the 610nm value initially wasn't even planned to participate in the
melanine measurement, since it has such a small impact. A gain of 2.0 was used.

10.4.2.4 Test 4: second skin test

Of course the first skintest could be just a lucky hit. So a second measurement, this time a
brighter sample, with probably less melanin took place. To show the melanin difference of
different tanning, the same gain of the first test was used.

Wavelength

Wavelength

Permeability

Permeability

HES-SO Valais / Michael Schmid

09.07.2014 56

10.5 Future extensions

10.5.1 Image acquisition

The current image acquisition is held very simple. A signal from the button will trigger both, the Pic
and the processor from the camera. They will then process their procedures without knowing about
each other. A communication between the two devices would allow the best possible
synchronisation. A sequence chart for a possible solution is shown in the following picture. Also it
would be possible to take all pictures at once in a very short time window, save them into the
camera buffer, and finally transmit them altogether. However, this complex extension only should
be implemented if a faster image acquisition is needed.

Analysis_Software

take_Pictures()

take_first_Picture()

take_first_Picture()

LED_Controller

With Synchronisation

Without Synchronisation

ect.

second LED

first LED

start_Illumination_Procedure()

Camera

start()

first_LED()

start()

first_LED_on()

first_LED_off()

first_LED_on_confirmation()

first_LED_on_confirmation()

first_LED_off_confirmation()

first_LED_off_confirmation()

confirmation()

confirmation()

first_LED_on()

first_LED_off()

confirmation()

first_LED()

confirmation()

start()

:user

pushButton()

pushButton()

SD_Measurement

Page 1 of 2

HES-SO Valais / Michael Schmid

09.07.2014 57

10.5.2 Data storage

Following relation model shows a possible solution for the Database. It pretty much contains the
important informations, so no further explanation is needed.The Current Doctor from the patient
table is his current family doctor, while the doctor in the Measurement table is the one who took the
measurement.

10.5.3 Analysis

10.5.3.1 blood analysis

The blood analysis is the first prototype for a oxy-deoxy hemoglobin detection. It devides the
610nm image by the 520nm image and saves it into the resultArray.

void Analysis::bloodAnalysis()
{
 Mat imgBlood = Mat::zeros(finalArray[0].size(), finalArray[0].type());;
 double bloodFactor;
 for(int y = 0; y < finalArray[0].rows; y++)
 {
 for(int x = 0; x < finalArray[0].cols; x++)
 {
 double tempvalue = 0;
 for(int i=0; i<5; i++)
 {
 //finalArray[3] = 610nm
 //finalArray[2] = 520nm
 // go trough the 520nm image, and divide it by the 610nm image
 double val520 = finalArray[2].at<byte>(y,x);
 double val610 = finalArray[3].at<byte>(y,x);
 bloodFactor = val520/val610;
 // since the factor value will be between 0 and 1, it is
 multiplied by 255 for display
 imgBlood.at<byte>(y,x) = bloodFactor*128;
 }

HES-SO Valais / Michael Schmid

09.07.2014 58

 }
 }
 // display image, and save it to results
 imshow("Hemoglobin, oxy/deoxy factor", imgBlood);
 resultArray[2] = imgBlood;
}

10.5.3.2 Outline analysis

This method is also just a prototype for a conture detection. It will need a few more filters, but can
be used as a basic for outline analysis. It is based on the "Sobel Derivatives" example on the

OpenCV page. I recommend a combination with "Tresholding Operations" to make the first step to a

proper conture detection.
Link : http://docs.opencv.org/doc/tutorials/imgproc/threshold/threshold.html#basic-threshold

void Analysis::outlineAnalysis()
{
 Mat grad;
 int scale = 1;
 int delta = 0;
 int ddepth = CV_16S;

 // get 390nm image
 Mat imgOutlineUV;
 imgOutlineUV = imread("images\\image1_390nm.png", CV_LOAD_IMAGE_COLOR);
 if(!imgOutlineUV.data)
 {
 AfxMessageBox(_T("No image found!", MB_ICONEXCLAMATION));
 }
 //reduce noise
 GaussianBlur(imgOutlineUV, imgOutlineUV, Size(3,3), 0, 0, BORDER_DEFAULT);

 //Calculate the derivatives
 Mat grad_x, grad_y;
 Mat abs_grad_x, abs_grad_y;
 // Gradient X
 Sobel(imgOutlineUV, grad_x, ddepth, 1, 0, 3, scale, delta, BORDER_DEFAULT);
 // Gradient Y
 Sobel(imgOutlineUV, grad_y, ddepth, 0, 1, 3, scale, delta, BORDER_DEFAULT);
 //convert partial results back to CV_8U
 convertScaleAbs(grad_x, abs_grad_x);
 convertScaleAbs(grad_y, abs_grad_y);
 // approximate the gradient by adding both directional gradients
 addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0, grad);
 // show result
 namedWindow("Outline analysis UV", CV_WINDOW_AUTOSIZE);
 imshow("Outline analysis UV", grad);
}

HES-SO Valais / Michael Schmid

09.07.2014 59

10.5.4 Developement tips

For researches you have to be rather specific about a MFC Application!
Most wind32 or CLI examples probably wont work!

There are always some warnings, complaining about double to byte transformation. Yes there is an
accuraty loss of 1/255 (0.0039) which should not matter too much.

Make sure to visit
http://docs.opencv.org/doc/tutorials/tutorials.html
for some good and fast informations about opencv.
Especially
http://docs.opencv.org/doc/tutorials/core/mat_the_basic_image_container/mat_the_basic_image_c
ontainer.html#matthebasicimagecontainer
is important since we work with [Mat] images a lot.

10.5.5 Contact informations

This project included a lot of professionals, helping to realise every specific part. This list contains
contact information for open questions about specific domains.

Person responsible:
Martial Geiser - Hes-so intern
martial.geiser@hevs.ch

Optics:
Frederic Truffer, Helene Strese - Hes-so intern
frederic.truffer@hevs.ch
helene.strese@hevs.ch

Electronics:
Olivier Walpen - Hes-so intern
olivier.walpen@hevs.ch

Mechanics/Casing:
Serge Amoos - Hes-so intern
serge.amoos@hevs.ch

Database:
Manfredo Atzori - Hes-so intern
manfredo.atzori@hevs.ch

Expert, Dermatology
Gianadda Elisabeth - Dr méd. dermatologue FMH
giabe@vtx

rue du Scex 4
1950 Sion
Tel. 027 322 11 44

Fax 027 322 11 45

Expert, FotoFinder
Christian Giradet - Director laser beate med
direction@laserbeautemed.ch

