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Abstract: Consider the moduli space Mg of Riemann surfaces of genus g ≥ 2 and its

Deligne-Munford compactificationMg. We are interested in the branch locus Bg for g > 2,

i.e., the subset ofMg consisting of surfaces with automorphisms. It is well-known that

the set of hyperelliptic surfaces (the hyperelliptic locus) is connected inMg but the set

of (cyclic) trigonal surfaces is not. By contrast, we show that for g ≥ 5 the set of (cyclic)

trigonal surfaces is connected inMg. To do so we exhibit an explicit nodal surface that lies

in the completion of every equisymmetric set of 3-gonal Riemann surfaces. For p > 3 the

connectivity of the p-gonal loci becomes more involved. We show that for p ≥ 11 prime

and genus g = p− 1 there are one-dimensional strata of cyclic p-gonal surfaces that are

completely isolated in the completion Bg of the branch locus inMg.

1. INTRODUCTION

For g ≥ 2, moduli space Mg is the set of conformal structures that one can put on a

closed surface of genus g. As a set it admits many structures and can naturally be given

an orbifold structure where the orbifold points correspond exactly to those surfaces with

conformal automorphisms. One way of seeing this structure is by seeing moduli space

through the eyes of Teichmüller theory. Teichmüller space is the deformation space of

marked conformal structures and is diffeomorphic to R6g−6 = C3g−3. From this, moduli

space can be seen as the quotient of Teichmüller space by the mapping class group, i.e, the

group of homeomorphisms of the surface up to isotopy, which naturally acts on Teichmüller

space via the marking and as such the mapping class group is the orbifold fundamental

group of the moduli space. The orbifold points of a moduli space appear when the surfaces

in question have self-isometries and the groups of self-isometries correspond to the finite

subgroups of the mapping class group. (In the genus 2 case this is not strictly correct because
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every surface is hyperelliptic, so orbifold points correspond to surfaces with additional

self-isometries.) An important step in understanding the topology, and in general, the

structures that moduli space carries, is in understanding these particular points. The set of

these points is generally called the branch locus and is denoted Bg.

With the exception of some low genus cases, Bg is disconnected [BCI1BCI1] and displays

all sorts of phenomena including having isolated points [KK]. The points of Bg can be

organized in strata corresponding to surfaces with the same isometry group and the same

topological action of the isometry groups on the surfaces [BB] . The closure of each strata

is an equisymmetric set. Each equisymmetric set is connected [NaNa], theorem 6.1 (see also

[MSMS]) and consists of surfaces with isometry group containing a given finite group with a

fixed topological action.

Furthermore, the set of Riemann surfaces that are Galois coverings of the Riemann sphere

with a fixed Galois group is a union of equisymmetric sets and corresponds to the loci of

algebraic curves that admit a determined algebraic expression. The most simple case is the

(cyclic) p-gonal locus which is the set of points inMg corresponding to Riemann surfaces

that are p-fold cyclic coverings of the Riemann sphere. These are called cyclic p-gonal

Riemann surfaces and in the case where p is prime, having a p-gonal Galois covering is

equivalent to being cyclic p-gonal. From the algebraic curve viewpoint these surfaces are

those corresponding to an equation of type

yp = Q(x)

where Q is a polynomial. Note that if the p-gonal locus is connected it is possible to

continuously deform any cyclic p-gonal curve to other one keeping the p-gonality along

the deformation (see [SeSoSeSo]).

The first result in this direction was to show the connectivity of the hyperelliptic locus [NaNa]

, i.e., the set of surfaces invariant by a conformal involution with quotient a sphere. Note

that as a subset of Teichmüller space it is disconnected. From the algebraic curve viewpoint

these surfaces are those corresponding to an equation of type

y2 = Q(x)

where Q is a polynomial. In contrast, cyclic trigonal surfaces, i.e., surfaces with an auto-

morphism of order 3 whose quotient is a sphere, are known to form disconnected loci of Bg

(see [BSSBSS]). These surfaces this time correspond to surfaces with an equation of type

y3 = Q(x).
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As p increases, the behaviors of the corresponding p−gonal loci become more exotic. For

instance one can even find one (complex) dimensional equisymmetric sets consisting of

p-gonal surfaces and completely isolated inside Bg, the first example of this being equisym-

metic sets of 11-gonal surfaces in genus 10 [CI2CI2]. More generally, the connectivity of the

branch locus for different types of group actions and properties of equisymmetric sets have

been well studied and we refer the interested reader to [BCIPBCIP], [BCI1BCI1],[BCI2BCI2],[BCI3BCI3],[BIBI],

[BSSBSS], [CI3CI3], [SeSe].

In this paper we turn our attention to the Deligne-Mumford compacitification Mg of

moduli space which is obtained by adding so-called nodal surfaces. From the hyperbolic

viewpoint, these are surfaces where a geodesic multicurve has been pinched to length

0. From the viewpoint of algebraic curves, deformations correspond to variation in the

coefficients or roots of the polynomials and these nodal surfaces correspond to algebraic

curves with singularities.

Our first point of focus is on the connectivity of the cyclic trigonal locus described above

but this time inMg. Our main result is the following.

Theorem 1.1. For g ≥ 5, there is an explicit nodal surface that lies in completion of all the
equisymmetric sets in the 3-gonal locus. In particular, the set of (cyclic) trigonal surfaces is
connected inMg.

Because there is a single surface that connects all of the equisymmetric sets, from the

equation viewpoint this implies that any two cyclic trigonal equations can be deformed

continuously from one to the other, where one allows the passage through at most one

nodal surface.

In light of the above one might expect that this type of phenomena continues to occur for

higher order cyclic p-gonal surfaces but in fact this fails in general. To show this we restrict

our attention to 1-dimensional cyclic p-gonal strata in genus g = p− 1 for p prime. The

connectivity already fails for 4−gonal locus but this is less telling as the non-primality of 4

induces different phenomena.

We show that already for p = 5, one connected component of the cyclic 5-gonal locus in

genus 4 continues to be disconnected at the boundary. We generalize this to higher genus

to obtain the following.

Theorem 1.2. For p ≥ 11 prime, there are completely isolated one-dimensional strata in Bp−1

corresponding to cyclic p-gonal surfaces.

Note that the techniques we use are not specific to p ≥ 11 but for lower genus there aren’t
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any isolated one dimensional strata inMg let alone its completion.

Organization.

The article is organized as follows. We begin with a section of preliminaries which includes

well known results and certain basic lemmas we will need in the sequel. We then prove the

connectivity of cyclic trigonal surfaces in the compactification. The last section deals with

cyclic p−gonal surfaces in genus p− 1.
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2. PRELIMINARIES

Let f : S → Ĉ be an l-fold branched covering and let {b1, . . . , br} be the set of branched

points. Let o be a point in Ĉ \ {b1, . . . , br} and assume f−1(o) = {o1, . . . , ol}.

We define the monodromy ω f of f as a map

ω f : π1(Ĉ \ {b1, . . . , br}, o)→ Σl = P{1, . . . , l}

as follows. Let y = [ν] ∈ π1(Ĉ \ {b1, . . . , br}, o), where ν is a loop based in o. Now ω f (y) is

a permutation on {1, . . . , l} which takes u ∈ {1, . . . , l} to v ∈ {1, . . . , l} (i.e. ω f (y)(u) = v)

if the lift ν̃ of ν with origin in ou finishes in ov.

O1 OlOu
Ov

O

υ̃

υ

Figure 1: An illustration of υ̃ for a simple loop υ

We call xi ∈ π1(Ĉ \ {b1, . . . , br}, o) a meridian of a branch point bi if it is represented by a
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simple loop ξi based at o that bounds a disk which contains bi and none of the other branch

points.

b1

bi

bv

ξi

Figure 2: The loop ξi corresponding to the meridian xi

Meridians will be useful in the sequel as they are natural generators of the fundamental

group π1(Ĉ \ {b1, . . . , br}, o) and monodromy representations are entirely determined by

which permutation one associates to these elements. Specifically a set x1, . . . , xr is said

to be a canonical set of generators of π1(Ĉ \ {b1, . . . , br}, o) if the xi are all meridians and

π1(Ĉ \ {b1, . . . , br}, o) admits the following group presentation:

< x1, . . . , xr | x1 . . . xr = 1 > .

One fact we will use regularly is that there is a lower bound on the length of closed geodesics

that pass through fixed points of automorphisms provided the automorphism has order

> 2. More specifically we have:

Lemma 2.1. Let S be a hyperbolic surface and h an automorphism of S of order d > 2. Then there
exists a constant Cd > 0 such that every closed geodesic γ that passes through at least one fixed
point of h satisfies

`(γ) > Cd.

Furthermore one can take Cd ≥ 2 arccosh 1
sin 2π

d
.

Proof. Consider O := S/ < h > is an orbifold and γ projects to a closed geodesic γ′ on

S/ < h > which passes through an orbifold point of order d and satisfies

`(γ) ≥ `(γ′).
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Now by the collar theorem on orbifold surfaces [DPDP], the length of any geodesic segment

that passes through the collar is at least

arccosh
1

sin 2π
d

which gives the lower bound on the length of γ.

A slightly more general lemma is indeed true but this is sufficient for our purposes.

3. THE TOPOLOGY OF THE BRANCH LOCUS OF CYCLIC TRIGONAL SURFACES

Definition 3.1. A trigonal surface is a Riemann surface S such that there exists a 3-fold

covering from S to the Riemann sphere Ĉ. The morphism f : S→ Ĉ is called the trigonal

morphism. If the covering is regular, the surface is said to be cyclic trigonal.

One can express that a surface is 3-gonal in terms of the monodromy [STST]:

Proposition 3.2. f : S → Ĉ is cyclic trigonal if and only if the monodromy representation is as
follows:

ω f : π1(Ĉ \ {b1, . . . , br}, o) → Σ3

xi 7→ (1, 2, 3) or (1, 3, 2)

We’re interested in the case where are surfaces that can be endowed with a hyperbolic

metric, thus we suppose that the genus g of the surfaces is ≥ 2. In this case, the surfaces

admit a characterization in terms of Fuchsian groups.

Proposition 3.3. S is cyclic trigonal if and only if there exists a Fuchsian group Φ of signature

(0,
r

[3, . . . , 3]) and an epimorphism θ : Φ→ C3 such that S = H/ ker(θ) and such that θ(x) 6= 1

for each x elliptic in Φ.

Consider x1, . . . , xr a canonical set of generators of π1(Ĉ \ {b1, . . . , br}, o), i.e. π1(Ĉ \
{b1, . . . , br}, o) admits the following group presentation:

< x1, . . . , xr | x1 . . . xr = 1 > .

Now the permutation t := (1, 2, 3) generates C3 as subgroup of Σl = P{1, 2, 3} and

ω f (xi) = t or t−1 for each i. We denote by m+ the number of generators sent to t and by

m− the number of generators sent to t−1 (by ω).
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The quantities m+ and m− satisfy the following equalities:

m+ + m− = r = g + 2 (1)

and

m+ + 2m− ≡ 0 mod 3. (2)

The first equality is just by definition and the second comes from the equality in C3 given

by

ω(x1 . . . xr) = idC3

from which it follows that

tm++2m− = idC3 .

The following proposition due to Nielsen says that m+ determines the morphisms topolog-

ically [NiNi].

Proposition 3.4. Two cyclic trigonal morphisms f1 : S1 → Ĉ and f2 : S2 → Ĉ are topologically
equivalent if and only if m+(S1, f1) = m+(S2, f2).

LetMm+=k
g be the set of points inMg corresponding to cyclic trigonal surfaces (S, f ) with

topological type given by m+(S, f ) = k.

Proposition 3.5 (Consequence of [NaNa] and [GG]). For all k,Mm+=k
g is connected and if k 6= k′

Mm+=k
g ∩Mm+=k′

g = ∅.

We can now state our first theorem.

Theorem 3.6. Let I = {k | Mm+=k
g 6= ∅}. Then⋂

k∈I

Mg
m+=k 6= ∅.

Note that this theorem can be also be deduced using computations in [APAP, Prop. 2.11],

although here we shall give a complete proof in terms of hyperbolic structures on Riemann

surfaces.

To prove the theorem we shall show the existence of an explicit nodal surface that belongs

to the completion of each of the strata. To construct this surface we need the following

lemma which guarantees the unicity of specific punctured surfaces which will serve as

building blocks of our nodal surface.
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Lemma 3.7. Up to isometry, there are unique (and distinct) hyperbolic complete finite area surfaces
that satisfy the following properties:

1. Q is a once punctured torus with an isometry of order 3,

2. α is a twice punctured torus with an automorphism of order 3 with 2 fixed points,

3. X is a 4 times punctured sphere with one automorphism of order 3 with one fixed point.

Proof. Case 11 is just the well known fact that the so-called modular torus is the unique

punctured torus with an automorphism of order 3. The conformal automorphism of order

3 has 3 fixed points, just choose one of them to remove and obtain a cusp (note there are

isometries in that torus interchanging the three fixed points).

The surface α is obtained by considering the unique hyperbolic torus with two cusps in

the conformal class of the modular torus with two of the fixed points removed and which

become cusps.

Now consider a pair of pants with three cusps as boundary. It clearly has an automorphism

of order three which rotates the cusps and has 2 fixed points. X is the unique hyperbolic

surface one obtains by removing one of the fixed points to obtain a cusp. Uniqueness is

again guaranteed by the uniqueness of the conformal class of a thrice punctured pair of

pants.

Proof of Theorem 3.63.6. We begin by endowing S with a hyperbolic metric. Then S admits an

automorphism h of order 3 such that S/ < h > is a hyperbolic orbifold of genus 0.

The construction of our nodal surface will be algorithmic and we begin by considering a

specific pants decomposition of S/ < h > where the boundaries of pants are either simple

closed geodesics or branched points.

Let B be the set of branched points {b1, . . . , br}. Let ω f : π1(Ĉ \ {b1, . . . , br}, o)→ Σ3 be the

monodromy of f : S→ S/ < h >= Ĉ.

Now B = B+ ∪ B− where B+ (resp. B−) is the subset of B consisting of points bi such that

ω f (xi) = t (resp. ω f (xi) = t−1).

We are going to arrange a maximum number of points of B into triples where each triple

lies in a Bi. Specifically let T := b #B+
3 c+ b

#B−
3 c. And set {bk

1, bk
2, bk

3}T
k=1 so that

{bk
1, bk

2, bk
3} ⊂ Bi

and each b ∈ B lies at most one triple.
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Initial step

We now construct a first pair of pants. Consider disjoint simple closed geodesics γ1
1, γ1

2

such that γ1
1, b1

1, b1
2 and γ1

1, γ1
2, b1

3 are the boundaries of embedded pairs of pants. (There are

infinitely many choices for such curves.)

b1
1 b1

2 b1
3

γ1
1 γ1

2

Figure 3: The curves γ1
1 and γ2

1

General step

Now for k ∈ {2, . . . , T} we construct simple closed geodesics γk
1, γk

2, γk
3, belonging to the

portion of S/ < h > from which we have removed the pants constructed previously, with

the following properties:

γk−1
3 , γk

1, bk
1;

γk
1, γk

2, bk
2

and

γk
2, γk

3, bk
3

are the boundary curves of embedded pairs of pants. (Again there are many choices for

these curves.)

bk
1 bk

2 bk
3

γk−1
3 γk

1 γk
2 γk

3

Figure 4: The general step

Recall that m+ and m− satisfy equations 11 and 22. As such there are 3 cases to consider

depending on the number of branch points that do not belong to the pants we have
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constructed. Following equation 22, we have

m+ ≡ m− mod 3

and thus the number of points is either 0, 2 or 4, and the number of remaining points from

B− is the same as the number from B+.

- If there are none, then note that the final 2 curves of our pants decomposition were in fact

trivial.

- Suppose we have 1 in both B+ and B− (say b and b̃: then the set of curves we have

constructed form a full pants decomposition of S/ < h > and the final pair of pants is

γT
3 , b, b̃.

- Suppose we have 2 in both B+ and B− (say b1, b2 ∈ B+, b̃1, b̃2 ∈ B−). Consider disjoint

curves γ, γ̃ such that γT
3 , γ, b1 and γ̃, b̃1, b̃2 form pants. These curves form a final pair of

pants γ, γ̃, b2.

We are now ready to construct our nodal surface. We claim that by pinching the curves

of our pants decomposition on S/ < h > and lifting via h we obtain a unique surface,

independently of the monodromies of the points b1, . . . , br we began with.

We begin by lifting the first pair of pants: by construction the two branched points have

the same monodromy and as such, the curve γ1
1 lifts to a unique simple closed geodesic

invariant by the isometry. Now by Riemman-Hurwitz, this implies that the lift of the pair

of pants is a one holed torus with an isometry of order 3. When we pinch γ1
1 to length 0, in

light of lemma 3.73.7, the one holed torus becomes the modular torus Q.

Now we lift the pair of pants with boundaries γ1
1, b1

3, γ1
2. The points b1

1, b1
2, b1

3 all the have

the same monodromy. If we think of γ1
2 as being an element of π1(Ĉ \ {b1, . . . , br}, o) (by

giving it an orientation and chosing the point o suitably) then it in light of this, it would

be sent by ω f to idΣ3 . As such it lifts to three distinct curves on S. The lift of the pair of

pants with boundaries γ1
1, b1

3, γ1
2 has 4 boundary curves on S and by Riemann-Hurwitz is

has genus 0. As such we obtain a four holed sphere with an autorphism of order 3 with 1

fixed point. Again by pinching the curves, this subsurface lifts to X.

Now we argue similarly for each subsequent sequence of three pairs of pants. After

pinching these lift to X, α and X. (The α appears because via Riemann-Hurwitz and the

monodromy, the second pair of pants lifts to a two holed torus with an automorphism of

order 3 and two fixed points. In light of lemma 3.73.7, by pinching the subsurface is α.)

As such the lift of our surface is

Q + X + (X + α + X) + · · · ...
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where we somewhat loosely denote by + a type of “stable” sum of surfaces as in the

following figure.

Q X X α X

Figure 5: The beginning of the lift

There are three cases to consider, depending uniquely on properties of the number g (or

equivalently r).

Case 1: r ≡ 0 mod 3

In this case, after obtaining in the lift Q + X we have lifted T− 2 copies of X + α + X. There

is now a final triple of branch points with the same monodromy and the curve γ1
1 surrounds

two of the branch points to form a pair of pants. As in the initial lift, this pair of pants lifts

to Q. The surface then ends with X + Q. The final surface is (in our loose notation)

Q + X + ∑
T−2

(X + α + X) + X + Q.

Case 2: r ≡ 1 mod 3

Arguing similarly we obtain in this case

Q + X + ∑
T−1

(X + α + X) + X + α + Q.

Case 3: r ≡ 2 mod 3

Arguing similarly we obtain in this case

Q + X + ∑
T−1

(X + α + X) + Y

where by Y we mean the unique hyperbolic thrice punctured sphere. These cases are

illustrated in figure 66.

4. ONE DIMENSIONAL CYCLIC p-GONAL LOCI FOR PRIME p > 3

In light of the above, the incurable optimist might believe that the set of cyclic p-gonal

surfaces for p prime is always connected in the completion of moduli space. In this section
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X + Q

X + α + Q

Y

Figure 6: The full surface with the three possible end cases

we show that this fails in general.

Recall that f : S→ Ĉ is a cyclic p-gonal covering if it is regular cyclic covering. We recall

the well-known characterization of such coverings in terms of monodromy.

Proposition 4.1. The covering f → Ĉ is a cyclic p-gonal covering if and only if there is a canonical
set of generators {x1, . . . , xr} with monodromy representation as follows:

ω f : π1(Ĉ \ {b1, . . . , br}, o) → Σp

xi 7→ (1, 2, . . . , p)ji , ji ∈ {1, 2, . . . , p− 1}.

In this case note that we have

r =
2g

p− 1
+ 2.

As the product of the generators is the identity we have:

r

∑
i=1

ji ≡ 0 mod p.

We now pass to a first example that will serve as a guide for what follows.

4.1. Cyclic 5-gonal surfaces in genus 4

Let g = 4. Following Nielsen, there are three topological types of cyclic 5-gonal coverings

of genus 4 surfaces. There are given by the monodromy types

ω f : π1(Ĉ \ {b1, . . . , b4}, o)→< t >⊂ Σ5

with t := (1, 2, 3, 4, 5) and with the property that the order of ω f (xi) is 5. These are given by

1. ω f (x1) = ω f (x2) = ω f (x3) = t and ω f (x4) = t2,
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2. ω f (x1) = ω f (x2) = t and ω f (x3) = ω f (x4) = t4,

3. ω f (x1) = t, ω f (x2) = t2, ω f (x3) = t3 and ω f (x4) = t4.

Note that this means that there are three topological types of cyclic 5-gonal surfaces, each

given by the monodromies specified above. It is a well known fact that they live in distinct

connected components of the (cyclic) 5-gonal locus inM4 (see [CI1CI1]). Specifically i = 1, 2, 3

each

Mi
4 := {S ∈ M4 | there exists a cyclic 5-gonal morphism f : S→ Ĉ of type i }

is connected with dimCMi
4 = 1 and that for i, j = 1, 2, 3

Mi
4 ∩M

j
4 = ∅

if i 6= j.

Our observation in this setup is the following:

Theorem 4.2.

M1
4 ∩M

j
4 = ∅

for j 6= 1 and
M2

4 ∩M
3
4 6= ∅

Proof. In this proof, we assume that our surfaces are endowed with their unique hyper-

bolic metrics. In particular the cyclic 5-gonal covering becomes an automorphism of the

hyperbolic metrics.

Assume that S ∈ Mj
4 \M4. Then there exists for k = 1, j sequences {S(k)

i ∈ M4} → S.

Denote µ
(k)
i ⊂ Si the multicurve whose length approaches 0 as i→ ∞.

If we denote a(k)i the cyclic 5-gonal automorphism of S(k)
i , the multicurves µ

(k)
i must be

a(k)i -invariant. In particular, it is important to observe that µ
(k)
i is the lift of a simple closed

geodesic on S(k)
i / < a(k)i >. This follows from the fact that µ

(k)
i descends on S(k)

i / < a(k)i >

to a connected curve whose length must also go to 0 and by Lemma 2.12.1, this curve cannot

pass through the fixed points of order 5.

There are three different topological types of simple closed geodesics on an orbifold of

genus 0 with 4 points of order 5 (the quotients S(k)
i / < a(k)i > are all of this type). Observe

that there is a unique genus 0 hyperbolic orbifold with one cusp and two orbifold points of

order 5. As such, there are at most three possible stable surfaces (up to isometry) in each

M(k)
4 \M4. We will describe these surfaces for each stratum.
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Each simple closed geodesic on a S(k)
i / < a(k)i > surrounds two orbifold points on one side

and two on the other. Once we pinch, we obtain pants with two orbifold points and a cusp.

We are interested in the isometry types of surfaces that these pants lift to. Their isometry

types are clearly determined by the monodromies but also clearly different monodromies

can lift to isometric pieces. For instance, if the two monodromies are t, t or t−1, t−1, then the

pants lift to isometric pieces. We claim that the pants can lift to exactly three isometrically

distinct surfaces:

Case 1: {t, t}, {t−1, t−1}

In this case we get a genus 2 surface with one cusp with an automorphism of order 5 with

two fixed points with the same rotation index. Forgetting the cusp, this is a conformally the

unique genus 2 surface with a conformal automorphism of order 5. We denote this surface

by P1.

Case 2: {t, t2}, {t, t3}, {t2, t4}, {t3, t4}

In this case we get a genus 2 surface with one cusp with an automorphism of order 5 with

two fixed points but with the different rotation indices. Note that although this surface is

conformally equivalent to the one in the previous case when one forgets the cusp, they are

not isometric as the topological types of the coverings are different, and a result by [GG] tells

us that there is only one topological type of cyclic coverings from a given surface of genus

2 to the sphere. We denote this surface by P2.

Case 3: {t, t−1} = {t, t4}, {t2, t3}

In this case, we obtain a sphere with 5 cusps with an automorphism of order 5 with two

fixed points and which permutes the cusps. We denote this surface by P3.

Let us pause for a moment to consider the geometries of P1, P2 and P3. They can be

constructed as follows. Consider the unique regular hyperbolic ideal pentagon. (In figures

77 we have schematically drawn this pentagon as Euclidean.) Now paste two copies along a

common edge “without” shearing, i.e, such that the geodesic between the two centers of

the pentagons meets the common edge at a right angle. This gives an octogon. All three

surfaces can now be obtained by pasting the octogon in different ways as illustrated in the

figures. The fact that these are indeed the correct surfaces follows from the fact that they

have the appropriate isometry groups which descend to the pants with the appropriate

monodromies and by the uniqueness arguments outlined above.

We now look at which surfaces can lie on the boundary of the different strata.

For M1
4 there is only one such surface as all three choices of simple closed geodesic
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a1

a1

a2

a2

a3

a3

a4

a4

1

1

a1

a2

a2

a4

a3

a1

a4

a3

2

1

a1

a4

a2

a3

a3

a2

a4

a1

4

1

Figure 7: The surfaces P3 (sphere), P1 (torus), P2 (genus 2)

surround two orbifold points whose monodromy is t. The other pair of pants has points

with monodromy {t, t2}. Thus the surface is given by a copy of P1 and a copy of P2 which

are glued at their cusps. We denote the surface thus obtained somewhat loosely by P1 + P2.

ForM2
4 there are two distinct possibilities, i.e., the monodromies are given by the pairs

{t, t}, {t−1, t−1} or {t, t−1}, {t, t−1}. In the first case we obtain P1 + P1 and in the other

P3 + P3.

ForM3
4 we obtain also only two distinct possibilities, i.e., the monodromies are given by

the pairs {t, t2}, {t3, t4} or {t, t3}, {t2, t4}. This gives P2 + P2 and P3 + P3.

By the above analysis it is clear thatM2
4 andM3

4 meet at the boundary (at a unique point

P3 + P3) andM1
4 is disjoint from the other two.

4.2. p-gonal with p prime and g = p− 1

We now consider a generalization of the above example. The proof follows the same outline

is indeed almost identical.

Let g = p− 1. Again following Nielsen, we can classify topological types of cyclic p-gonal

coverings of genus p− 1 surfaces. There are given by the monodromy types

ω f : π1(Ĉ \ {b1, b2, b3, b4}, o)→< t >⊂ Σp
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with t := (1, 2, . . . , p) and with the property that the order of ω f (xi) is p. For simplicity, we

have indexed the ω f by their type. These are given by

1. ω1(x1) = ω1(x2) = ω1(x3) = t and ω1(x4) = tp−3,

2. ω2(x1) = ω2(x2) = t, and ω2(x3) = ω2(x4) = tp−1,

3. ω3,i(x1) = t, ω3,i(x2) = ti, ω3,i(x3) = t−i and ω3,i(x4) = tp−1,

4. ω4,i(x1) = t, ω4,i(x2) = t, ω4,i(x3) = ti and ω3,i(x4) = tp−2−i,

5. ω5,i,j(x1) = t, ω5,i,j(x2) = ti, ω5,i,j(x3) = tj and ω5,i,j(x4) = tp−1−i−j.

Note that types 3, 4, and 5 contain several subtypes of monodromies. As before we consider

the strata of moduli space corresponding to each type. Specifically we denote

M I
p−1 := S ∈ Mp−1 | there exists a p-gonal morphism f : S→ Ĉ of type I}

We can now state our main theorem.

Theorem 4.3. M (5,i,j)
p−1 is completely isolated in Bg.

Observe that for the theorem to be true,M (5,i,j)
p−1 must be completely isolated in Bg and this

is true as was shown in [CI2CI2].

Proof. Our first observation is that up to isometry, there are exactly p+1
2 hyperbolic surfaces

with an automorphism of order p with two fixed points and whose quotient is a sphere

with a single cusp. To see this, we will generalize the case by case analysis of the lifts of the

pairs of pants in the proof of Theorem 4.24.2.

Consider Op,p,∞ be the (hyperbolic) orbifold of genus 0 with two orbifold points of order p
and a cusp. The cyclic p-gonal coverings are given by the monodromies

θ : π1Orb(Op,p,∞) =< y1, y2 | yp
1 = yp

2 >→< t >⊂ Σp

(where π1Orb denotes the orbifold fundamental group) and we define a map

(y1, y2) 7→ (θ(y1), θ(y2)) = (ta, tb).

By the result of Gonzalez-Diez [GG] , two such maps (ta, tb) and (ta′ , tb′) induce equivalent

surfaces if and only if there exists a c such that

a′ ≡ ca mod (p)
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and

b′ ≡ cb mod (p) or b′ ≡ cb−1 mod (p).

We denote the monodromy types by (i, j) if it is represented by (ti, tj). Observe that in each

equivalence class, there is a representative of type (1, j).

We denote Pj the covering of Op,p,∞ given by the monodromy of type (1, j).

We proceed as in the example and we now analyze the surfaces obtained at the limit in the

different types discussed in the beginning of the section.

Type 1: Here we obtain P1 + Pp−3 as we have the lift of a Op,p,∞ of type (1, 1) and one of

type (1, p− 3). We proceed in the same way for each of the subsequent types.

Type 2: P1 + P1, Pp−1 + Pp−1

Type 3: Pp−1 + Pp−1, Pi + Pi, P−i + P−i

where 2 ≤ i ≤ p−1
2

Type 4: P1 + Pp−i−2
i

, Pi + Pp−i−2

where 2 ≤ i ≤ p−1
2

Type 5: Pi + P−1− i+1
j

, Pj + P−1− j+1
i

, P j
i
+ Pp−1−i−j

where 2 ≤ i ≤ p−1
2 , i < j ≤ p− 3 with p− 1− i− j 6∈ {1, i, j, p− 1,−i,−j}

Through the equivalences above, it is straightforward to check that the surfaces appearing

in Type 5 do not appear in any of the other cases. It remains to show that they are distinct

from each other.

Let us show that the surfaces of type 5 are distinct for distinct equisymmetric sets inMp−1.

We must prove that if either:

1. Pi + P−1− i+1
j
= P′i + P−1− i′+1

j′
,

2. Pi + P−1− i+1
j
= P j′

i′
+ Pp−1−i′−j′ or

3. P j
i
+ Pp−1−i−j = P j

i
+ Pp−1−i−j

thenM (5,i,j)
p−1 =M (5,i′,j′)

p−1 .

Let us assume that we are in the situation described in the point 1 (the other cases are

similar). If i = i′ and−1− i+1
j = −1− i′+1

j′ then it is clear that (i, j) = (i′, j′). If i = −1− i′+1
j′

and i′ = −1 − i+1
j then using automorphisms of π1(Ĉ \ {b1, b2, b3, b4}, o) and Cp and

elementar number theory it is easy to show that ω5,i,j is equivalent to ω5,i′,j′ .
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This proves that the setsM (5,i,j)
p−1 are isolated among the set of cyclic p-gonals. We now

show that they cannot meet another type of surface from the branch locus on the boundary.

Suppose the contrary. The limit surface S will have then h the p-gonal automorphism and

an automorphism of different type, i.e., non p-gonal. This second automorphism h′ will

induce an automorphism on the quotient S/h because h is normal inside the automorphism

group of the surface by [GG] . Now h′ descends to an autormorphism ā : Op,p,∞ such that

ā∗ : π1Orb(Op,p,∞)→ π1Orb(Op,p,∞)

has the property ā∗ ◦ θ = θ (where θ is the monodromy of the piece Op,p,∞).

However the monodromies θ for the Pi appearing in the boundary of strata of type 5 do not

allow such properties.

We remark that this theorem provides a number of one dimensional completely isolated

strata. Via a straightforward calculation this number can be shown to be quadratic in p but

note that they are not necessarily distinct inMg as several could correspond to the same

strata.
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