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Divide each difficulty into as many parts as
is feasible and necessary to resolve it.
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Abstract

In this thesis, we present a two-level domain decomposition method for the iterative solution
of the heterogeneous Helmholtz equation. The Helmholtz equation governs wave propagation
and scattering phenomena arising in a wide range of engineering applications. Its discretization
with piecewise linear finite elements results in typically large, ill-conditioned, indefinite, and non-
Hermitian linear systems of equations, for which standard iterative and direct methods encounter
convergence problems. Therefore, especially designed methods are needed. The inherently parallel
domain decomposition methods constitute a promising class of preconditioners, as they subdivide the
large problems into smaller subproblems and are hence able to cope with many degrees of freedom.
An essential element of these methods is a good coarse space. Here, the Helmholtz equation presents
a particular challenge, as even slight deviations from the optimal choice can be fatal.

We develop a coarse space that is based on local eigenproblems involving the Dirichlet-to-
Neumann operator. Our construction is completely automatic, ensuring good convergence rates
without the need for parameter tuning. Moreover, it naturally respects local variations in the wave
number and is hence suited also for heterogeneous Helmholtz problems. Apart from the question of
how to design the coarse space, we also investigate the question of how to incorporate the coarse
space into the method. Also here the fact that the stiffness matrix is non-Hermitian and indefinite
constitutes a major challenge. The resulting method is parallel by design and its efficiency is
investigated for two- and three-dimensional homogeneous and heterogeneous numerical examples.
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Introduction

The Helmholtz equation −∆u− k2u = f , where u is the unknown function, f the right-hand side
and k > 0 the wave number, governs wave propagation and scattering phenomena arising in a wide
range of engineering applications such as aeronautics, acoustics and geophysical seismic imaging.
Even though it looks deceivingly similar to the well-understood Laplace problem, the additional
zeroth order term completely changes its behavior. As the wave number k becomes larger, there
is an increasing number of negative eigenvalues in the spectrum of the Helmholtz operator and its
condition number deteriorates. Therefore, at higher frequencies, the indefinite, ill-conditioned, and
non-Hermitian system of linear equations arising from the finite element (FE) discretization of the
Helmholtz equation is difficult to solve numerically. Developing an efficient iterative solution method
for this system is the goal of this thesis.

An additional challenge for the numerical solution is the typically large size of the system of
linear equations. While choosing a minimum number of grid points per wave length is sufficient to
interpolate the wave-like solutions, it is not enough for the discretized system to accurately represent
the continuous one due to the pollution effect [8]. Therefore, with growing wave number k, not
only does the problem become more difficult, but also the size of the linear system of equations
increases quickly, particularly in the three-dimensional case. Thus efficient preconditioners are of
utter importance, especially for high-frequent problems.

Direct methods such as incomplete factorization preconditioners yield fast black-box precon-
ditioners for a wide range of problems [132], but are not efficient for the Helmholtz equation [46].
While various modifications of this class of methods for the Helmholtz equation have been stud-
ied, resulting for example in incomplete factorization methods [13, 105, 120] and the “sweeping
preconditioner” [39], in this work we focus on iterative solution strategies.

Unfortunately, standard iterative methods also suffer from convergence problems when applied
to indefinite, non-Hermitian problems. Therefore, special care needs to be taken when designing
iterative algorithms for the Helmholtz equation. Among the iterative methods that have been consid-
ered are multigrid methods. The problems that occur when applying geometric multigrid methods to
the Helmholtz equation have been analyzed in detail [18, 37]. Based on this understanding, various
modifications of the standard components have been proposed, see e.g. [37, 47, 90]. Particularly
interesting is the wave-ray multigrid [18]. Here, special levels based on plane waves are introduced,
designed to represent the oscillatory part of the solution. Preconditioning with a shifted, easier
problem is investigated e.g. in [10, 43].

1



2 Introduction

In this work, we concentrate on domain decomposition methods (DDMs) [60, 147]. Their
inherent parallelism helps to cope with the typically large systems of linear equations. Unfortunately,
the classical DDMs are not effective for the Helmholtz equation. One important, problematic
component are the transmission conditions, specifying the information exchange between neighboring
subdomains. Early work on this part was done in [32], where a first order approximation to the
Sommerfeld radiation condition is employed. In the sequel, different, more advanced techniques
have been used; including the perfectly matched layer (PML) method at the interfaces [134, 146],
non-local transmission conditions [27], optimized Schwarz methods [57, 64], and others, e.g. [15].
The second important component is the coarse space, allowing for global transfer of information.
Here, plane waves have received a lot of interest. Apart from having been used in the multigrid
context [18], they have been successfully employed as coarse space basis functions for DDMs. Their
evaluation at the interfaces of the subdomains are used in variants of the finite element tearing and
interconnecting (FETI) method [49, 52]. They have also been utilized in other DDMs [92, 101] and as
deflation vectors [4]. Plane waves, to our knowledge, have been employed mainly for homogeneous
problems; the extension to the heterogeneous case is not obvious.

The goal of this thesis is the development of a two-level DDM for the heterogeneous Helmholtz
equation. Our method is based on a standard one-level restricted additive Schwarz (RAS) method
with Robin-type transmission conditions, and the emphasis lies on the definition of the second level.
In a first step, we investigate different ways how to add a second level to the indefinite, non-Hermitian
one-level DDM. While this question is well-understood for the symmetric positive definite (s.p.d.)
case, for the Helmholtz equation problems arise. In particular, we discuss under which circumstances
it is possible to ensure that the convergence rates for the two-level method are not worse than for the
one-level method. In a second step, we define a new coarse space for the Helmholtz equation. For
that purpose, we adapt an idea for elliptic problems [33, 116]: The coarse space is based on local
functions, the solutions of eigenproblems involving the Dirichlet-to-Neumann (DtN) operator on
the subdomains’ interfaces. Its construction is completely automatic, refraining from the need for
parameter tuning. This feature is crucial for indefinite problems as in contrast to the elliptic case, even
slight deviations from the optimal choice can be fatal [53]. We investigate the resulting two-level
DDM, and in particular its robustness with respect to heterogeneous coefficients, numerically for
two- and three-dimensional examples.

The thesis is structured as follows. Chapter 1 is an introduction to the Helmholtz equation and
its discretization. We review the related literature with a particular focus on DDMs in Chapter 2. In
Chapter 3, we present the one-level RAS method that serves as the basic, one-level preconditioner
and discuss its convergence behavior with the help of Fourier analysis. Different ways to add a
second level to a one-level method are discussed in Chapter 4. Here, the emphasis lies on the fact
that the systems of interest are typically indefinite and non-Hermitian, which imposes additional
difficulties in this step. In Chapter 5, we introduce the new coarse space based on DtN eigenvalue
problems and motivate it via some preliminary numerical experiments. We test the coarse space and
the resulting preconditioners extensively for different two-dimensional experiments and compare
the performance to a coarse space based on plane waves in Chapter 6. In Chapter 7, we finally do
three-dimensional tests and look at larger problems and examine the scalability of our approach.



Chapter 1

The Helmholtz problem

This chapter introduces all the prerequisites that are necessary for the rest of this manuscript. After
introducing the basic notations and definitions in Section 1.1, in Section 1.2 we present the problem
we are interested in, the Helmholtz equation. We discuss its discretization with piecewise linear finite
elements (FEs) in Section 1.3. In Section 1.4, we define the model problems used throughout this
manuscript in the numerical experiments.

1.1 Basic definitions and notation

In this section, we introduce some basic definitions and notation. For details see any textbook on
functional analysis, e.g. [2].

Fields We denote by R the field of real numbers, by C the field of complex numbers, by N the set of
natural numbers and by N0 the set N∪{0}. Furthermore, we write K for K = R or K = C.
Let |α| be the absolute value of a number α ∈K and α be the complex conjugate of α . We
denote by ı the imaginary unit and for α = α1 + ıα2 ∈ C, α1,α2 ∈ R, let re(α) := α1 be the
real part of α and im(α) := α2 be the imaginary part of α .

Euclidean product Let 〈., .〉 : Kn ×Kn → K denote the scalar product on Kn defined for x =

(xi)
n
i=1 ,y = (yi)

n
i=1 ∈Kn by 〈x,y〉=∑n

i=1 yi · xi.

Sets Let (X ,d) be a metric space. For A⊂ X , let Å denote the interior of A and A the closure of A.
The boundary ∂A of A is defined as ∂A := A\ Å.

Functions and derivatives Let Ω ⊂ Rn and let Y be a Banach space. For x ∈ Ω, we denote by
∂i f (x) or ∂

∂xi
f (x) the i-th partial derivative of f : Ω→ Y in the point x and by ∂v f or ∂

∂v f :
Rn→ Y the directional derivative of f in direction v ∈ Rn.

Spaces of differentiable functions For each multi-index s = (s1, . . . ,sd) ∈ Nd we set |s| =∑d
i=1 si

and ∂ s = ∂ |s|
∂ s1

1 ...∂ sd
d

v. Let Ω ⊂ Rn open and bounded, m ≥ 0, and Y a Banach space. By

Cm
(

Ω,Y
)

or Cm
(

Ω
)

we denote the vector space of functions f : Ω→ Y that are m times

3
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continuously differentiable in Ω and for which ∂ s f can be extended continuously to Ω for all
multi-indices s ∈ Nd satisfying |s| ≤ m. We additionally define

C∞ (Ω) =
⋂

m∈N
Cm (Ω) .

C∞
0 (Ω) are those functions in C∞ (Ω) that have compact support.

Lebesgue spaces Let Y be a Banach space and (Ω,B,µ) be a measure space. For 1 ≤ p < ∞, we
denote by Lp(µ,Y ) the Lebesgue space of order p. Here and in the following all integrals are
Lebesgue integrals and measures refer to the Lebesgue measure. If all others choices are clear,
we also write Lp(Ω) for Lp(µ,Y ). We define the norm

‖u‖Lp =

(∫

Ω
|u(x)|p dx

) 1
p
.

Moreover, for p = ∞ we denote by L∞(Ω) the space of all measurable, essentially bounded
functions u : Ω→ Y with norm

‖u‖L∞ = inf{C ≥ 0 : |u(x)| ≤C for almost every x ∈Ω} .

For p = 2, Lp(Ω) is a Hilbert space with inner product

(u,v)L2 =

∫

Ω
u(x) · v(x)dx.

Sobolev spaces For m ∈ N and 1≤ p≤ ∞ the Sobolev space Hm,p(Ω) is defined by

Hm,p(Ω) =

{
f ∈ Lp(Ω) : For each s ∈ Nd , |s| ≤ m there exists an f (s) ∈ Lp(Ω)

with
∫

Ω
f ·∂ sζ = (−1)|s|

∫

Ω
f (s)ζ ∀ζ ∈C∞(Ω)

}
,

equipped with the norm

‖ f‖Hm,p(Ω) :=


∑

|s|≤m

∥∥∥ f (s)
∥∥∥

p

Lp(Ω)




1
p

.

For the frequently used case p= 2, we set Hm(Ω) :=Hm,2(Ω). This is a Hilbert space endowed
with the inner product (., .)Hm(Ω) defined by

(u,v)Hm(Ω) =
∑

|α|≤m

∫

Ω
∂ αu(x)∂ αv(x)dx.

Furthermore, let

Hm,p
0 (Ω) :={ f ∈ Hm,p(Ω) : ∃ fk ∈C∞

0 (Ω),k ∈ N
with ‖ f − fk‖Hm,p → 0 for k→ ∞} .
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Landau symbols We introduce the Landau symbols O(.) and o(.). We write f (x) = O(g(x)) for
x→ ∞, if there exist a positive constant C ∈ R and a real number x0 ∈ R such that

‖ f (x)‖ ≤C‖g(x)‖ ∀x > x0.

We write f (x) = o(g(x)) for x→ ∞ if for every positive constant ε there exists a constant x0

such that
‖ f (x)‖ ≤ ε ‖g(x)‖ ∀x > x0.

Kronecker delta For i, j ∈ N, δi j denotes the Kronecker delta, i.e.

δi j =





0, if i 6= j

1, if i = j.

Matrices Let A ∈ Kn×n, n ∈ N, be a matrix. By λmax(A) and λmin(A) we denote the maximum
and minimum (non-zero) eigenvalue by modulus, respectively. If A is normal, the condition
number κ(A) of A is given by

κ(A) =
∣∣∣∣
λmax(A)
λmin(A)

∣∣∣∣ .

1.2 Helmholtz equation

In this section, we introduce Helmholtz equation, a partial differential equation (PDE) of the form

−∆u− k2u = f (1.2.1)

in some domain Ω ⊆ Rd , where ∆ is the Laplace operator, f is a right-hand side function, u is
the unknown solution and k is the wave number that might either be constant or depend on the
position x ∈ Rd .

1.2.1 Relation to the wave equation

The Helmholtz equation is a special case of the wave equation, which describes the propagation of
waves, such as sound, light or water waves, in a medium. Denoting by c a constant that is related to
the propagation speed of the waves in the given medium, the wave equation reads

∆U− 1
c2

∂ 2

∂ t2U = 0. (1.2.2)

The unknown U is a scalar function, whose values model the displacement of the wave. With the
assumption of time harmonic waves, i.e.

U(x, t) = u(x)e−ıωt , (1.2.3)
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where ω is the circular frequency, we get

∆U− 1
c2

∂ 2

∂ t2U =

(
∆u(x)− ω2

c2 u(x)
)

e−ıωt = 0

and consequently, since the exponential is non-zero, we arrive at the Helmholtz equation

∆u+ k2u = 0 with k :=
ω
c
. (1.2.4)

Here, as in Equation (1.2.1), k is the wave number. The Helmholtz equation describes hence the
propagation of time-harmonic waves in a medium.

1.2.2 The Sommerfeld radiation condition

In an unbounded domain Ω, energy that is emitted from a source must scatter to infinity. Likewise,
incoming waves might represent nonphysical behavior as no waves should be reflected from infinity.
The Sommerfeld radiation condition [139] enforces these properties for the solution of the PDE.
Suppose that the unbounded domain is truncated by a sphere SR of sufficiently large radius R. The
Sommerfeld radiation condition then reads for the solution u of Equation (1.2.4) using the Landau
symbols O(.) and o(.) [79, Chapter 3]

u = O
(

R−(d−1)/2
)
, ıku− du

dR
= o

(
R−(d−1)/2

)
, R→ ∞. (1.2.5)

These two equations characterize the decay and the directional character, respectively, of the station-
ary solution in the far field. Any function that satisfies both the Helmholtz equation and the second
equation in the Sommerfeld condition in Equation (1.2.5), the radiation condition, automatically
satisfies the first equation in Equation (1.2.5), the decay condition, cf. [79, Remark 1.4] and ref-
erences therein. If the unbounded domain Ω is truncated to a bounded one to facilitate numerical
computations, Equation (1.2.5), which gives asymptotical formulas, needs to be approximated. We
discuss this in Subsection 1.3.1.

1.2.3 Formulation of the Helmholtz problem

Using the definitions of the preceding section, the interior Helmholtz problem , which this work
investigates, is of the following form: Let Ω⊂ Rd , d = 2,3, be a possibly unbounded domain with
polygonal boundary. Find u : Ω→ C s.t.

−∆u− k2u = f in Ω, (1.2.6a)

u = 0 on ΓD, (1.2.6b)
∂u
∂n

= g on ΓN , (1.2.6c)

where u satisfies the Sommerfeld radiation condition in Equation (1.2.5) and ΓD∪ΓN = Γ := ∂Ω is
a disjoint partition of the boundary ∂Ω. The wave number k is given by k(x) = ω/c(x), where ω is
the angular frequency and c is the speed of propagation that might depend on the location x ∈Ω.
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1.3 The discretized problem

Section 1.2 introduced the Helmholtz equation in the continuous setting. Infinite dimensional objects
can in general not be simulated on a computer, where all quantities need to be of finite size. The
standard procedure for obtaining a numerical solution of any PDE is therefore first replacing the PDE

by its discrete formulation and then solving the discretized problem numerically [127]. In case of
the Helmholtz equation, there are various methods that realize this, including the finite difference
method [73, 99, 104, 137, 142, 145], the FE method [16, 19, 26] and the boundary element method
[133, 141, 152]. References [6–8, 31, 79–82, 95, 109], among others, discuss FE methods for the
Helmholtz equation. This section introduces the FE method that we use for discretization.

1.3.1 Truncation of the computational domain and absorbing boundary conditions

The domain Ω in the continuous formulation of the Helmholtz equation is possibly unbounded. For
that case, in Equation (1.2.5), we introduced the Sommerfeld radiation condition. When discretization
techniques such as FEs or finite differences are used, working with an unbounded domain is not
feasible due to, e.g. restricted hardware resources. Therefore, the domain Ω needs to be truncated to
a computational domain Ω̃ in such a way that a computational and physical compromise is reached.
In this truncated domain, the Sommerfeld radiation condition in Equation (1.2.5) is not applicable,
as it defines the asymptotic behavior of the solution and hence cannot be used without modifications
in a bounded domain.

Various techniques have been developed in order to simulate the radiation condition in the finite
computational domain. Infinite element schemes, for example, employ complex-valued basis func-
tions with outwardly propagating wave-like behavior to represent the unbounded complement [71].
Another approach is the use of absorbing layers. Here, the computational domain Ω̃ is enlarged by
an additional layer of finite thickness, which is used to damp the outgoing waves. In the ideal case,
waves arriving from any direction are not reflected at the layer. Due to the damping, at the outer
boundary of the layer, hard-wall boundary conditions can be employed. One possible implementa-
tion of this technique is the perfectly matched layer (PML) formulation [12]. Other discretization
techniques such as the boundary element method [133, 141, 152] are by nature able to work with
unbounded domains. They have other restrictions, though, for example on the geometry or on the
variations in the coefficients.

In this work, we use absorbing boundary conditions. Here, on the artificial boundary of the
truncated domain Ω̃, a relation of the unknown solution and its derivatives is specified. Non-local
boundary conditions can be used to mimic the radiation condition in Equation (1.2.5) [67, 88,
130, 149]. Despite their accuracy, these conditions are not practical for our aims because of their
non-locality – FE discretizations rely on the locality of basis functions. A remedy is to use local
approximations, see e.g. [9, 38, 67]; for higher order ones cf. the survey in [68]. As we are interested
in an efficient iterative solution strategy, and not in the accuracy of the discrete solution, we use a
simple, first-order approximation of the Sommerfeld radiation condition [32]

∂u
∂n

+ ıku = 0
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on the part of the boundary, where the domain has been truncated. Assuming additionally that both
the domain and its truncation are polygonal and denoting from now on the truncated domain simply
by Ω, the full system of equations then reads: Let Ω⊂Rd , d = 2,3, be a polygonal, bounded domain.
Find u : Ω→ C s.t.

−∆u− k2u = f in Ω, (1.3.1a)

u = 0 on ΓD, (1.3.1b)
∂u
∂n

= g on ΓN , (1.3.1c)

∂u
∂n

+ ıku = 0 on ΓR, (1.3.1d)

where ΓR is the part of the boundary of the domain that has been obtained by truncation of the
unbounded domain and ΓD ∪ΓN ∪ΓR = Γ := ∂Ω is a disjoint partition of the boundary Γ. We
abbreviate the boundary conditions in the form C(u) = 0 on Γ. The wave number k is given by k(x) =
ω/c(x), where ω is the angular frequency and c is the speed of propagation, cf. Equation (1.2.6).

1.3.2 Finite element discretization

In Equation (1.3.1) of Section 1.2, we have given the strong form of the Helmholtz problem we are
interested in. In this section we derive its FE formulation for a bounded domain Ω, assuming that
the initially possibly unbounded domain has been truncated, as explained in Subsection 1.3.1. FE

methods are based on a weak, variational formulation. Using the notation introduced in Section 1.1,
the variational formulation of Equation (1.3.1) is: Find u ∈ V :=

{
u ∈ H1(Ω) : u = 0 on ΓD

}
s.t.

a(u,v) = F(v) ∀v ∈ V, (1.3.2)

where a(., .) : V×V → C and F : V → C are defined by

a(u,v) =
∫

Ω

(
∇u∇v− k2uv

)
dx+

∫

ΓR

ıkuvds, F(v) =
∫

Ω
f vdx.

Problem (1.3.2) is well-posed if ΓR 6= /0 [79, Chapter 2]. If a solution exists, we call the problem
weakly solvable and the solution u a variational or a weak solution.

As a next step, we define the discretized system based on the variational formulation in Equa-
tion (1.3.2). Let the polygonal domain Ω be discretized with a uniform triangular mesh Th, where h
is the maximum diameter of the triangles in the mesh. We use piecewise linear FEs, see e.g. [16], to
keep the setting as simple as possible. Denoting by Vh ⊂ V the corresponding FE space associated to
the mesh Th, the variational formulation for the discrete spaces reads: Find uh ∈ Vh such that

a(uh,vh) = F(vh) ∀vh ∈ Vh. (1.3.3)

With {φk}n
k=1 the nodal linear FE basis for Vh, n := dim(Vh), we rewrite Equation (1.3.3) in matrix

form:
Ax = b, (1.3.4)

where the coefficients of the stiffness matrix A = (Ai j)
n
i, j=1 ∈ Cn×n and the right-hand side b =

(bi)
n
i=1 ∈ Cn are given by Akl = a(φl,φk) and bk = F(φk).
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Figure 1.3.1. Illustration of the requirement of having a minimum number of grid points per
wavelength. In this case, there are clearly too few grid points chosen such that the discretized wave
is not a good approximation of the continuous one.

1.3.3 Properties of the discrete system

In order to better understand the problems that iterative solvers have with the solution of the stiffness
matrix A arising from the discretization of the Helmholtz equation, cf. Chapter 2, in this section,
we examine its properties. One of the main difficulties when applying classical iterative solvers
to the Helmholtz equation is its indefiniteness1. Both the Laplacian term −∆ and the identity are
positive definite. For the Helmholtz operator −∆− k2, the positive eigenvalues of the Laplacian
are hence shifted by k2 to the left, eventually making some of them negative. The larger k is, the
more negative eigenvalues the spectrum of the Helmholtz stiffness matrix contains. This complicates
issues for classical iterative schemes, which have been mostly developed for definite or only slightly
indefinite problems. Moreover, the matrix might be singular if the shift is equal to an eigenvalue of
the (discrete) Laplace operator. This is only possible if ΓR = /0, otherwise the problem is non-singular
and well-posed [79]. Compounding these difficulties is the ill-conditioning of the stiffness matrix,
which gets worse the smaller the grid size h and the larger the wave number k are. Moreover, the
matrix is in general not Hermitian, but only complex symmetric. This makes the system difficult to
solve with iterative methods and specialized preconditioners are needed.

The size of the discrete system increases rapidly with the wave number k. This is partially due to
the wave character of the solution. For the one-dimensional free space problem, plane waves e±ıkx

are the elementary solutions. If the wave number k is large, the continuous solution has thus highly
oscillatory parts and is periodic with wave length λ = 2π/k. In order for the discrete solution to
resolve these waves, the mesh must contain a minimum number nres of grid points per wave length,
see Figure 1.3.1. This leads to a “rule of thumb” of the form

1 Recently, Moiola and Spence [111] showed that the sign-indefiniteness is not inherent to the Helmholtz equation and
can be avoided by using a non-standard variational formulation. In this thesis, we will however use a standard approach.
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nres =
λ
h
≈ constant. (1.3.5)

For second order finite differences or piecewise linear FEs, the choice nres = 10 is for example
recommended in [13]. This rule leads to the accurate interpolation of an oscillatory function, or
equivalently [79, (4.4.6)] to a good best approximation in the FE space Vh. Hence the interpolation
error is controlled by Equation (1.3.5).

When solving the discretized Helmholtz equation, however, not only the discrete FE space Vh

needs to allow for an sufficiently accurate approximation of the solution, but also the solution of the
discretized system needs to be sufficiently close to the best approximation in the FE space Vh. The
FE solution and the best approximation in the FE space Vh are connected by Céa’s lemma [16]. It
provides an estimate of the form

‖u−uFE‖ ≤C inf
vh∈Vh

‖u− vh‖ ,

where u is the exact solution and uFE the FE solution. Unfortunately, for the Helmholtz equation
the constant C depends on the wave number k in such a way that C increases with k even if kh
is constant [79]. Therefore, using only the requirement in Equation (1.3.5), with increasing wave
number k, the obtained solution will become more and more inaccurate as the discretized operator
gives a solution with substantial phase error. This is known as the pollution effect [8] and is related
to the fact that the discrete solution, as opposed to the continuous one, is dispersive, i.e. its phase
velocity depends on the angular frequency ω . The polluting term can be shown to be of the order
k3h2 in one space dimension [8, 80]. Hence in order for the FE solution to be a good approximation
of the continuous one in 1D, a condition of the form

k3h2 ≤ constant (1.3.6)

is necessary2. We will also use this condition in the higher-dimensional case, even though here the
theoretical foundation is missing.

For a one-dimensional example it is easy to see that the discrete solution is dispersive [79]:
Consider the following model problem, discretized on the uniform mesh Xh = {xi = ih, i ∈ N0}. Find
u ∈ H1(Ω), such that

−u′′− k2u = f on Ω = (0,1), u(0) = 0, u′(1)− ıku(1) = 0.

Assuming a solution of the form

u(xh) = eıkhxh , xh ∈ Xh,

the unknown discrete wave number kh of the propagating solution can be computed as

kh = k− k3h2

24
+O

(
k5h4

)
. (1.3.7)

For details see [79, Section 4.5.1]. Hence the phase velocity of the “numerical wave” differs from
the one of the exact wave, and the phase difference is characterized by Equation (1.3.7).

2 There exist modifications to the Galerkin method in order to reduce this effect, cf. for example [5, 8, 55, 72, 80, 82].
A survey can be found in [71].
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x

Figure 1.4.1. Uniaxial propagation of a plane wave. Figure adapted from [79].

1.4 Model problems

In this section, we introduce the model problems that are used for the numerical experiments
throughout this thesis.

One-dimensional model problem Due to its simplicity, the one-dimensional model problem,
which we introduce in this paragraph, is used at a few places for illustration purposes. For the
numerical results in Chapter 6 and Chapter 7, only the multi-dimensional examples in the next
paragraphs will be used.

Problem 1 (Uniaxial propagation of a plane wave [79]). The propagation of a time-harmonic plane
wave along the x-axis, see Figure 1.4.1, leads to a boundary value problem of the form

−u′′− k2u = f on Ω = (0,1), (1.4.1a)

u(0) = 0, (1.4.1b)

u′(1)− ıku(1) = 0. (1.4.1c)

Remark 1.4.1 (Green’s function). For right-hand side f ∈ L2(0,1), the solution of the boundary value
problem in Equation (1.4.1) can be written in the form

u(x) =
∫ 1

0
G(x,s) f (s)ds,

using the Green’s function

G(x,s) =
1
k





sin(kx)eıkx, 0≤ x≤ s,

sin(kx)eıks, s≤ x≤ 1.
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Figure 1.4.2. Mesh.
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Figure 1.4.3. Velocity profiles for Problem 2.

The Green’s function for the one-dimensional Helmholtz equation is hence composed of waves with
wave number k. Similar results hold for the multi-dimensional case if sufficiently simple boundary
conditions are chosen. These waves of the form eıkx are called plane waves and play an important
role for the Helmholtz equation, cf. Subsection 2.4.2 and Section 6.3.

Two-dimensional model problems Here we define the model problems that are used in the two-
dimensional numerical experiments throughout this thesis, in particular in Chapter 6. They are
all based on the Helmholtz equation, Equation (1.3.1). The first example [64] is the one that we
investigate in most detail. For the discretization of the unit square, we use a mesh of the type shown
in Figure 1.4.2.

Problem 2 (Wave guide problem). In Equation (1.3.1), let Ω := [0,1]2, ΓD := {0,1}× [0,1], and
ΓR := [0,1]×{0,1}. The right-hand side f is a point source at (0.5,0.5). The wave number
k(x) = ω/c(x) is either constant, or the wave speed c = ci, 1≤ i≤ 3 is piecewise constant according
to Figure 1.4.3, where ρ ∈ R, ρ > 1.

Problem 3 (Free space problem). In Equation (1.3.1), let Ω := [0,1]2, ΓR := ∂Ω, i.e. we simulate
an unbounded region. The right-hand side f is a point source in the center (0.5,0.5) of the domain
Ω. The wave number k is constant.

Problem 4 (Wedge problem). This example mimics three layers with a simple heterogeneity. It was
introduced in [121]. Let Ω = (0,600)× (0,1000) m2 and ΓR = ∂Ω in Equation (1.3.1). The right
hand-side f is a point source located at (300,980). The wave number is given by k(x) = ω/c(x),
where c is defined in Figure 1.4.4a.
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Figure 1.4.4. Two-dimensional wedge problem.
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Figure 1.4.5. Wave speed c for the Marmousi problem, Problem 5. The black cross marks the
location of the point source f .

Problem 5 (Marmousi problem). This is the Marmousi problem, which mimics subsurface geology.
A part of this problem is also used in [41]. The data used here was downloaded from [108]. The
domain Ω is the rectangle Ω = [0,9192]× [0,2904] with ΓR = ∂Ω, i.e. non-reflecting boundary
conditions everywhere. The wave number is given by k(x) = ω/c(x), where the wave speed c
is sampled on a grid composed of squares of size 24× 24, that is it contains 384 samples in the
x-direction and 122 samples in the y-direction. The wave speed c varies between 1500 and 5500, and
is plotted in Figure 1.4.5. The right-hand side f is a point source located at (6000,104).

Three-dimensional model problems We here define the three-dimensional model problems that
will be used for the numerical experiments in Chapter 7.

Problem 6 (Capacitor problem in 3D). In Equation (1.3.1), let Ω := [0,1]3, the Dirichlet boundary
ΓD := {(x,y,z) ∈ Γ : y = 0 or y = 1}, and the Robin boundary ΓR := Γ\ΓD. The right-hand side f
is a point source at (0.5,0.5,0.5). The wave number k(x) = ω/c(x) is constant.
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Problem 7 (Layer problem in 3D). In Equation (1.3.1), let Ω := [0,1]3, the Dirichlet boundary
ΓD := /0, and the Robin boundary ΓR := Γ. The right-hand side f is a point source at (0.5,0.5,0.5).
The wave number is k(x) = ω/c(x), where the wave speed c for x = (x1,x2,x3) ∈ R3 is defined as

c(x1,x2,x3) =





5
6 for 0≤ x2 <

1
3 ,

1 for 1
3 ≤ x2 <

2
3 ,

2
3 for 2

3 ≤ x2 ≤ 1.

Hence the unit cube is divided into three layers of equal size perpendicular to the x2-axis. This
example is adapted from [41, Section 7.3.2].

Problem 8 (Wedge problem in 3D). In Equation (1.3.1), let Ω := [0,1]3, the Dirichlet boundary
ΓD := /0, and the Robin boundary ΓR := Γ. The right-hand side f is a point source at (0.5,0.5,0.5).
The wave number is k(x) = ω/c(x), where the wave speed c for x = (x1,x2,x3) ∈ R3 is defined as

c(x1,x2,x3) =





5
6 for 0≤ x2 <

2
5 − 1

5 x1− 3
20 x3,

1 for 2
5 − 1

5 x1− 3
20 x3 ≤ x2 <

3
5 +

1
10 x1 +

1
5 x3,

2
3 for 3

5 +
1
10 x1 +

1
5 x3 ≤ x2 ≤ 1.

Hence as in Problem 7, the unit cube is divided into three layers, but this time the layers are not
perpendicular to any of the coordinate axes. This example is adapted from [41, Section 7.3.3].



Chapter 2

Literature review

The properties of the stiffness matrix A arising from the FE discretization of the Helmholtz equation,
cf. Section 1.3, adversely affect the performance of standard iterative methods [46]. Consequently,
special care needs to be taken when constructing preconditioners. In this chapter, we give an
overview over the work that has been done on the iterative solution and preconditioning of the
Helmholtz equation in the past. We discuss several different preconditioners. Special emphasis lies
on Section 2.4, where domain decomposition methods (DDMs) are presented.

2.1 Preconditioning with multigrid methods

Geometric multigrid methods [20, 70, 148] solve a PDE by employing a hierarchy of grids. They
have been extensively studied and optimized mainly for symmetric positive definite (s.p.d.) problems.
When applying these techniques naively to the system of linear equations arising to the Helmholtz
equation, that is substantially different in nature, they fail [17, 18, 46, 103]. Therefore, specialized
variants of these methods are necessary, tailored to meet the needs of the indefinite and non-Hermitian
problem. In this section, we discuss the problems that multigrid methods encounter in detail and
present some approaches on how to tackle them.

Smoothing is one of the two main ingredients of multigrid methods. It is based on the fact
that it is beneficial to treat low- and high-frequent components separately on different grids. In
fact, standard relaxation methods, such as the Jacobi method, exhibit different rates of convergence
for low- and high-frequent components. Whether a mode is of low or high frequency depends on
the mesh width. Therefore, error components that are difficult to smooth on one level are easy to
eliminate on another appropriate level. This holds true for standard smoothers and s.p.d. problems,
but gets more involved when solving non-Hermitian, indefinite problems. Brandt and Livshits [18]
and Livshits [103] identify the main reason for the arising difficulties: After a regular multigrid
procedure is applied, “near-kernel1” Fourier error components of the form

e±iωx, ω2 ≈ k2

1They are called “near-kernel”, as they lie in the kernel of the Helmholtz operator −∆−k2, if ω2 is exactly equal to k2.
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remain unreduced. On the fine grids, these components have a very small residual and are conse-
quently almost invisible for relaxation. On the coarse grids, they are subject to large phase errors
due to their short wave length. So there is a range of components that converge slowly on the fine
grids and that are poorly approximated on the coarser grids. These components can thus not be
efficiently eliminated by a standard multigrid method. Compounding these difficulties is the fact
that the dimension of the subspace of troublesome components increases with the wave number k.
Ernst and Gander [47] and Elman, Ernst, and O’Leary [37] furthermore observe that if the damping
parameter in the smoother, a Jacobi method or a Gauß-Seidel method [132], respectively, is optimized
for the oscillatory part of the spectrum, the smooth components might be amplified. Moreover, the
smoothing properties of the Gauß-Seidel method depend on the relation between the mesh resolution
h and the wave number k. For intermediate resolutions the smoother diverges [37, 102].

The other important building block of multigrid methods is the coarse grid correction, where one
exploits that the problem on a coarse mesh is usually cheaper to solve than the original problem. For
the Helmholtz equation, this is also problematic [37, 47]. As each grid needs to resolve the shortest
wave-length present in the problem, multigrid solvers can only employ a limited number of grids.
This makes the coarse problem still expensive to solve. Adding to this difficulty is the fact that the
computed corrections – if done in the straightforward way – are not always helpful: Due to dispersion
effects, cf. Subsection 1.3.3, the eigenvalue of the fine grid function and the one of its restriction to a
coarser grid might differ. The larger this difference is, the worse the computed correction is. If they
have different signs, the computed correction is even in the wrong direction [37].

Various works adapt the multigrid method to the Helmholtz equation in order to tackle some
or all of the above mentioned problems. Because of the shifting of eigenvalues when transferring
between different levels in the multigrid hierarchy, Ernst and Gander [47] suggest to use a modified
wave number on the coarse grid to account for dispersion effects. This works and is theoretically
sound in one space dimension; however, so far it has not been extended to the higher-dimensional
case. Kim and Kim [90] use a standard multigrid algorithm on the finer levels, where it is effective,
and switch to an optimized Schwarz DDM on the coarser levels, where the multigrid convergence
behavior is not satisfactory. Elman, Ernst, and O’Leary [37] use standard grid transfer operators,
but replace the standard smoother by the generalized minimal residual (GMRES) method on the
coarser grids. Furthermore, they employ the multigrid method as a preconditioner inside a GMRES

method. Lee, Manteuffel, McCormick, and Ruge [97] propose a nonstandard multigrid method for
a first-order system least-squares formulation of the Helmholtz problem. Brandt and Livshits [18]
and Livshits [103] introduce and examine the wave-ray multigrid method. Their main idea is to treat
the critical, near-kernel error components, which are not reduced by the standard multigrid cycle
on the “wave grids”, separately on appropriately designed grids, the “ray grids”. This approach
achieves k-independent convergence rates. However, it involves the use of analytical properties of
the functions, and is hence difficult to extend to the case of non-constant wave number k. Since
the construction is rather technical and difficult to both understand and implement, Livshits [102]
additionally introduces a “slimmed”, allegedly easier to implement variant of the wave-ray algorithm
and tests it on a different set of problems.
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In the following, we give a brief overview of some algebraic multigrid methods for the Helmholtz
equation. Most of the presented approaches do not solve the Helmholtz equation directly but a
shifted problem [43], cf. Section 2.2. Following the work of Erlangga, Oosterlee, and Vuik [44]
on a multigrid method for the shifted problem, Airaksinen, Heikkola, Pennanen, and Toivanen [1]
propose a preconditioner based on an algebraic multigrid approach. Umetani, MacLachlan, and
Oosterlee [150] use incomplete LU smoothing and full weighting restriction for solving the shifted
Laplacian. While the coarse grid is chosen based on geometric multigrid principles, the interpolation
operator is based on algebraic multigrid principles. Olson and Schroder [119] present a smoothed
aggregation algebraic multigrid method for 1D and 2D scalar Helmholtz problems, using the original
equation and not the shifted one. They employ plane waves in their approach, cf. Section 2.4 for
a description of plane waves and DDMs that use it. Notay [118] proposes an aggregation-based
algebraic multigrid method using a double pairwise aggregation scheme [117].

2.2 Preconditioning with elliptic operators

A recently very popular idea is to precondition the Helmholtz operator by a similar operator that
is easier to solve numerically. Already in 1983, Bayliss, Goldstein, and Turkel [10] consider an
approximate inverse of the Laplacian as a preconditioner. Laird and Giles [96] further extend this
idea, proposing a Helmholtz preconditioner with a positive sign in front of the Helmholtz term. The
class of shifted Laplacian preconditioners [41, 43], where the lower order term is multiplied by some
(complex) factor, thereby adding absorption to the problem, constitutes a generalization of these
approaches. Erlangga [41] defines the shifted problem as

−∆u− (β1− iβ2)k2u = f , β1,β2 ∈ R. (2.2.1)

Choosing the shift appropriately, Equation (2.2.1) is easily solvable with standard methods; e.g. if
β1 = β2 = 0, Equation (2.2.1) is the well-understood, s.p.d. Laplace problem. The challenge is thus to
choose the shift in such a way that at the same time the shifted problem is still a good preconditioner
for the Helmholtz equation.

The question of what parameters β1 and β2 yield the best results has been examined both
theoretically and numerically in different settings. In his PhD thesis introducing this class of
preconditioners, Erlangga [41] uses a preconditioned Krylov method with the shifted problem solved
by a multigrid method as a preconditioner. An appropriate choice of the parameters achieves to a
certain extent both goals – the shifted problem is a good preconditioner for the original one and it is
easily solvable – at the same time, for the low- to mid-frequency regime. Multigrid methods have
been further examined in this context, see e.g. [29, 129, 135] and [13], where the emphasis in the
latter work, however, is not on the shift. Calandra, Gratton, Pinel, and Vasseur [24] combine the
GMRES smoothing idea of Elman, Ernst, and O’Leary [37] with the shifted Laplacian preconditioner
for the coarse problem to obtain a two-level algorithm with inexact coarse solves that they apply to
three-dimensional Helmholtz problems in heterogeneous media.

Unfortunately, the shift parameters that are best for the solution with multigrid methods or other
standard methods are not necessarily best for preconditioning the Helmholtz operator. In fact, this
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conflict can be shown to be impossible to overcome asymptotically: By means of Fourier analysis,
Ernst and Gander [46] conclude that the shift needs to satisfy two conditions that exclude each
other in order to simultaneously achieve a favorable spectrum of the preconditioned operator and
good convergence rates for the multigrid method. This is also observed numerically e.g. by Gijzen,
Erlangga, and Vuik [66] and Airaksinen, Heikkola, Pennanen, and Toivanen [1]. The question of
how to choose the shift in order for the shifted equation to be a good preconditioner for the original
one is further studied by Gander, Graham, and Spence [65].

2.3 Preconditioning with incomplete factorization methods

While incomplete LU factorization preconditioners yield fast black-box preconditioners for a wide
range of problems [132], for the Helmholtz equation they are not efficient [46]. Especially for
larger wave numbers k, incomplete LU preconditioners may fail, e.g. because of ill-conditioned
incomplete factors or large fill-in [45]. In the spirit of the shifted Laplacian preconditioners de-
scribed in Section 2.2, these problems might be partially removed by using a shifted problem as a
preconditioner [13, 105, 120]. Several other attempts have been made in order to develop an efficient
incomplete factorization preconditioner for the Helmholtz equation [58, 59, 87, 120].

Particularly interesting are the sweeping preconditioners. Engquist and Ying [39, 40] define two
different approaches, both based on approximating a block LDLT decomposition of the Helmholtz
operator layer by layer, exploiting the radiation boundary conditions [83]. The first approach [39]
uses an H-matrix approximation [11, 14, 69] of the blocks in the diagonal matrix D. In 2D, its
theoretical foundation builds on the fact that the inverse of each of these blocks is the discretization
of a half-space Green’s function. In 3D, a similar argument fails to give a theoretical justification. In
the second approach [40], the Schur complement of the factorization is approximated using auxiliary
problems on layers equipped with artificial radiation boundary conditions. This approach has been
further studied by Poulson, Engquist, Li, and Ying [122] and Poulson [123], where the authors
successfully apply the method to larger three-dimensional problems.

2.4 Preconditioning with domain decomposition methods

DDMs [126, 138, 147] solve boundary value problems by splitting the original computational domain
into subdomains. On each of these subdomains, a smaller boundary value problem is defined that
can be solved more easily. In an iterative process, values between the subdomains are exchanged
to coordinate the solution between adjacent subdomains. If both subproblems and information
exchange are defined appropriately, the method converges to the global solution. The problems
on the subdomains can be solved independently of each other, which makes DDMs suitable for
parallel computing. When applying DDMs to indefinite problems such as the Helmholtz equation, a
number of difficulties arise, cf. [147, Chapter 11.5.2] and [46]. We elaborate on those and on possible
solutions in the remainder of this section.
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2.4.1 Transmission conditions

Transmission conditions are an important ingredient of DDMs. If information cannot travel efficiently
between neighboring subdomains, the method is not effective and might even not converge. How good
transmission conditions should be defined depends on the problem under consideration. Standard
Dirichlet transmission conditions, where the values of the local solution on the interface are passed to
the neighboring subdomains, work fairly well for the Laplace equation. For the Helmholtz equation,
however, they fail to reduce the error in large parts of the spectrum and are therefore not suitable
[63]. Furthermore, in case local Dirichlet or Neumann problems are employed on the subdomains,
local problems may become singular. One easy way to avoid that is to bound the diameter of each
subdomain from above by half a wavelength. However, such a requirement is preposterous in today’s
practice, where high-frequent problems are of particular interest. An early attempt to resolve these
problems has been made in Després’s Ph.D. thesis [32], using a first-order approximation to the
Sommerfeld radiation condition [139] at the subdomain interfaces. We will use his approach in this
work, cf. Subsection 3.2.1 and refrain from employing the more involved approaches presented in the
following, as we focus our attention rather on the coarse space than on the transmission conditions.

More advanced transmission conditions include conditions that are based on the PML method as
examined e.g. by Toselli [146] for an overlapping Schwarz method. He concludes that it is best to
use very thin PMLs. However, this conclusion might be caused by the fact that the incoming fields
are coupled at the external boundary of the PML layer and thus are damped before being transferred
to the neighboring subdomain [134]. In a subsequent work, Schädle and Zschiedrich [134] examine a
similar approach, solving the afore-mentioned problem by coupling the incoming field at the internal
boundary of the PML layer via an approximation of the Dirichlet-to-Neumann (DtN) operator and
achieving better results.

For optimized Schwarz methods, an approximation to optimal transmission conditions is com-
puted via Fourier analysis of a simplified, continuous problem; for an overview see [57]. These
methods can also be applied to the Helmholtz equation. Gander, Magoulès, and Nataf [63], for
example, examine low order boundary conditions that optimize transmission between subdomains
via Fourier analysis and prove asymptotic convergence bounds. Although these are only derived for
a model case, numerical experiments support their claim that transmission conditions of optimized
Schwarz type are also suitable for quite arbitrary domain decompositions. See also [34, 61, 140] and
Section 3.3 for related work.

2.4.2 Coarse spaces

Since one-level DDMs exchange information only between neighboring subdomains, they converge
at best in a number of iterations that is proportional to the number of subdomains per direction [151].
Therefore, it is crucial in the design of DDMs to include a coarse component. Using a global problem
with only a few unknowns per subdomain allows information to propagate through the whole domain
in one step. The question of how to construct it for DDMs is closely related to the corresponding
question for multigrid methods. If the coarse space is defined as the FE space on a coarser mesh,
for Helmholtz problems the mesh width h needs to be sufficiently fine or the polynomial degree p
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of the FE functions needs to be sufficiently large in order for the two-level method to be effective.
This gives a still expensive global problem. Hence more sophisticated choices for the second level
are necessary. The underlying idea of the wave-ray multigrid method [18], that is splitting the
solution into waves traveling into different directions on the “ray grids”, cf. Section 2.1, is similar
to a popular choice in DDMs. These coarse spaces based on plane waves2 are used in a couple of
works [49, 52, 92, 93]. We will discuss them in detail in this section as they are closely related to the
work presented in this thesis and will be used for comparison in the numerical experiments.

A plane wave is a function of the form

p(x) = eıkθ ·x, (2.4.1)

where θ ∈Rd is a vector of unit length, ‖θ‖2 = 1, specifying the direction into which the plane wave
is traveling. For a 2D plot see Figure 2.4.1. The wave front is a straight line in 2D (a plane in higher
dimensions) with normal θ . Plane waves are solutions to the homogeneous Helmholtz equation. In
the one-dimensional case, the situation is particularly easy. There are only two linearly independent
solutions, the plane waves associated to the two different directions. Each linear combination of
these two fundamental solutions is a solution of Equation (1.2.4). The general solution hence has the
form

u(x) = αeıkx +βe−ıkx (2.4.2)

with coefficients α,β ∈ C. In higher dimensions, i.e. for d = 2,3, the situation is more complicated,
as plane waves can travel into infinitely many directions θ . A solution to the Helmholtz equation can
be any superposition of these infinitely many plane waves.

The basic principle in all the works that use plane wave based coarse spaces in DDMs for the
Helmholtz equation is the same. The (global) coarse space is built out of local components. For that
purpose, the computational domain Ω is divided into subdomains that do not necessarily coincide with

2Plane waves play an important role for the Helmholtz equation. They are also employed e.g. for discretization
[3, 21, 25, 50, 77, 95, 110] and for iterative solution techniques [49, 103].
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the subdomains used for the domain decomposition, but are strongly related: While Farhat, Macedo,
and Lesoinne [49] and Farhat, Avery, Tezaur, and Jing [52] use the original subdomains, Kimn and
Sarkis [91–93] use the original subdomains but with a different overlap size and Leong [100] uses
unions of neighboring subdomains. For each of these subdomains, a finite number of plane waves is
chosen and they are evaluated on the mesh points of the subdomain [91–93] or on a subset associated
to boundary degrees of freedom [49, 52, 100]. The resulting local vectors – possibly after extension
to the interior of the subdomains [100] and multiplication with a partition of unity function [91–93] –
are then extended by 0 to global ones, and combined in a global system.

The strategy how to choose a finite number of plane waves on each subdomain is straightforward
in the one-dimensional case. As there are only exactly two plane waves traveling in negative and
positive x-direction, respectively, the coarse space based is spanned by the discretizations of exactly
these two plane waves. For the higher dimensional cases, the situation is more involved as there are
infinitely many plane waves. To choose a finite subset of them, all of the works implement a simple
approach: In two dimensions, a uniform discretization of the unit circle into circular sectors is used.
Thus for mi directions θk, 1≤ k ≤ mi, we get (up to rotation of all directions θk by a fixed angle)

θk :=

(
cos(tk)
sin(tk)

)
, where tk =

2π(k−1)
mi

, 1≤ k ≤ mi.

For the three-dimensional case, the definition of uniformly distributed directions a bit more compli-
cated, see e.g. [144].

Another important, even though to our knowledge open question is how to determine reliably in
a general setting the number of modes mi per subdomain that should enter the coarse space. This
question has two aspects. On the one hand, mi has to be large enough for the second level to be
beneficial. As opposed to the s.p.d. case [112, 115], for the indefinite Helmholtz case, an incomplete
coarse space can even deteriorate the convergence of the two-level method [125]. On the other hand,
mi should not be too large: If the two directions θ1 and θ2 are “close” to each other, the corresponding
plane waves are almost linearly dependent. That is, in a discrete setting, if we evaluate those two
plane waves at a finite number of points, the matrix having the resulting two vectors as column
vectors is ill-conditioned. Here, what “close” means depends on the size of the wave number k; the
smaller k is, the more linearly dependent the plane waves are. The coarse matrix based on plane
waves can hence become rank deficient [52, 95]. This causes in the worst case divergence of the
whole iterative scheme. For a general problem, it is not well-understood how to determine a priori
the minimum number of plane wave directions that are needed for convergence and the maximum
number of plane waves that can be used before conditioning problems occur.

As a remedy to the ill-conditioning problems, Farhat, Avery, Tezaur, and Jing [52] propose
to “filter” the vectors that serve as a generating set for the coarse space via a QR decomposition
by dropping all those vectors whose associated diagonal entry in the R matrix is smaller than a
prescribed tolerance ε . This is a local procedure, which is performed on each subdomain separately.
A too small value of ε can cause the coarse matrix to be still rank deficient. Therefore, it should be
rather chosen too large than too small.

We now discuss in more detail the single methods that employ plane waves. Finite element tearing
and interconnecting (FETI) methods [48] belong to the class of iterative substructuring methods. A
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variant of the FETI method that uses a second level based on plane waves is the FETI for Helmholtz
(FETI-H) method [49]. It is subject to two main modifications: As the arising problems on the
subdomains might be singular, they are regularized by suitable interface matrices. This is equivalent
to imposing Dirichlet and radiation boundary conditions at parts of the subdomains’ boundary. A
global problem is defined by evaluating plane waves on the interfaces of the original subdomains. As
FETI methods work with interface degrees of freedom, it is not necessary to explicitly extend them
to the interiors of the subdomains.

The closely related dual-primal FETI (FETI-DP) method [51] has also been adapted to the
Helmholtz equation. This variant is called FETI-DP for Helmholtz (FETI-DPH) [52]. In this method,
there are two different sets of degrees of freedom for the coarse space. The primal degrees of freedom,
which are the values of the functions at some nodes (the “corners") in the mesh, are the same as in
the s.p.d. case. The dual degrees of freedom, which arise from the evaluation of plane waves on
the interface nodes, are the ones that are tailored for the Helmholtz equation. Orthogonality of the
iterates to the dual component is enforced by the use of Lagrange multipliers. For the FETI-DPH

method, the subdomain problems are not regularized and thus might become singular. This is why
the authors require the diameter of each subdomain to be bounded from above, which makes using
the method for the high frequency regime unfeasible. However, both methods have been tested
successfully for examples in the low- to mid-frequency regime for homogeneous media.

For Schwarz methods, as opposed to FETI methods, also the degrees of freedom associated to the
interior of the subdomains are part of the system. When computing the coarse space, the plane waves
are hence either evaluated on all degrees of freedom of the subdomain immediately [91–93], or they
are evaluated on a subset and then extended in some sense to the remaining degrees of freedom on the
subdomain Leong [100]. For the extension, Leong uses either the shifted problem −(∆− k2)u = 0
or the harmonic extension −∆u = 0. From these works, several different Schwarz methods for the
Helmholtz equation arise. They are different in their exact formulations, but share the same ideas for
the coarse space. We here do not give the full details. All these methods have been tested numerically
and their positive effect on the iteration counts has been shown.

Concluding, for any of these methods employing plane waves some open problems remain.
Firstly, it is not clear a priori how many plane waves the coarse space should contain per subdomain.
Secondly, as the global problem is usually rather big compared to the s.p.d. case, where typically
only very few coarse degrees of freedom per subdomain are chosen [147]. Therefore, it would make
sense to solve the coarse problem iteratively, see e.g. [94]. Thirdly, it is not clear how the plane
waves should be used for heterogeneous media. It is mainly the first and the third problem that this
thesis will tackle by defining a different coarse space. As they are closest to our method, we will
compare quite frequently to the plane wave approach, e.g. in the numerical experiments in Chapter 6
and Chapter 7.



Chapter 3

The one-level method

Standard iterative solvers do not converge well for the Helmholtz equation [46]. Therefore, the
definition of a suitable preconditioner is important, cf. the overview on existing work in Chapter 2.
The present chapter introduces the fine level of the iterative method that we employ for the solution
of the Helmholtz equation. It consists of two parts. The outer iterative solver is a GMRES method
[131, 132], see Section 3.1. Even though this type of Krylov method is suited to solve also non-
Hermitian, indefinite matrices, the ill-conditioning of the Helmholtz matrix causes the convergence
of the GMRES method to be very slow without preconditioning. For that reason, in Section 3.2,
we introduce the second part of the one-level method, the preconditioner. It is a restricted additive
Schwarz (RAS) method [22, 147] with special transmission conditions adapted to the Helmholtz
equation. RAS type methods are overlapping DDMs. Along with other DDMs, they are particularly
well-suited for the Helmholtz equation, as they subdivide the typically large system of linear equations
into smaller ones, which are then solved in parallel. In Section 3.3, we will analyze the RAS method
by means of Fourier analysis to gain a clearer understanding of which parts of the spectrum do
not converge well. This is the point of departure for the construction of the coarse space, which is
introduced in Chapter 5.

3.1 The GMRES method

The GMRES method [131, 132] will be used as the outer iterative solver for the numerical experiments
in this manuscript. We start with the introduction of the basic GMRES algorithm without restart.
It is given in Algorithm 3.1.1 [132, Chapter 6]. For practical implementation, in particular for the
complex case, see [132, Section 6.5.9]. In this form, the algorithm always performs kmax iteration
steps. In practice, we need an additional convergence criterion that is checked in regular intervals,
e.g. in each iteration step. Usually, the stopping criterion is based on the relative residual and has
the form ρ ≤ ε ‖b‖2, where ε is the desired accuracy of the solution and the residual ρ is computed
during the GMRES method.

23
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Algorithm 3.1.1 GMRES method for complex linear systems

Input: initial iterate x(0), matrix A, right-hand side b, maximum number of iterations kmax

Output: approximate solution x̃, norm of residual ρ = ‖b−Ax̃‖2

1: function GMRES(x(0),A,b,kmax)
2: Compute r(0)← b−Ax(0), β ←

∥∥∥r(0)
∥∥∥

2
, v(1)← r(0)/β .

3: for k← 1,2, . . . ,kmax do
4: Compute w(k)← Av(k)

5: for i← 1,2, . . . ,k do
6: hik← 〈w(k),v(i)〉
7: w(k)← w(k)−hikv(i)

8: end for
9: hk+1,k←

∥∥∥w(k)
∥∥∥

2
10: v(k+1)← w(k)/hk+1,k

11: end for
12: Define Hkmax

← the (kmax +1)× kmax Hessenberg matrix with entries hi j.
13: Compute ykmax ← argminy∈Ckmax

∥∥∥βe1−Hkmax
y
∥∥∥

2
.

14: Define V kmax ← the matrix with columns v( j), 1≤ j ≤ kmax.
15: Compute x̃← x(0)+V kmaxykmax

.
16: ρ ←

∥∥∥βe1−Hkmax
ykmax

∥∥∥
2
= ‖b−Ax̃‖2

17: return x̃, ρ
18: end function

The convergence behavior of the GMRES method is important to better understand the effect of
the preconditioner and of the coarse level. Maybe most importantly, the GMRES algorithm has the
solver property, that is, for a non-singular problem it always converges to the solution.

Theorem 3.1.1 ([89, Theorem 3.1.2]). Let A be a non-singular, n× n matrix. Then the GMRES

algorithm will find the solution within n iterations.

Apart from this, its convergence behavior is not as well understood as for example for the
conjugate gradient (CG) method [76, 136]. However, clustering of the eigenvalues has a positive
effect on the convergence. Among the many results, we here give the following theorem examining
the relation between the eigenvalues and the convergence behavior of the GMRES method.

Theorem 3.1.2 ([131, Proposition 4 and Theorem 5]). Assume that A is a diagonalizable n× n
matrix, so that A = XΛX−1, where Λ is a diagonal matrix with non-zero entries λ1, . . . ,λn. Let

ε(m) = min
pm∈Pm

max
λ∈σ(A)

|pm(λ )| ,

where Pm for m ∈ N is the space of monic polynomials of degree at most m with p(0) = 1 for
all p ∈ Pm. Assume that the eigenvalues λ1, . . . ,λν are contained in the left half plane for some
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Figure 3.1.1. Relative residual in each iteration step for the GMRES method applied to Problem 1
with random right-hand side. k = 50, h = 10−3.

0 < ν < n. Moreover, assume that the eigenvalues λν+1, . . . ,λn are confined to a closed disk with
center C > 0 and radius R <C. Then

ε(m) ≤
(

D
d

)ν (R
C

)m−ν
,

where
D = max

1≤i≤ν , ν+1≤ j≤n

∣∣λi−λ j
∣∣ and d = min

1≤i≤ν
|λi| .

Moreover, the residual norm provided at the m-th step of the GMRES algorithm satisfies
∥∥∥r(m+1)

∥∥∥≤ κ(X)ε(m)
∥∥∥r(0)

∥∥∥ ,

where κ(X) = ‖X‖
∥∥X−1∥∥.

Even though the GMRES method in Algorithm 3.1.1 finds a solution to the linear system of
equations in at most n iteration steps, for the usually large and sparse matrices that arise from the
FE discretization of the Helmholtz equation this is not enough. As the GMRES method is used
as an iterative, rather than a direct solver, a sufficiently accurate approximation to the solution
has to be found in significantly less than n iteration steps in order to keep the costs reasonable.
Whether or not the GMRES method succeeds in doing this depends on the properties of the system
matrix. Unfortunately, for the matrix arising for the discretization of the Helmholtz equation, the
non-preconditioned GMRES method suffers from very slow convergence. In Figure 3.1.1, we show
an example for this behavior. For the one-dimensional model problem, Problem 1, with wave
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number k = 50 and uniform mesh with mesh width h = 10−3, the residual is hardly reduced by the
GMRES method. The long plateau is due to the bad conditioning of the stiffness matrix related to the
Helmholtz problem. For that reason, a preconditioner is needed. The first level of the preconditioner
will be introduced in Section 3.2.

Even if convergence within a reasonable number of iteration steps is achieved with the use of
a preconditioner, to be suitable for larger systems, the GMRES algorithm as introduced in Algo-
rithm 3.1.1 needs to be modified: Its storage requirements grow quickly with the size of the system
and the number of iterations, as the complete Krylov subspace basis must be stored for the Arnoldi
process in Lines 3 to 11 of Algorithm 3.1.1. This means that in order to perform k GMRES iterations,
k vectors of the size of the matrix A need to be stored. This is in contrast to e.g. the CG method [136],
which however works only for s.p.d. matrices. This is feasible as long as the number of iterations k
or the size of the system A are small. However, when one or both of these quantities are large, storing
all vectors is prohibitively expensive. Therefore, the iteration is restarted when there is no more
space to store all the previous basis vectors. This can significantly reduce the storage costs of the
iteration. The restarted GMRES algorithm, called the GMRES(m) method, where m is the number of
GMRES iterations that are performed before the method is restarted is given in Algorithm 3.1.2 [132].
Restarting can slow down the convergence as the information about the previously built Krylov
subspace is lost. Therefore, also the solver property of Theorem 3.1.1 does no longer hold true when
using the restarted variant.

Algorithm 3.1.2 GMRES(m): restarted GMRES method

Input: initial iterate x(0), matrix A, right-hand side b, tolerance ε , number m of GMRES iterations
before restart, maximum number kmax of GMRES calls

Output: approximate solution x̃, norm of residual ρ = ‖b−Ax̃‖2

1: function GMRESM(x(0),A, b, ε , m, kmax)
2: x̃, ρ = GMRES(x(0),A,b,m)
3: k← 1
4: while ρ > ε ‖b‖2 and k < kmax do
5: x̃, ρ = GMRES(x̃,A,b,m)
6: k← k+1
7: end while
8: return x̃, ρ
9: end function

3.2 The restricted additive Schwarz method

DDMs [147] are well suited to solve the Helmholtz equation, as they split the typically very large
system into smaller subsystems, which can be solved in parallel, independently of each other. They
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can be divided into two groups. In a non-overlapping DDM, the subdomains in the splitting of the
domain are disjoint except for their boundaries, see e.g. [48, 106, 107]. In an overlapping DDM, on
the other hand, neighboring subdomains share also some interior degrees of freedom. This can in
many cases help to facilitate information exchange between the subdomains. In this section, we
define the DDM that we use as a preconditioner for the Helmholtz equation throughout this thesis. It
is a RAS method [22, 147] with special transmission conditions as introduced by Després [32].

3.2.1 Domain decomposition

We introduce the partitioning of the computational domain and some definitions needed for the
RAS method [22, 147]. Let the domain Ω be decomposed into a set of non-overlapping subdomains
{Ω′j}N

j=1 resolved by the mesh Th. The overlapping subdomains Ω j are defined by adding one or
several layers of mesh elements to Ω′j in the following sense, cf. [75]:

Definition 3.2.1 (Overlapping subdomains). Given a subdomain D′ ⊂Ω, which is resolved by the
FE mesh Th, the extension D of D′ by nov ∈ N layers of elements is

D = supp
((

Π2
1Π2

0

)nov
1D′
)
.

Here supp(f) := {x ∈Ω : f (x) 6= 0} denotes the support of the function f ; 1D′ denotes the character-
istic function on D′, i.e.

1D′(x) =





1 for x ∈ D′

0 else

for x ∈ Ω; and Π2
1 and Π2

0 denote the L2-projections onto the affine continuous and constant FE

spaces on the mesh Th, respectively.

This gives an overlapping partition {Ω j} of Ω. Figure 3.2.1 shows a plot of an example partition
into non-overlapping subdomains and the extension of the central subdomain by two layers of
elements. Let Vh(Ω j) =

{
v|Ω j : v ∈ Vh

}
, 1≤ j ≤ N, denote the space of functions in the FE space

Vh restricted to the subdomain Ω j. Let n := |dof(Ω)| and n j :=
∣∣dof(Ω j)

∣∣, 1 ≤ j ≤ N, where for
D⊆Ω we define

dof(D) :=
{

k : supp(φk)⊂ D,φk is a basis function of Vh
}
.

We also define a partition of unity subordinate to the domain decomposition following [75]. As
illustrated in Figure 3.2.2a, after the construction of the overlapping subdomains, some degrees of
freedom in the system belong to several subdomains. Via the partition of unity, we assign to each
degree of freedom a weight. These weights sum up to one, when adding the contributions from all
subdomains. Using the notation of Definition 3.2.1 and defining for 1≤ j ≤ N

π∗j =
(

Π2
1Π2

0

)m
1Ω′j ,
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Figure 3.2.1. Example partition of the square into 9 non-overlapping subdomains. To the central
subdomain two layers of elements are added in the way defined in Definition 3.2.1.

where 1Ω′j is the characteristic function on Ω′j as defined in Definition 3.2.1, we define the partition
of unity functions as

π j =
π∗j∑N

k=1 π∗k
. (3.2.1)

Each function π j is greater than zero on Ω j and equal to 0 outside of Ω j, cf. Figure 3.2.2b. The
partition of unity property

∑N
j=1 π j(x) = 1 ∀x ∈Ω is obvious from the definition.

3.2.2 Discrete method

This section introduces the RAS method [22]. We start with the definition of the restriction operators
that map from the global degrees of freedom to the local ones associated to one subdomain. For
1≤ j ≤ N, we define the restriction operator R j : Vh→ Vh(Ω j) by injection, i.e. for u ∈ Vh we set

(R ju)(x) = u(x) ∀x ∈Ω j.

We denote the corresponding matrix in Rn j×n that maps coefficient vectors of functions in Vh to
coefficient vectors of functions in Vh(Ω j) by R j.

In the next step, we define the matrices corresponding to a partition of unity subordinate to the
domain decomposition, cf. Equation (3.2.1). Let D j ∈ Rn j×n j be a diagonal matrix corresponding to
a partition of unity in the sense that

N∑

j=1

R̃T
j R j = I, R̃ j := D jR j.

Hence each matrix R̃T
j R j assigns a weight to each (global) degree of freedom that is 1 in the interior

of the subdomain away from the overlap, 0 outside of the subdomain and between 0 and 1 in the
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(a) The overlapping domains
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(b) Partition of unity function with support on central sub-
domain

Figure 3.2.2. The partition of unity is illustrated for an overlap of nov = 1 mesh element. The
original partition into non-overlapping subdomains is marked with the fat black lines.

regions where several subdomains overlap. While in principal any choice of such matrices D j defines
a DDM, for the parallel implementation the fact that the matrix D j vanishes at ∂Ω j for all j is
crucial, cf. Subsection 7.1.1 and Subsection 7.1.2. For this reason, in this thesis, we use matrices D j

associated to the partition of unity defined in Equation (3.2.1), which have the desired property.
Using the above definitions, the RAS preconditioner reads

M−1 :=
N∑

j=1

R̃T
j A−1

j R j. (3.2.2)

It remains to define the subdomain matrices A j. The classical choice A j = R jART
j corresponds to

Dirichlet transmission conditions in the continuous equations. Hence frequencies in the error smaller
than the wave number k are not damped [64], cf. also Subsection 2.4.1 and the short discussion in
Subsection 3.2.3. This might cause slow convergence or even stagnation of the iterative method.
Therefore, we define the matrices in A j in Equation (3.2.2) to be the stiffness matrices of the local
Robin problems [23, 32]

(
−∆− k2

)
(u j) = f in Ω j, (3.2.3a)

C (u j) = 0 on ∂Ω∩∂Ω j, (3.2.3b)
(

∂
∂n j

+ ık

)
(u j) = 0 on ∂Ω j \∂Ω. (3.2.3c)

More advanced techniques such as the discretized optimized boundary conditions [57] are also
possible, but not considered here.
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In a serial code the implementation of the RAS method is straightforward. The main feature
of DDMs is however the possibility to parallelize them. In a parallel code, the global matrices and
vectors are never assembled. This is in particular true for the global stiffness matrix A and the
restriction operators R j. We will discuss the implementation of the method in a parallel code in
Chapter 7, where the results for three-dimensional examples are discussed.

3.2.3 Continuous method

The continuous counterpart of the RAS method introduced in Subsection 3.2.2 is the Jacobi-Schwarz
method. Under certain assumptions, it is possible to show the equivalence of the discrete and the
continuous methods [140]. We note however that these assumptions are not necessarily fully satisfied
in our setting; in particular cross points and the fact that the partition of unity in Equation (3.2.1)
is non-zero on several subdomains on the layer next to the interface impose problems, cf. [140,
Assumption 1] and [35]. The Jacobi-Schwarz method is defined for continuous quantities, and is
hence useful when one wants to analyze the method via Fourier analysis, see Section 3.3. For N = 2
subdomains – the general case is defined analogously – the Jacobi-Schwarz method reads [140,
Equation (3.2)]

Lun+1
1 = f in Ω1,

C
(

un+1
1

)
= g on ∂Ω1,

B12un+1
1 = B12un

2 on Γ12,

Lun+1
2 = f in Ω2,

C
(

un+1
2

)
= g on ∂Ω2,

B21un+1
2 = B21un

1 on Γ21.

(3.2.4)

Here L is the partial differential operator in question, i.e. in our case L =−∆− k2 is the Helmholtz
operator. The Jacobi-Schwarz method hence consists of the solution of a local problem followed
by the exchange of information between the two subdomains via the boundary operators Bi j. These
boundary operators are in the simplest case just the identity, i.e. Dirichlet transmission conditions. For
the Helmholtz equation, Dirichlet transmission conditions do not succeed to damp frequencies that are
close to the wave number k, see Section 3.3. Therefore, other, more advanced transmission conditions
are used, involving derivatives of arbitrary order into tangential and normal direction on the interface,
cf. Section 2.4. Those can be approximations to the Sommerfeld radiation condition or optimized
conditions, cf. [64]. Note also that the question of transmission conditions for the Helmholtz equation
is closely related to the question of non-reflecting boundary conditions, cf. Section 2.4. Under the
assumptions given in [140], the subdomain matrices defined in Equation (3.2.3) are equivalent to
choosing

Bi j =
∂

∂n j
+ ık (3.2.5)

in Equation (3.2.4). These transmission conditions can be derived in a simplified setting as a zeroth
order approximation of the Taylor series at the frequency ξ = 0 of the optimal transmission conditions
[63, Section 2]. The optimal transmission conditions are computed using Fourier analysis, cf. also
Section 3.3.
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Ω0

Ω1

Ω2

Ω3

L L L
H H

Figure 3.3.1. Decomposition of the plane into N = 4 overlapping strips as defined in Equation (3.3.1).

3.3 Fourier analysis

Fourier analysis can be used as a tool to analyze the convergence rates of RAS methods and to
develop better transmission conditions, see e.g. [57]. While the resulting optimized Schwarz methods
show optimal convergence rates in the model case analyzed, that is with the plane divided into two
subdomains, they yield non-optimal behavior if the number of subdomains is increased [60]. The
same is true for the transmission conditions presented above. In order to understand which Fourier
modes cause the slow convergence in the multi-subdomain case, we here examine the properties of
the one-level method introduced in Section 3.2 via Fourier analysis.

3.3.1 Fourier analysis for zeroth order transmission conditions

We examine the Jacobi-Schwarz algorithm introduced in Subsection 3.2.1 equipped with the zeroth
order Robin transmission conditions defined in Equation (3.2.5). The computations are inspired by
[36], where a similar analysis has been done for a different PDE. The domain Ω = R2 is assumed to
be the real plane decomposed into strips of infinite lengths as follows, cf. Figure 3.3.1:

Ω0 = (−∞,0+
L
2
)×R (3.3.1a)

Ω j = (( j−1)H− L
2
, jH +

L
2
)×R, 1≤ j ≤ Ñ (3.3.1b)

ΩÑ+1 = (ÑH− L
2
,∞)×R, (3.3.1c)

where H is the width of the non-overlapping strips, and L is the size of the overlap. For ease of
presentation, we define the x-coordinates of the boundary of the subdomain Ω j in x-direction as

x−j := ( j−1)H− L
2
, x+j = jH +

L
2
,

and set N := Ñ +2 to be the total number of subdomains. The Jacobi-Schwarz method with Robin
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transmission conditions for the decomposition defined in Equation (3.3.1) reads

−∆un+1
j − k2un+1

j = f in Ω j (3.3.2a)
(

∂
∂n j

+ ık

)
un+1

j (x−j ,y) =

(
∂

∂n j
+ ık

)
un

j−1(x
−
j ,y), y ∈ R (3.3.2b)

(
∂

∂n j
+ ık

)
un+1

j (x+j ,y) =

(
∂

∂n j
+ ık

)
un

j+1(x
+
j ,y), y ∈ R (3.3.2c)

for 1≤ j≤ Ñ. The “boundary” subdomains Ω j, j ∈ {0, Ñ +1
}

, satisfy a similar system of equations,
where the transmission condition to the non-existing neighbor is missing.

For the analysis it suffices to consider by linearity the case with right-hand side f = 0 and to
analyze convergence to the zero solution. We consider subdomain Ω j, 1 ≤ j ≤ Ñ, and apply a
Fourier transformation in the y-direction with Fourier variable ξ to Equation (3.3.2). The Fourier
transformation of a function g : R×R→ C is defined by

ĝ(x,ξ ) = Fy [g(x,y)] (ξ ) =
∫ ∞

−∞
g(x,y)eiyξ dy, ξ ∈ R.

We obtain from Equation (3.3.2) using that Fy

[
∂
∂x g(x,y)

]
(ξ ) =−ıξFy [g(x,y)] (ξ )

∂ 2

∂x2 ûn+1
j (x,ξ )+

(
ξ 2− k2

)
ûn+1

j (x,ξ ) = 0, (3.3.3a)
(
− ∂

∂x
+ ık

)
ûn+1

j

(
x−j ,ξ

)
=

(
− ∂

∂x
+ ık

)
ûn

j−1

(
x−j ,ξ

)
, (3.3.3b)

( ∂
∂x

+ ık
)

ûn+1
j

(
x+j ,ξ

)
=

( ∂
∂x

+ ık
)

ûn
j+1

(
x+j ,ξ

)
. (3.3.3c)

The ansatz
ûn

j(x,ξ ) = An
je

λ (ξ )(x−M j)+Bn
je
−λ (ξ )(x−M j), (3.3.4)

where M j =
(

j− 1
2

)
H is the midpoint of subdomain Ω j and λ (ξ ) =

√
ξ 2− k2, gives with

λ1 := λ (ξ )+ ık

λ2 :=−λ (ξ )+ ık

the following linear system
(

λ2e−λ (ξ )H+L
2 λ1eλ (ξ )H+L

2

λ1eλ (ξ )H+L
2 λ2e−λ (ξ )H+L

2

)(
An+1

j
Bn+1

j

)

=

(
λ2eλ (ξ )H−L

2 λ1e−λ (ξ )H−L
2 0 0

0 0 λ1e−λ (ξ )H−L
2 λ2eλ (ξ )H−L

2

)



An
j−1

Bn
j−1

An
j+1

Bn
j+1


 .
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Defining

d = λ 2
1 eλ (ξ )(L+H)−λ 2

2 e−λ (ξ )(L+H),

α1 =−λ 2
2 e−λ (ξ )L, α2 =−λ1λ2e−λ (ξ )H ,

α3 = λ 2
1 eλ (ξ )L, α4 = λ1λ2eλ (ξ )H ,

we get

(
An+1

j
Bn+1

j

)
=

1
d

(
α1 α2 0 0 α3 α4

α4 α3 0 0 α2 α1

)




An
j−1

Bn
j−1

An
j

Bn
j

An
j+1

Bn
j+1




. (3.3.5)

For the boundary subdomains, we get

An+1
Ñ+1 = 0, Bn+1

Ñ+1 =
(

λ2
λ1

e−λ (ξ )L e−λ (ξ )H 0 0
)



An
Ñ

Bn
Ñ

An
Ñ+1

Bn
Ñ+1




and

An+1
0 =

(
0 0 e−λ (ξ )H λ2

λ1
e−λ (ξ )L

)



An
0

Bn
0

An
1

Bn
1


 , Bn+1

0 = 0.

The above formulas define the iteration matrix Ψ that maps the coefficients of the local functions
in one iteration to the coefficients of the local functions in the next iteration:




An+1
0

Bn+1
0
...

An+1
Ñ+1

Bn+1
Ñ+1




= Ψ




An
0

Bn
0
...

An
Ñ+1

Bn
Ñ+1




The columns and rows of Ψ associated to Bn
0 and An

Ñ+1 can be eliminated as these values are zero
and do not contribute to the other coefficients. As by assumption we investigate convergence to the
zero solution, the spectral radius of the iteration matrix ρ(Ψ) has to be smaller than 1 in order for
the iteration to converge.
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3.3.2 Interpretation of the results

As a first step, we look at the case of N = 2 subdomains and verify that our results coincide with
those derived in other works before, see [62, 63]. In fact, the matrix Ψ in this case has only the
eigenvalue λ2

λ1
e−λ (ξ )L, which means that the absolute value of the convergence rate ρT0 of the two

subdomain method defined by
ûn+1

j = ρ2
T0 (ξ ,L) ûn−1

j

is

|ρT0(ξ ,L)|=





e−L
√

ξ 2−k2
, ξ 2 ≥ k2

∣∣√k2−ξ 2−k
∣∣

∣∣√k2−ξ 2+k
∣∣ , ξ 2 < k2.

(3.3.6)

If k > 0, we hence have

|ρT0(ξ ,L)|





< 1, ξ 2 < k2

= 1, ξ 2 = k2 or
(
L = 0 and ξ 2 > k2)

< 1, ξ 2 > k2 and L > 0

and the convergence rates are only good for frequencies away from the wave number k. Figure 3.3.2
shows the convergence rates for the method analyzed above and additionally for Dirichlet transmis-
sion conditions, that is [62]

ρ(ξ ,L)2 = e−2L
√

ξ 2−k2
. (3.3.7)

Hence in the special case of two subdomains, convergence rates for Fourier frequencies ξ > k
are the same with Dirichlet and Robin transmission conditions. Robin transmission conditions
consequently offer an improvement only for the low-frequent Fourier modes; the convergence of the
higher frequencies depends solely on the width of the overlap. This deficiency could for example be
resolved by optimized Schwarz methods [57], compare also the overview in Section 2.4.

As a next step, we examine the eigenvalues of the iteration matrix Ψ for the general case of
N subdomains. Figure 3.3.3 shows the modulus of the maximum eigenvalue of the matrix Ψ for
different values of the number of subdomains N and the size of the overlap L. Figure 3.3.4 illustrates
the dependence of the spectral radius on the width of the subdomains H. The figures allow to draw
the following conclusions:

For high frequent Fourier modes with ξ > k, the maximum eigenvalue is not affected by the
number of subdomains N, but depends solely (among the parameters varied) on the size of the
overlap L. In this case, increasing the size of the overlap reduces the maximum eigenvalue of the
iteration matrix; i.e. with a larger overlap the method will eventually converge faster.

For low frequent Fourier modes with ξ < k, on the contrary, the number of subdomains employed
has a huge influence on the eigenvalues; if it increases, so does the spectral radius of the matrix Ψ.
Moreover, while the size of the overlap L has no influence on the spectral radius in the two-subdomain
case, for N > 2 subdomains, an increase of the size of the overlap L causes an increase in the spectral
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Figure 3.3.2. The convergence rates computed with Fourier analysis for the RAS method with Robin
and Dirichlet transmission conditions, respectively. The plot shows |ρ(ξ ,0.02)| for k = 5 and H = 1
defined in Equation (3.3.6) and Equation (3.3.7).
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Figure 3.3.3. Convergence rates computed with Fourier analysis for a strip decomposition, varying
the number of subdomains. k = 20, H = 1. The solid lines correspond to an overlap of L = 2 ·10−2,
the dashed ones to L = 4 ·10−2. Please note that only every 50th data point has a marker.
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Figure 3.3.4. Convergence rates computed with Fourier analysis for a strip decomposition, varying
the width of the subdomains H. k = 20, N = 10.

radius of the iteration matrix Ψ. Hence the method converges slower for these modes if the overlap
is increased. Maybe most importantly, for some modes the spectral radius of the iteration matrix
is larger than 1. This means that the method diverges for these modes. The more subdomains are
used, the larger is the number of divergent modes. Moreover, the spectral radius of the matrix Ψ
does not depend monotonically on the Fourier frequency ξ . Instead, the larger the width H of the
subdomains is, that is the more wavelengths fit into one subdomain, the more oscillations are present
in the spectral radius. Comparing Figure 3.3.3 with Figure 3.3.4 shows furthermore that the slow
convergence is mainly caused by the increase in the number of subdomains and not by the presence
of more wavelengths in the problem, as the maximum spectral radius seems to be hardly influenced
by H in Figure 3.3.4.

In order to better understand the sobering results for the low-frequent Fourier modes, we
investigate the eigenvalues of the iteration matrix Ψ in more detail in Figure 3.3.5 and Figure 3.3.6.
In Figure 3.3.5, both the minimum and the maximum eigenvalue of the matrix Ψ are plotted for
all frequencies. While they coincide for Fourier frequencies ξ > k, for the low-frequent modes,
the eigenvalues differ in their absolute value. The minimal eigenvalues show the same oscillatory
behavior as the maximal ones, but their absolute value always remains bounded from above by one.
In Figure 3.3.6, all the eigenvalues of the matrix Ψ are shown for a few frequencies ξ . The closer
the Fourier frequency ξ is to the wave number k, the larger the radius of the circle on which the
eigenvalues lie in the complex plane becomes. For some frequencies, the circle then gets distorted
and seems to be split up into two arcs, parts of which might then lie outside of the unit circle, hence
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Figure 3.3.5. Minimum and maximum eigenvalues of the iteration matrix Ψ. 20 subdomains, k = 20,
overlap of L = 2 ·10−2.
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Figure 3.3.6. Eigenvalues λi of the iteration matrix Ψ for different Fourier frequencies ξ . The black
line is the unit circle. 20 subdomains, k = 20, H = 1, overlap of L = 2 ·10−2.
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yielding a spectral radius of Ψ that is bigger than one. This “splitting” of the circle apparently causes
the spectral radius of the iteration matrix Ψ to oscillate.

Concluding, in contrast to the N = 2 subdomains case, there are several Fourier modes that
converge at a low rate or not at all. All these modes are associated to Fourier frequencies that are
smaller than the wave number k. The subspace of problematic modes becomes bigger the more
subdomains are employed in the strip domain decomposition. This is in line with the numerical
experiments in [61, Section 4]. The exactly same kind of analysis could also be applied to any other
kind of transmission condition. However, the numerical experiments of [61] suggest that this would
only partially remove the convergence problems that we encounter. Gander and Zhang [61] have
proposed a way to modify the optimized parameters in order to account for the multi-domain case,
but did not achieve better results than with low order Taylor conditions. Therefore, the development
of a second level that tackles the subspace of slowly converging modes is important.



Chapter 4

Adding a second level

The convergence rates of one-level DDMs as introduced in Chapter 3 depend on the number of
subdomains in the domain decomposition [147]. A standard remedy for this problem is to add a
second level to the method. It captures global features that the purely locally acting RAS method
is not able to treat. This second level is called the coarse space, accounting for the fact that it has
typically less degrees of freedom than the first level and is cheaper to solve. Despite its name, it is
not necessarily related to a coarser mesh. In order to design and test a coarse space for the Helmholtz
equation, it is indispensable to understand how it influences the eigenvalues of the preconditioned
operator and hence the convergence behavior of the iterative method. Contrarily to the s.p.d. case
[114, 115], for indefinite matrices there seems to be no way to ensure that using a two-level method
with an arbitrarily chosen second level always accelerates convergence [53, 124]. This is why
choosing the right, problem dependent coarse space is utterly important for indefinite systems as
those arising from the Helmholtz equation. This question will be investigated in Chapter 5.

Besides the problem of which modes the coarse space should contain, there is the equally
important question of how it should be incorporated into the method. This is the focus of this
chapter. Depending on the context, several alternative approaches have been proposed. In geometric
multigrid methods, see e.g. [70], the coarse space is often associated to the coarsest grid in the grid
hierarchy and transition to it is done as transition to all the other levels. However, different choices
are possible, as e.g. in the wave-ray multigrid method [18], where due to the special form of the
coarse levels, completely different operators are used. In DDMs, adding the coarse space is less
straightforward. Besides additive and multiplicative Schwarz methods, where the coarse space can
be treated exactly as the spaces associated to the subdomains [138], and deflation and balancing
methods [42, 106, 112], various other approaches are also possible, see e.g. [138, Section 2.3] for
an overview, and [114, 143] for a comparison of different approaches for s.p.d. systems. Due to the
strong connection to our work, we note that in [92] yet another method is used.

This chapter presents three methods to use the coarse space, the deflation and the balancing
preconditioners and the approach presented in [74]. The latter is to our knowledge the only one
that results in a provably invertible preconditioner with the desired filtering properties for non-
symmetric, indefinite linear systems of equations. The results in Section 4.2 and Section 4.3 are

39
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presented in condensed form by Conen, Dolean, Krause, and Nataf [28]; some of the text has been
copied verbatim.

4.1 Basic definitions

The first step towards the introduction of the methods in this chapter is the definition of some matrices
that appear in the following sections. Let B ∈ Cn×n, and let Z,Y ∈ Cn×r, r < n, have full column
rank. The matrix B is related to the stiffness matrix A either directly via B = A or by using the
preconditioned matrix B = M−1A. Define the matrices

E = Y ∗BZ, Ξ = ZE−1Y ∗, (4.1.1a)

PD = I−BΞ, QD = I−ΞB, (4.1.1b)

where we assume that E is invertible and ∗ ∈ {T,†}, where T denotes the transpose and † the
conjugate transpose. We usually choose ∗= †, unless mentioned otherwise. The additional assump-
tion on E is not necessary if B is Hermitian positive definite, Y = Z has full column rank and ∗ is
the Hermitian transpose. The following lemma states a few basic identities that can be found e.g.
in [114].

Lemma 4.1.1. With the definitions in Equation (4.1.1), the following identities hold:

P2
D = PD, Q2

D = QD, PDB = BQD, QDΞ = 0,

ΞBΞ = Ξ, ΞBZ = Z, Y ∗BΞ = Y ∗.

Proof. The proof is an easy calculation employing the definitions.

For the methods introduced in this chapter, the matrix Z (and Y , respectively) implicitly defines
the coarse space Z , i.e. the columns of Z (and Y , respectively) represent the basis vectors of Z .
We only consider the case Z = Y . While this is the standard choice in the Hermitian case, for the
non-Hermitian problem considered in this thesis, one could possibly achieve better results choosing
Z 6=Y , as left and right eigenvectors of the matrix B might differ. However, it is unclear how it should
be constructed in practice, when the eigenvectors are not known.

4.2 The deflation operator

The possibly simplest approach to add a second level to a one-level method is deflation. The
deflation operator is a projection to the complement of the coarse space. It thus moves the deflated,
critical eigenvalues to zero; the deflated system is singular while still being consistent. This imposes
additional difficulties when applying a Krylov subspace method such as the GMRES method. Because
of this, even though the GMRES method can be adapted to singular systems, see e.g. [128], we do
not consider the deflation operator in the numerical experiments in Chapter 6 and Chapter 7. We
include it in the theoretical discussion as it is the easiest to analyze and is a building block of all the
other methods presented.
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4.2.1 Definition and basic properties

In this section, we introduce the deflation operator, see e.g. [114], and state its basic properties.
Deflation is defined as follows:

Definition 4.2.1 (Deflation). Let A ∈ Cn×n and let Z,Y ∈ Cn×r, r < n, and use the definitions in
Equation (4.1.1) with B := A. The matrix PD is called the deflation matrix. It is used to precondition
the system Au = b as follows: The solution u can be decomposed as

u = ΞAu+QDu = Ξb+QDu.

If ũ is the solution of the deflated system

PDAũ = PDb, (4.2.1)

then QDũ solves
A(QDũ) = PDb,

and hence QDũ = QDu and u can be computed from ũ and Ξb.

Deflation follows a quite simple principle. Lemma 4.1.1 implies

PDAZ = (I−AΞ)AZ = 0, (4.2.2a)

and similarly
Y ∗PDA = Y ∗AQD = Y ∗A(I−ΞA) = 0. (4.2.2b)

Hence deflation removes the column vectors of the matrix Z (of the matrix Y , respectively)
from the system by putting them into the kernel of the deflated operator (into the kernel of the
Hermitian transpose of the deflated operator, respectively). If Z and Y contain some of the right and
left eigenvectors of A, respectively, the corresponding eigenvalues are shifted to zero [42, Theorem
2.11]. Consequently, problematic modes can simply be “removed” from the linear system in this
simple setting. Without the assumption that the matrices Y and Z contain eigenvectors of the stiffness
matrix A, the situation is more complicated and will be examined in Subsection 4.2.2.

4.2.2 Spectral properties for the symmetric positive definite case

For s.p.d. matrices, the question of how the coarse space influences the convergence rates of the
two-level method has been examined extensively e.g. in [113, 115]. In particular, Nabben, Tang,
and Vuik [115] showed that the spectrum never deteriorates compared to the non-deflated operator
for any choice of the coarse matrix Z. Here, not deteriorating means that the smallest non-zero
eigenvalue does not decrease and the largest eigenvalue does not increase.

Theorem 4.2.2 ([115, Theorem 2.2]). Let A ∈ Rn×n be an s.p.d. matrix. Let Z ∈ Rn×r with r < n
have full column rank. Let M be a real, n×n s.p.d. matrix. Then the following inequality holds:

κeff(M−1PDA)< κ(M−1A),



42 Adding a second level

where κ(C) for a matrix C ∈Cn×n denotes the condition number of the matrix C and κeff(C) denotes
effective condition number of the matrix C, that is the ratio of its largest to smallest nonzero
eigenvalue

κeff(C) =
λmax(C)

λmin(C)
,

where λmin(C) = mini:|λi|6=0 |λi| and λmax(C) = maxi |λi|. Here λi, 1≤ i≤ n, are the eigenvalues of
the matrix C.

For s.p.d. matrices, the deflated matrix has hence always a better condition number than the
original, non-deflated matrix, no matter how the matrix Z is chosen. Moreover, this remains true if
additionally a preconditioner is applied to those matrices, provided that the preconditioning matrix
M is also s.p.d. When the matrices cannot be assumed to be (semi-)definite, the situation gets
more complicated and a similar behavior can only be concluded under additional assumptions, see
Subsection 4.2.3 for an investigation of this issue. In the following, we give an example, where
deflation deteriorates the spectrum of an indefinite matrix.

Example 4.2.3. Let

A =



−4 0 0
0 1 0
0 0 8


 , Y = Z =




1
0
1


 .

The matrix A is hence symmetric, but indefinite with condition number 8. We get

PDA =



−8 0 8
0 1 0
8 0 −8


 .

The eigenvalues of PDA are −16, 1, and 0. It follows that κeff(PDA) = 16 > κ(A) = 8 and Theo-
rem 4.2.2 does not hold in the indefinite case.

While the positive definiteness is consequently a crucial assumption in Theorem 4.2.2, we can
easily extend the theorem to complex, Hermitian, positive definite matrices:

Theorem 4.2.4. Let A ∈ Cn×n be Hermitian positive definite. Let Z ∈ Cn×r with r < n have full
column rank. Using Definition 4.2.1 with ∗= †, the following inequality holds:

κeff (PDA)< κ (A) .

Proof. The proof follows literally the one of [115, Theorem 2.1].

4.2.3 Spectral analysis for indefinite, Hermitian matrices

Example 4.2.3 shows that adding a second level to a preconditioner for an indefinite matrix may
negatively affect the spectrum of the preconditioned operator and hence the convergence rates of the
iterative method. This section explains why this is the case, i.e. why the results from [115], presented
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in Subsection 4.2.2, do not hold true in the indefinite case. To be able to provide results, we restrict
to a simpler setting: Use Definition 4.2.1 with ∗ = † the conjugate transpose, let Z = Y , and let
the matrix A be Hermitian1. Let vi, 1 ≤ i ≤ n be an orthonormal basis of eigenvectors of A with
corresponding eigenvalues λi ∈ R. Let |λi| ≤ |λi+1| for all 1≤ i < n. We may consider the columns
of Z separately in a recursive procedure, using a variant of [85, Theorem 3.2]:

Theorem 4.2.5. Let P(k) = I−AZk

(
Z†

k AZk

)−1
Z†

k with Zk =
[
Z̃1, Z̃2, . . . , Z̃k

]
, where Z̃ j ∈ Cn×l j has

full rank l j. Let Z̃†
i Ãi−1Z̃i and Z†

i AZi be non-singular for all 1≤ i≤ k. Then

P(k)A = PkPk−1 . . .P1A,

where Pi+1 = I− ÃiZ̃i+1

(
Z̃†

i+1ÃiZ̃i+1

)−1
Z̃†

i+1, Ãi = PiÃi−1, Ã0 = A.

Proof. In [85, Theorem 3.2], the positive definiteness is only used for the non-singularity of Z̃†
i Ãi−1Z̃i

and Z†
i AZi that we added to the assumptions. The rest of the proof for our situation is literally the

same, as the symmetry is not used.

We consequently restrict without loss of generality (w.l.o.g.) to Z ∈ Cn×1 with only one column,
Z :=

∑
i∈I αivi, where αi 6= 0 ∈ C are coefficients and I ⊆ {1, . . . ,n}.

It is clear that when |I| = 1 and hence Z = v for some eigenvector v with eigenvalue λ of A,
the deflation operator PD removes exactly this eigenvalue from the spectrum of A, i.e. σ (PDA) =
σ(A) \ {λ}∪ {0}. In this case, the effective condition number of the deflated matrix cannot be
worse than the one of the original matrix A. Even though the situation is similar to the s.p.d. case
for this very simple setting, it changes substantially, if the columns of Z are linear combinations of
eigenvectors associated to eigenvalues with different signs. As a first step towards understanding this
in more detail, we compute PDAvk for all k and get the following lemma:

Lemma 4.2.6 (Structure of PDA). W.l.o.g. assume I = {1,2, . . . , |I|}. In the basis of eigenvec-
tors (vi)1≤i≤n , PDA is a block diagonal matrix with the two blocks C and D, i.e. there is a basis
transformation V such that

V †PDAV =

(
C 0
0 D

)
,

where C ∈ C|I|×|I| is the block associated to (vi)i∈I and is defined by

Cii =

∑
k∈I\{i} |αk|2 λiλk
∑

k∈I |αk|2 λk
, Ci j =−

α jᾱiλ jλi∑
k∈I |αk|2 λk

, ∀i, j ∈ I, i 6= j,

and D is a diagonal matrix with diagonal entries λ|I|+1, . . . ,λn.

The following theorem treats the simple case in which bounds on the eigenvalues of the deflated
operator can be guaranteed.

1The matrix associated to the Helmholtz problem defined in Equation (1.3.4) is Hermitian if ΓR = /0.
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Theorem 4.2.7. If all λi, i ∈ I, have the same sign, then

λmax(PDA)≤ λmax(A) and λmin(PDA)≥ λmin(A).

Proof. Let V be the matrix whose columns are the eigenvectors vi, 1 ≤ i ≤ n. According to
Lemma 4.2.6, after reordering, V †PDAV has block structure with a block C associated to {vi}i∈I and
a diagonal block D. As the two blocks are decoupled and all eigenvalues of D are eigenvalues of A,
we can consider only C. Eigenvalues are invariant under change of basis and by assumption, all λi,
i ∈ I, have the same sign. Since either C or −C is Hermitian positive semi-definite, we can use the
result for the real, s.p.d. case [115, Theorem 2.1], whose proof is literally the same for complex
matrices, to prove the claim.

Consequently, if all eigenvalues associated to eigenvectors that contribute to the vector Z have the
same sign, the spectrum of the deflated operator can be bounded by the one of the original operator.
Deterioration of the spectrum could thus be avoided if an orthonormal basis of eigenvectors of the
global operator was known. This is not feasible in practice; knowing the full spectral information of
the global operator, there is no more need for employing an iterative solution technique.

The remaining question is what happens to the eigenvalues if the λi, i ∈ I, have different signs.
For simplicity, we restrict to the case |I|= 2.

Theorem 4.2.8. Let |I|= 2, i.e. Z = αivi +α jv j for some 1≤ i, j ≤ n. Then λmax(PDA)> λmax(A)
holds, if and only if i and j are chosen such that λi and λ j have different signs and

(
|αi|2 +

∣∣α j
∣∣2
)
|λi|

∣∣λ j
∣∣

∣∣∣|αi|2 λi +
∣∣α j
∣∣2 λ j

∣∣∣
> |λk| ∀ 1≤ k ≤ n. (4.2.3)

Proof. This follows directly from Theorem 4.2.7 and Lemma 4.2.6, observing that the matrix C has

the eigenvalues 0 and

(
|αi|2+|α j|2

)
λiλ j

|αi|2λi+|α j|2λ j
.

Theorem 4.2.8 implies that if eigenvectors associated to eigenvalues with different signs enter
the coarse space, the eigenvalues of the deflated matrix might become arbitrarily large. Here we give
a small example showing that the condition given in Theorem 4.2.8 can be fulfilled easily:

Example 4.2.9. Use the definitions in Example 4.2.3. The matrix

Z =




1
0
0


+




0
0
1




is the sum of the (orthonormalized) eigenvectors associated to the eigenvalues −4 and 8, respectively.
As predicted by the theory, PDA has the eigenvalue

−16 =
(1+1) · (−4) ·8
−4+8

that is larger in modulus than any of the eigenvalues of A.
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4.2.4 Spectral analysis of a modified deflation operator

In this section, we examine a variant of the deflation operator used e.g. in [4, 49] for the iterative
solution of the Helmholtz equation, where ∗ = T in Definition 4.2.1. Even though the transpose
T seems to be more suitable for complex symmetric matrices than the conjugate transpose †, as it
is closely related to the structure of the matrix, we show that the situation with this choice is even
worse. We consider a complex symmetric, possibly non-Hermitian matrix A as it arises from the
discretization of the Helmholtz equation in Equation (1.3.1) and assume that A is diagonalizable.
It hence has an eigenvector matrix V such that V T AV is diagonal and V TV = I [78, Theorem
4.4.13]. Under these assumptions, a modified version of Theorem 4.2.8 holds, where the condition in
Equation (4.2.3) is substituted by

∣∣∣∣∣∣

(
α2

i +α2
j

)
λiλ j

α2
i λi +α2

j λ j

∣∣∣∣∣∣
> |λk| ∀1≤ k ≤ n.

Note that here the condition includes coefficients α2
k instead of |αk|2, k = i, j. This means that

the denominator
∣∣∣α2

i λi +α2
j λ j

∣∣∣ might become arbitrarily large independently of the signs of the
eigenvalues. Thus in contrast to the Hermitian transpose case, no sign restriction on λi and λ j can
prevent the eigenvalues of the deflated operator from becoming huge. This is illustrated in the
following example:

Example 4.2.10. Let A =




1 ı 0
ı 1 2ı
0 2ı 1


 with (orthogonal) eigenvectors v1 =

(
1
√

5 2
)T

, v2 =

(
2 0 −1

)T
, v3 =

(
1 −

√
5 2

)T
and eigenvalues λ1 = 1+ ı

√
5, λ2 = 1, λ3 = 1− ı

√
5. Choosing

Z = α 1
‖v1‖v1 +

1
‖v2‖v2, α =

√
ε−λ2

λ1
for some real number 0 < ε < 1, we get

λmax(PDA) =
∣∣∣1+ ıε−1

√
5
∣∣∣> λmax(A) =

∣∣∣1+ ı
√

5
∣∣∣ .

These theoretical results suggest to use the Hermitian transpose instead of the transpose. Some
numerical results on this issue will be given in Section 4.6.

4.3 The balancing Neumann-Neumann method

A well-known way to add a coarse space to the one-level RAS method is the balancing Neumann-
Neumann (BNN) method introduced by Mandel [106]. For the more general version that we
are using in this work see [112]. While this kind of preconditioner is well-understood for s.p.d.
problems, for the indefinite, non-Hermitian matrix arising from the discretization of the Helmholtz
equation difficulties arise. Even though Erlangga and Nabben [42] generalize the BNN idea to this
case and claim invertibility of the resulting matrix, their results contain an error, for details see
Subsection 4.3.2, that we were not aware of when starting the work presented in this manuscript. The
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resulting preconditioned matrix is possibly singular and hence the GMRES method might encounter
problems to find the right solution. Building on those wrong results, we have used the balancing
preconditioner for a lot of the numerical experiments. We will comment on this in more detail in
Chapter 6 and Chapter 7, where the numerical experiments are presented. In this section, we present
the BNN preconditioner and discuss its properties.

4.3.1 Definition and basic properties

The BNN preconditioner reads for s.p.d. systems in its abstract form [114]

PB = PT
D M−1PD +Ξ, (4.3.1)

where Z = Y and B = A in Equation (4.1.1). This preconditioner and similar ones are suitable for
Krylov methods as the residual rn at any step n of the Krylov method remains orthogonal to the
vector space spanned by the columns of Z [74]: Z∗rn = 0. Erlangga and Nabben [42] extend this
approach to non-symmetric systems, using the formula

PB = QDM−1PD +Ξ, (4.3.2)

where M−1 is the one-level preconditioner in Equation (3.2.2) and using the definitions in Equa-
tion (4.1.1).

The BNN preconditioners in Equation (4.3.1) and Equation (4.3.2) can be rewritten as a three-step
method. Setting

un+1← un +PB(f−Aun) (4.3.3)

is equivalent to iterating on the residuals ri := f−Aui in the following way

rn+1← (I−APB)rn. (4.3.4)

This can be rewritten as

rn+1/3← PDrn (4.3.5a)

rn+2/3← (I−AM−1)rn+1/3 (4.3.5b)

rn+1← PDrn+2/3. (4.3.5c)

Hence, the balancing preconditioner consists of two ingredients, which can be separated from each
other: application of the deflation operator PD, see Definition 4.2.1, incorporating the second level,
and application of the one-level preconditioner M−1. In Subsection 4.3.3, we will examine the
relation between the eigenvalues of the balancing and the deflation operators. Note that for the BNN

preconditioner defined in Equation (4.3.2) a right-filtering property holds as an easy calculation
shows:

PBAZ = Z.

Assuming that PB is non-singular, this can be rewritten as

AZ = P−1
B Z.
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4.3.2 A problematic observation

Apart from the filtering property derived in Subsection 4.3.1, another important property of the
preconditioned matrix is its non-singularity. On the one hand, for a singular system the solution is not
uniquely determined and, in contrast to the construction for the deflated matrix, cf. Section 4.2, it is
not clear how the solution of a singular system would be related to the solution of the original system.
On the other hand, the GMRES method encounters problems when naively applied to singular systems:
Convergence might stagnate before a sufficiently accurate approximation of the discrete solution has
been computed [128]. Solving a singular system with GMRES requires hence modifications of the
solver in order to enable it to deal with the additional difficulties. For these reasons, a non-singular
preconditioned matrix would be favorable. Erlangga and Nabben [42] examine this question. In
particular, they state that the preconditioned system

PBAx = PBb

is non-singular and consequently Krylov methods such as the GMRES method can be used without
further modifications:

Theorem (Theorem 2.9 of [42]). Let Z and Y be full ranked. Let M be non-singular. Then PBA is
non-singular. In addition, any zero eigenvalue of M−1PDA is shifted to one in PBA.

Unfortunately, as we discovered after having done a significant portion of the work presented
here, this is simply wrong. In general PB and PBA are singular: Consider

A =




2 5 2
0 6 0
0 1 4




with eigenvalues σ(A) = {2,4,6}, hence A is real, non-singular, positive definite, diagonalizable and
all its eigenvalues are mutually distinct. Furthermore, let

Z = Y =




0
1
1


 , M−1 =




1 1 0
1 0 0
0 0 1


 .

A, M, and E = Y T AZ =
(

11
)

are clearly non-singular, but




15
−4
7




is an eigenvector of PBA with eigenvalue 0 and hence PBA is singular. Moreover, we have

σ
(

M−1PDA
)
=

{
0,0,

52
11

}
,
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and
σ (PBA) =

{
1,0,

52
11

}
.

Consequently, not all zero eigenvalues of M−1PDA are shifted to one in PBA; the second claim of [42,
Theorem 2.9] is also wrong.

In the previous example, the matrix A was definite, but not Hermitian. We also give an example
for the case where A is Hermitian, but not positive definite. Let

M−1 =




1 1 0
1 0 0
0 0 1


 , A =




0 1 0
1 0 0
0 0 2


 , Z = Y =




0
1
1


 .

Both matrices A and M−1 are real, symmetric and indefinite. Since they have mutually different
eigenvalues, they are diagonalizable. Then

M−1PDA =
1
2




1 2 −2
−1 2 −2
−2 0 0




has eigenvalues 0,0, 3
2 with eigenvectors




0
1
1


 and




3
1
−2


 ,

where the eigenspace corresponding to the eigenvalue 0 is only one-dimensional and

PBA =
1
2




1 2 −2
3
2 1 1
1
2 −1 3




has eigenvalues 0,1, 3
2 with corresponding eigenvectors



−2
2
1


 ,




0
1
1


 , and




2
1
−1


 .

Thus, here again, the balancing preconditioner is not guaranteed to be non-singular as opposed to the
s.p.d. case [113].

The possible singularity of the BNN preconditioner PB and the preconditioned matrix PBA is
problematic. The GMRES method used to solve the preconditioned system might break down
for singular systems without providing a sufficiently good approximation to the solution [128].
Assume that convergence is tested via the non-preconditioned residual r(n) := f−Au(n) or via the
error e(n) := u−u(n), where u denotes the exact discrete solution and u(n) denotes the approximation
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to the solution u in step n of the iterative method. Then if the method converges, it converges to the
correct solution. If, however, the method does not converge, it is unclear whether the reason is the
indefiniteness of the system causing a breakdown of GMRES or a deficiency of the coarse space/RAS

method, whose performances are under investigation. Therefore, the use of this preconditioner makes
it difficult to correctly interpret cases where divergence or stagnation of convergence occurs.

4.3.3 Relation to the deflation operator

From the form of the BNN preconditioner given in Equation (4.3.5), there is reason to believe that
the deflation and the BNN operators are closely connected. The exact relation between these two
operators has been examined for the s.p.d. case.

Theorem 4.3.1 (Theorem 2.8 of [113]). Let A and M−1 be s.p.d. matrices. If the spectrum of
M−1PDA is given by

σ(M−1PDA) = {0, . . . ,0,µr+1, . . . ,µn},
then

σ(PBA) = {1, . . . ,1,µr+1, . . . ,µn}.

For the more general case of complex, non-Hermitian, indefinite matrices, we are only able to
prove a weaker result. It is stated in the following theorem. We will comment on the relation to the
similar, stronger and presumably incorrect result [42, Theorem 2.8] after the proof of the theorem.

Theorem 4.3.2 (Relation between the BNN preconditioner and deflation). Let A,M ∈ Cn×n. Let
Z,Y ∈ Cn×r have full column rank. Let PD be as in Definition 4.2.1 and PB be defined in Equa-
tion (4.3.2). Then the following relations between the eigenvalues of M−1PDA and PBA hold:

1. The r columns of the matrix Z are linearly independent eigenvectors of both M−1PDA and PBA
with corresponding eigenvalues 0 and 1, respectively.

2. If λ 6= 0 is an eigenvalue of M−1PDA, then it is also an eigenvalue of PBA.

3. If λ 6= 1 is an eigenvalue of PBA, then it is also an eigenvalue of M−1PDA.

Proof. The proof follows the main line of [113, Theorem 2.8] and [42, Theorem 2.8]. However,
some more work is required in our setting. We start with proving Item 1. Equation (4.2.2a) implies
that

PDAZ = 0,

and hence also M−1PDAZ = 0, so the columns of the matrix Z are eigenvectors of M−1PDA corre-
sponding to zero eigenvalues. On the other hand,

PBAZ =
(

QDM−1PD +Ξ
)

AZ = QDM−1PDAZ +Z = 0+Z = Z.

This implies that the columns of the matrix Z are eigenvectors corresponding to the eigenvalue 1 of
the preconditioned matrix PBA.
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For the proof of Item 2, let λ 6= 0 be an eigenvalue of M−1PDA. Suppose that v is a corresponding
eigenvector and thus M−1PDAv = λv. Note that such a vector v always exists, but that the algebraic
multiplicity of λ might be higher than its geometric multiplicity. Since

0 6= λv = M−1PDAv = M−1P2
DAv = M−1PDAQDv,

the vector QDv is nonzero. It follows that

PBA(QDv) = QDM−1PDAQDv+ΞAQDv
= QDM−1P2

DAv+0

= QDM−1PDAv
= λ (QDv).

So the vector QDv is an eigenvector of PBA corresponding to the eigenvalue λ .
We proceed with the proof of Item 3. Let v be an eigenvector of PBA such that

PBAv = λv

for some eigenvalue λ 6= 1. Then QDv 6= 0. Indeed, assuming QDv = 0, i.e. v = ΞAv and using the
fact that PDA = AQD, it follows that

λv =PBAv
=QDM−1PDAv+ΞAv
=QDM−1AQDv+v
=0+v,

which is obviously false for λ 6= 1 and QDv 6= 0 follows. As a next step, we compute

λ (QDv) = QD (λv) =QD (PBAv)
=QDM−1PDAv+QDΞAv
=QDM−1PDAv+0

=
(

QDM−1A
)
(QDv) .

Using the relation PDA = AQD yields M−1PDA =
(
M−1A

)(
QDM−1A

)(
M−1A

)−1 and hence the
matrix M−1PDA is similar to the matrix QDM−1A that appears in the calculation. Similar matrices
have the same eigenvalues. Thus λ is also an eigenvalue of M−1PDA.

We now comment on the relation of our result to the sharper one of Erlangga and Nabben [42].
In particular, they state the following theorem:

Theorem (Theorem 2.8 of [42]). Suppose that the spectrum of M−1PDA is given by

σ
(

M−1PDA
)
= {0 . . . ,0,µr+1, . . . ,µn} ,
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then
σ (PBA) = {1, . . . ,1,µr+1, . . . ,µn} .

Conversely, if the spectrum of PBA is given by

σ (PBA) = {1, . . . ,1,µr+1, . . . ,µn} ,

then
σ
(

M−1PDA
)
= {0 . . . ,0,µr+1, . . . ,µn} .

This result is stronger in the sense that it does not only claim that the eigenvalues of the two
operators are the same, but additionally states that their multiplicities coincide. Even though our
proof follows closely the line of theirs, we are only able to prove a weaker result. Unfortunately, we
are not aware of a counterexample to the stronger result. So it is unclear whether or not it may hold
in this form.

Remark 4.3.3. We have seen in the proof of Theorem 4.3.2 that the balancing preconditioner PB

shifts some of the eigenvalues of the original operator to one. This is not good for the convergence of
a stationary iterative method applied to the system preconditioned with PB, and could be avoided
by adding the coarse space in a multiplicative instead of an additive way. However, we will not use
the preconditioner for a stationary iterative method, but only inside of a GMRES method, where the
clustering of the eigenvalues is important, and not their actual values.

4.4 A non-singular way to add a coarse space

The deflation operator introduced in Section 4.2 and the BNN preconditioner introduced in Section 4.3
are both singular. In the case of the deflation operator, the singularity is introduced on purpose and
the solution of the deflated system still provides enough information to construct from it the solution
of the original system. In the case of the BNN preconditioner, however, the singularity comes in
unintentionally and it is not clear if there is an easy and efficient way to reconstruct the solution of
the original system from the one of the system preconditioned with PB in case PBA is singular. An
additional difficulty in both cases is that the GMRES method is not guaranteed to converge without
breakdown for singular systems, unless it is suitably modified [128]. Therefore, in this section, we
present a way to use the coarse space such that the preconditioned system is invertible [74].

The method presented here stems from Havé, Masson, Nataf, Szydlarski, Xiang, and Zhao [74]
and is tailored for non-symmetric, indefinite problems. To our knowledge, this is the only approach
that allows to prove invertibility of the preconditioned operator for arbitrary matrices A, M−1 and
Z = Y . The preconditioner reads

QG := QD +Ξ, (4.4.1)

where the matrices QD and Ξ are defined in Equation (4.1.1) with B = M−1A, i.e. using the matrix
preconditioned with the one-level preconditioner. The definition in this thesis differs slightly from the
original one in [74], as it allows for different matrices Y 6= Z. We denote this preconditioner by QG.
We use the letter Q for the matrix to indicate that it is used as a right preconditioner as opposed to the
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left preconditioners denoted by P in this thesis, cf. also QD and PD in Equation (4.1.1). The subscript
“G” stands for “generic” as it can be applied to any kind of square matrix. This approach has the
advantage that the resulting two-level right-preconditioned matrix BQG = M−1AQG is non-singular
if Z = Y as opposed to the BNN preconditioner, where such a result cannot be guaranteed.

Theorem 4.4.1 ( cf. Lemma 4.1 of [74]). The coarse correction QG defined in Equation (4.4.1) has
the left-filtering property

Y ∗BQG = Y ∗.

Furthermore, it is invertible if Z = Y or if Y ∗Z is invertible. In this case, the left-filtering property
can be rewritten as

Y ∗B = Y ∗Q−1
G .

Proof. The proof is similar to the one of [74, Lemma 4.1]. However, as our definition differs slightly,
allowing for two coarse space matrices Z and Y , we repeat it here and point out the place where the
assumption Z = Y or Y ∗Z invertible is needed.

The first step is to prove that QG is invertible by contradiction. Assume that there is a vector u
such that QGu = QDu+Ξu = 0. Left multiplying by QD and using Lemma 4.1.1 gives QDu = 0
and consequently also Ξu = 0. QDu = 0 implies u = ΞBu = ZE−1Y ∗Bu. Setting w := E−1Y ∗Bu
yields u = Zw. Then Ξu = 0 implies Ξu = ΞZw = ZE−1Y ∗Zw = 0. Left-multiplying by Y ∗B yields
Y ∗Zw = 0. This is the place, where the assumption Z = Y or Y ∗Z invertible is necessary, as it is
sufficient to conclude that Zw = 0 and hence u = 0.

The next step is to prove the left-filtering property Y ∗BQG = Y ∗. Transposing the equation
and using the definition of QG, this can be equivalently written as (Q∗D +Ξ∗)B∗Y = Y . We have
Q∗DB∗Y = 0 as

Q∗DB∗Y = B∗Y −B∗Ξ∗B∗Y = B∗Y −B∗Y (Z∗B∗Y )−1 Z∗B∗Y = B∗Y −B∗Y = 0.

It remains to prove that Ξ∗B∗Y = Y :

Ξ∗B∗Y = Y (Z∗B∗Y )−1 Z∗B∗Y = Y.

Moreover, the following result on the residual of the GMRES method holds:

Theorem 4.4.2 (cf. Lemma 4.2 of [74]). Let x0 be an initial guess, and let r0 := b−Bx0 be the
initial residual such that Y ∗r0 = 0. Let Km (BQG,r0) denote the Krylov space of dimension m, i.e.

Km (BQG,r0) := span
{

r0,BQGr0, . . . ,(BQG)
m−1 r0

}
.

Then, for any xm ∈ {x0}⊕QGKm (BQG,r0) it holds that

Y ∗ (b−Bxm) = 0,

i.e. in particular in any step of the Krylov method, the residual is perpendicular to the coarse space
spanned by the columns of the matrix Y .
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Proof. The proof is almost literally the same as [74, Lemma 4.2].

Note that in Theorem 4.4.2 the assumption that Y = Z or that Y ∗Z is invertible is not necessary.
Moreover as explained in [74], it is not difficult to satisfy the assumption Y ∗r0 = 0. Indeed, for an
arbitrary initial guess x̃0, the vector x0 = QG (b+PDx̃0) satisfies the assumption as

Y ∗r0 = Y ∗ (b−BQG (b+PDx̃0)) = Y ∗b−Y ∗ (b+PDx̃0) = Y ∗PDx̃0 = 0.

As opposed to the previous sections on the deflation operator and the BNN preconditioner, in this
section we do not give a spectral analysis. The results that we were able to obtain do not provide
any additional insight. The analysis is complicated by a couple of factors. On the one hand, to the
best of our knowledge, there are no positive results for the spectrum of this preconditioner similar to
those presented in Subsection 4.2.2, even if additional assumptions on the properties of the matrix
B are made. On the other hand, the technique used in the previous sections, that is restricting to a
single column coarse matrix Z, is not justified in this case, as we do not know whether an analogue of
Theorem 4.2.5 holds also in this case. Moreover, the results are difficult to compare to the previous
ones as they would probably use eigenvalues of B = M−1A and not those of A as before. Therefore,
we here just present a counterexample, showing that also the QG preconditioner may deteriorate the
spectrum of the preconditioned operator. Note that this example is analogous to the one used for the
deflation operator, Example 4.2.3.

Example 4.4.3. Let

B :=



−4 0 0
0 1 0
0 0 8


 , Z = Y :=




1
0
1


 .

Then

BQG =



−9 0 7
0 1 0
10 0 −6




has eigenvalues ρ (BQG) = {−16,1,1}, while B has eigenvalues ρ (B) = {−4,1,8}. Hence the
maximum eigenvalue in modulus has doubled by applying the preconditioner QG.

4.5 Sparsity structure of the coarse matrix E

As opposed to the deflation operator and the BNN preconditioner, in the case of the preconditioner QG,
not the matrix E = Z†AZ is used as the coarse matrix, but the matrix E = Z†M−1AZ. This has an
influence on the sparsity structure of the matrix E, which we will explain in this section. For
simplicity, consider the one-dimensional Laplace problem discretized with piecewise linear FEs,
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(b) E = Z∗M−1AZ

Figure 4.5.1. Sparsity structure of the coarse matrix E defined with the stiffness matrix A of a 1D
Laplace problem and with the preconditioned matrix M−1A, where M−1 denotes the one-level RAS

method as defined in Equation (3.2.2). Each dot represents a non-zero entry in the matrices.

such that the stiffness matrix A has the form

A =




2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2



.

Let the computational domain Ω = (0,7) be divided into seven overlapping subdomains Ωi =
((i−1)−0.2, i+0.2)∩Ω and use a uniform grid of width h = 0.1. Assume that Z satisfies As-
sumption 7.1.1 and has 7 columns, one for each subdomain. The values for the block W̃j with
Wj = D jW̃j a block in Z are random values drawn from a normal distribution in the unit interval.
The one-level preconditioner M−1 is the RAS method defined in Equation (3.2.2) equipped with
Dirichlet transmission conditions, i.e. Ai = RiART

i . In Figure 4.5.1, we plot the sparsity structure of
the matrix E for the classical E = Z∗AZ and for E = Z∗M−1AZ that is employed in the definition
of the preconditioner QG, cf. Equation (4.4.1). While for E = Z∗AZ each coarse degree of freedom
couples with the degrees of freedom on its neighboring subdomains only – i.e. for a one-dimensional
problem, each row/column has at most three entries – for E = Z∗M−1AZ, each coarse degree of
freedom couples with two neighbors on each side, i.e. the coarse degree of freedom associated to Ωi

couples with those of Ωi−2, Ωi−1, Ωi+1 and Ωi+2. Thus a row in this matrix has typically five entries
and the matrix E has significantly more non-zero entries. The reason for the additional entries is the
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nloc k 1-lev Preconditioning DtN, ∗= † DtN, ∗= T

20 18.5 80 PBAx = PBb 15 (144) 15 (144)
M−1AQGx = M−1b 16 (144) 38 (144)

40 29.3 116 PBAx = PBb 18 (224) 18 (224)
M−1AQGx = M−1b 20 (224) 45 (224)

80 46.5 156 PBAx = PBb 29 (299) 29 (299)
M−1AQGx = M−1b 31 (299) 78 (299)

160 73.8 217 PBAx = PBb 39 (508) 38 (508)
M−1AQGx = M−1b 43 (508) 127 (508)

Table 4.6.1. Comparison of different methods to use the coarse space. Number of iterations
(dimension of coarse space) for Problem 2, see Section 1.4, decomposed into 5×5 subdomains. The
DtN coarse space used here will be introduced in Chapter 5.

presence of the inverses of local problems in the preconditioner M−1 that are – as opposed to the
stiffness matrix A – fully populated and hence distribute values from the overlap of Ωi and Ωi+1 also
to Ωi+1∩Ωi+2. This difference gets even more significant for higher-dimensional problems.

The additional values in the matrix E cause the parallel implementation of the assembly of E to
be more involved as not only communication with neighbors, but also with neighbors of neighbors is
needed, cf. Subsection 7.1.2. The solution or factorization of the matrix E is in general the more
expensive the more entries it has. This is especially true when using iterative methods, as direct
methods often result in fully populated matrices anyhow. Moreover, the less sparse structure of E
might impose problems when storage is critical.

4.6 Comparison and conclusions

In this chapter, we have presented and theoretically examined different ways to use the coarse space.
From the analysis, it is clear that the use of the BNN preconditioner in this form is problematic, as it
yields a possibly singular matrix and hence to an underdetermined system of equations. However, the
alternatives also suffer from difficulties: In case of the deflation operator, the GMRES solver has to
deal with a singular problem; in case of the preconditioner QG, memory requirements for the coarse
matrix E increase and more communication is necessary for its assembly and application.

In Table 4.6.1, we compare the two main approaches in this work: the BNN preconditioner
and the non-singular operator QG. For these two preconditioners, we examine both the use of the
Hermitian transpose and of the simple transpose. The latter might seem to be the natural choice
due to the complex symmetry of the stiffness matrix. We do not consider deflation here, as it would
require to modify the GMRES solver and has almost the same eigenvalues as the BNN preconditioner.
The two ways to precondition the system yield pretty much the same results for all cases but one,
the preconditioner QG using the simple transpose, which yields considerably worse results. The bad
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performance for this case is similar to the results in [4, Section 4.1.2], where the authors observe
that the conjugate transpose outperforms the transpose, even though in a different setting. These
conclusions depend of course on a lot of choices, e.g. the problem that is solved, the coarse space,
and the way the second level is incorporated into the method. However, as in our setting the simple
transpose at least never outperforms the Hermitian transpose, in the following we work with the
latter only, that is ∗= †. Additional comparisons between the two preconditioners PB and QG will be
presented in the numerical experiments in Chapter 6.

Concluding, to our knowledge, the question of how to best add a second level to an iterative
method for non-Hermitian problems in such a way that the resulting operator is easier to solve
iteratively independently of the coarse space is still open. Complicating this issue is the fact that it is
not even clear how exactly the convergence rates of the GMRES method depend on the properties
of the system that is to be solved. We have examined in detail a few of the approaches present in
the literature. While none of them is perfect in theory, the first numerical experiments showed that
they work reasonably well in practice. The numerical experiments in this thesis will use the two
preconditioners PB and QG concurrently. This is partially due to the fact that a lot of the results
were produced before we discovered that PB might be singular. Apart from this, we think it provides
additional insight into the differences of the two approaches. In contrast to the simple setting
in Table 4.6.1, in the more complicated experiments in Chapter 6, differences between the two
approaches become apparent.



Chapter 5

Construction of a second level: The
Dirichlet-to-Neumann operator based
coarse space

The coarse space Z influences the convergence speed of a two-level method significantly. Whereas
for certain elliptic problems choices are known that turn the resulting two-level DDMs into optimal
solvers with subdomain independent convergence rates [147], for the Helmholtz problem the situation
is much more complicated and the correctness of the coarse space is especially important. Contrarily
to the elliptic case [114], any deviation from the optimal setting might be fatal, as convergence rates
can deteriorate if the wrong or too few coarse space functions are used, cf. Section 6.2 and [53].
Hence particular emphasis has to be put on the design of the coarse space.

There exist various approaches in the literature that aim at designing efficient two-level methods
[4, 18, 49, 52, 92, 101], often using plane waves as basis functions for the coarse space, cf. also
the literature review in Section 2.4. Although very elegant by design, the plane wave construction
does not cover the case of varying coefficients and requires an a priori choice of certain parameters.
Here, we thus intend to construct a coarse space with the following properties: On the one hand, for
constant coefficients it behaves similarly as the one based on plane waves. On the other hand, it is
also efficient for heterogeneous coefficients and can be constructed in an automatic, parameter-free
fashion. The construction is based on local eigenproblems involving the DtN operator. This idea
is based on a similar construction for s.p.d. systems, cf. [33, 116]. Part of the presentation in this
chapter has been taken or adapted from [28].

5.1 What should the coarse space look like?

As a first step towards the design of the coarse space Z , we investigate numerically the properties that
it should have. While Fourier analysis detects the flaws of the one-level method in Equation (3.2.2) in
a simplified setting, cf. Section 3.3, we here aim at getting a better understanding of how the second
level should be designed by looking at the functions that it contains in the optimal case directly.

57
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(a) Re(v1) (b) Re(v2) (c) Re(v3) (d) Re(v4)

Figure 5.1.1. Real part of optimal coarse space function vi associated to eigenvalue λi, |λi| ≥ |λi+1|
for all i, of Equation (5.1.1) on Ω. 5×5 subdomains, nloc = 40, k = 29.3.

The Richardson iteration (without relaxation) for the system Ax = f preconditioned with M−1

reads rk+1 =
(
I−M−1A

)
rk, where rk = f−Axk is the residual. The one-level RAS preconditioner

M−1 is consequently not efficient for eigenfunctions of I−M−1A associated to eigenvalues with
large modulus. These are the functions that should enter the coarse space. To compute these “optimal”
functions, we solve the eigenproblem

Find (vi,λi) ∈ Cn×C, 1≤ i≤ n, such that
(

I−M−1A
)

vi = λivi, (5.1.1)

and then choose those functions vi for which the modulus of the associated eigenvalue |λi| is maximal.
From the investigation of these eigenfunctions, the guidelines for the coarse space construction in
the remainder of this section follow.

The subdomain structure should be reflected in the coarse space.
Even though the eigenfunctions vi are global functions, they have a subdomain structure that
is introduced by the preconditioner M−1, see Figure 5.1.1. This structure clearly reflects the
original domain partitioning, suggesting a subdomain based construction.

In the interior of each subdomain, the Helmholtz problem with zero right-hand side should be solved.
One can check numerically that the optimal coarse functions solve the local problems with
zero right-hand side in the interior of each subdomain away from the overlap. Moreover, a
coarse space correction that solves the homogeneous equation inside each subdomain does not
introduce additional errors in the RAS method, which solves local problems exactly.

Frequencies close to the wave number k are not handled well by the one-level method.
Fourier analysis for a two subdomain model problem shows that Fourier frequencies close to
the wave number k have the worst convergence rates, cf. [64] and Section 3.3. Varying the
wave number for the eigenproblem in Equation (5.1.1), in Figure 5.1.2 we see that also in our
setting of several overlapping subdomains in the x-direction, which is the direction orthogonal
to the Dirichlet boundary conditions, the eigenfunctions clearly depend on the wave number.
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(a) nloc = 40, k = 29.3 (b) nloc = 80, k = 46.5 (c) nloc = 160, k = 73.8

Figure 5.1.2. Real part of optimal coarse space function associated to the largest eigenvalue
of Equation (5.1.1) for different wave numbers on the central subdomain in a 5× 5 subdomain
decomposition.

(a) nloc = 10 (b) nloc = 20 (c) nloc = 40 (d) nloc = 80

Figure 5.1.3. Dependence of the optimal coarse space functions on the grid width. The plots show
the real part of the eigenfunction associated to the largest eigenvalue of Equation (5.1.1) on central
subdomain in a 5×5 subdomain decomposition with k = 46.3.

The coarse space functions are independent of the mesh width.
Figure 5.1.3 shows that the optimal coarse space functions are basically independent of the
grid width h. They only change if the grid width h is chosen so large that the waves are no
longer resolved. Nevertheless, as the overlap is given in terms of number of elements, its
physical size changes with the grid width. This effect is clearly visible in Figure 5.1.3, where
in the overlap of the subdomains, the optimal coarse space functions are blurred.

Eigenfunctions on the interface are well-suited to capture varying coefficients.
As local problems are solved exactly, all the work is done on the interface/in the overlap.
Therefore, also the eigenproblems should be posed in that region. This has been proven true in
a number of works, considering however definite problems, see e.g. [33, 56, 116].

Additionally to the preceding observations, in Figure 5.1.4, the behavior of the optimal coarse space
functions in the presence of a heterogeneity is shown. For that purpose, the unit square Ω = [0,1]2 is
divided into two parts: [0,1]× [0,0.5] and [0,1]× [0.5,1]. We choose k = 46.3 in the upper part and
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(a) ρ = 2 (b) ρ = 5 (c) ρ = 10

Figure 5.1.4. Behavior of the optimal coarse space functions in the presence of a heterogeneous
wave number. The plots show the real part of the eigenfunction associated to the largest eigenvalue
of Equation (5.1.1) on central subdomain in a 5×5 subdomain decomposition, nloc = 80, k = 46.3,
Problem 2 with c = ρ in [0,1]× [0,0.5] and c = 1 in [0,1]× [0.5,1].

k = 46.3/ρ in the lower part. The resulting optimal coarse space function associated to the largest
eigenvalue is plotted in Figure 5.1.4. The presence of a sufficiently large contrast destroys the nicely
looking functions that have been observed before, even though the general structure is still visible.

5.2 Definition of the Dirichlet-to-Neumann coarse space

The coarse space introduced in this section is based on eigenproblems involving local DtN maps. The
underlying idea originates from work on elliptic problems [33, 56, 116]. This construction respects
the main principles outlined in Section 5.1: Apart from including all the important modes, in the
interior of each subdomain the coarse functions lie in the kernel of the Helmholtz operator and the
construction is based on local problems only. The latter makes an efficient parallel implementation
possible. We describe and motivate the construction of the coarse space both in the continuous and
in the discrete case.

5.2.1 Continuous formulation

For ease of presentation, we introduce the coarse functions in a continuous setting before giving their
discrete definitions in Subsection 5.2.2. The construction is similar to the one for elliptic problems
examined in [33, 56, 116] and to the ones described in the literature review in Subsection 2.4.2 for
plane wave coarse spaces. It uses almost exclusively local computations. As a first step, on each
subdomain Ω j we define local interface functions. They are the eigenfunctions of an eigenproblem
on the interface Γ j := ∂Ω j \∂Ω involving the DtN operator, which we define in the following. For
that purpose, we first define the extension of a function on the boundary of a subdomain to a function
defined everywhere on the subdomain.
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Definition 5.2.1 (Helmholtz extension). Let D⊂Ω, ΓD = ∂D\∂Ω. Let vΓD : ΓD→C. The extension
u : D→ C of v with respect to the Helmholtz operator is defined by

−∆u− k2u = 0 in D,

C(u) = 0 on ∂Ω∩∂D,

u = vΓD on ΓD.

The DtN operator, which relates Dirichlet values of a solution of the homogeneous Helmholtz
equation to Neumann values, is then defined as follows:

Definition 5.2.2 (DtN operator). Let D⊂Ω, let ΓD = ∂D\∂Ω. Let vΓD : ΓD→ C. Then

DtND (vΓD) =
∂u
∂n

∣∣∣∣
ΓD

,

where u : D→ C is the extension of vΓD in the sense of Definition 5.2.1.

With these definitions, the eigenproblem that is used for the coarse space construction reads on
the interface Γ j: Find (uΓ j ,λ ) ∈ V(Γ j)×C such that

DtNΩ j

(
uΓ j

)
= λuΓ j . (5.2.2)

Even after discretization, this problem still gives nΓ j functions uΓ j : Γ j→C, where nΓ j is the number
of degrees of freedom on the interface Γ j. Even though the number of interface degrees of freedom
nΓ j might be significantly smaller than the number n j of total degrees of freedom associated to the
subdomain Ω j, using all the eigenfunctions in the coarse space is still too costly. Additionally, some
modes might be useless or even harmful for the convergence. It is thus important to choose the right
modes. We will motivate our choice in Section 5.4 with numerical experiments, and here just state
the strategy that we use. We choose m j ∈ N eigenfunctions for each subdomain Ω j according to the
following criterion. It provides a way to automatically construct the coarse space Z without the need
to tune its dimension, a crucial parameter for the convergence of the two-level method.

Criterion 5.2.3 (Choice of DtN eigenfunctions). On each subdomain Ω j, we choose all eigen-
functions v of the DtN eigenproblem in Equation (5.2.2), for which the associated eigenvalue λ
satisfies

Re(λ )< ki.

Here ki :=maxx∈Ωi k(x) is the maximum wave number on Ωi. If no eigenvalue satisfies this condition,
the eigenvalue with smallest real part is chosen.

As a next step, we extend the interface functions that arise from the DtN eigenproblem to the
interior of the subdomain Ω j. For that purpose, the extension defined in Definition 5.2.1 is used.
This is motivated by the observation that the coarse space functions should solve the homogeneous
Helmholtz equation in the interior of the subdomains, see Section 5.1. Nevertheless, in Section 5.3,
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we give numerical evidence that this is indeed the right extension operator. Please note that the
computation of the extension might be a singular problem, cf. Remark 5.2.5.

In practice, instead of looking for the pair
(

uΓ j ,λ
)

solving the eigenvalue problem in Equa-
tion (5.2.2) and then computing the extension uΩ j of uΓ j from the interface Γ j to the interior of the
subdomain Ω j with Definition 5.2.1, it is possible to directly compute the pair (uΩ j ,λ )∈ (V (Ω j) ,C).
It satisfies

−∆uΩ j − k2uΩ j = 0 in Ω j, (5.2.3a)

uΩ j = 0 on ΓD, (5.2.3b)
∂

∂n
uΩ j = λuΩ j on Γ j. (5.2.3c)

The variational formulation of Equation (5.2.3) is: Find
(

uΩ j ,λ
)
∈ (V (Ω j) ,C) such that

∫

Ω j

∇uΩ j ∇vdx−
∫

Ω j

k2uΩ j vdx = λ
∫

Γ j

uΩ j vds for all v ∈ H1 (Ω j) . (5.2.4)

For each subdomain Ω j, the previous construction yields m j locally defined functions. To
compute the global coarse space functions, each of them is first multiplied by the partition of
unity function for this subdomain, cf. Subsection 3.2.1, and then extended by zero to the whole
computational domain Ω. The additional multiplication by the partition of unity is motivated by the
fact that in the overlap contributions from the single subdomains should be weighted just as in the
RAS algorithm. This strategy is also used in a number of related works, see e.g. [33, 93]. Concluding,
we have constructed

∑n
j=1 m j global functions that have non-zero values only locally. Those are the

functions that span the coarse space Z .

5.2.2 Discrete formulation

In Subsection 5.2.1, we have defined the DtN coarse space in the continuous setting. While this
formulation aids understanding its structure and properties, we are ultimately interested in the discrete
problem and hence also in the discrete formulation of the DtN eigenproblem. For that reason, we here

explain how to construct the rectangular matrix Z ∈ Cn×
∑N

j=1 m j , whose columns span the discrete
coarse space.

The matrix Z is a block matrix with blocks Wj, 1≤ j ≤ N, of the form

Z =




W1

W2

W3




. (5.2.5)
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The block Wj ∈ Cn j×m j is associated to subdomain Ω j. Its columns contain the discretizations
of the local, continuous functions defined in Subsection 5.2.1. The columns of the matrix Z
are set to the extension of these local functions to the global domain by zero, i.e. the columns
1+

∑ j−1
k=1 mk, . . . ,

∑ j
k=1 mk of Z are set to RT

j Wj for 1 ≤ j ≤ N. Due to the overlap in the domain
decomposition, also the rows of the blocks overlap. The definition of the blocks Wj is given in
Algorithm 5.2.1 and is equivalent to the construction of the local functions in Subsection 5.2.1.

Algorithm 5.2.1 Construction of the block Wj of the DtN coarse matrix

1: Solve the discrete DtN eigenproblem in Equation (5.2.6) on subdomain Ω j.
2: Choose m j eigenvectors gl

j ∈ CnΓ j , 1≤ l ≤ m j by the discrete analogue of Criterion 5.2.3.
3: for l← 1 to m j do
4: Compute the extension ul

j ∈ Cn j of gl
j according to Definition 5.2.4.

5: end for
6: Define the matrix Wj ∈ Cn j×m j as Wj :=

(
D ju1

j , . . . , D ju
m j
j

)
, where D j is the matrix corre-

sponding to the partition of unity function on Ω j defined in Subsection 3.2.2.

We now define the components of Algorithm 5.2.1. For Line 1 of Algorithm 5.2.1, we need the
discrete formulation of the DtN eigenproblem in Equation (5.2.2): Let I and Γi be the sets of indices
corresponding to the interior and boundary degrees of freedom, respectively. Let nI and nΓi be their
cardinalities. We define ai : H1(Ωi)×H1(Ωi)→ R,

ai(v,w) =
∫

Ωi

(
∇v ·∇w− k2vw

)
dx.

Using the FE basis {φk} for V(Ω), let A(i) be the coefficient matrix of a Neumann boundary value
problem on Ωi, A(i)

kl = ai (φk,φl), with boundary conditions defined by C on ∂Ωi ∩ ∂Ω. With the
usual block notation, the subscripts I and Γi for the matrices A and A(i) denote the entries of these
matrices associated to the respective degrees of freedom. Let

MΓi =

(∫

Γi

φkφl ds
)

k,l∈Γi

be the mass matrix on the interface of subdomain Ωi. The discrete formulation of the eigenproblem
in Equation (5.2.2) is, cf. [33]: For 1≤ i≤ N find (u,λ ) ∈ CnΓi ×C, s.t.

(
A(i)

ΓiΓi
−AΓiIA

−1
II AIΓi

)
u = λMΓiu. (5.2.6)

Now we define the extension operator required in Line 4 of Algorithm 5.2.1:

Definition 5.2.4 (Discrete Helmholtz extension). The extension of a vector g ∈ CnΓi defined on
the interface Γi to all degrees of freedom on subdomain Ωi is the vector u ∈ Cni given by u =(
−A−1

II AIΓig, g
)T

.
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Remark 5.2.5 (Singular extension). The extensions in Definition 5.2.1 and Definition 5.2.4 might
give a (numerically) singular problem for subdomains that do not touch the Robin boundary. If
the matrix A is singular, the solution of the system Ax = b either does not exist or it is not unique.
In the first case, if a solution of the singular system does not exist, a least squares solution, e.g.
computed via a QR decomposition, can be employed. This is feasible as the subdomain problems are
small and are solved directly. In the latter case, if the solution to the singular system is not unique,
one has to decide for one solution, for example by using a pseudoinverse. We do not investigate
this question and our code does not check for singularity of these operators. However, we do not
encounter problems in the numerical experiments, probably since, by chance, the extension matrix is
never singular for our parameter settings.

We hence have defined all the necessary components to build the discrete coarse space, which is
spanned by the columns of the matrix Z. The construction is equivalent to the one for the continuous
setting described in Subsection 5.2.1. In the following sections, we motivate the various choices, in
particular the extension operator in Definition 5.2.1 and Definition 5.2.4, and the selection strategy in
Criterion 5.2.3.

5.3 How to choose the extension operator

In Definition 5.2.1 and Definition 5.2.4 in the previous sections, the extension from the boundary
of a subdomain to the subdomain’s interior has been defined. This definition was partially mo-
tivated in Section 5.1, where we observed that the optimal coarse functions solve the Helmholtz
problem in the interior of each subdomain. However, as we do not directly work with the optimal
coarse functions due to efficiency issues, we want to backup this conclusion with some further
numerical experiments. For this, we divide each subdomain Ω j into four parts: the interior part,
i.e.

{
x ∈Ω j such that π j(x) = 1 and x /∈ ΓD

}
, where π j is the partition of unity function associated

to Ω j defined in Equation (3.2.1), the interface Γ j = ∂Ω j \∂Ω, the global Dirichlet boundary part
∂Ω j ∩ΓD, and the remaining part that belongs to the overlap. From the results in Table 5.3.1, it is
clear that the Helmholtz extension is the best choice among the extension operators considered.

Concluding, not only the values of the coarse functions in the overlap or on the interface are
important, but that it is also of vital importance to choose the right extensions to the interior of the
subdomains in order to get good convergence rates. From the experiments it is clear that the question,
which we examine in this section, is of utter importance. We will further examine this issue when
we introduce the plane wave coarse space, as here a natural extension arises, namely the pointwise
evaluation of the plane waves, cf. Subsection 6.3.3.

5.4 How to choose the Dirichlet-to-Neumann coarse space functions

For indefinite systems as those arising from the FE discretization of the Helmholtz equation, in
contrast to the s.p.d. case, increasing the dimension of the coarse space might lead to a deterioration
of the convergence rates, cf. Section 6.2 and [53]. An incorrect coarse space might hence be fatal,
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interface overlap interior partition of unity # iterations

DtN eigenfunctions Helmholtz extension yes 16
DtN eigenfunctions 0 no 72
DtN eigenfunctions random no 107
DtN eigenfunctions Helmholtz extension 0 yes 56
DtN eigenfunctions Helmholtz extension random yes 109

random Helmholtz extension yes 101

Table 5.3.1. Comparison of different extension operators. On the Dirichlet boundary, the values are
set to 0. For the remaining regions, the strategy is stated in the table. The Helmholtz extension is
defined in Definition 5.2.4. The column “partition of unity” denotes whether the resulting vector
on a subdomain Ω j is multiplied by the partition of unity matrix D j as in Line 6 of Algorithm 5.2.1.
Problem 2, 5×5 subdomains, nloc = 40, k = 30.

but it is difficult to decide a priori which and how many modes are needed. Thus an appropriate
strategy for its construction is extremely important. In this section, we justify and investigate the
coarse space based on the DtN operator introduced in Section 5.2 in detail and test Criterion 5.2.3.

For the tests, we take the setup described in Section 6.1 and Problem 2 from Section 1.4. Let the
domain Ω be decomposed into 5×5 subdomains, nloc = 40, k = 30. All experiments in this section
are based on this example for ease of presentation. The conclusions have however also been verified
in modified setups. Moreover, they are supported by the numerical experiments in Chapter 6.

We first examine which eigenfunctions of the DtN eigenproblem in Equation (5.2.6) are important.
The n = 176 eigenvalues on the central subdomain satisfy Re(λi)≤ Re(λ j) if i≤ j, Re(λ5)< 0 <

Re(λ6), and Re(λ12) < k < Re(λ13). They are plotted in the complex plane both for the central
subdomain and for a subdomain bordering the Robin boundary ΓR in Figure 5.4.1. We show a few
of the extensions to the interior of the subdomains of the associated eigenvectors vi in Figure 5.4.2.
From this, the first guess is that eigenfunctions associated to smaller eigenvalues are more useful.
Comparing coarse spaces with 12 modes per subdomain based on the eigenvalues with the smallest
real part, the smallest eigenvalues in modulus, the eigenvalues closest to the wave number k = 30,
and the eigenvalues with the largest modulus, yields the results in the central columns of Table 5.4.1.
The first alternative, which is in accordance with Criterion 5.2.3, gives the best results.

To ensure that our findings are not distorted by choosing a too small coarse space, in the last
column of Table 5.4.1 the results for the same experiment with a twice as many modes per subdomain
are reported. The number of iterations with the best choice is hardly influenced. Also in this setting,
Criterion 5.2.3 performs best.

In the next step, we examine how many modes should be chosen. The more important part of this
problem is that we should not choose too few modes as the convergence rates cannot be expected to
depend monotonically on the coarse space size due to the indefiniteness of the system. Nevertheless,
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Figure 5.4.1. Eigenvalues of the DtN eigenvalue problem in Equation (5.2.6) in the complex plane.
5×5 subdomains, nloc = 40, k = 30.

choosing too many modes increases the computational costs and is not desirable either. The number
of modes is controlled by Criterion 5.2.3. In Figure 5.4.3 we show the resulting number of modes
per subdomain. They are influenced both by the boundary conditions and the heterogeneity.

In Figure 5.4.4, we examine whether the number of modes resulting from Criterion 5.2.3 is a
good estimate. It yields convergence rates that are almost independent of grid width/wave number at
the cost of an increasing coarse space size. We investigate whether we can do significantly better
by adding the next two eigenvectors on each subdomain to the coarse space. Here the eigenvalues
are ordered by their real parts. Figure 5.4.4 shows that this is not the case; it only yields a slight
improvement. Moreover, we test whether we could achieve the same behavior with a significantly

Choice # iterations with PB # iterations with QG

mi = 12 mi = 24 mi = 12 mi = 24

no coarse space 115 115 115 115
Re(λ ) minimal 16 10 17 11
|λ | minimal 37 26 27 17
|λ − k| minimal 77 35 49 21
|λ | maximal 115 115 155 145

Table 5.4.1. Iteration numbers for different choices of DtN eigenfunctions.
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(a) v1 (b) v2 (c) v3 (d) v4 (e) v5

(f) v6 (g) v7 (h) v8 (i) v9 (j) v10

(k) v11 (l) v12 (m) v13 (n) v14 (o) v15

(p) v16 (q) v17 (r) v18 (s) v50 (t) v176

Figure 5.4.2. DtN eigenfunctions for 5×5 subdomains, nloc = 40, k = 30.

smaller coarse space. Therefore, we choose another “natural” bound, taking only eigenvectors that
are associated to eigenvalues with real part smaller than 0, denoted by “negative” in the legend.
For this choice, the number of iterations significantly increases with the number of grid points per
subdomain nloc and hence with the wave number k. While the results are qualitatively the same for
both PB and QG, we note that the increase in iteration numbers for choosing only the negative modes
seems to be less for QG than for PB.

Additionally, we test whether Criterion 5.2.3 is independent of the diameters of the subdomains.
For that purpose, we take square domains Ω = [0,L]2, L = 1,5,10, of different sizes and choose k
such that kL = 30 is constant, i.e. such that the number of wavelengths in both coordinate directions
in the squares of different sizes is constant, while the wave number varies. For all three cases, the
DtN shows exactly the same behavior, that is reported in Table 5.4.2: The number of modes that are
chosen and the number of iterations do not change with L. Criterion 5.2.3 consequently provides a
useful strategy.
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Figure 5.4.3. Number of DtN modes per subdomain. Problem 2, 5×5 subdomains, nloc = 40, k = 30.
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Figure 5.4.4. Comparison of different criteria of how many DtN modes to choose. k3h2 ≈ 2π
10 ,

Problem 2, 5×5 subdomains.
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L k kL # iterations with PB # iterations with QG coarse space dimension

1 30 30 18 20 224
5 6 30 18 20 224

10 3 30 17 19 224

Table 5.4.2. Dependence of the number of iterations with DtN coarse space on the size L of the
domain Ω = [0,L]2. Ω is decomposed into 5× 5 subdomains with nloc = 40 grid points on each
subdomain in each direction. The wave number k is chosen such that kL is constant.

5.5 Summary and conclusions

We now defined the different components of the algorithm that we employ in this work for the
solution of the discretized Helmholtz equation. In particular, we defined the DDM, the coarse space,
the two-level preconditioner based on them, and the preconditioned GMRES method that is used
as the iterative solver. In order to ease the understanding of how these different components work
together, in Algorithm 5.5.1, we give the complete algorithm.

Concluding, we designed a coarse space based on the DtN operator and motivated its definition
with some numerical experiments. The coarse space construction is based on the solution of local
eigenvalue problems and can hence be parallelized easily. While we collected some first evidence for
the validity of the approach, more extensive numerical experiments are necessary to fully test the new
methods. This will be done in Chapter 6 for two-dimensional examples using a serial implementation
of the method and in Chapter 7 for the three-dimensional case.
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Algorithm 5.5.1 Complete algorithm: RAS with DtN coarse space

Input: Computational domain Ω and the corresponding mesh, number of subdomains N, number of
elements in the overlap nov, error tolerance ε , stiffness matrix A, right-hand side vector b

Output: Approximate solution ũ of the system Au = b
. Preprocessing, for the parallel version see Algorithm 7.1.1

1: for j← 1 to N do
2: Compute the restriction operator R j.
3: Compute the partition of unity matrix D j.
4: Compute the local stiffness matrix A j.
5: end for

. Construction of the coarse space
6: for j← 1 to N do
7: Compute the block Wj of the coarse matrix Z as defined in Algorithm 5.2.1.
8: end for
9: if the preconditioner PB is used then

10: Compute the coarse matrix E = Z∗AZ from the local stiffness matrices A j and the matrices Wj,
1≤ j ≤ N. For a parallel implementation, use only local computations and communication
without assembling the matrices A and Z, cf. Subsection 7.1.2.

11: else if the preconditioner QG is used then
12: Compute the coarse matrix E = Z∗M−1AZ from the local stiffness matrices A j and the

matrices Wj, 1 ≤ j ≤ N. For a parallel implementation, use only local computations and
communication without assembling the matrices A and Z, cf. Subsection 7.1.2.

13: end if

. The iterative solution of the system
14: Compute iteratively an approximate solution ũ≈ u of the preconditioned system

PBAu = PBb or M−1AQGu = M−1b

with the GMRES method in Algorithm 3.1.1 or the restarted GMRES(m) method in Algo-
rithm 3.1.2. For the definitions of the preconditioners PB and QG see Section 4.3 and Section 4.4.



Chapter 6

Numerical results for two-dimensional
problems

In this chapter, we examine numerically the two-level methods using the coarse space based on the
DtN operator, which have been introduced in Chapter 4 and Chapter 5. In particular, we examine
how good the coarse space based on the DtN eigenvalue problems is compared to the standard
approach based on plane waves [52]. For this purpose, in this chapter, we look at two-dimensional
homogeneous and heterogeneous problems. Many of the results and also large parts of the text in
this chapter have been published previously in [28].

6.1 Framework and implementational details

In this section, we discuss the framework and give implementational details for the numerical
experiments in this chapter. The basic method used for the numerical experiments is given in
Algorithm 5.5.1. We test both two-level methods that were introduced in Chapter 4, the left
preconditioner PB and the non-singular, right preconditioner QG, due to two reasons. On the one
hand, we were not aware of the singularity of the PB preconditioner when first doing these tests,
cf. Section 4.3. On the other hand, we refrain from only including the results for the non-singular
preconditioner QG as the coarse operator in this case is more expensive and considerably more
difficult to implement in a parallel code. Moreover, as shown in this chapter, the results for PB and
QG in most cases do not differ much. Even though PB lacks the theoretical foundations, for the
examples that we consider this does not seem to have any significant practical implications.

As a solver we use a GMRES method without restart, cf. Algorithm 3.1.1. This is feasible since
the two-dimensional examples in this chapter are rather small and hence restarting is not needed.
The termination criterion for the GMRES method is based on the error ‖uh−ui‖∞, where uh is the
exact FE solution and ui is the iterative solution in step i. The system is considered to be solved in
step i if ‖uh−ui‖∞

‖uh‖∞
< 10−7. The size of the problems considered here allows us to use a direct solver to

compute the exact discrete solution uh and use the error as a stopping criterion. This is different from
the stopping criterion for larger experiments in Chapter 7, where the residual is used instead. We

71
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write “> 400” for the iteration count in the tables, when the maximum number of iterations, here
400, is reached before the desired tolerance. The initial iterate has pseudo-random values drawn
from the standard uniform distribution on the interval (0,1).

Due to the wave character of the solution, in all numerical experiments the grid has to be
sufficiently fine in order for the discrete solution to be a good approximation of the continuous one.
Additionally to the requirement of having a minimum number of points per wavelength, in order
to avoid the pollution effect [8], not only kh, but also k3h2 needs to be bounded from above, cf.
the discussion in Subsection 1.3.3. We choose an overlap L of two mesh elements as defined in
Definition 3.2.1. If nothing else is specified a decomposition into N = nS×nS squares is chosen. Let
ni be the number of grid points on one side of a square subdomain. If ni = n j for all 1≤ i, j ≤ N,
we define nloc := ni. In this case, the mesh is always of the type shown in Figure 1.4.2. For
decompositions using Metis [86], an arbitrary triangulation is chosen. We denote the number of grid
points on one side of a square domain Ω by nglob.

The FE part is implemented in FreeFem++ version 3.21 [75], the algebraic part in MATLAB

version 7.10.0.499 (R2010a). In light of the discussion in Remark 6.3.4 later in this chapter about
the influence of the QR factorization on the plane wave coarse space filtering, we note that for the
experiments in this chapter, we use MATLAB’s built-in QR factorization.

6.2 Influence of the Dirichlet-to-Neumann coarse
space on the spectrum

As a first step to validate the quality of the proposed method, in this section we compare the
convergence rates and the spectrum of the two-level methods from Algorithm 5.5.1 with DtN
coarse space to those of the corresponding one-level RAS preconditioner in Equation (3.2.2). These
experiments can also be seen as a demonstration of the challenges that arise when designing a coarse
space for an indefinite problem: Neither convergence rates nor the spectrum necessarily improve
when adding the second level, even if it is carefully designed, cf. [53].

In Figure 6.2.1, we compare the convergence rates of the one- and two-level methods for
Problem 3 from Section 1.4, using the setup described in Section 6.1. For the left preconditioner PB,
using too few coarse space modes gives worse convergence rates than those of the one-level method.
This problem disappears when enough modes are employed. For the right preconditioner QG on
the other hand, for this example this problem does not occur. Even adding just a few coarse modes
slightly improves the convergence rates of the method.

To understand why the two preconditioners behave differently in this respect, as a next step
we look at the spectrum of the two operators for Problem 2 from Section 1.4. For the correct
interpretation of the spectral information it is important to understand how the convergence rates of
the GMRES method depend on the eigenvalues of the preconditioned operators. To our knowledge
the relationship between the spectrum and convergence behavior is not as easy as for example for
the CG method for s.p.d. matrices, cf. the discussion in Section 3.1. However, the clustering of
the eigenvalues is important in this case, see [131] or Theorem 3.1.2. As the eigenvalues for the
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Figure 6.2.1. Number of iterations in dependence of the number mi of coarse modes per subdomain.
Problem 3, 5×5 subdomains, nloc = 40, k = 29.3.

one-level RAS operator I−M−1A all lie within a circle centered at the origin of the complex plane,
see Figure 6.2.2, we compare the largest eigenvalues without and with coarse space. If they decrease
for the two-level method, the clustering is likely to be better. On the other hand, if they increase
significantly, this is probably an indication for deterioration.

In Figure 6.2.2, we thus compare the eigenvalue distribution of the one- and the two-level
methods; the largest eigenvalues of I−M−1A, I−PBA and I−M−1AQG are plotted in the complex
plane. For the BNN preconditioner PB, if the coarse space dimension is small, there is no clear
structure in the eigenvalue distribution. For the one-level matrix for I−M−1A, they lie within a
circle of radius less than one with center (0,0). Adding only a few global modes has a chaotic
effect, scattering the eigenvalues in the complex plane. This changes when adding more modes;
the eigenvalues are then clustered near the point (1,0). Contrary to that, for the preconditioner
QG, using only a few coarse modes does not seem to have a detrimental effect. Even though being
slightly shifted, the eigenvalues remain within the circle. When adding more modes, they are
shifted even further into the circle, clustering close to the origin. The eigenvalue distribution in
Figure 6.2.2 explains why choosing an incomplete coarse space when using the preconditioner PB

has a detrimental effect while it hardly affects the convergence rates in case QG is employed. A
careful design of the second level is important in any case to achieve good convergence rates, but
especially for the former case also its size is a crucial parameter.

6.3 Plane wave coarse space

In Section 6.2, we examined the effect that the different ways to add the DtN coarse space to the
one-level RAS preconditioner have on the convergence rates. While this is a viable first step in order



74 Numerical results for two-dimensional problems

I−M−1A I−PBA

−5 0 5 10 15

−5

0

5

10

15

(a) mi = 2

−1 0 1

−1

0

1

(b) mi = 16

I−M−1A I−M−1AQG

−1 0 1

−1

0

1

(c) mi = 2

−1 0 1

−1

0

1

(d) mi = 16

Figure 6.2.2. 100 largest eigenvalues of I−M−1A and I−PBA (upper row) or I−M−1AQG (lower
row), respectively, in the complex plane. Problem 2, 5×5 subdomains, nloc = 40, k = 30.

to ensure that there is actually a gain in using a coarse space, the comparison is unfair, as two-level
methods have the advantage of an additional global problem. For that reason, in this section, we
introduce and shortly examine another coarse space, which we will use as a benchmark. It is based
on plane waves, since this choice is pretty standard for iterative methods for Helmholtz problems, as
already described in the literature review in Subsection 2.4.2. We are not aware of any other idea for
a second level that has reached similar popularity for this class of problems.

6.3.1 Definition of the plane wave coarse space

As a first step, we define the plane wave (PW) coarse space, which we use in the following. Since
there is no consensus in the literature on how to incorporate it into a DDM, we choose one possibly
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Figure 6.3.1. Uniform discretization of the unit circle using eight directions.

non-optimal way. We will discuss alternatives in Subsection 6.3.3. Plane waves have already been
introduced in Subsection 2.4.2. A plane wave pθ : D⊂ Rd → C in direction θ is a function of the
form

pθ (x) = eık̄θ ·x, x ∈ D, θ ∈ Rd , ‖θ‖2 = 1. (6.3.1)

Here, k̄ is a constant defined as the mean value of the (possibly heterogeneous) wave number k on D.
Proceeding as in the case of the DtN operator, we modify Algorithm 5.2.1. We ignore lines 1 and 2
and specify the functions ul

i in Line 4 directly. Note that in contrast to DtN1, mi is chosen a priori. If
nothing else is specified, mi = 25 modes per subdomain are used.

Definition 6.3.1 (Plane wave coarse space). Let 1≤ i≤ N. For each 1≤ l ≤ mi choose a direction
θl ∈ Rd , ‖θl‖2 = 1 and let gl

i ∈ CnΓi be the coefficient vector of the FE approximation of pθl defined
in Equation (6.3.1) on the interface Γi. Let ul

i be the extension of gl
i in the sense of Definition 5.2.4.

It remains to be specified how the directions θl are chosen. In two space dimensions, we follow
[52], and define the plane wave directions via a uniform discretization of the unit circle into circular
sectors, see Figure 6.3.1 for an illustration.

Definition 6.3.2 (Plane wave directions in 2D). The plane wave directions θl ∈ R2 are defined by

θl :=

(
cos(tl)
sin(tl)

)
, where tl =

2π(l−1)
mi

, 1≤ l ≤ mi.

In three space dimension, the situation is a bit more complicated. In general, a basis of vectors
uniformly distributed on the unit sphere is desirable, where it is however not clear what exactly
“uniformly” means. For simplicity, we here follow the approach of [144, Algorithm 1].

1Despite the algorithm not requiring it in theory, in the parallel implementation using ARPACK, also for the DtN coarse
space an estimate of the number of modes needs to be provided initially, cf. Subsection 7.1.3.
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Definition 6.3.3 (Plane wave directions in 3D). For nt ∈ N construct the vectors

y j1, j2, j3 =




tan
((

2 j1
nt
−1
)

π
4

)

tan
((

2 j2
nt
−1
)

π
4

)

tan
((

2 j3
nt
−1
)

π
4

)


 , 0≤ ji ≤ nt .

Then, from the (nt +1)3 vectors y j1, j2, j3 , select 6n2
t +2 vectors θl that correspond to triplets [ j1, j2, j3]

such that at least one of the indices j1, j2, j3 is equal to 0 or nt , and normalize them to unit length.

6.3.2 Properties of the plane wave coarse space

The matrix Z based on plane waves can become rank deficient for a couple of reasons [52]. The
rank deficiency of Z causes in the worst case divergence of the whole iterative scheme. To avoid this
problem, we adapt the filtering of the coarse space described in [52], but apply filtering to functions
defined on the entire subdomains instead of only the edges. We choose a filtering tolerance ε and do
the following: Let Z have the blocks Wi. For each 1 ≤ i ≤ N, perform the QR factorization of Wi,
and then construct W ∗i as the union of the columns q j of Wi for which the j-th diagonal entry of R
satisfies

∣∣R j j
∣∣> ε . This is a local procedure that is performed on each subdomain separately. We

substitute Z by the matrix constructed from the W ∗i . A too small value of ε can cause the matrix Z to
be still rank deficient. The authors of [52] propose to choose ε rather too large than too small, setting
ε = 10−2. We denote the method where the plane wave coarse space with filtering tolerance ε is
employed by PW(ε). If the same number of initial modes m is chosen on all subdomains Ωi, that is
mi = m for all 1≤ i≤ N, then we also use PW(ε,m) to denote the resulting method.

Remark 6.3.4 (On the usage of QR factorization for filtering). We note that a normal QR decomposi-
tion might not always be sufficient. If the columns of the matrix M that should be decomposed are
linearly dependent, then the above described filtering criterion might lead to a wrong space, i.e. one
that is different from (and not only smaller than) the original, non-filtered one. Consider the example

M :=




1 1 1
0 0 1
0 0 1


=




1 0 0
0 1 0
0 0 1







1 1 1
0 0 1
0 0 1


=: QR,

where the second and third columns of Q are not in the span of the columns of the matrix M. This
problem can be avoided by using a rank-revealing QR factorization using specialized software such
as [30, 54]. Moreover, different implementations of the QR factorization might lead to different
coarse spaces and different results. For the numerical results in this chapter, we have used MATLAB’s
QR method, whereas in Chapter 7, we will use the SPQR package [30].

As an adaptive strategy for choosing the coarse space size is crucial, we here examine to what
extent it is provided by the filtering procedure. We consider Problem 2 with nloc = 40, k = 29.3
and a decomposition into 5×5 subdomains. The dimension of the coarse space depends strongly
on the number of modes per subdomain mi that are initially chosen, even if the additional modes
hardly influence the convergence rate: If we choose mi = 16, the coarse space dimension is 384;
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with mi = 32 it is 459. However, the number of iterations is 13 versus 11 and hence hardly changes
despite the larger, more expensive coarse space. Consequently, even though filtering provides some
sort of adaptivity, it is very sensitive to the number of modes that are initially chosen.

6.3.3 Discussion of alternative definitions

Even though in this work we use the plane waves as presented in the preceding section, this strategy
is in no way the only possible choice. Plane waves have been employed by several researchers to
enhance iterative methods for Helmholtz-like problems, cf. Chapter 2, and there is no consensus
on how to incorporate them best into a DDM. This is partially related to the fact that there is a
variety of different DDMs and to complicate issues further, they do not always work on the same
set of degrees of freedom. For ease of presentation, we restrict the following discussion to Schwarz
methods. Already for this type of DDMs, there are different possibilities known in the literature.

In [92], the plane waves are evaluated on subdomains that might be of a different overlap size
than those used for the rest of the DDM. The resulting local subdomain functions are then multiplied
by a weighting function associated to a partition of unity. Dirichlet transmission conditions are used
in the DDM, which are clearly worse than Robin transmission conditions for the Helmholtz equation,
cf. Figure 3.3.2. In [100], for two neighboring (non-overlapping) subdomains Ωi and Ω j the plane
wave is evaluated on the common interface and zero Dirichlet boundary conditions are imposed on
the remaining boundaries. Then either the shifted problem −(∆− k2)u = 0 is solved with these
boundary conditions or the harmonic extension −∆u = 0 is used.

As all these methods use a setting that is different from ours, we do not compare directly with
neither of them. However, the approach in [92] is sufficiently similar. So we slightly adapt it in order
to be easily able to compare with it. We proceed as in Subsection 6.3.1, but instead of defining ul

i by
Definition 6.3.1, we set it to be the evaluation of a plane wave in direction k on the whole subdomain
Ωi in direction θl . We call the space that is spanned by these vectors the full PW space, as the plane
waves are evaluated on all grid points, whereas in Definition 6.3.1 they are only evaluated on the
interface and then extended to the interior of the subdomain. For the heterogeneous case, we also
consider different choices for the wave number k of the plane waves in Equation (6.3.1): We choose k
to be either the mean value, the maximum value or the minimum value of the wave number k on this
subdomain. Additionally, we consider the case, where k := k, hence k is not a constant. The results
are reported in Table 6.3.1 for the homogeneous case, and in Figure 6.3.2 for the heterogeneous case.

For the homogeneous case, we see hardly any difference between using the original version of
our coarse space and the “full” version in terms of iteration numbers, except for the experiment for
nloc = 80, where conditioning problems occur only for the original version. The dimension of the
coarse space with the same filtering tolerance is however smaller for the original PW definition. For
the heterogeneous case, on the other hand, the differences are more significant. Here, not only the
coarse space for the “full” version is always bigger than the one for the original version, but also the
iteration numbers especially for larger wave numbers grow at a faster rate and are also absolutely
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(a) Filtering tolerance ε = 10−2
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(b) Filtering tolerance ε = 10−1

Figure 6.3.2. Comparison of different ways to employ the plane waves for the heterogeneous
wave guide example, Problem 2. Wave speed c = c2, ρ = 5, 5×5 subdomains, preconditioner PB,
k3h2 ≈ 2π

10 .
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nloc k PW
(
10−2

)
full PW

(
10−2

)

10 11.6 7 (297) 7 (321)
20 18.5 8 (352) 8 (386)
40 29.3 11 (467) 11 (517)
80 46.5 > 400 (577) 15 (625)

160 73.8 24 (609) 25 (625)

Table 6.3.1. Comparison of different ways to employ the plane waves for the homogeneous wave
guide example, Problem 2. 5×5 subdomains, two-level preconditioner PB.

larger than the corresponding ones for our original definition. So it is very important not only to
select the right functions for the coarse space, but also choose carefully how to exactly use them
in order to achieve the best possible results. The problems with the “full” version might be due to
two reasons: As observed in [4], for homogeneous problems, the plane waves with wave number k
do not necessarily lie in the kernel of the discrete Helmholtz operator associated to the same wave
number due to dispersion errors. This might have effects on the efficiency of the plane waves. On the
other hand, we deal with heterogeneous problems. In this context even without dispersion error, the
straightforward evaluation of the plane waves does not result in a function that lies in the kernel of
the operator that we are interested in. This is also why we refrain from using a different extension
operator as for example proposed in [100].

Comparing the results for different choices of k with the original, extension-based definition, the
minimum value performs significantly worse than the other three choices, which yield almost the
same result – except for conditioning problems in Figure 6.3.2a, which can be cured by choosing
a larger filtering tolerance in Figure 6.3.2b. As the coarse space based on the mean value is the
cheapest one of these three, this is our method of choice.

6.4 Conditioning of the coarse matrix

The condition number of the coarse matrix E plays an important role. If it is too large, the iterative
method might stagnate. Here we investigate to what extent the different coarse spaces suffer from
conditioning problems. For that purpose, we investigate both the matrix E = Z†AZ, which is used in
the preconditioner PB, and the matrix E = Z†M−1AZ, which is used in the preconditioner QG. The
matrix Z is based either on the DtN functions or on the PW ones with different filtering tolerances ε .
As already outlined in Subsection 6.3.2, the plane wave coarse matrix is likely to suffer from
conditioning problems if too many plane waves are used: Plane waves travelling in similar directions
might be almost linearly dependent, if the wave number k is small.

For the DtN coarse space, the matrix Z is constructed from an orthonormal basis of eigenvectors
defined on the interfaces of the subdomains. Their extensions to the interior of the subdomains are in
general not orthogonal as the extension matrix A−1

II AIΓ is not unitary and hence does not conserve
orthogonality. Nevertheless, in the numerical experiments for Problem 2 the condition number for
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Figure 6.4.1. Condition number of coarse matrix E. Problem 2, 5×5 subdomains.

DtN behaves well: In Figure 6.4.1a, we examine the dependence of the condition number on the
coarse space size and compare it to the one for plane waves, with and without filtering. For the
DtN, the condition number of E is only mildly affected by the coarse space dimension. The same is
true for plane waves with filtering, but here the upper bound is significantly larger. While for DtN
the choice E = Z†M−1AZ has a slightly better condition number, for PW it is worse, even though
the behavior in all cases is similar. This could be the reason for the convergence problems that we
observe for some of the numerical experiments with QG in Section 6.5.

In Figure 6.4.1b, we investigate whether this behavior carries over to a broader range of wave
numbers k. We choose a fixed number mi = 16 of modes per subdomain. If k and h are varied such
that k3h2 is constant, the condition number for DtN remains almost constant. So filtering of the
coarse modes is not necessary here. Furthermore, the condition number is significantly lower than
for the plane waves. This is again true for both versions of the coarse matrix E. Choosing an even
larger filtering tolerance ε for the plane waves would eventually make the condition number of E
decrease to the level of the condition number of the DtN matrix. However, this would eventually
eliminate also important modes from the coarse space. To overcome these problems, it might hence
be worth to either define a different filtering strategy, an automatic criterion for choosing the right
plane wave directions, or use a different, less ill-conditioned coarse space.

Remark 6.4.1. Note that the conditioning problems of the coarse matrix for the PW coarse space
exist independently of the possible singularity of the Helmholtz extension, cf. Remark 5.2.5. This
is demonstrated e.g. in Figure 6.3.2, where also the method with the full PW coarse space does not
converge in case of too many plane waves.

6.5 Numerical experiments for the wave guide problem

In this section, we investigate the two-level methods using the DtN coarse space for the wave guide
problem defined in Problem 2 and compare the results to those achieved with the benchmark coarse
space based on plane waves. This section is divided into two subsections, where the first one only
deals with homogeneous wave numbers, whereas the second one also allows for heterogeneities.
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5×5 subdomains 10×10 subdomains

nglob k 1-lev DtN PW(10−2) 1-lev DtN PW(10−2)

100 18.5 80 15 (144) 8 (352) 144 18 (344) 7 (1152)
200 29.3 116 18 (224) 11 (467) 241 26 (460) 9 (1286)
400 46.5 156 29 (299) > 400 (577) 327 51 (624) 13 (1708)
800 73.8 217 39 (508) 24 (609) > 400 65 (936) > 400 (2346)

(a) For PB

nloc k 1-lev DtN PW(10−2) PW(10−1)

20 18.5 80 16 (144) > 400 (352) 9 (293)
40 29.3 116 19 (224) > 400 (467) 13 (382)
80 46.5 156 30 (299) > 400 (577) 16 (505)

160 73.8 217 40 (508) > 400 (609) 25 (597)

(b) For QG, 5×5 subdomains

Table 6.5.1. Comparison of RAS method in Equation (3.2.2) without coarse space (1-lev), and with
DtN and PW coarse spaces. Number of iterations (dimension of coarse space) for Problem 2.

6.5.1 Performance for homogeneous wave guide problem

We study the performance of the DtN coarse space for Problem 2 with homogeneous wave num-
ber k. In Table 6.5.1, the number of iterations for different wave numbers k is shown. For both
preconditioners PB and QG, it increases slightly with k if k3h2 is constant. This could be due to the
decreasing physical size Lh of the overlap, cf. Table 6.5.4. Moreover, the dimension of the DtN
coarse space depends linearly on the wave number k. The number of iterations for the one-level
method doubles if the number of subdomains is doubled in both directions. With the DtN coarse
space, the influence of the number of subdomains is not that strong, but still present. While for the
DtN coarse space, QG and PB in these experiments show almost the same behavior, for the PW one,
employing QG leads to sincere convergence problems for the standard filtering tolerance ε = 10−2.
This is probably due to the ill-conditioning of the global matrix E, cf. Section 6.4. Choosing a
larger filtering tolerance ε = 10−1 resolves this problem and leads to results similar to the balancing
preconditioner case. So the preconditioner defined by QG seems to be even more sensitive to an
ill-conditioned matrix E, cf. Figure 6.4.1.

In Table 6.5.1, the number of iterations with the PW coarse space is smaller than with the DtN
one. However, it is not fair to compare these numbers as the dimensions of the coarse spaces differ
significantly. Therefore, in Table 6.5.2 we compare the two methods enforcing the dimension to
be the same by prescribing a fixed number of modes mi on each subdomain also for DtN. These
numbers mi are the same on all subdomains and are computed by dividing the sizes in Table 6.5.1
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For PB For QG

nloc k mi DtN PW(10−2) DtN PW(10−2) PW(10−1)

10 11.6 4 14 17 (100) 15 17 (100) 17 (100)
20 18.5 6 21 23 (150) 19 19 (150) 19 (146)
40 29.3 9 23 22 (225) 23 22 (225) 22 (225)
80 46.5 12 35 35 (296) 35 30 (296) 29 (292)

160 73.8 21 38 29 (521) 42 > 400 (521) 31 (513)

(a) Number of modes mi computed from the DtN coarse space dimension

For PB For QG

nloc k mi DtN PW(10−2) DtN PW(10−2) PW(10−1)

10 11.6 12 8 7 8 7 (288) 7 (244)
20 18.5 15 9 9 9 > 400 (355) 9 (305)
40 29.3 17 13 12 13 > 400 (409) 13 (373)
80 46.5 24 18 16 19 > 400 (556) 16 (496)

160 73.8 25 36 24 39 > 400 (609) 25 (597)

(b) Number of modes mi computed from the PW
(

10−2
)

coarse space dimension

Table 6.5.2. Comparison of number of iterations for DtN and PW with identical coarse space size.
5×5 subdomains, Problem 2.

by the number of subdomains. With this setting, DtN and PW then yield approximately the same
convergence rates for both two-level preconditioners.

In Figure 6.5.1, we examine whether the convergence rates depend on the value of the con-
stant k3h2. There is no clear indication which value might be optimal, but a rather fine grid gives
the highest number of iterations absolutely. This is the same for both PB and QG. The coarse space
dimension depends on the wave number k but is independent of the grid width h.

In Table 6.5.3, the mesh width h is kept fixed and the wave number k is varied. The coarse space
dimension increases with k. The number of iterations remains only constant if k is large enough. For
k small, the coarse space built using Criterion 5.2.3 is so small that the number of iterations remains
rather large. Also here the behavior is similar for PB and QG: While the former performs better for
larger values of the wave number k, the latter is more efficient for low frequencies, with the relative
difference however not exceeding 10% in terms of iteration numbers.

In Table 6.5.4, two properties of the DtN coarse space and of Criterion 5.2.3 become visible:
On the one hand, for small k, only one mode per subdomain is chosen and the number of iterations
is hardly influenced by the coarse space. This is not a flaw of the coarse space itself, but due to
Criterion 5.2.3; choosing more modes results in a stronger impact on convergence rates. For the
homogeneous case this is not a problem as cases with very small wave number k can be solved by
standard methods.
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For PB For QG

k 1-level DtN DtN

5 106 88 (25) 79 (25)
10 115 68 (70) 58 (74)
15 117 61 (90) 57 (90)
30 133 31 (224) 33 (224)
45 169 36 (299) 39 (299)

Table 6.5.3. Dependence of number of iterations (coarse space dimension) on wave number k for
fixed mesh width h. Problem 2, 5×5 subdomains, nloc = 120.

nloc = 20, L = 2 nloc = 80, L = 2 nloc = 80, L = 8

k 1-level DtN 1-level DtN 1-level DtN

1 73 56 (25) 94 81 (25) 66 39 (25)
5 64 43 (25) 96 78 (25) 55 37 (25)

10 68 21 (74) 106 49 (74) 66 22 (74)
20 84 32 (139) 107 32 (144) 86 33 (139)

(a) For PB

nloc = 20, L = 2 nloc = 80, L = 2 nloc = 80, L = 8

k 1-level DtN 1-level DtN 1-level DtN

1 73 51 (25) 94 73 (25) 66 46 (25)
5 64 40 (25) 96 70 (25) 55 34 (25)

10 68 24 (74) 106 47 (74) 66 24 (74)
20 84 22 (139) 107 34 (144) 86 21 (139)

(b) For QG

Table 6.5.4. Dependence of number of iterations (coarse space dimension) on overlap L / mesh width
h. Problem 2, 5×5 subdomains.
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(b) For QG

Figure 6.5.1. Number of iterations and coarse space dimension for different values of k3h2. Prob-
lem 2, 5×5 subdomains.
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Number of subdomains

nloc k 5×5 5×10 5×20 5×40

10 11.6 15 (80) 18 (160) 22 (320) 30 (640)
20 18.5 15 (144) 16 (314) 16 (654) 19 (1334)
40 29.3 18 (224) 18 (484) 20 (1004) 22 (2044)
80 46.5 29 (299) 37 (624) 48 (1274) 66 (2574)

(a) For PB

Number of subdomains

nloc k 5×5 5×10 5×20 5×40

10 11.6 16 (80) 19 (160) 24 (320) 32 (640)
20 18.5 16 (144) 18 (314) 20 (654) 25 (1334)
40 29.3 19 (224) 21 (484) 24 (1004) 30 (2044)
80 46.5 32 (299) 43 (624) 69 (1274)

(b) For QG

Table 6.5.5. Dependence of number of iterations (coarse space dimension) on number of subdomains.
DtN coarse space, Problem 2. The number of subdomains is increased in the y-direction and
the domain size increases accordingly. That is, for 5×5 subdomains the domain Ω is [0,1]2, for
5×10 subdomains it is [0,1]× [0,2], . . . .

On the other hand, we study the influence of mesh refinement. If the mesh is refined twice and
the overlap stays constant in terms of number of elements L, see the central columns of Table 6.5.4,
the convergence rates deteriorate a lot; in the worst cases we get more than a factor 2 more iterations
with about the same coarse space size. If however the physical size of the overlap Lh is constant, see
the last three columns of Table 6.5.4, the number of iterations even decreases if the mesh is refined.
This behavior is probably due to the transmission conditions that make the convergence rates depend
on the size of the overlap [64]. Within this context, it might be worth to investigate more advanced
transmission conditions, e.g. optimized ones [57]. While the two two-level preconditioners also
in these experiments show a similar performance in most cases, there are some outliers, the most
remarkable one for k = 20 in the last column, where QG needs only two thirds of the iterations of PB.

In Table 6.5.5, the number of subdomains in one direction is varied, while the number of
wavelengths per subdomain is kept fixed. The coarse space dimension grows approximately linearly
with the number of subdomains as expected from the construction. Unfortunately, the increase in
the coarse space dimension is insufficient to keep the iteration numbers constant if the number of
wavelengths in the global domain grows. This might at least partially be due to the fact that the
transmission conditions that we employ are non-optimal. The increase in the iteration count is worse
the larger the wave number k is.
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DtN PW
(
10−2

)

# subdomains # it. size time in s # it. size time in s

2×2 23 (68) 2.90×102 17 (96) 3.08×102

4×4 35 (200) 2.67×102 16 (368) 2.71×102

8×8 44 (416) 1.80×102 12 (1116) 5.76×102

16×16 57 (960) 4.78×102 10 (3256) 3.97×103

32×32 47 (2944) 3.72×103 8 (9208) 3.28×104

(a) For PB

DtN PW
(
10−2

)
PW
(
10−1

)

# subdomains # it. size # it. size # it. size

2×2 24 (68) > 400 (96) 18 (88)
4×4 31 (200) > 400 (364) 15 (320)
8×8 40 (416) > 400 (1116) 14 (924)

16×16 60 (960) > 400 (3256) 12 (2686)
32×32 48 (2944)

(b) For QG

Table 6.5.6. Strong scaling test: The problem size is fixed, but we vary the number of subdomains.
We give the number of iterations (it.), the dimension of the coarse system (size) and the time needed
to solve the algebraic equations (time). The global number of grid points in each direction is 320,
the wave number k = 40. We decompose Ω = [0,1]2 uniformly into squares.

In Table 6.5.6, we perform a similar test. In contrast to the previous experiment, we keep the
number of wavelengths in the global domain fixed and only vary the number of subdomains in both
directions. Here, the iteration numbers increase slightly even though a growing coarse space is used.
For the plane waves, on the other hand, the resulting coarse space is not only up to a factor of > 3
larger than the DtN one, but also grows at a higher rate. For the case of 32×32 subdomains, the
number of coarse degrees of freedom amounts to roughly 9% of the unknowns for the one-level
method. This even causes the iteration numbers to decrease with respect to the case of fewer
subdomains. However, each assembly of the coarse matrix and each iteration step are more costly
for a large global problem. This is clear from the timings that we additionally give in Table 6.5.6a,
especially for the 32× 32 subdomains case. For the experiments in this chapter, a serial, non-
optimized implementation of the method is used. For more results on the runtime, see Chapter 7,
where a parallel implementation of the DDM is investigated for three-dimensional examples.

6.5.2 Performance for heterogeneous wave guide problem

In this section, we study some small heterogeneous test cases for Problem 2 with velocity profiles ci,
i = 1,2,3, defined in Figure 1.4.3. In Table 6.5.7, Table 6.5.8, and Table 6.5.9 the iteration numbers
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for the different types of velocities are shown. For PW, for some cases convergence stagnates due to
ill-conditioning despite the rather large filtering tolerance. Moreover, the adaptively chosen coarse
space size for DtN is significantly smaller than that for PW. This also has a small effect on the
convergence rates, with PW performing better. As in the homogeneous case, the coarse space size
increases with the wave number. The different velocities ci, i = 1,2,3, do not have much influence
on the convergence rates, the only notable difference is for ρ = 1 and the DtN coarse space, where
the iteration numbers are slightly higher for c = c1.



88 Numerical results for two-dimensional problems

ρ = 5 ρ = 10

nloc ω DtN PW(10−2) DtN PW(10−2)

10 11.6 21 (56) 8 (222) 27 (47) 10 (189)
20 18.5 27 (83) 12 (256) 38 (67) 14 (222)
40 29.3 36 (115) 15 (321) 46 (105) 19 (277)
80 46.5 43 (180) 24 (408) 60 (149) 30 (351)

160 73.8 49 (290) 32 (477) 74 (228) > 400 (418)

(a) For PB

nloc ω DtN PW(10−2) PW(10−1)

10 11.6 23 (56) 8 (222) 10 (166)
20 18.5 28 (83) 12 (256) 15 (205)
40 29.3 35 (115) > 400 (321) 20 (254)
80 46.5 41 (180) > 400 (408) 27 (334)

160 73.8 50 (290) > 400 (477) > 400 (429)

(b) For QG, ρ = 5

nloc ω DtN PW(10−2) PW(10−1)

10 11.6 31 (47) 11 (189) 12 (148)
20 18.5 39 (67) 14 (222) 18 (177)
40 29.3 44 (105) > 400 (277) 23 (225)
80 46.5 53 (149) > 400 (351) 34 (289)

160 73.8 71 (228) > 400 (418) > 400 (380)

(c) For QG, ρ = 10

Table 6.5.7. Number of iterations (coarse space dimension) for heterogeneous wave guide example,
Problem 2. Wave speed c = c1, 5×5 subdomains.
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ρ = 5 ρ = 10

nloc ω DtN PW(10−2) DtN PW(10−2)

10 11.6 18 (69) 8 (229) 19 (69) 8 (214)
20 18.5 23 (111) 10 (274) 23 (111) 11 (263)
40 29.3 31 (159) 13 (339) 35 (159) 16 (326)
80 46.5 33 (242) > 400 (442) 40 (236) > 400 (414)

160 73.8 47 (388) > 400 (519) 57 (378) 42 (494)

(a) For PB

nloc ω DtN PW(10−2) PW(10−1)

10 11.6 21 (69) 8 (229) 10 (179)
20 18.5 27 (111) > 400 (274) 14 (218)
40 29.3 35 (159) > 400 (339) 12 (279)
80 46.5 38 (242) > 400 (442) > 400 (363)

160 73.8 53 (388) > 400 (519) > 400 (481)

(b) For QG, ρ = 5

nloc ω DtN PW(10−2) PW(10−1)

10 11.6 23 (69) 9 (214) 11 (169)
20 18.5 29 (111) > 400 (263) 16 (207)
40 29.3 44 (159) > 400 (326) 28 (263)
80 46.5 45 (236) > 400 (414) > 400 (346)

160 73.8 62 (378) > 400 (494) > 400 (455)

(c) For QG, ρ = 10

Table 6.5.8. Number of iterations (coarse space dimension) for heterogeneous wave guide example,
Problem 2. Wave speed c = c2, 5×5 subdomains.
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ρ = 5 ρ = 10

nloc ω DtN PW(10−2) DtN PW(10−2)

10 11.6 17 (67) 8 (234) 24 (47) 9 (185)
20 18.5 23 (92) 11 (273) 31 (64) 13 (215)
40 29.3 28 (143) 15 (340) 39 (91) 18 (262)
80 46.5 34 (217) > 400 (439) 51 (142) 27 (335)

160 73.8 42 (336) > 400 (522) 61 (223) > 400 (417)

(a) For PB

ρ = 5 ρ = 10

nloc ω DtN PW(10−2) PW(10−1) DtN PW(10−2) PW(10−1)

10 11.6 19 (67) 8 (234) 10 (178) 27 (47) 10 (185) 11 (145)
20 18.5 24 (92) 12 (273) 13 (221) 33 (64) 13 (215) 16 (173)
40 29.3 30 (143) > 400 (340) 18 (273) 39 (91) > 400 (262) 22 (212)
80 46.5 37 (217) > 400 (439) 25 (363) 47 (142) > 400 (335) 31 (277)

(b) For QG

Table 6.5.9. Number of iterations (coarse space dimension) for heterogeneous wave guide example,
Problem 2. Wave speed c = c3, 5×5 subdomains.
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ρ 1-level DtN PW(10−2) PW(10−1)

100 156 29 (299) 43 (577) 16 (505)
101 154 40 (236) > 400 (414) 26 (346)
102 173 52 (236) > 400 (388) 33 (320)
103 177 53 (236) > 400 (379) 35 (315)

(a) For PB

ρ 1-level DtN PW(10−2) PW(10−1)

100 156 31 (299) > 400 (577) 16 (505)
101 154 45 (236) > 400 (414) > 400 (346)
102 173 59 (236) > 400 (388) > 400 (320)
103 177 64 (236) > 400 (379) > 400 (315)

(b) For QG

Table 6.5.10. Number of iterations (coarse space dimension) for varying contrast ρ . Heterogeneous
Problem 2, wave speed c = c2, 5×5 subdomains, nloc = 80, ω = 46.5.

In Table 6.5.10, we vary the contrast ρ := kmax/kmin. With increasing contrast, the convergence
rates for the one-level method deteriorate. For DtN, even though the coarse space size decreases, the
number of iterations grows only slightly. Only for larger contrast, the situation deteriorates. In the
parts of the domain where ρ is large, the problem is very close to the Laplacian and hence almost
positive definite. As we have seen in Table 6.5.4, DtN does not work well for such situations since
the coarse space is too small to enhance convergence. PW does not suffer from this problem, because
the coarse space size is not chosen adaptively. Here, the filtering tolerance for PW has to be larger
than 10−2 to avoid stagnation of convergence due to ill-conditioning of the matrix E. The convergence
only stagnates at a certain error; consequently visibility of this effect depends on the desired accuracy
of the iterative solution. Additionally, for these experiments the conditioning problems with the
PW coarse space seem to be severe; even with the larger filtering tolerance ε = 10−1, none of the
heterogeneous test cases converges to the desired tolerance for QG.

In Table 6.5.11, we choose the same coarse space dimension for both DtN and PW to verify
that the better convergence rates for PW are due to the size of the coarse space. In contrast to the
homogeneous case in Table 6.5.2, for the heterogeneous one DtN performs significantly better than
PW when the number of modes chosen is the same, in particular for larger wave number k.

6.6 Extension to other problems

In this section, we consider also the other examples defined in Section 1.4 to confirm that our results
are valid for a broader range of examples.
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nloc ω mi DtN PW(10−2)

10 11.6 3 18 20 (75)
20 18.5 5 20 24 (123)
40 29.3 7 31 40 (171)
80 46.5 10 38 55 (237)

160 73.8 16 57 89 (356)

(a) For PB

nloc ω mi DtN PW(10−2) PW(10−1)

10 11.6 3 21 22 (75) 22 (75)
20 18.5 5 23 25 (123) 25 (123)
40 29.3 7 38 40 (171) 41 (163)
80 46.5 10 42 > 400 (237) 45 (223)

160 73.8 16 59 > 400 (356) 63 (346)

(b) For QG

Table 6.5.11. Comparison of number of iterations for DtN and PW with identical coarse space size.
Heterogeneous Problem 2, wave speed c = c2, ρ = 10, 5×5 subdomains.

Irregular decomposition In all the previous experiments, we have used a decomposition into
square subdomains to ensure reproducibility. Here we show that this is restriction is not necessary
for the method to work. In Table 6.6.1 we consider Problem 2, where both the decomposition done
with Metis [86] and the triangulation are now irregular. Compared to the regular case in Table 6.5.1,
the method behaves similarly. While the dimension of the coarse space increases slightly, the number
of iteration is almost the same.

Free space problem Here we examine Problem 3, where non-reflecting boundary conditions
are imposed on the entire boundary. The iteration numbers for different partitions are reported in

nglob k 1-level DtN

50 11.6 64 14 (116)
100 18.5 92 15 (168)
200 29.3 130 20 (257)
400 46.5 173 29 (381)
800 73.8 256 36 (645)

(a) For PB

nglob k 1-level DtN

50 11.6 64 15 (116)
100 18.5 92 17 (168)
200 29.3 130 25 (257)
400 46.5 173 33 (381)
800 73.8 256 43 (645)

(b) For QG

Table 6.6.1. Number of iterations (coarse space dimension) for an irregular domain decomposition
using Metis [86]. Homogeneous Problem 2, 25 subdomains.
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5×5 subdomains 10×10 subdomains

k nglob DtN PW(10−2) DtN PW(10−2)

18.5 100 15 (144) 8 (355) 16 (364) 7 (1152)
29.3 200 18 (224) 11 (466) 22 (460) 9 (1288)
46.5 400 26 (315) > 400 (577) 43 (660) 12 (1712)
73.8 800 30 (514) 24 (609) 47 (956) 16 (2346)

(a) For PB

k nglob DtN PW(10−2) PW(10−1)

18.5 100 15 (144) 8 (355) 9 (293)
29.3 200 18 (224) > 400 (466) 13 (379)
46.5 400 27 (315) > 400 (577) 16 (511)
73.8 800 33 (514) > 400 (609) 25 (597)

(b) For QG: 5×5 subdomains

k nglob DtN PW(10−2) PW(10−1)

18.5 100 17 (364) 23 (1152) 8 (872)
29.3 200 22 (460) > 400 (1288) 11 (1132)
46.5 400 35 (660) > 400 (1712) 15 (1380)
73.8 800 57 (956) > 400 (2346) 18 (1928)

(c) For QG: 10×10 subdomains

Table 6.6.2. Number of iterations (coarse space dimension) for the free space problem, Problem 3.

Table 6.6.2. The qualitative behavior is similar to the one observed for Problem 2 in Table 6.5.1, but
the absolute number of iterations is lower, in particular for the one-level method.

Wedge problem We consider the wedge problem, Problem 4. The results are reported in Ta-
ble 6.6.3. Also for this case, the 2-level method with the coarse space based on the DtN operator
shows a good behavior. Notably, for the 60 subdomain case, the results for PW here are significantly
better for QG than for PB. To be able to compare with the results for the unit square, note that the
number of wavelengths in the y-direction for the smallest angular frequency ω = 90 corresponds to a
wave number k varying between 30 and 60 for the unit square.

Marmousi problem As a last example, we look at the Marmousi problem, Problem 5. In contrast
to the other experiments in this section, due to the size of the problem, the experiments for this case
are done with the parallel FreeFem++ code on four nodes of the CUB cluster instead of the serial
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15 subdomains 60 subdomains

ω n DtN PW(10−2) DtN PW(10−2)

90 150×250 14 (267) 13 (346) 22 (541) 11 (1038)
180 300×500 16 (514) 33 (375) 23 (1074) 22 (1426)
360 600×1000 20 (968) 73 (375) 25 (2113) 86 (1500)

(a) For PB

ω n DtN PW(10−2) PW(10−1)

90 150×250 14 (267) 12 (346) 12 (323)
180 300×500 15 (514) 24 (375) 24 (373)
360 600×1000 18 (968) 50 (375) 50 (375)

(b) For QG: 15 subdomains

ω n DtN PW(10−2) PW(10−1)

90 150×250 21 (541) 10 (1038) 12 (877)
180 300×500 22 (1074) 15 (1426) 15 (1333)
360 600×1000 26 (2113) 42 (1500) 42 (1500)

(c) For QG: 60 subdomains

Table 6.6.3. Number of iterations (coarse space dimension) for the wedge problem, Problem 4
decomposed with Metis.

FreeFem++/MATLAB code, for details see Chapter 7. We use a decomposition into 25 subdomains
with Metis [86], and give the results in Table 6.6.4.

6.7 Conclusions

In this chapter, we successfully tested the two-level method using the DtN coarse space for two-
dimensional homogeneous and heterogeneous Helmholtz problems. Furthermore, we compared
the DtN coarse space to one based on an established idea, using plane waves, see e.g. [52]. While
the two-dimensional examples are rather small, the results are promising. For the homogeneous
test cases, the DtN coarse space shows a performance similar to that of the PW coarse space, if the
latter converges. However, the DtN coarse space overcomes some problems from which the PW one
suffers, such as stagnation of convergence due to ill-conditioning and the need to tune its size. For
heterogeneous examples, the convergence rates for the DtN coarse space are better than those for
the PW one. The results are independent of the decomposition or the example chosen as the more
complex problems in Section 6.6 show.

While the results in this chapter are promising, two important points remain open: On the one
hand, we used a serial code for an inherently parallel method. For that reason, in Chapter 7, we will
explain how to parallelize the code. On the other hand, the examples in this section are rather small
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ω nx×ny DtN PW(10−2)

1 1021×323 62 (25) 32 (270)
10 1021×323 29 (151) 34 (600)
20 2042×646 36 (298) 57 (625)
30 3064×968 41 (454) 78 (625)

Table 6.6.4. Number of iterations (coarse space dimension) for the Marmousi problem, Problem 5
decomposed with Metis. nx and ny denote the global number of grid points in x- and y-direction,
respectively. The preconditioner PB is used.

and restricted to two space dimensions. In order to fully explore the properties of the method, in
Chapter 7 we investigate larger, three-dimensional examples.
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Chapter 7

Numerical results for three-dimensional
problems

In Chapter 6, we tested the two-level DDMs using the DtN coarse space on two-dimensional problems
in order to understand their characteristics and their behavior. In this chapter, we investigate the
performance of the coarse space also for the three-dimensional case. By testing the methods also on
larger and more complicated examples, we gain further insight into its behavior. Due to the typically
significantly larger size of the linear system of equations in the three-dimensional experiments, the
code needs to be parallelized and executed on a cluster. Details of the parallel implementation are
described in the beginning of this chapter in Section 7.1. The numerical experiments are presented in
Section 7.2.

7.1 Implementation

Even though the main feature of DDMs is the possibility to parallelize them, in Chapter 6 we have
worked with a serial implementation of the RAS method. This is feasible as long as the examples are
relatively small. In three space dimensions, however, the problem size increases rapidly with the
number of grid points per direction and hence with the wave number k. Consequently, a parallelized
version of the code has to be used. In this section, we give an overview of the most important
aspects when parallelizing and describe in detail the implementation of some selected operations.
Subsection 7.1.2 is particularly important, as together with Section 4.5 it explains why we use the
possibly singular preconditioner PB instead of the non-singular one QG in this chapter.

7.1.1 Parallel implementation of the restricted additive Schwarz method

The one-level RAS preconditioner reads, see Equation (3.2.2)

M−1 =
N∑

j=1

R̃T
j A−1

j R j,

97
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where A j is a local stiffness matrix. When solving a linear system of equations preconditioned
with the RAS preconditioner, we need to apply the RAS preconditoner M−1 and the global stiffness
matrix A to a vector, but there is no need for assembling these two matrices. In fact, in a parallel
code, the global matrices should never be assembled, and also global vectors are very seldom
used. Also the restriction operators R j that appear in the definition of M−1 are in practice only
global-to-local index mappings and appear in pairs R jRT

i , which involve only communications with
neighbors. In Algorithm 7.1.1, we summarize the preprocessing necessary for the RAS method such
that all the previously mentioned matrix-vector operations can be performed by local operations and
communication with neighbors only. Note that everything inside the for-loop is localized and does
not involve any global operations. The need for the various operators defined here, in particular for
the matrices Â j and RiRT

j is explained in the next paragraph.

Algorithm 7.1.1 Computation of the domain decomposition and related operators

Input: Computational domain Ω and the corresponding mesh, number of subdomains N, number of
elements in the overlap nov

Output: Restriction operators R j, partition of unity matrices D j, local stiffness matrices A j, 1 ≤
j ≤ N

1: Compute a decomposition of the domain Ω into N non-overlapping, mesh-conforming subdo-
mains: Ω =

⋃N
j=1 Ω′j.

2: for j← 1 to N do
3: Add nov layers of elements to Ω′j according to Definition 3.2.1 to construct the overlapping

subdomain Ω j ⊂Ω.

4: Implement the restriction matrix R j ∈ R|Ω j|×|Ω|.
5: for i such that Ω j ∩Ωi 6= /0 do
6: Implement the application of RiRT

j as the exchange of values with the neighbor Ωi in
the overlap.

7: end for
8: Compute the matrix D j ∈ R|Ω j|×|Ω j| related to the partition of unity as defined in Subsec-

tion 3.2.2.
9: Compute the local stiffness matrices A j with Robin boundary conditions as defined in

Equation (3.2.3).
10: Compute the local restricted stiffness matrices Â j := R jART

j by Algorithm 7.1.2.
11: end for

We here explain only the multiplication with the global stiffness matrix, as it is the most involved
step and all other operations can easily be performed once the operators in Algorithm 7.1.1 are at
hand. For the parallel method, instead of computing Au, we only compute the vectors R jAu, the
restrictions of Au to the subdomain Ω j, 1≤ j ≤ N. This can be done by local computations followed
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by communication with direct neighbors, as the following calculation shows:

R jAu = R jA

( N∑

i=1

RT
i DiRi

)
u =

N∑

i=1

R jART
i DiRiu =

N∑

i=1

R jRT
i RiART

i DiRiu.

Here, the last equality holds, as by definition Di is zero on the boundary of subdomain Ωi and A only
couples neighboring degrees of freedom. Using R jRT

i = 0 for Ω j ∩Ωi = /0, we thus get

R jAu =
∑

i:Ω j∩Ωi 6= /0

R jRT
i

(
RiART

i

)
DiRiu.

All operations except for the multiplication with R jRT
i can be performed locally, as Âi := RiART

i is
the restriction of A to subdomain Ωi, which can be assembled and applied completely locally, see
Algorithm 7.1.2. The parallel update, represented by the term RiRT

j , requires only communication
of the values in the overlap between neighboring subdomains; there is no need to use global
vectors. Hence the RAS preconditioner M−1 can be applied to a vector using local operations and
communication with neighbors only.

Algorithm 7.1.2 Computation of the restricted stiffness matrices Â j := R jART
j

1: Compute Ω+
j , the extension of Ω j by one layer of elements according to Definition 3.2.1.

2: Compute the matrix A+
j , the stiffness matrix yielded by the bilinear form a(., .), see Equa-

tion (1.3.2), on Vh

(
Ω+

j

)
.

3: Delete the rows and columns in A+
j that are associated to degrees of freedom lying on elements

in Ω+
j \Ω j. This gives the matrix Â j := R jART

j .

7.1.2 Parallel coarse matrix assembly

Even though the coarse matrix E is a global matrix, which is stored and factorized on one processor
only in our implementation1, its assembly is in large parts parallelizable, for the coarse space
introduced in Chapter 5. This is independent of the specific form of the coarse space, but depends
solely on the following assumption, which we will use throughout this section.

Assumption 7.1.1 (Local construction). The coarse space is built of local, weighted functions:
Each column of Z has the form RT

j D jv j, where v j is the coefficient vector of a function v ∈ Vh(Ω j)

and D j is the matrix associated to a partition of unity function on Ω j as used in Equation (3.2.2).
Furthermore, the matrix D j is zero on the degrees of freedom associated to the boundary of Ω j.

1While it is in principle possible to parallelize the coarse matrix, see e.g. [84], its nature is that of a global problem and
the question how to parallelize it is out of scope in this work.
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The coarse space matrix Z defined in Chapter 5, see in particular Algorithm 5.2.1, satisfies this
assumption. It is not only important for the sparsity of the coarse matrix E, but it also facilitates the
parallel implementation.

If B = A in Equation (4.1.1), the situation is rather easy, as only communication with neighbors
is necessary to assemble the coarse matrix E = Z†AZ. In case B = M−1A, the situation is more
complicated, cf. Section 4.5, as the computation of E in this case requires communication not only
with direct neighbors but also with neighbors of neighbors. While this might be feasible in the
one-dimensional case considered in Section 4.5, in three space dimensions and for a non-regular
decomposition of the domain into subdomains, the assembly of the coarse matrix E is significantly
more costly and its structure is less sparse. For these reasons, for the 3D experiments we exclusively
consider the preconditioner PB and hence, in the following, only explain how to assemble the matrix
E = Z†AZ.

The coarse matrix E defined as E = Z†AZ has the form E = (Ei j)
N
i, j=1, where Ei j is a matrix of

size mi×m j defined by

Ei j =
(

RT
i Wi

)†
A
(

RT
j Wj

)
=W †

i RiART
j Wj, Wi ∈ Cn×mi .

It is easy to see that Ei j = 0 if Ω j ∩Ωi = /0. Moreover, as Â j = R jART
j is a local matrix, cf.

Algorithm 7.1.2, the diagonal blocks E j j can be computed completely locally. Even though the
non-zero off-diagonal blocks seemingly require several communication steps, also their computation
can be simplified in a way very similar to the trick used for the multiplication with the global stiffness
matrix described in Subsection 7.1.1, cf. also [84]. Indeed, due to Assumption 7.1.1, the matrix Wj

can be written as D jW̃j for some matrix W̃j and with a partition of unity matrix D j that vanishes on
the boundary of Ω j. As the global stiffness matrix A only couples neighboring degrees of freedom,
we get

A
(

RT
j Wj

)
= RT

j

(
R jART

j

)
Wj = RT

j Â jWj.

Hence the matrix A
(

RT
j Wj

)
can be computed locally on subdomain Ω j except for the extension RT

j
of the local result to the global degrees of freedom. Consequently, the off-diagonal blocks of E can
be computed as

Ei j =W †
i RiRT

j Â jWj,

where the only part requiring communication is the application of RiRT
j , which sends values asso-

ciated to degrees of freedom in the overlap Ωi∩Ω j from the subdomain Ω j to subdomain Ωi, cf.
Subsection 7.1.1. Summarizing, we have for the blocks of the coarse matrix E

Ei j =





W †
i ÂiWi if i = j,

W †
i RiRT

j Â jWj if i 6= j and Ωi∩Ω j 6= /0,

0 else.

The complete algorithm is given in Algorithm 7.1.3.
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Algorithm 7.1.3 Assembly of the coarse matrix E = Z†AZ

Input: On each subdomain Ω j, 1 ≤ j ≤ N: block Wj of the coarse matrix Z, local matrix Â j,
restriction operator R j

Output: coarse matrix E
. Local part

1: for j← 1 to N do
2: Compute Tj := Â jWj locally.
3: Compute the block E j j of E by E j j :=W †

j Tj locally.
4: for i 6= j such that Ωi∩Ω j 6= /0 do
5: Restrict Tj to Ωi∩Ω j and send the values to Ωi.
6: Receive the values of Ti in Ωi∩Ω j from neighbor Ωi and expand them by zero to Ω j.

This gives the matrix Si := R jRT
i Ti.

7: Compute E ji :=W †
j Si.

8: end for
9: end for

. Global part
10: Collect the blocks Ei j from the subdomains Ω j, 1≤ j ≤ N and build the global matrix E setting

the missing blocks to 0.

7.1.3 Solution of the Dirichlet-to-Neumann eigenvalue problems

For the two-dimensional experiments, we have solved the DtN eigenproblems by using MATLAB’s
eig routine to compute all eigenvalues of the DtN operator. In the three-dimensional case, the DtN
eigenproblem has significantly more degrees of freedom, as the total number of degrees of freedom
as well as the size of the interfaces increase. Computing all the eigenvalues and eigenfunctions
is hence prohibitively expensive. Instead, we use the ARPACK package [98] to compute only the
eigenfunctions that we are interested in, i.e. those associated to eigenvalues whose real part is smaller
than the wave number k.

This is not as straightforward as it might seem. For ARPACK, the total number of eigenvalues
and -vectors that shall be computed needs to be specified a priori. However, we only know how
many eigenvectors we need once we know all the eigenvalues smaller than k. The requirement to
look at the right part of the spectrum can be resolved rather easily, as we use ARPACK in the “regular
inverse mode”, cf. [98, Section 3.9] and look for the eigenvalues with the smallest real part. It is not
clear before the computation, how many of these eigenvalues are necessary. We hence start with an
estimate ñev of the number of eigenvalues, and compute them. If the largest one is greater than k,
we are done. Otherwise we repeat the whole eigenvalue computation aiming for a larger number of
eigenvalues. This could probably be improved, e.g. by looking at a different part of the spectrum in
subsequent runs.

The problem of guessing the necessary number of eigenvalues is related to the question of
choosing the right number of plane waves. The most important difference is that for the DtN coarse
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space, we have a reliable criterion for assessing the quality of the guess, see Criterion 5.2.3, whereas
for the plane waves the filtering procedure fails to provide this, cf. the discussion in Subsection 6.3.2.
Moreover, using a different strategy could reduce the costs for computing additional eigenvalues
such that an initially wrong guess does not have that much influence on the runtime. In the current
implementation, however, an estimate that is far away from the necessary number can significantly
increase the computation time, even though the eigenvalue computation is parallelized.

7.1.4 Other computational details

The code used for the numerical experiments in this chapter is an extension of the FreeFem++ package
[75] version 3.26. The additionally necessary features are either implemented inside a FreeFem++
script or in the source code of this package, when no such feature was already available or speed
was crucial. Due to larger memory requirements, in the parallel code we use the restarted GMRES

version, cf. Algorithm 3.1.2, where the iteration is restarted after m = 100 iterations. Moreover, we
set the number of maximum outer GMRES cycles to 3, so that at most 300 inner GMRES iterations are
performed in total. We write “> 300" for the iteration count if the desired tolerance was not reached
in the maximum number of iterations. The decomposition into subdomains is done using Metis [86].
To specify the mesh that was used, the global number nglob of grid points in one coordinate direction
is specified. As in Chapter 6, we always use a random starting iterate. Also the two-dimensional
experiments in this section are preformed with these settings and the parallel code.

The experiments in this chapter, unless otherwise noted, were done on the CUB cluster at the
Università della Svizzera italiana. It consists of 3×14 IBM Blades, each equipped with two quad-
core Opteron (Barcelona) processors and 16 GiB memory. Some of the larger experiments were run
on the Monte Rosa cluster of the Swiss National Supercomputing Centre. It is a 16 cabinet Cray
XE6 system with 1496 compute nodes. Each compute node consists of two 16-core AMD Opteron
6272 2.1 GHz Interlagos processors, giving 32 cores in total per node with 32 GB of memory.

7.2 Numerical results

In this section, we examine the two-level DDM and in particular the coarse space based on the
DtN operator for three-dimensional problems, using a parallelized code running on a computer
cluster. The implementation has been explained in Section 7.1. As for the two-dimensional numerical
experiments in Chapter 6, we first look at homogeneous problems in Subsection 7.2.1 and then also
consider some heterogeneous model problems in Subsection 7.2.2.

7.2.1 Homogeneous examples

We investigate the performance of the two-level method for examples with homogeneous wave
number k. As a first step, in Table 7.2.1 we compare the performance of the method for the
two-dimensional wave guide problem, Problem 2, to that for the corresponding three-dimensional
problem, Problem 6. We choose the same number of grid points n per direction, so that the number
of degrees of freedom in 3D is roughly n times larger than in 2D. For the three-dimensional case, we
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DtN 3D (N = 27) DtN 2D (N = 9) DtN 2D (N = 27)

k # it. dim(Z) # it. dim(Z) # it. dim(Z)

5 17 (82) 13 (23) 16 (54)
10 11 (306) 9 (49) 10 (111)
15 16 (666) 9 (74) 8 (173)
20 30 (1148) 9 (93) 16 (220)

Table 7.2.1. Comparison between two-dimensional wave guide problem, Problem 2, and three-
dimensional capacitor problem, Problem 6. nglob = 54 grid points in each direction. Four nodes on
CUB for 3D experiments, one node for 2D experiments.

PW(10−2, 26) PW(10−2, 56) PW(10−2, 98) DtN

k # it. dim(Z) # it. dim(Z) # it. dim(Z) # it. dim(Z)

5 12 (458) 10 (826) 12 (1131) 17 (82)
10 14 (459) 10 (826) 13 (1133) 12 (306)
15 33 (459) 22 (830) 33 (1142) 16 (666)
20 60 (460) 29 (835) 38 (1152) 30 (1148)

Table 7.2.2. Comparison of DtN coarse space with PW one. Problem 6, N = 27 subdomains, four
nodes on CUB, nglob = 54 grid points in each direction.

choose N = 27 = 33 subdomains, and for the two-dimensional case, we investigate both the case with
the same number of subdomains per direction, i.e. N = 9 = 32 subdomains, and with the same total
number of subdomains, i.e. N = 27. As in Chapter 6, the number in brackets denote the dimension
of the coarse space Z . In three space dimensions, it increases at a faster rate. This is not due to the
number of subdomains, as the same is true for the two-dimensional case with 27 subdomains instead
of 9. At the same time, also the number of iterations increases apparently more rapidly in 3D.

As a next step, examining again Problem 6 with a fixed grid and varying wave number k, we
compare the performance of the DtN method to that of the PW one. In Table 7.2.2, the results
are shown. As opposed to the two-dimensional case, we here do not observe stagnation due to
ill-conditioning for the PW coarse space. However, enlarging the PW coarse space sometimes leads
to an increased number of iterations. The PW coarse space size for this example depends almost
exclusively on the initially chosen number of coarse modes; the wave number k and filtering hardly
influence it. Moreover, only roughly half of the PW coarse functions are not filtered. As for the
two-dimensional case, for a similar coarse space size also the iteration counts are comparable for this
rather small example. The situation changes for a larger example, for which the results are reported
in Table 7.2.3. Here, for larger wave numbers k, the method based on the PW coarse space fails
to converge to the desired tolerance within 300 GMRES iterations. Increasing the number of plane
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PW(10−2, 26) PW(10−2, 56) PW(10−2, 98) PW(10−2, 152) DtN

k # it. dim(Z) # it. dim(Z) # it. dim(Z) # it. dim(Z) # it. dim(Z)

10 15 (2383) 13 (3675) 98 (4666) > 300 (5601) 30 (854)
20 53 (2386) 27 (3684) 92 (4680) > 300 (5604) 24 (2889)
30 > 300 (2396) > 300 (3704) > 300 (4728) > 300 (5643) 53 (6110)
40 > 300 (2408) > 300 (3736) > 300 (4775) > 300 (5693) 161 (10533)

Table 7.2.3. Comparison of DtN coarse space with PW one. Problem 6, 144 subdomains, 18 nodes
on CUB, nglob = 140 grid points in each direction.

N # nodes # iterations dim(Z) Tsolve in s Ttotal in s

8 1 9 (127) 3.26×100 1.41×102

16 2 9 (229) 2.24×100 1.34×102

32 4 10 (362) 1.51×100 8.12×101

64 8 10 (604) 1.40×100 5.03×101

128 16 10 (952) 1.64×100 3.66×101

256 16 11 (1546) 3.57×100 7.20×101

Table 7.2.4. Strong scaling experiment for DtN coarse space. Problem 6 with k = 10, nglob = 40,
ñev = 50. For the experiments in the last line, there are less cores than processes.

waves in this case seems to be of little use to tackle the arising problems. Even though in the last line,
the largest PW coarse space has 144 ·152 = 21888 coarse modes before filtering, the dimension of
the coarse space Z after filtering is only roughly a quarter of the original size. Hence the problem of
linear dependence and ill-conditioning seems to be even more serious in the three-dimensional case.
The strategy that worked well in two dimensions, namely increasing the number of plane waves in
order to get a better coarse space, fails for larger wave numbers in the three-dimensional case.

N # nodes # iterations dim(Z) Tsolve in s Ttotal in s

8 1 19 (315) 5.91×101 2.70×103

16 2 14 (554) 2.29×101 1.06×103

32 4 17 (863) 1.48×101 4.84×102

64 8 12 (1321) 7.21×100 2.01×102

128 16 14 (2032) 8.28×100 1.18×102

256 16 15 (3155) 1.31×101 1.74×102

Table 7.2.5. Second strong scaling experiment for DtN coarse space. Problem 6 with k = 16,
nglob = 60, ñev = 100. For the experiments in the last line, there are less cores than processes.



7.2 Numerical results 105

N # nodes nglob # iterations dim(Z) Tsolve in s Ttotal in s

8 1 40 10 (127) 3.64×100 2.77×102

16 2 50 11 (220) 5.13×100 3.38×102

32 4 63 12 (351) 6.55×100 4.49×102

64 8 79 17 (521) 9.09×100 4.75×102

128 16 100 21 (816) 1.23×101 5.50×102

Table 7.2.6. Weak scaling experiments for DtN coarse space with fixed wave number k. Problem 6
with k = 10, ñev = 100.

In Table 7.2.4 and Table 7.2.5, we test the strong scaling of the method for fixed wave number.
Here, as in the following tables, Tsolve denotes the time for the solution of the system after all
necessary matrices have been assembled and Ttotal denotes the total time. Strong scaling means that
for a fixed problem size, we increase the number of subdomains. The number of processors/nodes
used is increased proportionally. For a perfectly scaling problem, doubling the number of subdomains
should divide the time necessary for the solution of the same system by two. From the results of
Table 7.2.4, it is obvious that the scaling is not perfect. However, the results in Table 7.2.5 show
almost perfect scaling both for the solution and for the total time up to 64 subdomains. For both
examples, the number of iterations does not or only slightly increase, when the number of subdomains
increases, as the dimension of the coarse space Z increases with the number of subdomains.

Another important parameter for the timing is the number ñev of eigenvalues that is computed
with ARPACK initially, cf. Subsection 7.1.3. Choosing it far from the optimal value can have serious
impact on the run time. As the size of the coarse system grows slower than the number of subdomains,
keeping ñev constant during the scaling test results in an increasing number of unnecessary modes
computed. This partially explains the performance loss, but is not the only reason, as looking at
the solution time Tsolve shows. Most likely, better results could be achieved with a more optimized
implementation. In particular, parallelizing the coarse system as in [84] would be a first step to
reduce the influence of the costs of the global component and to obtain better results.

In Table 7.2.6, we examine the weak scaling of the method, again for a fixed wave number k. Here,
the problem size is increased proportionally to the number of processors or subdomains, respectively,
employed. In the optimal case, the time should stay constant due to more resources being employed
to solve the larger problem. However, when increasing the number of subdomains/processors by
a factor of 16 from 8 to 128, the solution time Tsolve increases by a factor of roughly 3.4 and the
total time Ttotal by a factor of roughly 2. In Table 7.2.7, the results for larger experiments with more
subdomains are given. When the number of subdomains in each coordinate direction is doubled, i.e.
the total number of subdomains increases by a factor of 8, we also double the wave number k and
the number of grid points in each direction nglob. Similarly to the smaller example, increasing the
number of subdomains by a factor of 64 from 8 to 512, the time needed for solution and setup grows.
Here, the solution time Tsolve increases by a factor of 11.0 and the total time Ttotal by a factor of 4.4.



106 Numerical results for three-dimensional problems

N # nodes nglob # iterations dim(Z) Tsolve in s Ttotal in s

8 1 35 8 (130) 1.87×100 1.25×102

64 4 70 13 (545) 4.79×100 2.61×102

512 32 140 45 (1911) 2.06×101 5.50×102

Table 7.2.7. Larger weak scaling experiments on Monte Rosa with fixed wave number k. Problem 6
with k = 10, ñev = 100.

N # nodes k nglob # iterations dim(Z) Tsolve in s Ttotal in s

8 1 10.0 40 9 (127) 3.71×100 2.73×102

16 2 12.6 50 18 (571) 6.20×100 3.62×102

32 4 15.9 63 12 (853) 1.09×101 4.52×102

64 8 20.0 79 20 (1947) 2.44×101 5.32×102

128 16 25.2 100 30 (4315) 7.19×101 6.67×102

Table 7.2.8. Weak scaling experiments with varying wave number k. k increases linearly with the
number of grid points per direction. Problem 6 with k = 16, ñev = 100.

In Table 7.2.8, we use the same setting as before, but now vary the wave number proportionally
with the grid width. For the experiments in this section, we just keep kh instead of k3h2 constant,
when we increase the wave number k in order to be able to consider larger wave numbers. This does
not account for the pollution effect, cf. Subsection 1.3.3. Here, the solution time increases much
more than in Table 7.2.6; when increasing the number of subdomains/processors by a factor of 16
from 8 to 128, the solution time Tsolve increases by a factor of roughly 19.4. This is not true for the
total time Ttotal, which increases only by a factor of about 2.4. We conclude that, not surprisingly,
the increasing wave number adds a further difficulty to the problem that has a strong impact on the
solution time of the system. It does not affect the total time much, as it is much larger than the
solution time – also due to the imperfect implementation.

In Table 7.2.9, we report the results for a larger example with more subdomains and more degrees
of freedom. Here, the coarse space is huge for the last line and the method needs the maximum of
300 GMRES iterations in order to converge. Due to the large coarse space, both the setup and the

N # nodes k nglob # iterations dim(Z) Tsolve in s Ttotal in s

8 1 10.0 35 8 (130) 1.87×100 1.25×102

64 4 20.0 70 26 (1975) 2.91×101 3.14×102

512 32 40.0 140 300 (20239) 3.69×103 4.40×103

Table 7.2.9. Larger weak scaling on Monte Rosa with varying wave number k. k increases linearly
with the number of grid points per direction. ñev = 100.
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ω nglob # iterations dim(Z) Tsolve in s Ttotal in s

10 32 11 (616) 1.93×100 6.22×101

20 64 63 (2208) 1.46×102 1.22×103

30 96 196 (4607) 3.27×103 2.00×104

Table 7.2.10. Heterogeneous layer problem, Problem 7, using a finer grid. N = 32 subdomains, four
nodes on CUB, DtN coarse space with ñev = 100.

solution takes a lot of time, as the coarse system is solved using the direct solver UMFPACK. This
time could probably be reduced using a better, parallel solver for the coarse space.

7.2.2 Heterogeneous examples

In this section, we examine two heterogeneous examples taken from [41, Chapter 7]. We start with
Problem 7, which has been defined in Section 1.4. As in [41], for the results in Table 7.2.11, we
choose ωh = 0.625. Similar to the homogeneous experiments, the DtN coarse space size grows
with increasing wave number. As opposed to the PW coarse space, the method however converges
for larger wave numbers, even though the iteration counts increase with the wave number k. The
resolution ωh= 0.625 chosen for the previous experiments yields less than 7 points per wavelength in
the layer with smallest velocity c for Problem 7. Therefore, in Table 7.2.10, we repeat the experiment
with twice as many grid points per direction. However, the low resolution does not seem to be the
reason for either the size of the coarse space or the deteriorating convergence, as the finer grid does
not resolve any of problems noted above. In Table 7.2.12, finally the results for the wedge example
from [41], Problem 8, are shown. In all these experiments, it becomes clear that the method has
severe convergence problems for these cases. The problems are probably more severe than in the
two-dimensional case, as the effect of the transmission conditions is larger. However, also the plane
waves do not offer a better alternative for the heterogeneous examples.
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DtN, ñev = 100 PW(10−2, 56) PW(10−2, 98)

ω nglob # it. dim(Z) Tsolve in s Ttotal in s # it. dim(Z) Tsolve in s Ttotal in s # it. dim(Z)

10 16 9 (369) 7.99×10−1 2.14×101 17 (500) 1.70×100 1.25×101 45 (699)
20 32 35 (1203) 3.02×101 2.06×102 68 (522) 1.41×101 7.81×101 74 (730)
30 48 39 (2623) 1.57×102 1.66×103 > 300 (553) 1.84×102 3.33×102 > 300 (766)
40 64 143 (4620) 2.09×103 1.26×104 > 300 (577) 4.55×102 8.39×102 > 300 (811)

Table 7.2.11. Heterogeneous layer problem, Problem 7. N = 16 subdomains, two nodes on CUB.

DtN, ñev = 100 PW(10−2, 56)

ω nglob # it. dim(Z) Tsolve in s Ttotal in s # it. dim(Z) Tsolve in s Ttotal in s

10 16 10 (350) 7.54×10−1 4.02×101 8 (499) 1.11×100 2.39×101

20 32 26 (1138) 2.20×101 2.69×102 50 (523) 1.07×101 1.45×102

30 48 50 (2448) 1.95×102 1.97×103 > 300 (550) 1.91×102 5.05×102

40 64 98 (4209) 1.19×103 1.23×104 > 300 (573) 4.57×102 1.21×103

Table 7.2.12. Heterogeneous wedge problem, Problem 8. N = 16 subdomains, two nodes on CUB.
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7.3 Conclusions

In this chapter, we extended the two-dimensional numerical experiments of Chapter 6 to the three-
dimensional case. In order to solve larger problems, the serial code, which was used in Chapter 6
was parallelized. The resulting FreeFem++ code was run on parallel clusters, using the additional
computational power and memory to compute larger three-dimensional examples.

The experiments in this chapter have shown that the three-dimensional case is more difficult
than the two-dimensional one. This does not only hold true for the implementation, as a much more
advanced parallel code was necessary in order to tackle problems with a larger wave number, but
applies also to the methods. However, the two-level DDM using the DtN coarse space converged
reliably in all the experiments. In contrast to that, for the PW coarse space, the convergence behavior
of the method depends critically on the initial number of plane waves chosen. A too small or a
too large estimate causes the method to fail to converge in the maximum number of iterations. For
examples with a rather large wave number, we even observed that increasing the number of plane
waves was not sufficient to improve the convergence rates, as most of the additional waves were
filtered out. Consequently, plane waves seem to reach their limit at a point, where the DtN based
method still converges in a significantly smaller number of iterations. The better behavior of the DtN
coarse space comes at the cost of the additional time spent on the solution of the local DtN eigenvalue
problems. This additional cost might be decreased by improving our naive implementation of the
eigenvalue solver. As for the two-dimensional examples in Chapter 6, if the PW method converges,
the iteration counts for the two coarse spaces are comparable for the homogeneous examples and
better for the DtN coarse space for the heterogeneous examples.

While the DtN coarse space thus overcomes some of the problems of its competitor, two points
that could be further improved became clear in this chapter. First, with increasing wave number k
the dimension of the coarse space grows significantly. Even though the global system is not dense,
but is composed of blocks associated to overlapping subdomains, its solution with a direct method
becomes expensive. Therefore, an important next step to improve the scalability of the method would
be the parallelization of the coarse system, cf. [84].

Second, the number of iterations increases with the wave number k and the number of subdomains
despite the fact that a larger coarse space is used. Consequently, either Criterion 5.2.3 does not select
enough modes or the DtN eigenvectors do not include all the modes that are necessary. However, it
is debatable whether further enriching and hence enlarging the coarse space is the best approach. As
Fourier analysis in Section 3.3 showed, the transmission conditions used in our experiments suffer
from problems when the number of subdomains increases. In the current method, the coarse space
thus does not only provide a global component, but also has to tackle all the additional problems that
arise for higher frequencies and more subdomains. In our opinion, at least partially removing these
problems with the transmission conditions leads to better convergence rates without the costs of an
even larger global problem. Optimized Schwarz methods [57] might for example be a good option,
even though to our knowledge they have mainly been investigated for model problems with only a
few subdomains.



110 Numerical results for three-dimensional problems



Discussion and conclusions

For large wave numbers, FE discretizations of the Helmholtz equation lead to very large, sparse,
non-Hermitian, highly indefinite, and ill-conditioned systems of linear equations. These properties
represent a major challenge for its numerical solution. While standard direct methods in two space
dimensions might be a feasible option, their use for three-dimensional problems at high frequencies
is prohibitive, as memory requirements increase substantially. Standard iterative methods, on the
other hand, suffer from slow convergence or even divergence.

In this thesis, we introduced and tested a two-level DDM especially tailored for the iterative
solution of the heterogeneous Helmholtz equation. The main new ingredient is the coarse space,
whose construction is based on local eigenproblems involving the DtN operator. Our coarse space in-
herently respects variations in the wave number, making it possible to treat heterogeneous Helmholtz
problems. Moreover, it does not suffer from ill-conditioning, in contrast to the standard approach
based on plane waves. This is important, as ill-conditioning can cause the iterative solver to stagnate.
The resulting method has been tested successfully on two- and three-dimensional problems.

We tackled different aspects of the problem of constructing a two-level method for the difficult
Helmholtz problem. In a first step, we investigated different ways to incorporate a second level
into a one-level method. Here, the fact that the Helmholtz system is indefinite and non-Hermitian
causes difficulties. We examined two desirable properties: The two-level preconditioner should be
non-singular and it should never be worse than the one-level preconditioner.

The non-singularity is important to make the preconditioned system uniquely solvable and to
guarantee convergence of the GMRES method. While we showed that the preconditioner based on
the balancing method [42] leads to a singular, underdetermined system, the preconditioner proposed
in [74] is provably invertible. This comes at the cost of a more difficult to assemble in parallel and
more densely populated coarse system. The question whether it is possible to define a non-singular
variation of the balancing preconditioner while preserving the nice properties of the resulting coarse
system remained open. However, our numerical experiments showed that both preconditioners
perform reasonably well in practice despite the possible singularity of the balancing preconditioner.

The other important question that we examined in this context is under which conditions adding
a second level to the one-level preconditioner can be guaranteed not to deteriorate the convergence
rates. Our analysis showed that linear combinations of eigenvectors associated to eigenvalues with
different signs cause problems in the coarse space if it is incomplete, possibly making convergence
rates worse than those for the one-level method. As global spectral information in practice is too

111



112 Discussion and conclusions

costly to obtain, this theoretical insight only partially helps when defining the coarse space. Being
aware of this problem is however a key to understand the behavior of the method.

In a second step, we introduced the DtN coarse space and motivated it with several numerical
tests. The construction has two parts. While the most important step is the choice of the right
functions on the interfaces of the subdomains, choosing the correct extension operator to the interior
of the subdomains is also crucial in order to get good convergence results. We discussed several
alternatives and concluded that extending with the original Helmholtz operator gives the best results.
The question how to define the two-level preconditioner in such a way that it always improves
convergence compared to the one-level method remained open for general matrices. However, for the
concrete DtN coarse space, we provided a criterion to choose the necessary coarse space modes such
that convergence problems did not occur for our test cases. Our criterion ensures that all important
modes are present, refraining from the need of tuning the dimension manually and guaranteeing
good convergence rates.

In a last step, we tested the resulting method for homogeneous and heterogeneous problems
in two and three space dimensions. In order to assess the quality of the coarse space, we adapted
the popular plane wave coarse space to our setting. Here again the question how to choose the
extension operator is crucial. Our experiments showed that pointwise evaluation of the plane waves,
as proposed for example in [92], at least in our setting leads to worse convergence and to more
conditioning problems than using the same extension as for the DtN coarse space.

In the two-dimensional experiments, the DtN and the PW coarse spaces performed similarly for
homogeneous problems if they had approximately the same size. The main advantage of the DtN
coarse space for these problems is the fully automatic construction without the need to tune a critical
parameter, the coarse space size. Moreover, the DtN coarse space does not suffer from the serious
conditioning problems the PW coarse space has and converges reliably. Adding to these advantages,
the DtN coarse space performs better for heterogeneous problems.

Three-dimensional problems are even more difficult to solve numerically. In order to be able
to examine also larger examples, we implemented the method in parallel for the 3D tests. The
method employing the DtN coarse space converged reliably in all the experiments. In contrast to
that, plane waves were not able to guarantee convergence. In addition to the issues already observed
for the two-dimensional case, here for some examples with larger wave number a further problem
arose. Even increasing the number of plane waves was not sufficient to provide an iteration count
comparable to the one with DtN coarse space. The reason for this was probably that most of the
additional plane waves were filtered out. As for the two-dimensional examples, if the PW method
converged, the iteration counts for the two coarse spaces were comparable for the homogeneous
examples and better for the DtN coarse space for the heterogeneous examples. Hence, even though
its performance gets worse for larger wave numbers, the DtN based method converges well compared
to its competitor also for three-dimensional examples and overcomes many of the problems from
which the plane wave based approach suffers.

While we have thus introduced and successfully tested a new two-level DDM for the difficult
heterogeneous Helmholtz equation, some problems remain unsolved. In the three-dimensional case,
while our coarse space performs better and more reliably than the one based on plane waves, the
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size and the costs of the global problem grow with the wave number k. On the one hand, this means
that more eigenvectors of the DtN eigenvalue problems on the subdomains need to be computed.
Even though this computation is completely parallel, the runtime of the algorithm could benefit
from improving the strategies to solve the local eigenproblems. On the other hand, in the current
implementation, the coarse system is assembled and solved by a direct method on one processor only.
At some point we reach the memory limits either of this processor or of the employed direct solver.
The parallelization of the coarse system and the application of iterative solution techniques are hence
important next steps.

It is known that the first order approximation of the Sommerfeld radiation condition, which we
have used in this thesis, does not provide the best transmission conditions for Helmholtz problems.
Consequently, in our method, almost all the responsibility for handling the difficulties due to an
increasing wave number or an increasing number of subdomains lies with the coarse space. To
lighten the burden on the coarse space, it would be beneficial to also examine different transmission
conditions. By that, better results could probably be achieved without an exploding global problem
size. Simultaneously, one should also try to improve the coarse space by adapting it to the different
transmission conditions.

While we have done extensive numerical experiments in order to test our approach, a theoretical
foundation is missing. A convergence theory of two-level DDMs for the Helmholtz equation, and
in particular of the method that we proposed, would be an important step in order to improve their
design. However, despite some attempts [101], such a theory is still in its infancy. Especially
interesting for the work in this thesis would be understanding rigorously why the DtN eigenfunctions
are good coarse space functions and how one could possibly improve them.
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Glossary

Symbols

R field of real numbers. 3
C field of complex numbers. 3
N field of natural numbers. 3
N0 field of natural numbers plus zero. 3
|α| absolute value of α in R or C. 3
α conjugation of α in R or C. 3
δi j Kronecker delta. 5
O(.) big-O notation. 5
o(.) little-o notation. 5
λmin(A) smallest (non-zero) eigenvalue of a matrix A by modulus. 5
λmax(A) biggest eigenvalue of a matrix A by modulus. 5
κ(A) condition number of a matrix A. 5
Å interior of a set A. 3
A closure of a set A. 3
∂A boundary of a set A. 3
〈., .〉 Euclidean scalar product in Rn or Cn. 3
supp(f) support of a function f . 27
∂i f (x) or ∂

∂xi
f (x) partial derivative of f in direction of the i-th unit vector. 3

∂v f or ∂
∂v f directional derivative of f in direction v ∈ Rn. 3

Cm
(

Ω,Y
)

or Cm
(

Ω
)

space of m times continuously differentiable functions. 3
C∞ (Ω) space of inifinitely continuously differentiable functions. 4
Lp(Ω) Lebesgue space of order p. 4
L∞(Ω) Lebesgue space of essentially bounded, measurable functions. 4
Hm,p(Ω) Sobolev space of m times weakly differentiable functions in Lp. 4
‖ f‖Hm,p(Ω) norm of the function f in the Sobolev space Hm,p(Ω). 4
Hm(Ω) = Hm,2(Ω): Sobolev space of m times weakly differentiable functions in L2(Ω). 4
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(., .)Hm(Ω) inner product on Hm(Ω). 4
Hm,p

0 (Ω) Sobolev space of functions in Hm,p(Ω) with zero boundary values. 4
k wave number. 5
ω angular frequency. 6
c wave speed. 6
n number of degrees of freedom in Ω. 27
n j number of degrees of freedom in subdomain Ω j. 27
R j ∈ Rn j×n, restriction matrix from Ω to Ω j. 29
D j ∈ Rn j×n j , diagonal matrix corresponding to a partition of unity function on Ω j. 29
A j ∈ Rn j×n j , local stiffness matrix on Ω j. 29
M−1 one-level RAS preconditioner. 29
m j number of coarse modes on subdomain Ω j. 61
Z matrix whose columns span the coarse space. 62

Acronyms

BNN balancing Neumann-Neumann. 45
CG conjugate gradient. 24
DtN Dirichlet-to-Neumann. 2, 19
DDM domain decomposition method. 2, 15
FE finite element. 1, 3
FETI finite element tearing and interconnecting. 2, 21
FETI-DP dual-primal FETI. 21
FETI-H FETI for Helmholtz. 21
FETI-DPH FETI-DP for Helmholtz. 21
GMRES generalized minimal residual. 16
PDE partial differential equation. 5
PML perfectly matched layer. 2, 7
PW plane wave. 74
RAS restricted additive Schwarz. 2, 23
s.p.d. symmetric positive definite. 2, 15
w.l.o.g. without loss of generality. 43
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