
Supplemental Material for
“Accounting for inertia effects to access the high-frequency microrheology of

viscoelastic fluids.”
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Microrheology with a = 1.47µm beads.
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FIG. 1. Comparison of the microrheology results using OTI
and DWS (Inset) for one bead size a = 1.47µm in a viscoelas-
tic micelle solution with and without taking into account the
effects of inertia. Data without inertia correction ( ), cor-
rected using Indei-Schieber methodology ( ) and using the
corrected-MSDs shown in Fig. 1 of the main text ( ).

Fig. 1 shows the results of G∗(ω) for the micellar solu-
tion when using beads of size a = 1.47 µm for DWS and
OTI. The results are very similar to Fig. 2 of the main
text for a = 0.94 µm. The discrepancies between DWS
and OTI arise because of the differences in the MSDs,
which are related with the interaction of the bigger beads
with the optical trap in the polymer-based solution.

Comparison between Evans’ and Mason-Weitz’s
methodologies.

An alternative methodology to connect the MSDs with
the rheological properties of the fluid was reported by
Evans, Tassieri et al [1], which provides a complex mod-

10
2

10
3

10
4

10
5

10
6

10
1

10
2

10
3

10
-1

10
0

10
1

10
2

10
3

(b)

G’

G’’

 ω (s
-1
)

(a)

Mic. 4%

 

 

G’’

G’

 
 

G’, G’’ (Pa)

H
2
O

 

 

1

FIG. 2. Mason-Weitz ( ) and Evans’ methodologies ( ) for
OTI data when using a = 0.94 µm beads. (a) Water, (b)
Micelles solution at 4%

ulus which we call G∗
E. Using Evans’ methodology:
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where C ≡ πa/kBT , and η0 and
⟨
∆r2(0)

⟩
have to be

known. Figure 2 shows the results when using Mason-
Weitz approach (MW) and Evans’ methodology applied
to the MSDs obtained through OTI for a = 0.94 µm
beads. The complex moduli are very similar, with the ex-
ception of the viscoelastic fluid at low frequencies, where
G∗

E does not provide a good curve in comparison with
MW. We have only used the MW approach for the re-
sults summarized in the main text because both meth-
ods are theoretically equivalent and because MW, which
is standard in the field of microrheology, provides better
results with our experimental data.

G′(ω) break down for the micelles solution.

The Mason’s approximation uses α(s) ≡
(d lnMSD(t)/ ln t)|t=1/s, to expand the MSD locally
around the frequency of interest s. As Mason commented
in his work, if α ∼ 1 over a large temporal range, the
estimate for the dominant G′′(ω) will be excellent, but
G′(ω) will degrade. This is the observed behavior in
the micelles solution microrheology, where the elastic
component shows a bad behavior at high frequencies,
specially when it needs to change its curvature quickly.
Besides, it is known that the elastic component is very
sensitive to artifacts [2, 3], when it is calculated by
simply using the Mason-Weitz methodology. However,
G′(ω) works very well for low frequency values: for
water experiments the spring constant k value used in
the optical trap of OTI experiments can be recovered
using the calculated low-frequency value of G′(ω), which
is G′ ∼ 0.4 Pa, as it can be seen in Fig. 2 (a). The

spring constant is then k = 6πaG′ ∼= 7 µm/N in good
agreement with the value obtained from calibration.

The G′ ∼ ω3/4 behavior at high frequencies is not re-
covered in our experiments, but theoretically speaking,
G′ and G′′ are not independent quantities through they
are related by Kramers-Kronig relationships [4, 5]. To ex-
emplify this point, we can use the approximation made
by Booij and Thoone to the generalization of Kramers-
Kronig transforms for viscoelastic liquids [6]:

G′(ω)−G′(0) ∼= −ωπ

2

(
d[G′′(u)/u]

d lnu

)
u=w

Using that expression with G′′(u) = k0 sin(3π/8)u
3/4 +

ηsu, where k0 ≡ 1
15ρmκlp(2ξ/κ)

3/4, and deriving with
x ≡ lnu, it is easy to obtain that (G′(ω) ≫ G′(0)):

G′(ω) ∼=
π

8
k0 sin

(
3π

8

)
ω3/4

which is almost identical to G′
GMK = k0 cos(3π/8)ω

3/4

because π
8 sin(3π/8) = 0.36 and cos(3π/8) = 0.38.
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