1	In Vitro Prediction of the Evolution of the GES-1 β -Lactamase
2	Hydrolytic Activity
3	Séverine Bontron, ¹ Laurent Poirel ^{1,2*} , and Patrice Nordmann ^{1,2,3}
4	
5	¹ Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science,
6	University of Fribourg, Fribourg, Switzerland, ² INSERM U914 «Emerging Resistance to
7	Antibiotics», Faculté de Médecine et Université Paris Sud, KBicêtre, France, and ³ HFR-
8	Hôpital Cantonal de Fribourg, Fribourg, Switzerland
9	
10	Running title: Directed evolution of GES-type ß-lactamases
11	Keywords: GES, β -lactamase, carbapenems, cephalosporins, evolution
12	
13	
14	
15	
16	*Corresponding author. Mailing address: Medical and Molecular Microbiology
17	Unit, Department of Medicine, Faculty of Science, University of Fribourg, rue Albert
18	Gockel 3, CH-1700 Fribourg, Switzerland. Phone: 41-26-300-9582. E-mail:
19	laurent.poirel@unifr.ch
20	
21	

23	Resistance to ß-lactams is constantly increasing, due to the emergence of totally new
24	enzymes, but also to the evolution of pre-existing ß-lactamases. GES-1 is a clinically-
25	relevant extended-spectrum β -lactamase (ESBL) hydrolyzing penicillins and broad-
26	spectrum cephalosporins, but sparing monobactams and carbapenems. However,
27	several GES-1 variants (i.e. GES-2 and GES-5) previously identified among clinical
28	isolates display an extended spectrum of activity toward carbapenems. To study the
29	evolution potential of the GES-1 β -lactamase, this enzyme was submitted to in-vitro
30	directed evolution, with selection on increasing concentrations of the cephalosporin
31	cefotaxime, the monobactam aztreonam, or the carbapenem imipenem. The highest
32	resistance levels were conferred by the combination of up to four substitutions. The
33	A6T, E104K, G243A variant selected on cefotaxime, and the A6T, E104K, T237A,
34	G243A variant selected on aztreonam, conferred high resistance to cefotaxime,
35	ceftazidime, and aztreonam. Conversely, the A6T, G170S variant selected on imipenem
36	conferred high resistance to imipenem and cefoxitin. Noteworthy, the A6T substitution
37	involved in higher MICs for all B-lactams is located in the leader peptide of the GES
38	enzyme, therefore not present in the mature protein. Acquired cross resistance was not

39	observed since selection with CTX or ATM did not select for resistance to IPM and vice
40	versa. Here we demonstrated that β -lactamase GES-1 exhibits peculiar properties with a
41	significant potential to gain activity toward broad-spectrum cephalosporins,
42	monobactams, and carbapenems.

INTRODUCTION

46	The main mechanism of resistance to ß-lactams in Gram negatives is the production of ß-
47	lactamases, which are classified into four molecular classes, namely A, B, C, and D based on
48	protein sequence analysis (1). Enzymes belonging to class A, C, and D, are serine enzymes,
49	while those belonging to class B are metallo-enzymes requiring zinc ions for activity (2, 3).
50	Over the past 70 years, since the introduction of penicillins and cephalosporins, the massive
51	use of broad-spectrum ß-lactams has been at the origin of the selection of ß-lactamases with
52	broadened hydrolytic activities. Emergence of those broad-spectrum ß-lactamases may
53	correspond to three main phenomena; i) the evolution of pre-existing narrow-spectrum β -
54	lactamases with an extension of their hydrolytic profile due to key amino-acid substitutions,
55	as observed for TEM and SHV β -lactamases, ii) the acquisition of enzymes possessing an
56	intrinsic broad-spectrum hydrolytic activity, as observed for all CTX-M-type extended-
57	spectrum β -lactamases (ESBLs) (4, 5), and <i>iii</i>) the evolution of broad-spectrum enzymes to
58	expand or increase their hydrolytic activity to carbapenems.
59	GES-1 is an ESBL firstly identified in a Klebsiella pneumoniae (6), and then extensively
60	reported from clinical isolates in Pseudomonas aeruginosa and Acinetobacter baumannii (7-
61	10), but also frequently from the environmental (11-13). Similarly to other ESBLs, GES-1

45

://doc.rero.ch	
http	

62	hydrolyses penicillins and broad-spectrum cephalosporins, spares carbapenems, and is
63	susceptible to the activity of clavulanic acid as inhibitor. However, by contrast to most
64	ESBLs, GES-1 has a low activity toward the broad-spectrum cephalosporin cefotaxime
65	(CTX), and does not hydrolyze monobactams (6). The GES family comprises 24 variants
66	(GES-1 to GES-24) identified from clinical isolates, some of them having amino acid
67	substitutions conferring peculiar hydrolytic properties (Table 1). The G170N and G170S
68	substitutions (Ambler numbering [1]), located in the omega-loop of the enzyme and first
69	described in GES-2 and GES-5, confer extended activity against carbapenems and cefoxitin
70	(FOX) (this latter only for G170S), decreased hydrolysis of broad-spectrum cephalosporins,
71	and decreased susceptibility to ß-lactam inhibitors (Table 1) (9, 14-16). On the other hand, the
72	E104K, G243A, and G243S substitutions, identified in several GES variants, have been
73	shown to confer higher activity toward broad-spectrum cephalosporins and the monobactam
74	aztreonam (ATM), together with an increased susceptibility to ß-lactam inhibitors (Table 1).
75	Given its ability to evolve, GES-1 was chosen as a model enzyme for testing the
76	diversification potential of ESBLs. Therefore, the GES-1 enzyme was subjected to directed
77	evolution; this method consists of iterative rounds of random mutagenesis and selection, and
78	is commonly used for altering or optimizing protein function (17, 18). GES-1 was submitted

79	to three different ß-lactam-based selective pressures, namely the broad-spectrum
80	cephalosporin CTX, ATM, or the carbapenem imipenem (IPM). A series of variants with
81	increased and/or broadened specificity was selected, from which the causality between the
82	increased hydrolytic activity and the mutations could be inferred, and future evolutionary
83	trajectories predicted.
84	
85	MATERIALS AND METHODS
86	Construction and selection of mutagenized GES-1 libraries. The pBSKSII-kanR-
87	GES-1 plasmid was used as the reference plasmid coding for GES-1. Plasmid pBSKSII-kanR
88	is derived from pBluescriptII (a high copy number plasmid, 500 copies per cell), and encodes
89	resistance to kanamycin. The entire bla_{GES-1} coding region (6) was amplified, the amplicon
90	including 31 bp upstream of the ATG start, with primers No50 (GES-1-HindIII-F, 5'-
91	gatgatAAGCTTACAAAGATAATTTCCATCTCAAGG-3') and No51 (GES-1-NotI-R, 5'-
92	gatgatGCGGCCGCCTATTTGTCCGTGCTCAGGATG-3'), and cloned into the HindIII/NotI
93	restriction sites of pBSKSII-kanR. The construct was verified by sequencing. Random
94	mutagenesis was performed with the GenMorph II Random Mutagenesis Kit (Agilent
95	Technologies, Santa Clara, CA), with primers No50 and No51, following the manufacturer

96	recommendations. The PCR amplified mutagenized product was purified, digested, and
97	ligated into the HindIII/NotI restricion sites of pBSKSII-kanR. After purification, the ligation
98	mixture was transformed into TOP10 electro-competent E. coli cells (Life Technologies, Zug,
99	Switzerland). The library was plated on Luria broth plates supplemented with 25 $\mu g/ml$ of
100	kanamycin. At each round, the complexity of the library was at least 10^5 independent clones.
101	The mean substitution rate was of 2 nucleotides per molecule, based on sequencing of 10
102	clones. This corresponds to at least $6x10^4$ distinct sequences, as calculated with the library
103	statistics program PEDEL (19). For selection, the libraries were plated on increasing doses of
104	the indicated antibiotic, with a 2-fold increment. Plasmids recovered from the clones obtained
105	with the highest antibiotic concentrations (usually 100 to 300 clones) were isolated, re-
106	transformed, and plated again on the same antibiotic concentration. At this step, at least 4
107	clones were analyzed by sequencing, and the rest of the clones was isolated as a pool, and
108	used as a basis for the next round of random mutagenesis. Constructs with different
109	combinations of mutations were made by sub-cloning, or with the Q5 Site-Directed
110	Mutagenesis Kit (New England BioLabs, Ipswich, MA).
111	MICs, specific hydrolytic activities, and IC ₅₀ s measurements. MICs were measured

112 by Etest (bioMérieux, Marcy l'Etoile, France). Specific hydrolytic activities were measured

113	from whole cell extracts of recombinant E. coli strains producing the different GES variants
114	as described (6). Assays were performed in 500 μl total volume, using 150 μM (for
115	benzylpenicillin [PEN], ATM, IPM, FOX) or 75 μ M (for CTX and ceftazidime [CAZ]) of
116	substrate. Hydrolysis measurements were performed at room temperature with a JENWAY
117	spectrophotometer (Staffordshire, UK). The protein concentrations were measured with
118	Bradford Reagent (Sigma-Aldrich, Buchs, Switzerland). The results were expressed in nmoles
119	x min ⁻¹ x μg^{-1} extract. Experiments were made in triplicates from 3 independent cultures.
120	Inhibitory concentrations inhibiting 50% of the hydrolysis activity (IC ₅₀) were measured for
121	clavulanic acid using PEN as substrate. A 3-min long preincubation step with clavulanic acid
122	was used before adding PEN. Those experiments were performed in triplicates with three
123	independent cultures.
124	
125	RESULTS
126	Selection of GES variants conferring increased resistance to CTX, ATM, and
127	IPM by directed evolution. GES mutants conferring increased resistance to CTX, ATM, or
128	IPM were recovered after three (for ATM and IPM) or four (for CTX) rounds of mutagenesis

129 and selection. Over the rounds the variants were successively selected with 1, 2, 4, and

130	16 $\mu g/ml$ of CTX, with 1, 16, 128, and 256 $\mu g/ml$ of ATM, or with 0.1, 0.125, and 0.25 $\mu g/ml$
131	of IPM. Additional mutagenesis steps could not select variants with higher MICs. At the end
132	of each round, at least four clones were sequenced. Mutations common to several clones were
133	anticipated to be the phenotypically relevant ones, but additional substitutions, silent or not,
134	did accumulate throughout the mutagenesis rounds. Therefore, some constructs were
135	specifically generated to definitely correlate amino acid substitutions to resistance phenotypes
136	(data not shown). The corresponding so-called cured variants (GES-C1 to -C5 for selection
137	with CTX, GES-A1 to -A5 for selection with ATM, and GES-I1 to -I3 for selection with
138	IPM) harboring the corresponding amino acid changes are depicted in Table 2A-C. The
139	sequences of the originally isolated clones are listed in Table S1.
140	MICs of B-lactams for the selected mutants. Upon selection with CTX, the A6T
141	substitution (clone GES-C1), located in the signal peptide, was the only mutation selected
142	after round 1 (Table 2A). At round 2, substitutions E104K or G243S were added to A6T
143	(clones GES-C2 and GES-C3), and GES-C4 (A6T, G243A) was selected at round 3.
144	Combination of substitutions A6T, E104K, G243A was selected at round 4 (clone GES-C5).
145	MICs of CTX for these constructs gradually increased during the directed evolution, from
146	0.75 µg/ml for GES-1 to 48 µg/ml for GES-C5 (Table 2A). MICs of ATM and ceftazidime

147	(CAZ) increased concomitantly to those of CTX, while MICs of FOX, IPM, and the
148	carbapenem ertapenem (ETP) remained unchanged (Table 2A). Four additional constructs
149	were made to dissect the role of each amino acid change. Single E104K, G243S, or G243A
150	substitutions (clones GES-C6, GES-C7, and GES-C8, respectively) conferred a lower
151	resistance than A6T (clone GES-C1). Combination of E104K and G243A (clone GES-C9)
152	was slightly more efficient than single mutations (Table 2A). Clone GES-C5 exhibiting
153	substitutions A6T, E104K, and G243A combined three changes that individually conferred
154	modest MIC increases, but when combined together resulted into a variant for which the MIC
155	of CTX reached 48 µg/ml.
156	When selecting with ATM, single E104K (clone GES-A1) or G243A (clone GES-A2)
157	mutations were selected in round 1, while a combination of those two was selected at round 2
158	(clone GES-A3). Ultimately, clones selected on ATM-128 additionally harbored a T237A
159	substitution (E104K, T237A, G243A, clone GES-A4), and those selected on ATM-256
160	harbored the A6T substitution in addition to the three other changes (clone GES-A5) (Table
161	2B). MICs of ATM for these constructs increased during the directed evolution, from 0.25
162	$\mu g/ml$ for GES-1 to >256 $\mu g/ml$ for clones GES-A4 and GES-A5. In parallel MICs of CAZ
163	increased sharply, while those of CTX more modestly. No change in MICs of FOX, IPM, or

164	ETP was observed (Table 2B). Each of the three E104K, T237A, or G243A substitutions
165	(clones GES-C6, GES-A6, and GES-A2, respectively) had slightly increased MICs of ATM
166	(from 1.5 to 3 $\mu\text{g/ml}).$ Any dual combination resulted into higher MICs of ATM (from 12 or
167	32 $\mu g/ml,$ clones GES-A3, -A7 and -A8), while the triple mutant had an MIC of ATM of
168	>256 μ g/ml (clone GES-A4) (Table 2B). Of note, while the T237A substitution correlated
169	with increased MICs of ATM and CAZ, it was systematically deleterious for the MIC of
170	CTX.
171	When selecting with IPM, substitution G170S was selected at round 1 (clone GES-I1). Then
172	substitution c-1t lying 1 bp before the ATG start codon (clone GES-I2) and finally
173	substitution A6T (clone GES-I3) were selected at rounds 2 and 3 (Table 2C). Overall, MICs
174	of IPM increased from 0.25 $\mu g/ml$ for wild-type GES-1 to 2 $\mu g/ml$ for clone GES-I3. MICs of
175	ETP and FOX increased concomitantly but conversely, MICs of ATM, CTX, and CAZ were
176	lowered once the G170S mutation was selected (Table 2C).
177	In-vitro specific hydrolytic activities of the GES variants correlating with MICs
178	values. In order to confirm that the higher MICs observed for the selected clones were indeed
179	related to higher catalytic activities or higher amount of the different GES enzymes selected,

180 and not to a non-enzymatic resistance mechanism, in-vitro specific hydrolytic activities of a

set of GES variants were determined. Overall, for all enzymes the increased hydrolytic activities toward CTX, CAZ, ATM, IPM, and FOX correlated with the higher MICs of the corresponding substrates (Tables 2A-C).

Differential inhibition of the GES selected variants by clavulanic acid. 184 185 Determination of IC₅₀s of clavulanic acid was performed for a representative set of the GES variants. Clones GES-C1 and GES-C5 showed similar IC50 values of clavulanic acid 186 compared to the wild-type GES-1 (Table 2A). However, clones GES-A4 and GES-A5 showed 187 10-fold lower IC₅₀ values (0.6 μ M) (Table 2B) likely due to the T237A substitution. 188 189 Conversely clones GES-I3 and GES-I4 selected on IPM and harboring the G170S substitution showed significantly higher IC50 values (Table 2C). Overall, mutants selected on CTX 190 showed similar susceptibility to clavulanic acid as GES-1, while clones selected on ATM 191 showed increased, and clones selected on IPM lower susceptibility to clavulanic acid. 192

193

194

DISCUSSION

The directed evolution procedure used here combined the generation of mutagenized libraries with antibiotic selection, and allowed the selection of GES variants that may be categorized into two classes, being those selected on CTX or ATM conferring high resistance to CTX,

198	ATM, and	CAZ o	n one	hand,	and	those	selected	on	IPM	conferring	high	resistance	to	IPM
199	and FOX or	n the ot	her ha	nd.										

200	Interestingly, the A6T substitution located into the signal sequence (18 amino-acid long for
201	GES-1) was selected through all three evolutionary routes. Noteworthy, signal sequences are
202	required for translocation to the periplasm (20). The A6T substitution in GES-1 systematically
203	conferred a 3- to 8-fold increase in the MICs of CTX, ATM, and IPM (Table 2A-C). In
204	accordance with our observation, a study including experimental mutagenesis of a consensus
205	signal sequence fused to a ß-lactamase gene increased ampicillin tolerance level of the host
206	cell up to 8-fold (21). To the best of our knowledge, it has never been clearly assessed that
207	mutations in the signal sequence of any ß-lactamase may confer increased resistance to ß-
208	lactams. The impact of such substitution should therefore be further investigated as a
209	mechanism leading to reduced susceptibility or even resistance to ß-lactams.
210	By selecting with IPM, the G170S mutation located in the Ω -loop of the catalytic site (amino
211	acids 159 to 182), a highly conserved motif among the β -lactamases, was recovered. This
212	substitution was previously shown to confer a 100-fold increased catalytic activity against
213	IPM when compared to GES-1 (14, 22, 23). The E104 residue is exposed near the entrance to

the binding site, and the E104K substitution is commonly found in the TEM family, where

215	this change participates to the expansion of the β -lactamase spectrum, more strikingly when
216	associated with other substitutions such as R164S or G238S (24-26). Despite several studies,
217	the mechanism of this synergism remains poorly understood (26). The G243A is not
218	conserved among β -lactamases and this change might create subtle rearrangements in the
219	disulfide bond. The T237 amino acid, together with the S70 residue, forms an oxyanion hole,
220	which houses the β -lactam carbonyl of the acyl-enzymes intermediate (27). Position 237,
221	usually occupied by an Ala or Ser in most class A ß-lactamases, corresponds to a Thr residue
222	in GES-1, but also in the PER-1 ESBL and in the class A KPC-2 carbapenemase. It was
223	experimentally shown with KPC-2 that a T237A change resulted into lower hydrolysis of
224	CTX (28). Conversely in TEM, the natural or experimentally generated A237T substitution
225	confers an increased hydrolysis of CTX and a decreased hydrolysis of CAZ and ATM (22,
226	30). These observations correlate with the detrimental effect of the T237A substitution in
227	GES for the hydrolysis of CTX, and the beneficial effect for the hydrolysis of CAZ and ATM.
228	Substitutions E104K, G170S, T237A, G243S, and G243A selected through our study were
229	previously described in GES alleles identified from clinical isolates (Table 1). Noticeably,
230	substitution G170S, increasing carbapenem hydrolysis, was previously identified in the
231	natural carbapenemase GES-5. Substitutions E104K, T237A, and G243A were also identified

232	in natural GES alleles, either alone (GES-9, G243A), associated to phenotypically
233	uncharacterized mutations (GES-3, GES-7, GES-19, GES-22), or combined with other
234	substitutions (GES-12 and GES-17) (Table 1). As inferred from our in-vitro directed
235	evolution experiments, GES-5, GES-12 and GES-17 may therefore be prone to evolve into
236	more active variants. On the other hand, some GES alleles recovered from clinical isolates
237	combined the G170S mutation conferring higher activity toward carbapenems, together with
238	another mutation conferring increased activity toward CTX, ATM, and CAZ (see GES-6,
239	E104K, G170S, and GES-14, G243A, G170S). Comparative studies showed that the
240	increased hydrolysis of CTX, CAZ, or ATM mediated by E104K or G243A was abolished by
241	the additional presence of G170S (29, 31, 32). This precludes that the natural alleles GES-6
242	and GES-14 have been selected under successive distinct selective pressures. Similarly,
243	detailed analysis of the CTX-M-type ESBL potential evolutionary trajectories showed that the
244	diversification process of the CTX-M variants could only be explained by a selection with at
245	least two antibiotics (33).
246	Our study showed that GES enzymes can evolve into two types of variants conferring higher
247	resistance to CTX, ATM, or to IPM. Spontaneous evolution of antibiotic resistance is a
248	multifactorial phenomenon, given the diversity of the genetic support of resistance genes, of

249	the bacterial strain (including potential changes of membrane permeability or of the
250	penicillin-binding proteins), and of the nature and the concentration of the antibiotic. As a
251	consequence, a higher number of possible mutations and evolutionary trajectories are
252	possible, although constrained by intramolecular interactions (34). Nevertheless, a good
253	correlation between in-vitro prediction inferred from the analysis of the selected variants, and
254	those found in clinical isolates has been established here. Predictions regarding the occurrence
255	of very efficient natural variants in term of catalytic efficiency using an in-vitro directed
256	evolution was previously demonstrated for the TEM B-lactamase (34-37). From our study we
257	may speculate that selection with cephalosporins or monobactam might not select for GES
258	variants possessing carbapenemase activity, and conversely selection with the carbapenem
259	IPM might not select for GES variants possessing increased hydrolytic activity toward CTX,
260	CAZ, or ATM. Interestingly, as previously noticed with CTX-M-type ESBLs possessing
261	increased activity toward broad-spectrum cephalosporins (38), some antagonistic pleiotropy
262	was observed, such as a decreased susceptibility to ß-lactamase inhibitors of some GES
263	variants that exhibited increased catalytic activity toward carbapenems. Overall, such an
264	approach sheds light on how clinical alleles have been selected, and might predict the future

266		
267		ACKNOWLEDGEMENTS
268	This w	ork was supported by the University of Fribourg, Fribourg, Switzerland.
269		
270		REFERENCES
271	1.	Ambler RP, Coulson AF, Frère JM, Ghuysen JM, Joris B, Forsman M, Lévesque
272		RC, Tiraby G, Waley SG. 1991. A standard numbering scheme for the class A β -
273		lactamases. Biochem. J. 276:269-270.
274	2.	Bush K. 2013. The ABCD's of beta-lactamase nomenclature. J. Infect. Chemother.
275		19: 549-559.
276	3.	Bush K. 2010. Alarming β-lactamase-mediated resistance in multidrug-resistant
277		Enterobacteriaceae. Curr. Opin. Microbiol. 13:558-564.
278	4.	Gutkind GO, Di Conza J, Power P, Radice M. 2013. ß-lactamase-mediated
279		resistance: a biochemical, epidemiological and genetic overview. Curr. Pharm. Des.
280		19: 164-208.
281	5.	Naas T, Poirel L, Nordmann P. 2008. Minor extended-spectrum ß-lactamases. Clin.
282		Microbiol. Infect. 14 Suppl 1:42-52.
283	6.	Poirel L, Le Thomas I, Naas T, Karim A, Nordmann P. 2000. Biochemical
284		sequence analyses of GES-1, a novel class A extended-spectrum $\ensuremath{\text{B}}\xspace$ lactamase, and the
285		class 1 integron In52 from Klebsiella pneumoniae. Antimicrob. Agents Chemother.
286		44: 622-632.

- Poirel L, Bonnin RA, Nordmann P. 2012. Genetic support and diversity of acquired
 extended-spectrum β-lactamases in Gram-negative rods. Infect. Genet. Evol. 12:883 893.
- Poirel L, Brinas L, Fortineau N, Nordmann P. 2005. Integron-encoded GES-type
 extended-spectrum ß-lactamase with increased activity toward aztreonam in
 Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 49:3593-3597.
- Poirel L, Weldhagen GF, Naas T, De Champs C, Dove MG, Nordmann P. 2001.
 GES-2, a class A β-lactamase from *Pseudomonas aeruginosa* with increased
 hydrolysis of imipenem. Antimicrob. Agents Chemother. 45:2598-2603.
- Bonnin RA, Nordmann P, Potron A, Lecuyer H, Zahar JR, Poirel L. 2011.
 Carbapenem-hydrolyzing GES-type extended-spectrum β-lactamase in *Acinetobacter baumannii*. Antimicrob. Agents Chemother. 55:349-354.
- 299 11. Girlich D, Poirel L, Szczepanowski R, Schluter A, Nordmann P. 2012.
 300 Carbapenem-hydrolyzing GES-5-encoding gene on different plasmid types recovered
 301 from a bacterial community in a sewage treatment plant. Appl. Environ. Microbiol.
 302 78:1292-1295.
- 303 12. Manageiro V, Ferreira E, Canica M, Manaia CM. 2014. GES-5 among the β304 lactamases detected in ubiquitous bacteria isolated from aquatic environment samples.
 305 FEMS Microbiol. Lett. 351:64-69.
- Ribeiro VB, Zavascki AP, Rozales FP, Pagano M, Magagnin CM, Nodari CS, da
 Silva RC, Dalarosa MG, Falci DR, Barth AL. 2014. Detection of *bla*_{GES-5} in
 carbapenem-resistant *Kluyvera intermedia* isolates recovered from the hospital
 environment. Antimicrob. Agents Chemother. 58:622-623.

- Smith CA, Caccamo M, Kantardjieff KA, Vakulenko S. 2007. Structure of GES-1 at atomic resolution: insights into the evolution of carbapenamase activity in the class 311 A extended-spectrum ß-lactamases. Acta Crystallogr. D. Biol. Crystallogr. 63:982-312 992. 313 314 15. Picao RC, Poirel L, Gales AC, Nordmann P. 2009. Diversity of B-lactamases produced by ceftazidime-resistant Pseudomonas aeruginosa isolates causing 315 316 bloodstream infections in Brazil. Antimicrob. Agents Chemother. 53:3908-3913. 317 16. Bae IK, Lee YN, Jeong SH, Hong SG, Lee JH, Lee SH, Kim HJ, Youn H. 2007. Genetic and biochemical characterization of GES-5, an extended-spectrum class A ß-318 lactamase from Klebsiella pneumoniae. Diagn. Microbiol. Infect. Dis. 58:465-468. 319 17. Goldsmith M, Tawfik DS. 2012. Directed enzyme evolution: beyond the low-320 hanging fruit. Curr. Opin. Struct. Biol. 22:406-412. 321 322 18. Romero PA, Arnold FH. 2009. Exploring protein fitness landscapes by directed evolution. Nat. Rev. Mol. Cell. Biol. 10:866-876. 323 19. Patrick WM, Firth AE, Blackburn JM. 2003. User-friendly algorithms for 324 325 estimating completeness and diversity in randomized protein-encoding libraries. Protein Eng. 16:451-457. 326 20. Izard JW, Kendall DA. 1994. Signal peptides: exquisitely designed transport 327 promoters. Mol. Microbiol. 13:765-773. 328 Heggeset TM, Kucharova V, Naerdal I, Valla S, Sletta H, Ellingsen TE, Brautaset 329 21.
- http://doc.rero.ch

310

330

14.

T. 2013. Combinatorial mutagenesis and selection of improved signal sequences and

- their application for high-level production of translocated heterologous proteins in
 Escherichia coli. Appl. Environ. Microbiol. **79**:559-568.
- Frase H, Shi Q, Testero SA, Mobashery S, Vakulenko SB. 2009. Mechanistic basis
 for the emergence of catalytic competence against carbapenem antibiotics by the GES
 family of β-lactamases. J. Biol. Chem. 284:29509-29513.
- Smith CA, Frase H, Toth M, Kumarasiri M, Wiafe K, Munoz J, Mobashery S,
 Vakulenko SB. 2012. Structural basis for progression toward the carbapenemase
 activity in the GES family of β-lactamases. J. Am. Chem. Soc. 134:19512-19515.
- 339 24. Gniadkowski M. 2008. Evolution of extended-spectrum beta-lactamases by mutation.
 340 Clin. Microbiol. Infect. 1:11-32.
- 341 25. Page MG. 2008. Extended-spectrum beta-lactamases: structure and kinetic
 342 mechanism. Clin. Microbiol. Infect. 1:64-74.
- 343 26. Salverda ML, De Visser JA, Barlow M. 2010. Natural evolution of TEM-1 β344 lactamase: experimental reconstruction and clinical relevance. FEMS Microbiol. Rev.
 345 34:1015-1036.
- 346 27. Murphy BP, Pratt RF. 1988. Evidence for an oxyanion hole in serine β-lactamases
 347 and DD-peptidases. Biochem. J. 256:669-672.
- Papp-Wallace KM, Taracila M, Hornick JM, Hujer AM, Hujer KM, Distler AM,
 Endimiani A, Bonomo RA. 2010. Substrate selectivity and a novel role in inhibitor
 discrimination by residue 237 in the KPC-2 β-lactamase. Antimicrob. Agents
 Chemother. 54:2867-2877.

- 352 29. Kotsakis SD, Miriagou V, Tzelepi E, Tzouvelekis LS. 2010. Comparative
 biochemical and computational study of the role of naturally occurring mutations at
 Ambler positions 104 and 170 in GES β-lactamases. Antimicrob. Agents Chemother.
 355 54:4864-4871.
- 30. Giakkoupi P, Hujer AM, Miriagou V, Tzelepi E, Bonomo RA, Tzouvelekis LS.
 2001. Substitution of Thr for Ala-237 in TEM-17, TEM-12 and TEM-26: alterations
 in β-lactam resistance conferred on *Escherichia coli*. FEMS Microbiol. Lett. 201:3740.
- 360 31. Delbruck H, Bogaerts P, Kupper MB, Rezende de Castro R, Bennink S,
 361 Glupczynski Y, Galleni M, Hoffmann KM, Bebrone C. 2012. Kinetic and
 362 crystallographic studies of extended-spectrum GES-11, GES-12, and GES-14 β363 lactamases. Antimicrob. Agents Chemother. 56:5618-5625.
- 364 32. Bogaerts P, Naas T, El Garch F, Cuzon G, Deplano A, Delaire T, Huang TD,
 365 Lissoir B, Nordmann P, Glupczynski Y. 2010. GES extended-spectrum β366 lactamases in *Acinetobacter baumannii* isolates in Belgium. Antimicrob. Agents
 367 Chemother. 54:4872-4878.
- 368 33. Novais A, Comas I, Baquero F, Canton R, Coque TM, Moya A, GonzalezCandelas F, Galan JC. 2010. Evolutionary trajectories of β-lactamase CTX-M-1
 cluster enzymes: predicting antibiotic resistance. PLoS Pathog. 6:e1000735.
- 371 34. Weinreich DM, Delaney NF, Depristo MA, Hartl DL. 2006. Darwinian evolution
 372 can follow only very few mutational paths to fitter proteins. Science 312:111-114.

- 373 35. Stemmer WP. 1994. DNA shuffling by random fragmentation and reassembly: in
 vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. U.S.A. 91:1074710751.
- 376 36. Zaccolo M, Gherardi E. 1999. The effect of high-frequency random mutagenesis on
 377 in vitro protein evolution: a study on TEM-1 β-lactamase. J. Mol. Biol. 285:775-783.
- 378 37. Orencia MC, Yoon JS, Ness JE, Stemmer WP, Stevens RC. 2001. Predicting the
 emergence of antibiotic resistance by directed evolution and structural analysis. Nat.
 Struct. Biol. 8:238-242.
- 38. Ripoll A, Baquero F, Novais A, Rodríguez-Domínguez MJ, Turrientes MC,
 Cantón R, Galán JC. 2011. In vitro selection of variants resistant to β-lactams plus βlactamase inhibitors in CTX-M β-lactamases: predicting the *in vivo* scenario?
 Antimicrob. Agents Chemother. 55:4530-4536.
- 39. Wachino J, Doi Y, Yamane K, Shibata N, Yagi T, Kubota T, Ito H, Arakawa Y.
 2004. Nosocomial spread of ceftazidime-resistant *Klebsiella pneumoniae* strains
 producing a novel class a β-lactamase, GES-3, in a neonatal intensive care unit in
 Japan. Antimicrob. Agents Chemother. 48:1960-1967.
- Bebrone C, Bogaerts P, Delbruck H, Bennink S, Kupper MB, Rezende de Castro
 R, Glupczynski Y, Hoffmann KM. 2013. GES-18, a new carbapenem-hydrolyzing
 GES-Type β-lactamase from *Pseudomonas aeruginosa* that contains Ile80 and Ser170
 residues. Antimicrob. Agents Chemother. 57:396-401.
- Giakkoupi P, Tzouvelekis LS, Tsakris A, Loukova V, Sofianou D, Tzelepi E.
 2000. IBC-1, a novel integron-associated class A β-lactamase with extended-spectrum

395 properties produced by an *Enterobacter cloacae* clinical strain. Antimicrob. Agents
396 Chemother. 44:2247-2253.
397 42. Mavroidi A, Tzelepi E, Tsakris A, Miriagou V, Sofianou D, Tzouvelekis LS. 2001.
398 An integron-associated β-lactamase (IBC-2) from *Pseudomonas aeruginosa* is a

variant of the extended-spectrum β-lactamase IBC-1. J. Antimicrob. Chemother.
400 48:627-630.

- 401 43. Moubareck C, Bremont S, Conroy MC, Courvalin P, Lambert T. 2009. GES-11, a
 402 novel integron-associated GES variant in *Acinetobacter baumannii*. Antimicrob.
 403 Agents Chemother. 53:3579-3581.
- 404 44. Kotsakis SD, Papagiannitsis CC, Tzelepi E, Legakis NJ, Miriagou V, Tzouvelekis
 405 LS. 2010. GES-13, a β-lactamase variant possessing Lys-104 and Asn-170 in
 406 *Pseudomonas aeruginosa*. Antimicrob. Agents Chemother. 54:1331-1333.

407

Table 1. GES variants isolated from clinical isolates, in relation to their hydrolysis profile

						A	mino	acid p	ositio	n ^b							Hyd	rolysis pro	ofilec		
Variant ^a	11	12	44	55	62	80	81	104	125	130	167	169	170	237	243	СТХ	ATM	CAZ	IPM	FOX	References
GES-1	G	Ι	Q	Ι	Μ	V	F	E	А	S	Р	Μ	G	Т	G	+	-	++	-	-	(6)
GES-2									_				Ν			+/-	-	+	+	-	(9, 29)
GES-3					Т			К]					-		+	+	++	-	-	(39)
GES-4					Т			К]				S]		+	+	++	+	+	(39)
GES-5									-				S	1		+/-	-	+	+	+	(29, 32, 40)
GES-6								К]				S]		+/-	-	++	+	+	(29)
GES-7								К] L					-		+	++	+++	-	-	(29, 41, 42)
GES-8									L							+	-	++	-	-	(42)
GES-9															S	++	+	+++	-	-	(8, 32)
GES-10		Т			Т					С											
GES-11															Α	++	+	+++	-	-	(31, 32, 43)
GES-12														А	А	++	+	+++	-	-	(31, 32)
GES-13								К]				Ν]		+	+	++	-	-	(44)
GES-14									-				S]	А	+/-	-	++	+	+	(31, 32)
GES-15											S		S								
GES-16			Е										S								
GES-17								К						_	А						
GES-18						I							S			-	-	+	+	+	(40)
GES-19	А														А						
GES-20	А												S								
GES-21							L						S								
GES-22												L			А						
GES-23				L																	
GES-24					Т								S								

^a GES-1 to GES-24 clinical variants are listed according to <u>http://lahey.org/studies/other.asp</u>.

^b Amino acid positions were assigned according to Ambler. Amino acid changes as compared to wild type GES-1 are indicated.

^c When available, the hydrolysis profile of each variant was estimated from published MICs: + and -, hydrolysis and no hydrolysis, respectively, with dark grey related to an increased hydrolysis, and light grey to a decreased hydrolysis, as compared to wild type GES-1. For each variant, the amino acid substitution responsible for the change in the hydrolytic profile is framed. Of note, these comparisons are indicative, given the bacterial species and the genetic support differ according to the study.

Table 2. Selected GES variants, related MICs and in vitro specific hydrolytic activities of CTX, ATM, CAZ, IPM, ETP, FOX, and IC₅₀ of clavulanic acid

Table 2A. Clones selected on CTX

		A	mino a positior	id b			Μ (µg	IC ^c /ml)				IC ₅₀ clav.					
	Varianta	6	104	243	стх	ATM	CAZ	IPM	ETP	FOX	PEN	СТХ	ATM	CAZ	IPM	FOX	ас. (µМ)
Wild-type	GES-1	A	E	G	0.75	0.25	12	0.25	0.006	4	3.4±0.6	1.0±0.2	<0.1	<0.1	<0.1	<0.1	7.7±0.5
Round 1	GES-C1	Т			4	1.5	128	0.38	0.016	6	9.1±0.6	2.8±0.5	<0.1	<0.1	<0.1	<0.1	10.3±3.8
Downed 2	GES-C2	т	К		8	16	>256	0.38	0.016	6			-	-	-	-	
Kounu 2	GES-C3	Т		S	8	12	>256	0.38	0.016	3	-		-	-	-	-	
Round 3	GES-C4	т		А	16	24	>256	0.38	0.032	3	5.2±0.9	12.1±1.0	1.8±0.7	1.5±0.3	<0.1	<0.1	-
Round 4	GES-C5	Т	К	Α	48	>256	>256	0.38	0.032	4	4.6±0.6	17.4±1.6	24.2±2.8	6.6±0.6	<0.1	<0.1	5.3±0.1
	GES-C6		К		1.5	3	>256	0.25	0.008	4	-		-	-	-	-	
Constructo	GES-C7			S	1.5	2	48	0.25	0.008	4	-		-	-	-	-	
Conctructs	GES-C8			А	3	3	128	0.38	0.012	3	-		-	-	-	-	
	GES-C9		К	А	4	32	>256	0.25	0.012	4	-		-	-	-	-	

Table 2B. Clones selected on ATM

		Ar	nino ac	id posit	tion ^b			Λ (μ	/IC ^c g/ml)			In vitro specific hydrolytic activity ^d (nmoles x min ⁻¹ x µg ⁻¹ extract)							
	Varianta	6	104	237	243	СТХ	ATM	CAZ	IPM	ETP	FOX	PEN	СТХ	ATM	CAZ	IPM	FOX	(μM)	
Wild-type	GES-1	A	E	т	G	0.75	0.25	12	0.25	0.006	4	3.4±0.6	1.0±0.2	<0.1	<0.1	<0.1	<0.1	7.7±0.5	
Round 1	GES-A1		К			1.5	3	>256	0.25	0.008	4	-	-	-	-	-	-	-	
	GES-A2				А	3	3	128	0.38	0.012	3		-	-	-	-	-	-	
Round 2	GES-A3		К		А	4	32	>256	0.25	0.012	4	1.3±0.2	4.1±0.6	4.7±0.5	1.4±0.3	<0.1	<0.1		
Round 3	GES-A4		К	А	А	2	>256	>256	0.38	0.025	4	8.7±2.3	4.5±1.1	14.2±3.0	4.0±0.6	<0.1	<0.1	0.6±0.07	
Round 4	GES-A5	Т	К	Α	А	12	>256	>256	0.25	0.064	6	23.6±2.5	12.2±1.2	38.0±2.5	10.9±0.7	<0.1	<0.1	0.5±0.04	
	GES-A6			Α		0.38	1.5	48	0.25	0.012	3	-	-	-	-	-	-	-	
Conctructs	GES-A7		К	Α		0.75	32	>256	0.25	0.012	4		-	-	-	-	-	-	
	GES-A8			А	А	1	12	>256	0.38	0.025	4	-	-	-	-	-		-	

Table 2C. Clones selected on IPM

		,	mino positio	acid on ^b			۸ (µg	ЛIC /ml) ^с			In vitro specific hydrolytic activity (nmoles x min ⁻¹ x μg ⁻¹ extract) ^d							
	Varianta	nt-1	6	170	СТХ	ATM	CAZ	IPM	ETP	FOX	PEN	СТХ	ATM	CAZ	IPM	FOX	(μM) ^e	
Wild-type	GES-1	с	A	G	0.75	0.25	12	0.25	0.006	4	3.4±0.6	1.0±0.2	<0.1	<0.1	<0.1	<0.1	7.7±0.5	
Round 1	GES-I1			S	0.125	0.094	1.5	0.5	0.064	12	7.7±1.2	<0.1	<0.1	<0.1	0.15±0.0006	0.16±0.04	86±24	
Round 2	GES-I2	t		s	0.19	0.125	2	0.75	0.094	24	12.4±3.2	<0.1	<0.1	<0.1	0.18±0.02	0.27±0.06	-	
Round 3	GES-I3	t	Т	S	1	0.19	12	2	0.25	>256	37.8±2.1	<0.1	<0.1	<0.1	0.64±0.04	0.97±0.13	150±12	
Conctructs	GES-I4		Т		4	1.5	128	0.38	0.016	6	-	-	-	-	-		-	
	GES-I5		т	S	0.5	0.19	4	0.75	0.19	48	-	-	-	-	-			

^a Variants selected with CTX and derivative constructs are designated with a "C", those on ATM with an "A", and those on IPM with an "!". The round of directed evolution on which the variants were selected is indicated on the left. Antibiotic concentrations used for selection were the following: on CTX, round 1: 1µg/ml, round 2: 2µg/ml, round 3: 4µg/ml, round 4: 16µg/ml; on ATM, round 1: 1µg/ml, round 2: 16µg/ml, round 3: 128µg/ml, round 4: 266-µg/ml; on ATM, round 1: 0.1µg/ml, round 2: 0.125µg/ml, round 3: 0.25-µg/ml.

^b Amino acid positions were assigned according to Ambler, except for mutations before the ATG start codon, where the nucleotide number relative to it is indicated. Amino acid changes as compared to wild type GES-1 are indicated.

^c All the GES alleles are expressed in the highly susceptible *E. coli* TOP10.

⁴ Specific activity values were measured by U.V. spectrophotometry from crude extracts of *E.coli* TOP10 producing the indicated variant, for each of the indicated antibiotics (PEN, CTX, CAZ, ATM, FOX, and IPM). The mean and the S.D. are indicated. (-) not determined.

 $^\circ \mathrm{IC}_{\mathrm{50}}\mathrm{s}$ of clavulanic acid were measured with PEN as a substrate. The mean and the S.D. are indicated.