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OF UK GOLF GREENS

TIMOTHY A. LODGE

ABSTRACT

A field trial was established of a mixed grass sward grown on three types of golf green

construction. These consisted of a topsoil, a sand, peat and soil mixture, and a pure

sand. Experimental treatments applied were three levels of irrigation, five of nitrogen

fertiliser and two of phosphate. The trial was maintained as a golf green, and artificial

wear was applied. Soil moisture deficit predictions by the Meteorological Office

conformed with measurements from the soil construction, but the sand-based

construction types showed higher deficits. The overall rate of evapotranspiration was

around 65 % of predicted values. Pore structure of the sand-based rootzones changed

slowly over time, but water infiltration rates fell markedly. The soil constructions

showed a reduction in the proportion of larger pore spaces in the top of the profile, and

infiltration rates were consistently low. Plant death was associated with both high and

low rates of nitrogen fertiliser, low rates of irrigation, and was especially apparent on the

sand constructions not receiving phosphate fertiliser. Ingress of the weed species Poa

annua (L.) occurred mainly on the soil constructions and its rate of ingress was enhanced

by increased nitrogen input. Golf ball roll and various aspects of their behaviour after

impact onto the turf with simulated 5-iron flight characteristics were measured. Roll

length declined with increasing fertiliser rate. Hard greens produced long, high bounces

and shallow pitch marks. High rates of both irrigation and nitrogen produced deeper

pitchmarks and were associated with the tendency of balls to "screw back". A multi-

variate method of classifying the quality of golf greens on the basis of a small number of

objective measurements was developed. The classes of greens derived were described in

terms of their average visual merit, green "speed", bail behaviour after impact, and the

treatment factors which they had received.
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CHAPTER 1 - INTRODUCTION

1.1 GENERAL INTRODUCTION

The first written mention of golf was in 1457 when King James H of Scotland banned the

pursuit of the game because it detracted young men from military training. In 1502 the

Peace of Glasgow led to its reintroduction and for several hundred years after this the

game, and its clubs, evolved, firstly on the coastal dune systems of eastern Scotland at

Leith, St Andrews and Musselburgh. The game was introduced to England in 1603 but it

was not until 1758 that the first course on Blackheath Common, London, was

established, followed in 1818 by the Old Manchester on Kersal Moor. The first English

links course at Westward Ho! on the Devon coast was established in 1863.

When a course was laid out the sites of the golf greens (the area around the hole) were

determined by the existence of attractive hollows of smooth turf, or of natural plateaux,

and by the proximity of suitable hazards (Figure 1.1). The greens were maintained only

by the rabbits and sheep. In 1866 the Edinburgh Burgess Society employed a person to

"make the holes, look after the flags and mend the turf' (Browning 1955). The "mending

of the turf" would probably have meant the replacing of divots since "tees" and "greens"

had not then been distinguished. It was not until 1900 that the first green was "planted"

at Sunningdale, to the west of London, and the science of greenkeeping may be said to

have come about.

Golf is generally considered an expensive hobby. It is played, to a greater degree than

football or bowls, by non-manual workers (83%) (Collins 1982), and in Great Britain

and freland there are 1990 golf clubs with over a million members (Anon. 1989a). An

average membership fee is about £400 per year (Coiclough 1992 pers. comm.) and the

average green fee for non-members is around £10 per round. Approximately 90 million

rounds of golf are played in a year throughout the UK and Ireland (Anon. 1976, Collins

1982). As a typical example, the municipal golf course at Haziehead, Aberdeen was

subjected to approximately 45 000 rounds of golf in 1991 (Boocock 1992 pers. comm.).

The amount of money spent by the players on the game, not including equipment sales

and associated costs, is therefore probably of the order of £0.5 billion per year.

The expensive nature of the sport means that the people who play it expect facilities to be

well-maintained, and as one of the main requirements is for turf, the maintenance of turf

is of crucial importance. Procedures for the construction and maintenance of golf greens

have evolved since 1900 largely through a process of trial and error and the application of

a form of "scaled down" agricultural philosophy. However, a golf green is merely an
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ecosystem, and so improvements in quality brought about by empirical methods could

theoretically be understood at a more fundamental level in terms of plant / soil, plant /

atmosphere and plant / plant relationships. This task is made easier by the fact that a golf

green ecosystem is in fact considerably simpler than most natural ecosystems.

HGURE 1.1

Charles I, while playing golf on Leith links, receiving the news of the outbreak of the

Irish Rebellion. (After Sir John Gilbert 1875).

1.2 SPECIES COMPOSITION OF GOLF GREENS

The swards of the green areas chosen for use in the old golf courses, before 1900, will

have consisted of bent-grasses (Agrostis spp.) and fescues (Festuca spp.). The seedbeds

of modern golf greens, in the UK, are usually sown either with a mixture of bent-grasses

and fescues, or with pure creeping bent (Agrostis stolonfera L.). The two main bent-

grass species sold for mixtures for turf use in the 1.1K are A. castellana Boiss. & Reut.

and A. capillaris Sibth. (formerly A. tenuis Sibth.). A. castellana can be distinguished
from A. capillaris by its distinctive bluish-green colour and slightly larger ligules. A.

cap illaris is described as a fine-textured, sod-forming perennial of tufted appearance

spreading by short rhizomes and sometimes stolons to form close turf (Hanson et a!.
1969, Hubbard, 1984). Creeping bentgrass, A. stolonifera, which is stoloniferous, is

sown as the pure species and forms a close turf (Hubbard 1984).
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The forms of fescue normally sown are subspecies of red fescue, Festuca rubra L.. The

most frequently used is F. rubra L. ssp. commutata Gaud. or Chewing's fescue. This is

described as a densely tufted perennial, without rhizomes (Hubbard 1984). Slender

creeping red fescue, F. rubra L. ssp. litoralis (Meyer) Auquier, and bloomed fescue,

F.rubra L. ssp. pruinosa (Hack.) Piper, form loosely tufted patches from long (ssp.

arenaria) or short (ssp. pruinosa), wiry rhizomes, and are also sown on UK golf greens.

Weed species (ie species not chosen for the original seed mixture) are to be found

frequently on greens. The range of species is quite narrow, however, and includes only a

few non-grasses. The most abundant weed is annual meadow grass (Poa annua L.).

P.annua is able to withstand close mowing, produces small, high-density tillers and

regenerates readily from self-sown seed. It is unique among turfgrasses in that it can

produce flowers all year round and when mown at less than 5 mm in height. It is,

however, less tolerant of stresses such as drought and disease (Peel 1982). It has a

slightly more upright growth habit and is a paler green colour than bents and fescues.

This means that its presence in a golf green produces an unsightly, patchy appearance and

an uneven surface which affects the "true "roll of the golf ball. Its biology and control is

much debated and will receive much discussion in this report. Common species which

may occur on UK golf greens are listed in Table 1.1.

Turfgrass species can be divided into warm (C - 4 photosynthesis) and cool season (C - 3

photosynthesis) classes (Black 1973). Cool-season species are best adapted to growth

during cool, moist periods and commonly have temperature optima of between 15 and 24

°C. Such species are sown on UK golf greens. Warm-season grasses are best adapted to

growth during warmer periods, usually lie dormant during colder weather, and have

temperature optima of between 27 and 35 °C. Considerable research has been carried out

on warm season turfgrasses, some of which will be referred to in this report.

The National Vegetation Classification system for calcifugous grasslands and

miscellaneous upland communities in the UK (Anon. 1992a) has no class specifically for

golf greens, but the species normally present indicate that the class Ui f (Festuca ovina -

Agrostis capillaris - Rumex acetosella, Hypochoeris radicata sub-community) may

represent the precursor communities of the lowland greens of southern England, and

class U4 b (Festuca ovina - Agrostis capillaris - Galium saxatile, Holcus lanatus -

Trifolium repens sub-community) that of the greens of more montane areas. In both

these sub-communities, F. ovina may be replaced, to a greater or lesser extent, by F.
rubra, and the grazing activities of rabbits and I or sheep keep the ground layer height
below 15 mm.



Highland bent *
Browntop bent *
Creeping bent *
Brown bent
Velvet bent

Crested dog's-tail

Sand fescue
Chewings fescue
Slender creeping red f. *
Bloomed fescue *
Strong creeping red fescue
Sheep's fescue
Hard fescue
Fine-leaved sheep's f.

Yorkshire fog

Crested hair grass

Perennial ryegrass

Large-leaved timothy-grass
Small-leaved timothy-grass

Smooth-stalked meadow-grass
Rough-stalked meadow-grass
Annual meadow-grass

4

BOTANICAL NAME & AUTHOR(S)

GRASSES

Agrostis castellana Boiss. & Reut.
Agrostis capillaris Sibth.
Agrostis sto1onfera L.
Agrostis canina L. ssp. montana Hartm.
Agrostis canina L. ssp. canina

Cynosurus cristatus L.

Festuca rubra L. ssp. arenaria (Osbeck) Syme.
Festuca rubra L. ssp. commutata Gaud.
Festuca rubra L. ssp. litoralis (Meyer) Auquier
Festuca rubra L. ssp. pruinosa (Hack.) Piper
Festuca rubra L. ssp. rubra
Festuca ovina L.
Festuca Ion gifolia Thuil.
Festuca tenufo1ia Sibth.

Holcus lanatus

Koeleria macrantha Ledeb.) Schultes

Lolium perenne L.

Phleum pratense L.
Phleum bertolinij DC.

Poa pratensis L.
Poa trivialis L.
Poa annua L.

NON-GRASSES

Juncus bufoniu L.
Sagina procumbens L.
Trifolium repens L.
Trifo/iu,n dubium Sibth.
Veronica officinalis L.

BRYOPHYTES

Brachythecium rutabulum (Hedw.)
Bryum argenteum (Hedw.)
Biyum caespiticium var. imbricatum (Hedw.)
Ceratodon puipureum Hedw.)
Eurhynchium praelon gum (Hedw.)

COMMON NAME

Toadrush
Pearlwort
White clover
Lesser yellow trefoil
Common speedwell

TABLE 1.1

Common species which may occur on UK golf greens. Those grasses marked *

represent those usually sown, either individually or in mixtures.
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The managed golf greens of today, like bowling greens, croquet lawns and cricket tables,

are classified as very fine turf surfaces (Shildrick 1984). The sward is maintained by

frequent mowing at a height of around 5 mm, relaxed to 8 mm in the winter. Due to the

intensive nature of most aspects of very fine turf management, it is clear that a study of

the ecology of golf greens should draw only lightly from the body of knowledge

pertaining to species in grazed, semi-natural grassland.

1.3 GOLF GREEN CONSTRUCTION

During the 20th century, the popularity of the game of golf has increased enormously.

This has meant that techniques of course construction have developed which aim to

reproduce the surfaces and soil conditions of the early links and lowland heathiand

courses in areas with widely varying climates and on differing soil types. If these aims

are to be realised an understanding of the effects of different construction types and their

interactions with environmental and management factors on both the game and the

ecology of the green is necessary.

The ecological processes occurring in golf greens may be considered in terms of the

influence of edaphic and environmental factors and the interaction of management

practices with these processes. Edaphic factors of likely major significance are soil

profile and texture and the movement and availability of water and nutrients. The

common edaphic characteristics of the greens of the links and heathland courses are the

great depths of sand in which the turf grasses grow. On dry lowland heaths, the sandy

soils usually overlie a coarse sand sub-stratum (Dimbleby 1962). Golf greens on these

soils are generally of a very free-draining nature, and fluctuations in the height of any

water table which may be present do not usually affect grass growth at the surface. In

order to reproduce the surface characteristics of these soil types, a key element is

therefore the maintenance of a freely draining surface.

The texture, structure and profile of the golf green are physical phenomena, the nature of

which are largely established when the golf green is first constructed, or its location is

first established. Top-dressing with amendment materials such as sand and mechanical

procedures, such as spiking or hollow-tining, are normally carried out afterwards and are

aimed at maintaining or improving the physical nature of the rootzone. Such procedures

cannot be as influential in producing a desirable surface as the selection of the site or the

initial rootzone medium and construction type however.

Ward (1983), in a questionnaire survey of UK golf courses, found that 70% of courses

were closed due to waterlogging at some stage during 1981, and that greens were more
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prone to drainage problems than tees or fairways. This suggests that the differing

approaches to golf green construction, and/or location, that have been employed are very

wide-ranging in their degree of success. Research into the processes taking place and

principles involved was therefore considered necessary.

Drainage

A well-drained golf green in the UK should be playable at all times of the year, except

during periods of snow or heavy frost. After periods of heavy rain the soil should

rapidly drain to a state of "field capacity" (Veihemeyer & Henrickson 1931). That is to

say, all the water which could drain away by gravity will have done so. The principles of

golf green drainage are targetted towards this goal.

Many golf greens, especially those of clubs established before the turn of the century,

have no drains incorporated into them. These rely on the inherent structure of the soil and

subsoil to provide the appropriate conditions for drainage.

The simplest form of constructed green is that made by installing pipe drainage into the

subsoil, backfilling with gravel and overlaying with topsoil. This approach is necessary

where the subsoil has low permeability, such as for inland courses built on clay.

Perforated plastic pipe is now most commonly used for this purpose. Patterns of pipe

drainage systems and the appropriate depth and spacing of the pipes are dependent, as in

agricultural situations, on the soil texture and structure, local hydrological features such

as groundwater and surface runoff water, and the climate. In summary, heavy soils

require drain spacing of between 2.5 and 4.5 m, and light soils between 7.5 and 12 m.

Golf green drains are usually set nearer to the surface than agricultural drains. Depths lie

usually between 450 and 900 nmi from the topsoil surface. Drainage principles are

discussed by Anon. (1975) and their application in golf course situations by Anon.

(1992b).

The golf green rootzone - soil texture and structure

The success of the golf green is highly dependent on the nature of the topsoil or rootzone

material. In situations where, due to the characteristics of the native topsoil or localised

geographical features, adequate drainage and aeration are prevented, the situation may be

improved by mixing the soil with sand prior to its being layed down.

Soil amelioration procedures may be assessed by examining the rate of through-flow of

surface water or infiltration rate. This may be achieved using a double-ring infiltrometer

(Schmidt 1980). Waddington et a!. (1974) stated that infiltration rate, in most instances,
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should be used as the primary criterion for evaluating the soil physical conditions of

modified turf. In the UK, infiltration rates of pipe-drained golf greens are considered

excellent if over 20 mm h-' and good if over 10 mm h-'. If rates are of the order of 5 mm

h-', ponding will occur under conditions of heavy rainfall, but such a green is generally

considered to be satisfactory. If the rate is less than 5 mm h', problems associated with

poor aeration and inadequate drainage arise (Baker & Richards 1993).

Elliot (1971) showed that as the proportion of sand mixed with soil increased from 0 to

100%, infiltration rates on established turf composed of a mixture of turfgrass species

increased about 5 times. The type of sand used was extremely coarse however, and the

infiltration rates measured were untypically high. After 8 months of simulated golf wear

treatment, Baker & Richards (1991) found that infiltration rates of very fine turf grown

on 1: 1 soil : sand mixes was 5 mm h-', on 1: 4 mixes 78 mm h-' and on pure sands 398

mmh-'.

A number of specifications have been put forward to indicate the most appropriate particle

size distribution, or texture, for amended rootzone media (Skirde 1974, Radko 1974). A

specification currently in use in the UK is that sufficient sand should be added such that

the final mix contains no more than 20% fines (particles <0.125 mm diameter), less than

10% silt and clay (j)articles <0.05 mm diameter) and less than 5% clay (particles <0.002

mm diameter) (Baker 1985). The identification of the appropriate type of sand for soil

amelioration has been a subject of considerable research interest (eg Adams eta! 1971,

Blake 1980, Baker 1983). The general consensus is that sands for soil amelioration

should be of more or less uniform particle size and in the size range 0.1 - 0.6 mm

diameter (Adams eta! 1971).

Compaction and soil structure

The surface of a working golf green is continually subjected to wear by players and

machinery. Such wear may be divided into two components, vertical and horizontal.

The vertical component of wear is brought about by the weight and frequency of passing

of foot and vehicular traffic. This produces compaction of the soil. The horizontal

component, produced by the spin of wheels and twist of golf shoes, causes a tearing of

the grass.

Compaction, on this scale, produces changes in the soil structure, most notably in the top

few centimetres of the profile (Lunt 1956, Letey eta!. 1966, Baker 1988). The major soil

physical changes induced which have been reported are reduced air-filled porosity

(Canaway 1978, Schmidt 1980, Baker 1985), increased bulk density (Voorhees et a!.
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1975, Canaway 1978), increased soil strength (Watson 1950) and altered pore size

distribution (Carrow 1980, Gibbs & Baker 1989).

The texture of the soil affects its vulnerability to compaction. Baker (1988), using a

machine which simulated both the vertical and horizontal components of wear (Canaway

1982), found that rootzone mixes with greater amounts of sand maintained higher values

of air-filled porosity and infiltration rate after simulated wear treatment. Mixes with little

sand gave very marked reduction in infiltration rate, while pure sands showed a much

lesser reduction. The use of coarser sands brought about less change than the finer or

less uniform sands.

Schmidt (1980), working with creeping bentgrass (Agrostis palustris Huds.) putting

green turf grown on a fine, loamy soil, found that air porosity and infiltration rate

increased with increasing &ldition of amendment material consisting of expanded shale or

sand. Over an 8 year period, during which different levels of compaction were applied,

both air porosity and infiltration decreased, but air porosity reduction was less than the

decrease in water infiltration. Compaction also reduced water infiltration rate by a greater

amount than its effects on porosity. Schmidt suggested that, with time, the shifting of the

mix particles impeded water movement by increasing tortuosity rather than by reducing

soil macropore space. In effect, water infiltration may have been limited by the sealing

of the surface with time by compaction.

Soil structural phenomena which change due to compaction may affect the growth of

turfgrasses by affecting the mechanical restrictions on root growth and the movement,

retention and availability of water. The horizontal, tearing components of wear may

affect the growth of turfgrasses more directly. In order to study the interactions of plants

in a mixed species golf green, it is clearly necessary to consider how these mechanisms

influence the growth and interaction of the component species.

Sand-based rootzone mixes

Many of the problems associated with golf green rootzones are related to its textural

nature. Since a uniform particle size distribution of between 0.25 to 0.5 mm diameter

(medium sand) throughout the rootzone would appear to be the most appropriate rootzone

texture, pure sand should provide the optimum physical conditions for golf green turf.

The idea of using pure sand as a rootzone for golf greens was first put forward by

Bingaman & Kohnke (1970) and subsequently developed by Davis (1973).
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Bingaman & Kohnke (1970) specified the type of sand appropriate for golf green use

when an impervious layer with drainage elevation control is placed below the sand. They

stated that a fine to medium sand should be used, with a mid-range particle diameter of

0.2 - 0.4 mm diameter. Clay, silt and very fine sand should be essentially absent. Under

these conditions the problems of inadequate drainage through the rootzone may

theoretically be eradicated. Baker (1988) found that after 2 years of simulated football

wear, infiltration rates of L. perenne turf grown on pure sand ranged from 68 mm h' for

a sand with a range of particle sizes, to 936 mm h-' for a medium - coarse sand @article

size - 0.55 mm diameter).

The paradox of sand-based rootzone mixes is that, while infiltration rates may be

excellent, a large proportion of the macropore space may be grouped into pore size

classes of relatively large diameter. Under these circumstances, the water retention

capacity may be low and drought stress may come about more rapidly if water application

is limited.

The addition of organic components has some influence on the physical properties of soil

or rootzone media and on their capacity to supply water to turf. Peats, when kept

continuously moist, can hold 28 - 66% by volume water, compared with only 12 - 16%

for sands. For this reason they have been blended with sand for golf green rootzones in

order to improve the water retention capacity (Kussow 1987). The United States Golf

Association (USGA) rootzone specification (USGA 1960, 1973, 1989) has, throughout

its development, always consisted of a blend of sand, soil and organic amendment, partly

for this reason.

The USGA specification for golf green construction also endeavours to increase water

retention capacity by utilising certain soil physical principles, and these are described

below.

The suspended water table principle

In theory, water held in a fine-textured soil resting on a coarse, underlying layer does not

move down into the latter until the fine soil is at "field capacity". It forms, in effect, a

suspended, or perched, water table (SWT). This is because capillary forces in the fine

macropores of the soil hold water until its gravitational force accumulates such that the

capillary forces are overcome. The quantity of water which the soil can hold is therefore

largely dependent on the macropore diameter, which directly affects the water-retaining
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capillary forces, and the existence of a clear interface between the upper, fine-textured soil

and the lower coarse-textured medium.

The SWT principle is utiised in the construction profile developed by the USGA (USGA

1960) which has since been modified slightly (USGA 1973, Radko 1974, USGA 1989).

This construction profile consists of 300 mm of the specified rootzone material, 50 mm

coarse sand blinding layer and 100 mm gravel or drainage aggregate. The blinding layer

is intended to prevent the loss of the finer rootzone material into the gravel drainage

system. The SWT interface is believed to lie between the blinding layer and the gravel

drainage layer (Radko 1974).

This form of construction profile is now utiised in order to improve the water retention

capacity of both pure sand and amended rootzones. The current USGA specification for

golf green construction (USGA 1989) consists of this profile with a rootzone of between

0.25 and 0.75 mm particle diameter (medium to coarse sand). Fine (0.25 - 0.10 mm) and

very fine (0.10 - 0.05 mm) sand should be held to a minimum and not exceed 10% of the

final mix. Silt (0.05 - 0.002 mm) should comprise no more than 5% and clay (^ 0.002

mm) not more than 3%. Organic material is added such that values of infiltration and

percolation capacity, porosity, bulk density and water retention capacity are arrived at

which lie within stipulated ranges.

1.4 WATER RELATIONS AND THE GOLF GREEN

Studies of soil water content and its relationship with soil structure and texture are only

of value to the biologist if the results may be expressed in terms related to the life of the

plant. If laboratory studies describing soil structure and texture have been carried out,

field measurements of soil water content may be related to actual water availability, and

hence to the plant responses to water deficits or excesses. Water content may be

measured by taking cores from the appropriate depths, weighing, drying and re-weighing

(Bascomb 1974). This method is inappropriate however when continuous monitoring

over several years is necessary. The use of weighing lysimeters provides a non-

destructive means of monitoring changes in soil water content, provided the soil structure

within accurately reflects that of the surrounding soil which it represents.

Turfgrass evapotranspiration

The main focus of interest in lysimeter studies of turf water relations has been in the

measurement of evapotranspiration (ET). Tovey et al. (1969) examined moisture release

characteristics and used weighing lysimeters to measure ET of mixed-species turf grown

on two types of soil. They showed that a sandy loam soil lost water more quickly, and
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stabilised at a drier state under increasing tension than a loam soil, and that, when water

supply was adequate, ET losses were greatest on the loam soil. This study, and others

(eg Aronson et a! 1987), also examined the relationships between actual and predicted

ET, using the Penman formula (Penman 1948, 1963) or other predictive models (eg

Olivier 1961).

Feldhake et a!. (1983) measured turfgrass El using small-scale weighing lysimeters.

They examined the effects of soil composition, mowing height, nitrogen fertiliser

applications, shading and grass species on El. The differences between ET of turf

grown on clay soil and on sand-peat mix were confused by problems with irrigation, but

a lesser ET rate on clay was suggested. These workers evaluated El at mowing heights

of 20 mm and 50 mm and found that El was 13% higher with the 50 mm turf. Fry &

Butler (1989), using similar apparatus, found that El from turf mown at 12 mm was

higher than that at 6 mm. Feldhake et a! (1983) suggested that tall grass should be

expected to transpire more than short grass since, while no more solar radiation is

intercepted per unit area, more advective energy can be intercepted.

Golf green irrigation

Understanding the dynamics of water in a golf green is important if irrigation is to be

utilised as a tool of management. Golf green irrigation systems fall into two categories

based on the way in which water is delivered to the turf. With the "Cell System"

irrigation, and similar systems based on the same principle, the rootzone is completely

enclosed in an impermeable membrane. A head of water, of variable height, is

maintained within the rootzone by raising or lowering the outfall pipes. While this

system is theoretically pleasing, and has been used with some success in places where

water supplies are seriously restricted, it does have some drawbacks. Fertiliser, when

applied, must be leached into the rootzone from above. Underground irrigation systems

do not provide this facility and must therefore be used in conjunction with the most

commonly used system, overhead irrigation using sprinklers.

The efficacy of a sprinkler irrigation system may be assessed on the basis of two features.

These are the rate of delivery of water to the turf surface and the uniformity of coverage.

The output rate of a 360° circling, rotating head sprinkler is of the order of 12 mm h1.

When these are arranged around a golf green, with varying degrees of rotation, a typical

average delivery rate to the surface would be about 25 mm h-'. The uniformity of

coverage is affected by several factors, chiefly the design of sprinider and its output rate,

the number and arrangement of sprinkler heads and the wind. Meyer & Camenga (1985)
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discuss the methodology behind the selection of sprinider systems and Solomon (1990)

gives an introduction to the distorting effects of wind on sprinkler distribution patterns.

1.5 TURFGRASS RESPONSES TO SOIL PHYSICAL FACTORS

Since the selection of the most appropriate construction type and rootzone composition is

recognised as being crucial to the establishment of high quality greens, much research has

been carried out on turfgrass responses to soil physical features. Although the responses

of turfgrass species to soil physical phenomena are inextricably linked with nutritional

factors, as discussed below, this research may be classified into two groups. The first is

concerned with the effects of the mechanical aspects of rootzone media effects on

turfgrasses, and the second with the water relations aspects.

Rootzone structural factors

Few studies have been carried out examining the impact of soil physical criteria on

individual turfgrass species. Canaway (1985 a,b) measured above ground biomass and

shoot density of L. perenne grown on both a sand and soil rootzone. Before the onset of

wear treatment, at a nitrogen fertiliser rate of 400 kg N ha-' yr, total ground cover was

approximately equal on the two rootzones. Tiller density was greater on the soil than the

sand, but above ground fresh and dry weight were greater on the sand. This would

imply that the sand construction produced fewer, larger plants than the soil.

Carrow (1980), applying different levels of compaction to turf mown at 51 mm, found

that root growth of P. pratensis & F. arundinacea was lowest with maximum

compaction, while L. perenne root production declined and then increased as levels of

compaction increased. Carrow suggested that the L. perenne response may have been

due to enhanced tiller production. The percent root distribution of the three species

between depths of 0 - 100 mm and 100 - 200 mm were not, however, influenced by

compaction.

Poa annua has long been recognised as a species particularly able to grow on compacted,

poorly draining soils (Sprague & Burton 1937, Beard 1970). Youngner (1959) reported

that P. annua was commonly found in moist situations and suggested that it was able to

survive low oxygen levels and was therefore more competitive in compacted soils. Juska

& Hanson (1969) found that the mean yield of P. annua crowns and clippings were much

greater on a silty loam soil than a ioamy sand, while root development was reduced on the

loamy sand lacking nitrogen. The authors suggested that the silt loam restricted root

growth due to greater compaction and reduced aeration, but shoot development appeared

to be unrestricted as a consequence.
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In contrast, comparing root development on a sandy loam soil of P. annua, P. pratensis

and Agrostis palustris, Wilkinson & Duff (1972) found no differences between the

species, nor between their growth on soils compacted to three different bulk densities.

This may suggest that the occurrence and success of P. annua in golf greens is related

more to some factor associated with soil structure and which influences the plant's

development, rather than specific soil structural effects on vegetative growth alone.

Different turfgrass species respond differently to simulated wear treatment. Canaway

(1978) found that P. annua was highly tolerant of wear, a ground cover of 95.4%

remaining after 32 passes over 1 month with a wear simulation machine (Canaway,

1976). The grass was mown at 25 mm. F. rubra had a ground cover of 33.8% and A.

capillaris a cover of 20.8% after the same treatment.

The response of Festuca / Agrostis mixed swards to different rootzone media maintained

as very fine turf and undergoing golf - type wear was examined by Baker (1991). He

found that total ground cover declined on topsoil (sandy loam) mixed with increasing

quantities of various sands. These effects were most apparent when a medium coarse

sand was used, instead of finer textured sands or a sand with a wide range of particle

sizes. The cover of Agrostis generally increased over the period of wear and was greatest

(56%) on the 1: 1 soil: sand mixes, and least (23%) on pure, medium coarse sand. On

the other pure sands, Agrostis cover was around 45%. The cover of Festuca showed a

general decline over the period of wear, but was greatest (46%) on pure sands and least

on the 1: 1 mixes. Over the wear period, the cover of P. annua increased from 2% to

12% and showed no clear rootzone composition preferences.

The general tendency of Agrostis to displace Festuca in mixed swards has been shown by

several workers on various rootzone media under various nutritional regimes (Skirde

1974, Woolhouse 1981, Lawson 1987, Colclough & Canaway 1989). Given that

Festuca has been shown to be marginally more wear - tolerant than Agrostis in pure

stands (Canaway 1978), this would suggest that the outcome of the interaction between

the two species is based on differential responses to each other or to environmental

phenomena other than wear.

Turfgrass water use

Differential responses of turfgrass species to water status have been widely studied.

Feldhake eta!. (1983) showed that two warm-season grasses (Bermudagrass - Cynodon

dactylis L. and Buffalograss - Buchloe dactyloides Nutt.) used, on average, 20% less
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water than two cool-season grasses (Smooth meadowgrass - Poa palustris L. and Tall
fescue - Festuca arundinacea Schreb.). Similar results illustrating the lower water use by

warm-season grasses were obtained by Marsh et a! (1980), Biran et a! (1981) and
Kneebone & Pepper (1982). This result agrees with the expectations for water use by C -

4 plants which generally show a ratio of water use to dry matter production which is less

than half that of C - 3 plants (Black 1973).

Green eta! (1990) and other workers (eg Aronson eta! 1987, Shearman 1986 and Doty et

al 1990) have shown that considerable inter- and intra-specific variation in turfgrass ET

exists. Green et a! (1990) found that F. rubra ssp. rubra had a significantly lower ET rate

(7.7 mm day -1) than A. palustris (10.1 mm day -1) and P. annua var reptans Haushk.
(9.8 mm day -1). These cool season species were grown in lysimeters and ET was

measured using a constant environment simulation chamber (Johns et a!. 1983) set to

induce a high evaporative demand. Grasses were maintained at 50 mm mowing height

and the water supply to the roots was held at a level considered non-limiting. Differences

in ET were found not to associate with stomatal density, and they suggested that canopy

resistance and leaf area were more important factors limiting turfgrass ET.

Kim & Beard (1988) examined ET rates among 11 warm season and 1 cool season

turfgrasses and compared them with various morphological characteristics. These they

equated with either canopy resistance (shoot and leaf density and leaf orientation) or leaf

area (vertical leaf extension rate and leaf width). No convincing association with any

morphological feature was found, but leaf width gave the highest correlation with ET.

This may suggest that the lower ET rate of F. rubra observed by Green et a!. (1990) may

have been due to the narrow, rolled nature of the leaves of this species. Such inter-

specific variation in water use rates, though clearly very subtle, are likely to be of

significance in controlling the population dynamics of mixed-species, golf green turf.

1.6 FERTILISER USE ON GOLF GREENS

The continual "cropping" of the grasses in a golf green, by frequent close mowing and

the removal of clippings, extracts mineral nutrients from the system. These need to be

replaced with fertilisers if a "dynamic equilibrium" is to be maintained. The literature

concerning the nutrition of golf greens is therefore concerned primarily with the effects of

fertilisers on the growth and quality of turf. Most of this work refers to turf grown on

individual forms of construction, but some important features emerge regarding the

effects of differing rootzone media and water status on turfgrass biology and nutrient

requirements. The requirements for nitrogen, phosphorus and potassium have received

the most study.
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Sources and rates of fertiliser nitrogen for turf

Organic and inorganic forms of nitrogen fertiliser, in both slow-release and normal

forms, are all used on very fine turf in the UK (Isaac & Canaway 1987). The most

commonly used have nitrogen sources which are primarily the soluble, inorganic

ammonium sulphate. It was recognised as long ago as 1912 (Hall 1912) that ammonium

sulphate encouraged good growth, colour, texture and uniformity of Agrostis / Festuca

spp. turf. Since then a stream of workers have arrived at the same conclusions (Oakley

1925, Blackman 1932, Dawson & Greig 1933, Madden 1938, Levy 1957, Escritt &

Lidgate 1964, Escritt & Legg 1969, Skogley 1967, Robinson et a!. 1977, Pepper &
Kneebone 1984).

Most inorganic fertilisers, and ammonium sulphate in particular, cause soil acidification

and loss of exchangeable cations (Wild 1988a). Excessive use of these fertilisers on very

fine turf has therefore been shown to produce detrimental effects such as a less vigorous

sward, increased susceptibility to injury, weed and moss invasion and the rapid

development of thatch (Sprague & Evaul 1930, Dawson & Greig 1933, Escritt & Lidgate

1964, Skogley 1967, Schmidt 1975, Opitz von Boberfeld et a!. 1979, Robinson 1980,
Murphy 1983).

In order to overcome the difficulties imposed by the acidifying nature of inorganic

fertilisers, combinations with alkaline and/or organic nitrogen sources have been tried.

Escritt & Lidgate (1964) found that a mixture of ammonium sulphate with hoof and horn

meal or dried blood, in the ratios 3: 1 and 6: 1 respectively, maintained a fine, weed -

free A. castellana / F. rubra ssp. commutata turf with good colour and improved drought

resistance. Levy (1957) found that an ammonium sulphate and sodium nitrate (3: 1) mix

produced similar results on A. capillaris / F. rubra ssp. commutata turf.

The use of organic fertilisers in very fine turf maintenance is not without drawbacks

however. It has been shown that they appear to stimulate the outbreak of turf diseases

such as Fusarium patch disease, (caused by the fungus Microdochium nivale (Fr.)

Samuels & I.C. Hallett) (Lawson 1992 pers. comm.). Also, Goss (1967) and Goss &

Gould (1967) suggested that increased occurrence of take-all patch (caused by the fungus

Gaeumannomyces graminis (Sacc.) V.Arx & Oliver) on A. capillaris very fine turf was

related to higher soil pH and calcium levels associated with lower rates of application of

acidifying fertilisers. These observations would indicate therefore that an acidic, but not

"too acidic", substrate is most appropriate for the maintenance of Agrostis IFestuca spp.
turf.
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Slow release fertilisers have been shown to be largely unsuitable for very fine turf in the

UK. Escritt & Legg (1968) reported that A. capillaris exhibited less growth and poorer

colour from mid - July / early August through to the following spring when treated with a

single application of sulphur - coated urea than with ammonium sulphate. Urea-

formaldehyde showed similar results. Lawson (1992 - pers. comm.) found that slow

release fertilisers on very fine Agrostis / Festuca turf were generally associated with a

much greater ingress of P. annua than with conventional, inorganic nitrogen sources.

For very fine Festuca / Agrostis turf, recommended rates of nitrogen application range

from 140 kg N ha-' yr-' (Escritt & Legg 1969) up to 500 kg N ha- 1 yr-' (Christians et a!.

1981), with the majority falling between 200 - 300 kg N ha-' yr- 1 (eg Lawson 1987).

These values were generally arrived at after treating established turf with a range of rates

of nitrogen and noting the response in terms of generally perceived "quality" or

measuring the contribution to total ground cover of the turfgrass species.

Sources of fertiliser phosphate for turf

The continual removal of plant material without adequate phosphate replacement can lead

to phosphate depletion on light soils. Under the intense mowing regimes of golf greens,

coupled with high nitrogen inputs, such removal of phosphate from the plant: soil system

must clearly take place. It is therefore logical that phosphates must be returned to golf

greens if deficiency symptoms are to be avoided.

The most commonly used phosphate fertiliser for golf greens is single superphosphate

(18 - 20% P205, 8 - 9% P). This compound contains 30 - 35% monocalcium phosphate

and 65 - 70% gypsum, and consequently also supplies calcium and sulphur to the soil.

Phosphates may be applied individually or as N: P : K compounds. The effectiveness of

phosphate fertilisation depends however on the soil type to which it is applied. This is

discussed below. Application rates are conmionly of the order of between 0 and 60 kg

P205 ha-' yr-1.

Potassium fertiliser

The most widely used form of potassium fertiliser is potassium chloride. Shearman

(1985) showed that potassium fertiliser application increased wear and drought tolerance

and root growth on A. stolonifera. Hawes (1984) suggested applying as much or greater

amounts of potassium than nitrogen to improve these features on golf greens.

The impact of potassium fertiliser on the botanical composition of mixed species golf

greens would appear however to be rather small. In an experiment examining the
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fertiliser requirements of Festuca / Agrostis sand golf greens under UK climatic

conditions, (Coiclough & Canaway 1989), when potassium fertiiser was applied at three

different rates (0, 150 and 300 kg K ha-' yr- I ) the highest rate was found to only slightly

increase the cover of Festuca rubra on plots treated with lime with respect to the other

two. Lodge et a!. (1990), continuing the work, found that potassium's only effect was to

reduce the contribution to the ground cover of one species of moss from 7% to 3% in

plots treated with lime and the lowest rate of nitrogen.

The dynamics of potassium in the soil are greatly affected by the clay mineral content.

Rootzone texture therefore has a profound influence on its availability to the turf.

Waddington et al. (1972) found that the level of necessary potassium addition to turf

depended on the amount of the element naturally present in the soil and on the levels

accumulated from applications during the preceding years. Potassium has been shown to

be lost from the golf green system in clippings (Markiand & Roberts 1969, Skirde 1974)

and through drainage (Sheard et al. 1987).

Although potassium is recognised as an essential plant nutrient, and research suggests

that deficiencies may occur in golf greens (Christians et a! 1979, Markiand & Roberts

1969, Skirde 1974), an examination of the use of potassium fertiliser was not specifically

incorporated into the present study, simply because, if it were, the subject area would

have expanded too greatly.

1.7 EDAPHIC FACTORS AFFECTING NUTRIENT AVAILABILITY

In addition to their effects on the water relations of the golf green rootzone, soil structure

and texture also affect the content and availability of plant nutrients. However, most

nutritional studies of turf have been carried out without direct comparison between

rootzones of differing texture or structure. This is presumably because distinguishing

between the physical effects on the turf of differing soil structure / texture from the effects

of the actual movement and availability of nutrients is very difficult.

Factors affecting nitrogen availability

The inorganic fertilisers discussed above supply nitrogen to turf in the form of nitrate

(NO3-) and ammonium (NH4+). Turfgrasses absorb nitrogen as either or both of these

ions. Eggens & Wright (1984) found that A. palustris cultivars grew better with high
NO3- in a nutrient solution applied to the plants grown in pot culture in silica sand. P.

annua grew better with high NH concentrations. This would imply that the relative

performance of turfgrasses in mixed species communities may be influenced by the soil

conditions which affect the abundance and availability of these two ions and by the source
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of applied nitrogen. The mineralisation of organic matter to NH4 and the nitrification of
NH4+ to form NO3- are influenced by several edaphic factors. Low soil water content

limits the mineralisation of organic matter, and the availability of oxygen is crucial to the

microbial oxidation of NH. The structure, texture and irrigation of a golf green may

thus affect nitrogen availability to the turf by influencing these processes.

The free-draining nature of some golf greens may facilitate the loss of applied nitrogen by

leaching. This subject has been reviewed by Petrovic (1990). Findings indicate that

nitrogen leaching losses occur primarily as nitrates (NO3 -), are higher for soluble

inorganic fertilisers and are greater on well - drained, sandy soils (Yolk & Bell 1945,
Bates & Tisdale 1957, Smika eta!. 1977, Mitchell eta!. 1978, Petrovic eta! 1986). Such

losses may not however be very great. Mancino & Troll (1990) found that less than

0.5% of applied nitrogen was lost in leachates collected over ten weeks from A. palustris

turf grown on an 80 : 20 sand : peat mix. Irrigation was applied at an equivalent rate of

38 mm week-' and nitrogen was applied in 5 and 10 regular applications as differing

forms of inorganic fertiliser at rates comparable to those applied to golf greens. Their

conclusions were that leachate losses of nitrogen from sand - based golf greens are

largely negligible if the total annual nitrogen is applied in small, intermittent doses.

Lawson & Coiclough (1991) found that when excessive quantities of ammonium sulphate

were applied to Agrostis I Festuca spp. turf throughout a UK growing season, leachate

losses of nitrogen remained low until the autumn when a high nitrate concentration

coincided with a large leachate volume. The largest losses of nitrogen at this time

occurred on a sandy loam topsoil, as opposed to mixes of sand and soil. They suggested

that much of this nitrogen was derived from microbial mineralisation of fertiliser nitrogen

that had been immobiised in roots and soil organic matter during the growing season.

Clay minerals and organic matter enhance the capacity of the soil to buffer pH changes

which may take place, notably due to the use of acidifying fertilisers. Soil pH affects

microbial NH oxidation (Munk 1958), and below pH 5.5 nitrification is limited (Weber

& Gainey 1962). Soil pH also affects the relative uptake of NO3 and NIL ions by

plants (Rao & Rains 1976). Thus, because soil moisture content and the capacity of the

soil to buffer pH changes are greatly determined by physical aspects of the golf green

rootzone, the dynamics of nitrogen nutrition must clearly be examined within the context

of the water status and the structural and textural nature of the rootzone medium.
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Factors affecting phosphate availability

Phosphates are adsorbed onto mineral surfaces in the soil. The rate and extent of

adsorption is dependent on the nature and specific surface area of the minerals concerned.

This is known as the phosphate buffering capacity (Wild 1988b) and is affected by pH.

For most mineral soils, a pH range of between 6 and 7 is optimum for phosphates to

remain in solution at their highest concentration. Adsorption is greater at pH 3 - 5, and

increases with time, temperature and the phosphate concentration of the soil solution

(Barrow 1978). The buffering capacity differs widely for different soils. Webber &

Mattingley (1970) found with UK soils that buffer capacity increased with clay content

and the amount of extractable phosphate.

Phosphate may be incorporated into the organic fraction of the soil by root production and

leaf decay. Soil microorganisms may also directly synthesise organic compounds from

inorganic phosphate in the soil solution. The mineralisation of organic matter, by

microbial breakdown, consequently provides another source of plant-available phosphate.

The amounts of organically held phosphate are therefore related to the organic matter

content of the soil, although the phosphate content of organic matter is known to be

variable (White & Becket 1964). Because the mineralisation of organic matter is

dependent on the degree of microbial activity, factors such as soil pH, aeration and water

content presumably affect phosphate release from organic matter in a similar manner to

their effects on the release of NT-L and NO3 ions.

Phosphate availability is therefore controlled to a large extent by the soil phosphate buffer

capacity, the organic matter content, soil pH, and the concentration of phosphate in the

soil solution. These relationships are illustrated by Olsen & Watenabe (1970), who

found that if continual uptake of phosphate by a growing plant is to take place, clay soils

may require a higher rate of phosphate application, and appear to be more deficient than

sands or silty soils, because they are more strongly buffered. Similarly, they do not need

as high a concentration of phosphate in solution as sandy soils. This has particular

relevance when considering the phosphate requirements of golf greens with markedly

different rootzone textures.

Soil texture and structure may therefore affect markedly the efficacy of nutrient

applications to golf greens. The water - holding capacity of the rootzone affects the

activities of nutrients in the soil solution and their rates of loss through leaching. The

degree of soil aeration affects the activities of soil micro-organisms and their capacity to

release nutrients into the soil solution. The abundance of clay minerals has a direct effect
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on the cation exchange and buffering capacity of the soil. The presence of organic matter

also affects the cation exchange capacity and the potential for nitrogen release by

ammonification and nitrification.

1.8 TURFGRASS RESPONSES TO NUTRITIONAL FACTORS

Having considered the mechanisms by which structural, textural and water relations

factors may influence the physico-chemical nature of the green and the growth of turf

grass, research work examining nutritional effects may now be considered. The

nutritional requirements of turf have been greatly studied, and reviews of the subject are

provided by Adams (1981), Isaac & Canaway (1987) and Turner & Hummel (1992).

Much research has been aimed at identifying the rates of nitrogen fertiliser application

necessary for the production of the best "quality" surface. The biological processes

occurring within the turf have been less frequently examined directly, but some features

do emerge.

Turfgrass responses

It has been recognised for some time that Agrostis and Festuca spp. grow best in acidic

media (Murray 1936, Bradshaw 1962). This observation led to the "Soil Acid Theory"

of turf management (Hartwell & Damon 1917, Oakley 1925, Dawson & Greig 1933).

The acidifying effects of soluble, inorganic nitrogen sources have been used to obtain the

low pH environment deemed appropriate for Festuca / Agrostis spp. turf. An experiment

designed to examine the use of lime to counteract the acidity induced by the continual

application of ammonium sulphate to Agrostis / Festuca golf green turf grown on pure

sand was described in a series of articles by Canaway et a!. (1987), and others

(Coiclough & Canaway 1988, Colciough & Canaway 1989, Coiclough 1989, Coiclough

& Lawson 1989, Lodge et a!. 1990, Lodge & Lawson 1990). These workers found that

lime increased the rootzone pH and prevented the death of Festuca / Agrostis spp. due to

over - acidification. Ingress of P. annua was however enhanced to such an extent by

liming that the sown species were largely replaced by the turfgrass weed.

The silt loam and loamy sand soils used in the study referred to above, (Juska & Hanson

1969) which examined the nutritional requirements of P. annua grown in pots, were

adjusted to pH values of 4.5 and 6.5 by the addition of lime, and two levels of each of

nitrogen, phosphorus and potassium fertiliser were applied. On the loamy sand, both top

and root growth and seedhead productivity were enhanced at the higher pH, whereas on

the silt loam, no significant effects of soil reaction on growth were found. Nitrogen,

phosphorus and potassium fertiliser were found to contribute to top growth by degrees

decreasing in that order, potassium increasing top growth only slightly. Plants grown on
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the loamy sand and treated with nitrogen fertiliser, with or without phosphorus and

potassium, showed a fall in root: shoot ratio from values around 0.50 to values around

0.10. By contrast, on the silt loam, root : shoot ratios were around 0.12 and were

unaffected by the addition of nitrogen. This would imply that the responses of P. annua

to soil textural/structural phenomena occur in response to nutrient availability which is

governed to a great extent by soil type and particularly by soil reaction.

The type of environment in which Festuca and Agrostis spp naturally occur are generally

very similar with respect to soil type and fertility (Grime et a!. 1988). Where Festuca

spp. and Agrostis spp. are grown in mixed swards maintained as very fine turf, it has

been noted by several workers (eg Skirde 1974, Woolhouse 1981, Canaway eta!. 1987,

Lawson 1987) that the percentage cover of Festuca spp. generally declines, and Agrostis

spp. increases with increasing fertiliser input. This response has also been noted in

natural hill pastures (Milton 1940) and in pots under greenhouse conditions (Engel 1974).

Lemaire (1985) found that A. capillaris can easily tolerate the low nutrient levels at which

F. rubra grows best. When Agrostis spp. are selectively removed from mixed, fine turf

swards by the disease Take - all (Gaumannomyces gram mis) the space created is

frequently filled by Festuca spp., P. annua and others. This may suggest that, although

soil conditions may be capable of supporting all species concerned, the displacement of

Festuca by Agrostis spp. arises as a result of competition between the two species rather

than differing habitat preferences. So the decline in Festuca spp. with increasing fertility

may be due to its inability to compete with more nutrient - demanding species when

nutritional resources are less limited.

Lodge & Lawson (1991), summarising data collected by Canaway et a!. (1987) and

others (Colclough & Canaway 1988, Colclough & Canaway 1989, Colciough 1989,

Coiclough & Lawson 1989, Lodge et a!. 1990), examined P. annua cover and rootzone

pH changes with time of Agrostis / Festuca turf grown on pure sand. Plots treated with

lime showed a sharp increase over one year in pH (from below 4.5 to above 5.5) after

two years of treatment and this coincided with a similarly rapid increase (from 0% to over

30%) in P. annua cover. The authors suggested that the pH changes affected nutritional

factors which influenced competitive processes occurring between the golf green species,

higher pH tending to favour P. annua growth.

The enhancing effect of phosphate fertiliser on growth has been much reported (Goss et
a!. 1975, Waddington et a!. 1978). Lodge & Lawson (1990) reported an increase in P.
annua cover on sand construction greens in response to phosphate fertiliser rates of 25
and 50 kg P ha-' yr-', although this effect was only apparent on plots with a high pH due
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to liming. Juska & Hanson (1969) found that phosphate increased P. annua top growth

on the loamy sand at low pH, but slightly reduced root growth overall. Root growth

response to phosphorus was found to be similar, but less pronounced, than that to

nitrogen.

If fertile soils of heavier texture cause P. annua root growth to be limited, but produce

increased shoot growth, the reported susceptibility of the species to drought under these

circumstances (Beard 1970, Beard et a!. 1978, Peel 1982) may be explained. If the upper

layers of the soil profile dry out, P. annua, with root growth restricted to this area, is

bound to suffer from the unavailability of water, while more deeply rooted species may

survive. Youngner (1959) reported that frequent, light irrigation maintained high surface

moisture levels in bermudagrass (Cynodon dactylon) turf which favoured the persistence

of P. annua. Koch (1968) found that P. annua germination took place when soil moisture

lay between 40 and 90% of field capacity, and declined only gradually below 40%.

Greater P. annua cover on heavier soils, on which the soil surface remains moist for

longer, may therefore be due, in part, to its ability to germinate from its prolifically

produced seeds.

The effects of fertility and irrigation frequency on A. capillaris turf were studied by

Madison (1962). On a silty loam soil, increasing rate of nitrogen fertiliser application

resulted in greater shoot density, yield, chlorophyll content and "verdure". Verdure was

defined as the living grass above the ground not removed by mowing. Individual plant

size (verdure divided by the shoot density) showed a slight decline, and total root weight

and root weight per plant declined. More frequent irrigation resulted in an increase in

shoot density and yield, and decreases in plant size and root weights per plant. Higher

fertility and frequent irrigation therefore had similar effects on the turf. Mantell (1966),

working with the warm-season grass Kikuyugrass (Pennisetum clandestinum Hochst.),

found that infrequent irrigation of fertilised turf only slightly reduced quality compared

with that obtained when frequent irrigations were given in the absence of nitrogen. It was

argued that less frequent irrigation, accompanied by fertiliser applications, conserved both

water and labour and was therefore a more efficient management practice. The swards

studied by Madison (1962) and Mantell (1966) were grown as pure stands. No similar

studies have been carried out on fine turf, mixed species swards.

Canaway (1985 a, b) in the study mentioned above, applied different rates of nitrogen to
L. perenne turf on sand and soil - based construction types and found that the percentage

water content of the shoots increased with increasing nitrogen input. It was suggested

that the increasingly succulent plants were less tolerant of wear than those provided with
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less nitrogen and consequently of lesser moisture content. Tiller number per square metre

increased continually with increasing nitrogen application. Above - ground biomass

levelled off at nitrogen rates above 400 kg N ha- 1 . This implied that the mean dry weight

per tiller actually declined at higher rates of nitrogen, presumably a response to crowding.

In theory, it should therefore be possible to identify the rate of nitrogen input necessary to

produce the maximum tiller dry weight, and optimum tiller density, and this may provide

the maximum tolerance of wear. In both pasture and cereal grasses, tiller production is

known to be greatly increased by raising the supply of nitrogen, phosphorus and

potassium (Langer 1966). If, as seems likely, fine turf species behave in a similar

fashion, studies which consider the response of individual tillers or plants to differing

"habitat" regimes may indicate the most effective management procedures for golf greens,

and provide an insight into the mechanisms of interactions between turfgrass species in

mixed swards.

1.9 GOLF GREEN "QUALITY"

The effects of treatments on very fine turf have been assessed by many workers by

scoring for "quality" (eg Lindgren et al. 1988, O'Neil & Carrow 1982, Ledeboer &

Skogley 1973, Christians eta!. 1979). This almost invariably refers to the visual merit of

the turf from an aesthetic point of view. A good deal of such research has been targetted

at the improvement of fine lawn turf which has no major function other than to be

pleasant to look at. However, the quality of a golf green is also determined by the

maimer in which golf balls respond to the surface during play. Assessment of the quality

of golf greens may therefore be divided into two areas, one pertaining to the aesthetic

quality, or visual merit, and the other to the playing quality.

A temporal element of both these factors must also be considered. The rising popularity

of the game of golf has meant that players expect facilities throughout the UK to be

maintained every day of the year. Since turf growth is profoundly affected by the

changing seasons, specific aspects of quality may be expected to vary in a similar

manner.

Visual merit

The Royal and Ancient Golf Club of St Andrews Greenkeeping Panel stated that ".....

as an ideal surface on which to play year-round golf, fescue/bent turf cannot be

surpassed" (Anon. 1989b). This would imply that species composition is of importance

with regard to visual merit. This aspect of visual merit may presumably therefore be

evaluated by quantifying the relative contribution of different species to ground cover.

The basic assumption here is that total live ground cover should be maximised and
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composed of fescue and bent alone, and the abundance of P. annwi, along with other

weed species, which are generally considered undesirable, should be nil. No studies

have been carried out to establish directly what sward composition golfers, the

"consumers", actually prefer.

The simplest means of obtaining an impression of what is meant by turf visual quality is

to ask people to score turf according to their own subjective opinion. This is basically a

form of market research. Subjective scoring of turfgrass visual quality was investigated

by Horst et a! (1984) working with different cultivars of Kentucky bluegrass (Poa

pratensis L.) and tall fescue (Festuca arundinacea Schreb.). The relative rank

performance of cultivars was found to differ between evaluators. These workers

concluded that the results of trials assessed in this manner should be treated with caution

because individual evaluators either did not use the same criteria for evaluation or were

not consistent with their visual assessment.

Some research has been directed towards finding objective techniques of assessing

turfgrass visual merit so that the limitations of subjective evaluation may be avoided. The

ability of chlorophyll to absorb red (R) and reflect near infra-red (NI) light wavelengths

has been exploited by workers to develop techniques of turf evaluation. Birth and McVey

(1968) found that the ratio of NT to R, measured by a reflectance spectrophotometer, of

different grass species receiving different levels of nitrogen fertiliser correlated with

visual colour score, and Biran & Bushkin-Harav (1981) utilised a light meter capable of

measuring the reflectance of NT/R to describe the intensity of colour between 10 different

turfgrass species. Gooding and Gamble (1990) showed that reflectance ratio could be

used to provide a method of assessing the combined effects of turf cover and colour of

turf cultivars. These workers used a reflectance ratio meter (Haggar & Isaac 1985) which

gave the NI (peak at 750 nm) to R (peak at 650 nm) ratio.

More specific examination of turfgrass colour has been carried out using colour meters

which give quantitative descriptions of colour using "L" (white - black), "a" (red - green)

and "b" (yellow - blue). Kavanagh et a!.. (1985) used such a device to describe the

colour of different turfgrass species and the effects of iron sulphate application. Kimura

et a!.. (1989) described the colour of different cultivars of Agrostis spp, Poa pratensis
L., Festuca spp. and Lolium perenne L. in the field.

Colour and reflectance assessment of mixed species swards is difficult to interpret

biologically. Such readings may be said to represent the net effect of three components:

the overall cover of live material, the intrinsic chlorophyll density, or colour, of the
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species present, and the relative contribution of each species to the whole sward. The

monitoring of colour and reflectance ratio of mixed species swards is therefore of limited

value because different readings may arise due to any one or all three of these

components, each of which is of quite distinct biological significance.

The relationship between visual merit and the morphology of individual plants and of the

sward as a whole has also been investigated. Gooding and Newell (1991) found a

relationship between shoot density and visual merit in Poa pratensis L. cultivars and

Gooding and Newell (1990) concluded that shoot density could provide a simple,

objective method of assessing turfgrass performance of Festuca spp. cultivars. Fine leaf

widths have also been associated with visual merit. As shoot density increases, leaf

width was shown to become finer (Turgeon 1985) and Brede and Duich (1982) reported

that increasing sowing density decreased leaf widths in Poa pratensis cultivars.

The pattern of distribution of species almost certainly influences visual merit scoring and

is a feature which is independent of individual species cover. The weed species Poa

annua L., for example, tends to grow in a dense, spreading pattern, and this is generally

considered unsightly. Also diseases such as take-all patch cause distinct circular patches

of dead Agrostis spp. surrounding a legacy of Festuca spp. or weed species. This

therefore affects the pattern of species distribution in mixed species swards. Several

methods of analysis of pattern have been devised and are discussed by Greig-Smith

(1983). No such studies have been carried out on fine turf.

Playing quality

In terms of the game of golf, a green has two functions with respect to the ball in play.

These are the provision of a suitable playing surface over which the ball is rolled during

putting and of a landing area for downcoming balls. The manner in which the green

affects the nature of these two processes contribute to the overall concept of the green's

quality. Intuitively, the set of characteristics of greens which chiefly affect ball behaviour

in these two situations differ.

The interface between a ball rolling over a green surface after a putting stroke will be

affected by some or all of the following factors: [i] the species present in the turf and their

relative abundance; [ii] the pattern of species distribution; [iii] the height of cut [iv] the

relative growth rate of each species (since growth will take place after mowing); [vi the

form of growth of individuals within species; [vi] the degree of surface moisture

retention; [vii] the turgor or pressure potential of the grasses; [viii] the "overall" hardness

of the turf at the level of interaction brought about by the rolling ball. Depth of thatch

may be influential in this last respect. Moreover, interactions between these factors will
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take place. For example, surface moisture retention on Agrostis spp. is greater than on

Festuca spp., a phenomenon which may be observed in the distribution of dew on greens

in which these two species occur in patchy distribution.

All the above factors may conceivably affect the behaviour of iron shots following impact

with the green surface. The nature of the impact will also vary in relation to the spin,

velocity and angle depending on the choice of club and the manner in which the ball is hit.

However, a large number of additional factors will influence the nature of the impact

since the vertical movement of the ball creates interactions with deeper layers of the turf

profile. Subsequent ball behaviour will therefore be influenced by the characteristics of

any thatch layer present, the physical nature and moisture content of the rootzone medium

and the form and extent of rooting within this.

How features of golf greens affect ball roll has received some research interest. A device,

known as a Stimpmeter (Stimpson 1974, Radko 1977a,b, 1978), designed to produce a

"standard" putt has formed the basic tool of this work. Radko (1977a) developed a set of

green speed standards for the Stimpmeter, classifying a range of speeds appropriate for

regular membership and tournament play. Colclough (1989) found that increasing the

rate of nitrogen fertiliser applied to fine turf grown on pure sand decreased speed. On

plots treated with lime, green speed was less than on un-treated plots, and phosphate

fertiiser decreased speed on limed plots. Engel eta!.. (1980) found an approximately 25

% reduction in green speed when mowing height was increased from 4.69 mm to 6.25

mm and found between 8 and 10% variation in speed depending on the "nap" of the turf

brought about by the mower.

Research into the more complex field of golf ball impacts with natural turf is much less

extensive. The management of golf green turf with respect to its ability to "hold" balls

was discussed by Buchanan (1984). Research has been limited by the difficulty in

simulating the trajectory and spin characteristics of iron shots. Haake (1991a) however

developed an apparatus able to project golf balls downward with a known angle of

impact, degree of backspin and velocity. Colclough (1989), using this device, was the

first to attempt to describe the effects of turf management factors on the outcome of golf

ball impacts onto fine turf. He measured the distance between the initial impact and the

final resting place of the ball. This distance he related to the "holding power" of the turf

since it reflected the ability of the turf to retain the backspin imparted onto the ball after

being struck by a club. Small stopping distance values were considered to be desirable.

On a pure sand construction, he found that stopping distances decreased as nitrogen input
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was increased from 100 to 400 kg N ha-' yr' and was greater on plots not treated with

lime.

The apparatus required to simulate golf ball impacts is cumbersome and the data difficult

to obtain. If ball impact behaviour could be related to some other turf characteristic which

was more readily measured, the playing quality of greens could be more easily assessed.

To this end Coiclough (1989) measured the hardness of the turf using a Clegg Impact

Soil Tester (Clegg 1976). This device measures hardness as the rate of deceleration

experienced by a falling weight on impact with the surface being tested. He found that

hardness declined with increasing nitrogen input and, like stopping distance, was greater

in un-limed plots. Hardness, measured with this apparatus, is known to have an

influence on the impact behaviour of footballs (Baker and Isaac 1987, Bell and Holmes

1988) and cricket balls (Lush 1985).

1.10 RESEARCH OBJECTIVES

Construction, irrigation and fertiliser nutrition represent major areas of golf green

management. A sound understanding of the processes involved when these factors are

utiised in order to create or improve golf green surfaces can only aid their effectiveness.

The general objective of this research was to improve our understanding of how these

processes affect Festuca / Agrostis golf greens in the UK.

A field trial was prepared which facilitated the examination over several years of golf

green surfaces on three different construction types supplied with low, medium or high

amounts of irrigation and five rates of nitrogen fertiliser with and without phosphate

fertiiser. Each of the 90 combinations of these treatments were studied.

The study was largely empirical. That is, treatments were applied and their effects

examined and described. Historically, this approach has been adopted whenever a

science is in its early stages of development. In many respects the study of sports turf

surfaces in general has suffered from a lack of appreciation given to the basic biological

and physico-chemical processes involved. This has most likely come about due to the

highly commercially targetted nature of most of the research work carried out. One of the

main aims of this study was therefore to highlight the principles involved when

considering particular aspects of golf greens and their maintenance, to define the science

in effect. Our understanding of turfgrass may therefore be improved by the judicious

thawing upon scientific work in seemingly unrelated areas.
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The management of golf green turf is aimed at maintaining a quality surface for play

throughout the year. Factors contributing to the quality of this surface are its physical

nature, pertaining to the structure, texture and water-holding capacity of the rootzone, its

visual appearance, pertaining to the extent and form of species cover, and the combined

effects of these two factors on the behaviour of golf balls in play. By examining the

influence of management factors on each of these three components of "quality", it was

envisaged that the biological and physico-chemical processes involved may be described

and better understood.

The three different forms of golf green construction were therefore described in the more

applicable terms of soil texture, structure and proffle. Since these features are known to

affect greatly the behaviour of water in soil-plant-atmosphere systems, soil water

retention, drainage and ET were also studied. The visual quality of the turf was examined

primarily in terms of the effects of the treatments on the botanical composition of the

swards. This was carried out alongside studies of the nutrient content of the soil. The

objective here was to generate hypotheses concerning the ecological processes relating

these features, soil-water relations and the observed sward characteristics.

The playing quality aspects of turf quality were approached with the view that golf ball

behaviour is determined chiefly by the player and the surface. The influence of the

surface takes place through many of the physical and biological characteristics described

above. It was envisaged therefore, that relationships between the effects of treatment

factors on turf characteristics and golf ball behaviour (under controlled circumstances)

could be identified.

Since the interactions between management factors and turfgrass responses are very

complicated, straightforward indications of appropriate management practices in given

golfing situations are difficult to provide. The relative effectiveness of different practices

in bringing about improvements are frequently not fully appreciated. The feasibility of

using an holistic approach to the relationships between management and quality was

therefore explored. This approach was based upon techniques of multivariate analysis

used in studies of natural ecological systems. The identification of a set of readily

measurable features which together summarised the quality of a golf green surface, was

necessary. Using these, the surface could then be classified into one of a set of possible

types and management recommendations aimed at its improvement, and specific to that

type, could then be provided.
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CHAPTER 2 - EXPERIMENTAL DESIGN AND
ASSOCIATED STUDIES

2.1 INTRODUCTION

The empirical objectives of the research were to define the most appropriate fertiiser and

irrigation regimes required to produce the "best" golf green turf on differing construction

media. The treatment factors under investigation represented fundamental tools in the

hands of turf managers, but they could not be considered in isolation from one another.

Interactions between factors needed to be examined. This necessitated a large field trial

involving the controlled application of different irrigation and fertiliser treatments to

different construction media. This chapter describes the methodology, establishment and

maintenance procedures of this trial.

The present study began in October 1990. Preparatory work for the project began in

April1989. In order to provide a full description, it was therefore necessary to include in

this chapter work carried out prior to the onset of this study.

2.2 STATISTICAL DESIGN, ANALYSIS AND PRESENTATION

When designing the field trial, a randomised block design was decided upon. This

permitted a degree of control of local variation due to environmental factors such as slope

and the effects of cut and fill during levelling work. The imposition of irrigation

treatments meant that, if installation and running costs were to be kept reasonable, a fully

randomised plot design was impossible. In the case of overhead irrigation, it is more

practical to irrigate at the same rate a large plot divided into smaller sub-plots, rather than

irrigate each sub-plot individually. Similarly, it is more economical to install and maintain

fewer areas of the same construction and sub-divide these, rather than individually

construct each experimental treatment unit. The design was therefore refmed so that main

plots, for irrigation treatments, were divided into sub plots of differing construction.

Fertiliser treatments could then be applied to sub-sub-plots, within the construction sub-

plots, in a split-plot, randomised-block experimental design.

The experimental treatments consisted of three levels of irrigation (1, 2 &3), three types

of golf green construction (sand, USGA and soil), five levels of nitrogen fertiliser (Ni to
N5) and two of phosphate (Pi and P2). The trial was divided into two blocks. The three

irrigation treatments formed the main plots in each block. Each main plot was 12 m x 12

m and separated from each other by 2.5 m wide pathways. Each main plot was split into

three 12 m x 4 m sub-plots, to each of which was randomly assigned the construction

types. The construction sub-plots were further sub-divided into twelve 2 m x 2 m sub-
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sub-plots, two of which in each sub-plot were set aside for the reasons described below.

The five nitrogen and two phosphate fertiliser treatments were factorially arranged and

randomly allocated to the ten remaining sub-sub-plots in each sub-plot. The end result of

the design and three randomisation procedures is ifiustrated in Figure 2.1.

	

USGA	 SAND	 SOIL

P41 P1 NI P2 P42 P2 NI P2 P45 P2 P43 P1

P43 P2 N2 P2 P44 P1 P43 P1 P45 P1 P44 P2

P45 P2 P44 P1 Ml P1 N5 P1 P42 P1 P41 P2

P44 P2 P45 P1 P45 P2 P42 P1 P43 P2 P42 P2

P43 P1 P42 P1 P44 P2 P43 P2 P44 P1 P41 P1

P44 P2 P42 P2 P44 P2 P42 P2 P44 P2 P42 P2

	

Welt SOIL	 SAND	 USGA

P42P2 N4P2 P44P2 H2P2 N4P2 N2P2

NI P1 112 P1 P44 P2 P42 P1	 NI P2 P42 P2

Ii P1 514 2 NI P1 P41 P2 P44 P2 P43 P2

P45 P2 P43 P2 P45 P1 P44 P1 P43 P1 P41 P1

N2P2 P43P1 P43P2 P42P2 P45P2 P42P1

P41 P2 P44 P1 P45 P2 P43 P1 P45 P1 P44 P1

USGA	 SAND	 SOIL

SAND	 USGA	 SOIL

SAND	 USGA	 SOIL

P42 P1 P44 P1 P43 P2 NI P2 P44 P1 P41 P1

Ni P1 P44 P2 NI P2 P42 P2 P43 P1 P42 P1

P43 P2 P42 P2 P42 P1 P43 P1 P45 P2 P41 P2

P45 P1 P43 P1	 P44 P1 P44 P2 P45 P1 P44 P2

P45 P2 P41 P2 NI P1 P45 P1 P43 P2 P12 P2

N2P2 P44P2 P42P2 P44P2 P44P2 N2P2

SOIL	 USGA	 SAND	 lt

P42 P2 P44 P2 P44 P2 P42 P2 P42 P2 P44 P2

P42 P2 P44 P2 P42 P1 Ml P2 P42 P1 P41 P1

P44 P1 P43 P1 P43 P1 P44 P1 P44 P1 P41 P2

P41 P2 P41 P1 P42 P2 P45 P1 P45 P2 P43 P1

P45 P1 P45 P2 P45 P2 P43 P2 P43 P2 P44 P2

P43 P2 P42 P1 Ml P1 P44 P2 P45 P1 P42 P2

Under-watering [	 Replacement of	 Over-watering
treatment	 I evapo-transpiration	 treatment

[__j treatment	 _____

FIGURE 2.1

The trial randomisation. N = nitrogen, P = phosphate.

The construction types are indicated above each sub-plot. The irrigation treatments are

indicated by the intensity of shading.

The basic experimental treatment area (2 m x 2 m) of the sub-sub-plots provided

sufficient space to carry out visual assessments, ball behaviour and other physical tests,

and showed a suitably homogeneous response to fertiliser application while keeping edge

effects to a relative minimum.

The 36 remaining sub-sub-plots were set aside to provide irrigation, construction and

nitrogen fertiliser-treated sub-sub-plots for carrying out destructive sampling procedures.
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These were all located adjacent to the footpath separating the two blocks for ease of

access, and were allocated the P2 phosphate treatment. Nitrogen treatments were applied
at the N2 and N4 rates, representing low and high inputs, and were randomly assigned to

each of the two destructive sampling sub-sub-plots (DSPs) in each construction sub-plot.

The choice of five rates on nitrogen fertiiser was made to facilitate the recognition of
curvature in nitrogen response data. Statistical tests of curvature were incorporated into

analysis of variance (ANOVA) procedure using linear, quadratic and cubic polynomial

fitted curves. By choosing five levels, the option of fitting more specific models, for

example those derived from asymptotic regression or inverse polynomial relationships
which have been frequently used to model plant responses to nitrogen application (eg

Canaway 1985a,b) was maintained. The actual rates of nitrogen applied, and the form

and quantity of phosphate fertiliser used, are discussed in Section 2.9.

IRRIGATION...................................................................................2

RESIDUAL......................................................................................2

CONSTRUCTION..............................................................................2
IRRIGATIONx CONSTRUCTION.........................................................4

RESIDUAL......................................................................................6

NITROGEN.....................................................................................4
PHOSPHATE...................................................................................1
IRRIGATIONx NITROGEN.................................................................8
CONSTRUCTIONx NITROGEN...........................................................8
IRRIGATIONx PHOSPHATE...............................................................2
CONSTRUCTIONx PHOSPHATE.........................................................2
NITROGENx PHOSPHATE................................................................4
IRRIGATIONx CONSTRUCTION x NITROGEN......................................16
IRRIGATIONx CONSTRUCTION x PHOSPHATE....................................4
IRRIGATIONx NITROGEN x PHOSPHATE............................................8
CONSTRUCTIONx NITROGEN x PHOSPHATE......................................8
IRRIGATION x CONSTRUCTION x NITROGEN x

PHOSPHATE..........................................16

RESIDUAL....................................................................................81

TABLE 2.1

Skeleton ANOVA table for the treatment structure showing degrees of freedom within
each stratum.
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A skeleton ANOVA table, not incorporating tests of curvature of nitrogen response, but

giving degrees of freedom for each level in the ANOVA structure, is shown in Table 2.1.

The irrigation and construction/irrigation strata of the ANOVA table have their own

residual mean squares which were used to generate "F" ratios and standard errors of

differences between appropriate means. This is normal procedure for analysing split-plot

experiments. For certain aspects of the study, sequential observations of the same

variables were made on each of the sub-sub-plots over the trial period. When

comparisons of the means of such observations were to be made between assessment

dates, a single split-plot analysis of all the relevant data was performed, regarding time as

an additional split-plot treatment. An additional stratum of time was therefore

incorporated into the ANOVA table, above the irrigation stratum (Table 2.1).

Pearce (1953) suggested that the split-plot approach was appropriate for the analysis of

repeated observations on perennial crops, and this view was supported by Steel & Tome

(1960) and many workers have subsequently adopted this method of analysis (eg Thomas

& Wilkinson 1975, Barry 1976). Rowell & Walters (1976) pointed out that with such an

analysis, the split-plot classification (time) is not randomised as it should be for a genuine

split-plot design. These authors suggested that a more appropriate analysis would consist

of the analysis of contrasts of linear functions of the variables over time. The

interpretation of such an analysis of the data obtained in this study is however extremely

difficult and demonstrates a degree of complexity which, when described in full, tended

to obscure the basic goals of the project. For this reason, the split-plot approach

described above was employed where necessary.

A major difficulty encountered with experiments consisting of several main effects and

many interactions is one of the presentation of means which may be significantly different

from one another in interactions between treatments of several orders. The limitations are

brought about by the two-dimensional page on which the data are presented, and also in

the visualisation of such interactive effects in the mind of the reader. It was therefore

necessary, on occasions, to present the means of lower orders of interactions when those

means were themselves the product of significant but higher interactive effects. In

general, if a significant interaction F - ratio was small in comparison with that of the main

effect, then the main effect means were considered in addition to those of the interaction.

If the interactive F - ratios were greater than those of the main effects, only the interactive

means were considered.
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2.3 SITE PREPARATION

The location of the experimental ground was the Sports Turf Research Institute, Bingley,

West Yorkshire, England, N.G.R. SE 095391. The trial was sited on a slight slope with

a southerly aspect at an elevation of 211 m above mean sea level. Construction work on

the trial was completed by August 1988, when seeding of the area took place.

A plan view of the main construction features of the trial is shown in Figure 2.2. The

original slope of the ground was from the top of the plan (northern edge) to the bottom

(southern edge).

CATCHWATER DRAIN	 0 JUNCf ION BOX

- - - - PERFORATED DRAIN PIPE 	 X OUTLET

SCALE =1:457	 ------------IRRIGATION PIPE	 '	 SPRINKLER HEAD

FIGURE 2.2

Plan view of the main construction features of the trial.
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The initial construction work involved:-

i) The levelling of the trial area by the cut and fill principle.

ii) The introduction of catchwater/intercept drains.

iii) The introduction of sub-plot pipe drains.

iv) The introduction of pipework and electrical control system for the

irrigation system.

I) Site levelling

Having removed the top 350 mm of topsoil from the affected area of the initial slope, and

excavated other waste material to the surface of the sub-soil, levels were adjusted over the

designated area to produce a smooth surface with a regular gradient of 1 in 80 from the

north to the south.

ii) Catchwater / intercept drainage

Catchwater drains were installed to prevent surface and sub-surface run-off water, from

areas around the trial of higher elevation, flowing onto the trial itself and the area

immediately to the south. Drains were laid with a fall of not less than 1 in 100 toward the

outlet. Perforated plastic drainpipes (to BS 4962:1973, diameter 110 mm) were set in

trenches of minimum depth 600 mm to invert, and width 150 mm. The trenches were

back-filled, to a depth of 75 mm from finished ground level, with the lightweight

aggregate, "Lytag". This material, discussed later in the chapter, is a synthetic form of

pea gravel. The drains were capped off with 75 mm firmed depth coarse sand.

iii) Pipe drainage of sub-plots

Each sub-plot was independently drained by means of a single perforated plastic pipe (to

BS 4962:1973, diameter 80 mm) set into the levelled subsoil. The precise mode of

installation of the pipe drains varied with the construction treatment of the sub-plot and is

discussed in the following section. At the southern end of each sub-plot the perforated

pipe was connected to un-perforated plastic pipe (to BS 4660:1973, type 1420). This

pipe continued through the sub-soil to emerge from the southern banking. End stops

were installed to seal the northern open ends. By this means drainage water from each

sub-plot could be independently collected, or fed into the southern-most catchwater. This

arrangement is shown in Figure 2.2.

iv) Irrigation system

Trenches were excavated to a depth of 350 mm to invert below the subsoil formation

surface to house the sprinkler supply pipes and control leads. Glass-fibre reinforced

cement junction boxes were installed to house control features of the irrigation system.
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2.4 THE CONSTRUCTION TREATMENTS

Installation of construction treatments

Each sub-plot was excavated to the appropriate depth in the sub-soil, and drain trenches

were installed and the pipes set into them. All four sides of each plot were lined, before

the incorporation of drainage and rootzone material, with 300 guage polythene sheeting

from the sub-soil level to the fmished level of the trial. This was intended to inhibit lateral

movement of water and roots between sub-plots and to and from paths, and to avoid

mixing of rootzone media.

The three construction treatments incorporated into the trial included two suspended water

table (SWT) designs, with either a pure sand or a USGA (United States Golf

Association) specification rootzone, and a simple topsoil construction. Transverse cross

sections of each construction treatment are shown in Figure 2.3. It should be noted that

the sand and USGA cross sections are identical in all but the actual rootzone media used.

The USGA specffication for the rootzone mixture (USGA 1989) was arrived at by mixing

10% by volume of the local topsoil with 15% by volume sterilised Irish sphagnum moss

peat and 75% sand.

SAND /USGA	 SOIL	 BLINDING	 LYTAG
_____ ROOTZONE	 ROOTZONE _____ SAND	 _____

FIGURE 2.3

Schematic cross sections of the construction types.

a) Sand and USGA construction.

b) Soil construction

Particle size characteristics of construction media

An assessment of the particle size distribution and organic matter content of the

construction media provides a basic but convenient description of the materials used in the

installation of the trial. Such an analysis was carried out on all the construction treatment
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materials, with the exception of the Lytag, in order to obtain a general impression of the

physical nature of the materials used.

Particle size distribution data, or mechanical analysis data, of the media were obtained by

the method of Piper (1942). Briefly, prior to sieving, the removal of cementing agents

and organic matter was carried out by boiling air-dried samples with hydrogen peroxide

until all gaseous hydrogen peroxide had been removed. Samples were then shaken for

two hours with 10% sodium hexametaphosphate in order to bring about the

deflocculation of soil colloids. Sand fractions were determined by sieving the dried soils

through successively finer sieves. Silt and clay fractions were determined by

sedimentation.

Soil organic matter was determined by loss on ignition. Weighed, air-dried samples were

ignited at 400°C for eight hours and then reweighed. The resultant loss in weight was

expressed as a percentage of the weight before ignition. This method is described by

Baker (1985). The results of the particle size distribution and organic matter content of

the construction media are shown in Table 2.2.

CATEGORY DIAMETER BLINDING SAND USGA SOIL
__________ (mm)	 SAND ______ ______ ______
Stones	 >8	 1	 0	 0	 3
Coarse gravel	 8-4	 7	 0	 0	 2
Fine gravel	 4-2	 15	 0	 0	 3

V. coarse	 2-1	 12	 0	 1	 5
Coarse sand	 1.0-0.5	 34	 1	 22	 11
Medium sand	 0.50-0.25	 24	 55	 66	 15
Fine sand	 0.250-0. 125	 5	 41	 6	 16
V. fine sand	 0.125-0.050	 1	 1	 1	 14
Silt	 0.050-0.002	 1	 1	 2	 24
Clay	 <0.002	 0	 1	 2	 15

Organic matter	 -	 0	 0.8	 4.7
content (%) 	 ____________ ______________ _________ _________ _________

TABLE 2.2

Particle size distribution of the rootzone media and blinding sand

(% by weight in each size fraction.)

2.5 SEEDBED PREPARATION AND SOWING

Sterilisation of the soil and USGA sub-plots was necessary in order to eradicate weed

seeds and turf pests and diseases such as nematodes, soil-borne fungi and soil insects.

The sand sub-plots were assumed to be sterile in this respect. Sterilisation was achieved

by treatment with methyl bromide gas.
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Following sterilisation, soil sub-plots were cultivated using a hand-operated mechanical

cultivator to relieve compaction throughout the full depth of the rootzone. In order to

improve the water retention capacity of the sand surface during the vital period of seed

germination, the commercial seaweed-based soil improver "Alginure" was raked into the

surface of the sand sub-plots at a rate of 75 g m 2 This product contains gelatinous

alginates which are able to absorb water, but eventually break down through biological

decomposition.

Alternate hand-raking and heeling of the seedbeds was carried out to produce a smooth,

evenly firmed, fine tilth for the sowing of seed. Stones and other deleterious materials

were raked up and removed from the soil sub-plots during this process. Shortly before

seeding was carried out, the seedbed fertiliser "Floranid" (BASF) (N:P:K - 15 : 9: 15)

was evenly applied at a rate of 40 g rn-2, and raked into the surface.

The seed mixture used for the main plots was an 80 : 10 : 10 blend, by weight, of

Festuca rubra ssp. commutata cv. Fnda : Agrostis castellana cv. Highland : Agrostis

capillaris cv. Bardot. The total quantity of seed required was divided into two, each half

being sown evenly, by hand, in transverse directions and then lightly raked in. All

seedbeds were sown at a rate of 35 g rn-2 in week 35 (August) 1988. Throughout the

ensuing germination period, the surface of the trial was kept moist by irrigation with the

sprinkler system as and when necessary.

2.6 MAINTENANCE DURING TURF ESTABLISHMENT

The imposition of the irrigation and fertiliser treatment programme began 18 months after

sowing had taken place. In real golfing circumstances, a green constructed in August

would receive play the following spring, only six months after seeding. It was necessary

however to extend this period by one year due to poor rates of turf establishment.

The establishment period was considered to be complete by the time of the first treatment

fertiliser in week 15 (April) 1990. Prior to this, management procedures were carried out

to produce turf able to withstand the close-mowing and wear received by golf greens.

These procedures were categorised as follows:-

i) Fertilizer	 v) Pesticide applications
ii) Mowing	 vi) Spildng and verti-draining
iii) Verti-cutting	 vii) Irrigation
iv) Top-dressing and levels adjustment

LEEDS UNIVERSITY LIBRARY
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The maintenance work received by the trial during the eighteen month establishment

period is described for each category.

i) Fertilizer

Prior to the winter of 198 8/89, a single dressing of ammonium nitrate ("Nitram" - ICI)

was applied to the sand sub-plots at a rate of 5 g rn-2. This took place in week 43

(October). Throughout the growing season of 1989, fertiliser was applied to the entire

trial area. The first two dressings were of an N: P: K fertiliser of the "Longlife" (ICI)

series, (14: 3 : 7). Subsequent dressings were of "Nitram". "Longlife" was applied in

solid form by hand.

WEEK NUMBER RATE	 FORM	 METHOD

______________ (kg_ha-') __________ ___________

18 (June)	 220	 14: 3 : 7	 By hand

22 (June)	 220	 14:3:7	 Byhand

25 (June)	 57	 "Niiram"	 In solution

28 (July)	 57	 "Nitram"	 In solution

31 (August)	 60	 Iron Sulphate	 In solution

35 (August)	 57	 "Nitram"	 In solution

39 (September)	 57	 "Nitram"	 In solution

41 (October)	 57	 "Nitram"	 In solution

(NB. 57 kg ha-' "Nitram" = 20kg ha-' N, 220 kg ha-' "14:3:7" = 31 kg ha-' N)

TABLE 2.3

Fertiliser dressings applied to the trial during the 1989 growing season.

"Nitram" was applied in solution using a pedestrian pressurised trolley sprayer with a 2 rn

boom (Drake and Fletcher). The date, form, rate and method of application of fertiliser

during the 1989 growing season are summarised in Table 2.3.

ii) Mowing

The length of time between cuts was largely determined by the perceived growth rate of

the turf. Soil sub-plots were first mown 4 weeks, USGA 5 weeks and sand sub-plots 7

weeks after sowing. Throughout the winter, mowing took place once per month, and

this was gradually increased so that from April to September it was carried out twice per

week. The height of cut was gradually reduced from 25 mm after sowing to 19 mm in

week 16 (April) 1989 and further to 13 nm-i in week 22 (May) 1989. This height was
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maintained until week 1 (January) 1990 when it was reduced to 10 mm and then to 8 mm

in week 13 (March) at the start of the experimental fertiliser treatments. The mowers used

throughout this period were pedestrian single-cylinder mowers with ten blades per

cylinder.

iii) Verti-cutting

The condition of the turf in 1988 was too delicate to facilitate any verti-cutting. This

procedure, which involves passing a series of vertically rotating blades across the turf in

order to cut through horizontally-growing leaves and stolons, was first carried out in

weeks 29 (July), 37 (September) and 41 (October) 1989 on both soil and USGA sub-

plots. The blades were set very lightly so as to just flick the rootzone surface. Verti-

cutting was not repeated until the fertiliser and irrigation treatments had begun.

iv) Top-dressing and levels adjustment

Top-dressing is a procedure carried out only on established turf during the growing

season. Throughout the establishment period, only the soil sub-plots were treated with

one dressing of USGA mix at a rate of 1 kg rn- 2 in week 29 (July) 1989. No other routine

maintenance top-dressing was undertaken.

During 1989, settling of the rootzone materials took place producing numerous low-spots

on some sub-plots. This occurred most notably on the soil constructions. Low-spots

tended to occur at the southern, drain-outlet ends of the sub-plots. A levelling survey

was carried out in week 20 (May) 1989 in order to reveal the degree of deviation from the

intended plane of the trial surface. Levels were taken at 1 m centres over each plot. A

contour diagram of one of the worst affected plots is shown in Figure 2.4. Contour

heights, at 10 mm intervals, represent the heights above (positive) or below (negative) the

average north - south sloping plane of the plot surface relative to a temporary bench mark

(TBM), located 36 m from the trial centre. The development of distinct interfaces

between two construction types within the plots is clearly indicated, as is the subsidence

on the drain outlet end of the soil sub-plots.

The problems associated with the levels were two-fold. Firstly, sharp changes in ground

height may lead to "scalping" of the turf during close mowing. Secondly, the existence

of low spots may contribute to loss of uniformity in the amounts of rain and irrigation

water reaching the surface of the plots. In the case of the soil constructions this

phenomenon was particularly serious since rain and irrigation water were frequently

received at rates exceeding the water infiltration rate of the rootzone medium. Lateral

water movement would therefore take place and result in ponding in the low-spot areas.
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FIGURE 2.4

Contour diagram of the most undulating plot in week 20 (May) 1989,

adjusted to remove the overall north - south slope effect.

The correction of levels may be achieved by either or both of two means. Low areas may

be raised slowly by the gradual application of top-dressing to the appropriate area. Over

several months during the growing season, this method can raise levels by up to about 15

mm. In situations in which areas need to be raised (or lowered) by heights greater than

this, cutting and lifting of the of the established turf is necessary.

In four areas on three of the six soil constructions the surface had depressed by more than

25 nm-i below the general plane of the plot. These areas were raised by the addition of

heat-sterilised soil beneath the turf which was lifted using a motorised turf cutter with the

blade set at a depth of 35 mm. The operation was carried out in week 29 (July) 1989.

After replacement of the turf, the areas were lightly rolled. A further correction of the plot

levels was carried out by applying the respective rootzone media as topdressing to each

square metre of the plots, the quantities applied depending on the necessary amount of

lift. One quarter of the total volume necessary in theory for the lift was applied in this

manner in week 29 (July) 1989. Thereafter the levels were considered to be satisfactory.
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v) Pesticide applications

During the establishment period, three pesticide applications were made. The first two

took place in weeks 38 (September) and 43 (October) 1988, one and two months after

seeding. These were both with the fungicide "Brassicol" (Rhone-Poulenc), the first

application being made to soil sub-plots, the second to the entire trial. The active

chemical in this compound is quintozene and it was used to prevent Fusarium spp.-

induced seedling diseases such as seed rot and pre - and post-emergence damping off.

The third application took place in week 6 (February), 1990 and was of "Gammacol"

(Id), a gamma- HCH-containing formulation designed for the treatment of

"leatherjackets" or Crane-fly larvae (Tipula paludosa Meig.). These organisms feed on

underground grass stems and roots and severe outbreaks may cause serious damage to

turf. All pesticide applications were made using the pedestrian pressurised trolley sprayer

with a 2 m boom (Drake and Fletcher).

vi) Spiking and verti-draining

No spiking treatments were carried out until week 43 (October) 1989. Using slit tines of

150 mm depth and 180 mm separation, spiking was carried out weekly throughout the

remaining weeks of 1989 and fortnightly until the beginning of fertiliser treatments. One

pass with the machine was carried out in each case.

To improve drainage on the soil construction sub-plots, a single verti-drain treatment was

carried out in week 34 (August) 1989. The verti-drain machine, mounted on a turf

tractor, was equipped with 250 mm, solid tines of 12 mm diameter set at 50 mm

spacings. The tines swung through an angle of 20° - 25° when thrust into the ground to

their full extent. Immediately prior to this treatment, USGA rootzone mix was spread

over the soils at a rate of 5 kg m-2. This was worked into the verti-drain holes afterwards.

The effectiveness of the verti-drain was tested by measuring the water infiltration rate of

the DSPs before and after treatment. This was achieved using the method of Schmidt

(1980). Two steel rings, of depth 200 mm and approximate diameters 300 and 500 mm,

were arranged concentrically and hammered into the turf to a depth of about 50 mm.

Both rings were then filled with water and maintained in this condition for 15 minutes in

order to saturate the ground beneath each prior to rate measurement. Infiltration rate was

then recorded by measuring the height fallen by water in the inner ring over a given time.

Values were corrected for the variation in the viscosity of water with temperature by

adjusting to a common temperature of 10 °C. The purpose of the outer ring was to reduce

errors in the measurement caused by the lateral movement of water through the soil. Each
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of the destructive sampling sub-sub-plots was measured in this way, taking five

measurements from each.

The verti-drain treatment had the effect of increasing surface water infiltration rates from a

mean value of 2.5 mm hr' (standard error [SE] = 0.08) to 22.3 mm hr 1 (SE = 2.5),

measured in weeks 33 (August) and 45 (September) 1989. This was considered to be

satisfactory.

vii) Irrigation

The overall daily irrigation requirements were calculated using specialist software (TORO

Network 8000 System) on an IBM computer linked to an automatic weather station

located 74 m from the centre of the trial. Solar radiation, wind speed and direction, air

temperature and humidity were relayed to the computer which calculated the daily evapo-

transpiration (ET) using an unspecified and inaccessible derivation of the Penman

equation (Penman 1948, 1963) that was not specified by the manufacturers. Precipitation

was also measured at the weather station and this was subtracted from the demand ET

figure. The sprinkler systems were then activated, one by one, for the required duration

to replace the theoretically-derived and precipitation-adjusted moisture loss.

Irrigation of each main plot was initially achieved through four pop-up sprinkler heads,

installed during construction (Section 2.3 iv.), and arranged in a rectangle of sides 12.53

m and 13.96 m, the longest side parrallel to the central footpath and orthogonal to the

construction types. The sprinlder heads used were TORO XP 300 with an output rate,

according to the manufacturer, of 8.49 1 miii' when turning through an arc of 90° with a

pump pressure of 50 psi. Over the area irrigated by each set of four pop-ups, this

produced a theoretical irrigation rate of 11.6 mm hr- 1 . In week 49 (December) 1989 these

heads were replaced by the larger TORO 640 (nozzle size 40) heads and the pump

pressure was adjusted to 100 psi. These heads were arranged in a square around each

plot of side 14.85 m. This allowed 1.43 m to reduce edge effects brought about by wind

drift during sprinkler operation.

During the establishment period the XP 300 system was employed to provide daily

replacement of ET from the sowing period (week 34 [August] 1988) until week 42

(October) 1988, and from week 15 (April) 1989 until week 42 (October) 1989. From

week 10 (April) 1990 until week 15 (April) 1990, when differential irrigation treatments

began, the TORO 640 system was employed in the same manner. Irrigations took place

daily at 24:00 hours, unless frost threatened in which case they were carried out at 17:00

hours. Throughout the summer of 1989 the system was manually activated for periods of
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between 10 and 30 minutes per plot to provide additional moisture on particularly warm

and dry days.

2.7 SPRINKLER DISTRIBUTION PATTERNS AND RATES

The output rates and distribution patterns of the six sets of XP 300 sprinklers were tested

by arranging 85 plant-pot saucers, of diameter 181 mm, over each plot, placing them on

the corners and centres of each sub-sub-plot, and activating the sprinklers for 30 minutes.

The direction and speed of any wind was noted every 2 minutes during the running time

of the spriniders. From this work the mean output rate of all the XP300 plot irrigation

systems was found to be 7.0 mm hr 1 . A typical distribution pattern obtained from these

data under still conditions is shown in Figure 2.5. Contours represent rate intervals of 1

mm hr 1 . The central low area with higher rates in the middle of each side represents a

pattern produced by spriniders projecting water less than the distance between the heads.

The coefficient of variation of the data presented in Figure 2.5 was 22.4.
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FIGURE 2.5

Typical distribution pattern of irrigation rates delivered by the XP 300 system

under still conditions. Contours represent rate intervals of 1 mm hr'.

Mean delivery rate = 7.0 mm hr'.

The TORO Network 8000 System controlled irrigation times based on the manufacturers

estimates of the TORO sprinlder head output rates. The measured output of the XP 300

systems was found to be only 61% of this. Therefore, during the period over which the
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XP 300 heads were employed, the plots received only 61% of the theoretically derived

water losses. This phenomenon, coupled with the excessive spacing of the heads and

subsequent low coverage, led to serious underwatering during much of the establishment

period. These effects were most severe in the centres of the plots and caused poor

establishment of the turf, most notably on the sand-based constructions. It was therefore

decided that the application of differential irrigation and fertiliser treatments should be

delayed by one year, and that the sprinkler heads should be replaced by the more

powerful TORO 640 heads.
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FIGURE 2.6

Typical distribution pattern of irrigation rates delivered by the 640 system

under still conditions. Contours represent rate intervals of 2 mm hr'.

Mean delivery rate = 24.3 mm hr-'.

Each 640 head in the system was designed to project water as far as its neighbouring

heads and this produced an overall mean output rate per plot of 24.3 mm hr'. The

distribution patterns obtained were typified by that shown in Figure 2.6. This shows a

high spot in the plot centres, with the rate declining from there outwards. The coefficient

of variation of the data presented in Figure 2.6 was 16.8.

This pyramidal form of distribution was only obtained in absolutely still conditions.

Wind-induced distortions of this would be expected to take place on most occasions the

sprinklers were activated. After carrying out distribution tests on the same plot system at
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an average wind speed of 4.0 mph, the mean delivery rate to the plot fell to 22.2mm hr1.

This wind produced the distribution pattern shown in Figure 2.7. The coefficient of

variation of these data was 14.2. When the same plot system was examined at a wind

speed of 6 mph, mean delivery rate remained roughly unaltered at 22.7 mm br- 1 , but the

coefficient of variation rose to 26.1. Another plot system had a coefficient of variation of

21.7 under still conditions, a figure which rose to 25.9 when tested at an average wind

speed of 3.4 mph. The mean irrigation rate fell in this case from 25.1 mm hr-' to 20.7

mm hr'.
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FIGURE 2.7

Typical distribution pattern of irrigation rates delivered by the same 640 system as in

Figure 2.6 with a 4.0 mph wind blowing in the direction of the indicator arrow.

Contours represent rate intervals of 2 mm hi-'. Mean delivery rate = 22.2 mm hr1.

Continuous wind during sprinkler operation would tend to shift the pyramidal pattern

(Figure 2.6) towards the downwind side of the system, and fragment the cumulative

effect of the four sprinklers, producing smaller and more numerous peaks. A gusting

wind would produce a combination of the distribution patterns induced by the high and

low wind speeds. This investigation showed that any wind up to about 3 mph caused a

fall in delivery rate to the area of concern, but did not greatly affect the uniformity of

distribution. Indeed, it may even have improved it. However, wind-speeds greater than

4 miles per hour did significantly reduce uniformity.
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Sprinkler distribution patterns were clearly very sensitive to changes in wind speed and

direction. Such effects would have come into play almost every time the spriniders were

activated. The still-conditions pyramidal distribution pattern (Figure 2.6) presented the

possibility of data analysis using a covariate of irrigation rate delivered to each sub-sub-

plot within each plot. This possibility was rejected on the grounds that the frequency of

irrigation treatment application and the shifting of the distribution pattern by the wind in

each case would have brought about an adequate degree of uniformity over time in the

extent to which each sub-sub-plot was irrigated. Departure from uniformity was

otherwise accepted as a source of error buffered by the sub-sub-plot randomisation.

2.8 THE IRRIGATION TREATMENTS

The TORO Network 8000 system contained the facility to individually control the overall

rate of irrigation delivered by each of the six pop-up systems. The imposition of the

irrigation treatments to each plot was therefore achieved by stipulating the percentage of

theoretical demand ET (TDET) that was to be replaced. Three irrigation treatments were

selected, an under-watering treatment in which less than 100% of TDET was replaced

(1), the straightforward replacement of TDET (2) and an over-watering treatment in

which greater than 100% of TDET was replaced (3).

In 1990, the percentages of TDET selected to correspond with the treatment imposition

were 1) 75%, 2)100% and 3)125%. This range produced only slightly significant

variation in one of the factors measured and reported in the study (see Chapter 3) and this

was probably due to two causes. Insufficient time may have elapsed for the treatments to

take effect, and the chosen rates of the under and over-watering treatments may have been

inadequately dissimilar. Since the primary ET figure was adjusted for rainfall before the

final treatment values were calculated, then when rain fell, this tended to bring the under

and over-watering demand ET figures closer to 100%. For example, in July 1990, the

total irrigation applied to the three treatments was 22 mm, 29 mm, and 37 mm,

corresponding to 76%, 100% and 128% of theoretical, rainfall-adjusted demand ET.

Adding rainfall meant that the total amount of water reaching the three treatments

represented 91%, 100% and 112% of demand, thus greatly reducing the range of the

treatment. In wet months this phenomenon was even more pronounced.

Access to the computer programme in order to incorporate the rainfall lower down the

TDET replacement calculation was not possible. Therefore, in order to induce treatment

responses more effectively, in 1991 the percentages of TDET selected to correspond with

the treatments were altered to 60%, 100% and 140%. At weekends the under-watering

treatment plots were not irrigated at all. They were also provided with the facility to be
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covered with 14 m x 14 m "ripstop" plastic covers. These were utilised, during 1991,

when heavy rain appeared imminent during normal working hours and overnight during

weekdays when manpower was available to manoeuvre them. The time and duration of

each covering was noted, and the durations kept to a minimum in order to avoid

complexing irrigation responses with those brought about by the change of environment

beneath the covers. In 1992, no occasions arose when the covers could practicably be

utilised.

The irrigation treatments were applied between week 14 (April) and week 42 (October)

1990, week 15 (April) and week 42 (October) 1991 and week 19 (May) and week 39

(September) 1992. The durations of each irrigation were derived from weather data

collected during the 24 hour period beginning and ending at 16:00 hours. From the onset

of treatment irrigation until week 19 (May), irrigation took place at 17:00 hours to avoid

frost damage caused by surface water freezing overnight. The remaining irrigations took

place at 24:00 hours.

2.9 THE FERTILISER TREATMENTS

The rates of nitrogen (Ni to N5) were chosen to span the expected optima of all three

construction types (Escritt and Legg 1969, Christians et a!.. 1981, Lawson 1987). The

rates were 35, 110, 235, 410 and 635 kg N ha- 1 yr -1 Nitrogen was applied in solution

as a mix of 50% ammonium sulphate-N (Gem Gardening, Accrington) and 50% urea-N

(Sinclair Horticulture and Leisure, Lincoln). The total amounts of nitrogen were divided

into equal dressings and each dressing applied in about 6 1 of water with a watering can

fitted with a rose. Applications to each sub-sub-plot took place 9 times per year for sand

constructions, 6 times for USGA constructions and 3 times for soils. The dates of the

fertiliser treatment applications to each construction are shown in Table 2.4.

The two phosphate levels were chosen to induce either a deficiency or an adequate supply

to the sward (Canaway eta!. 1987). The rates applied were 0 (P1) and 50 (P2) kg P205

ha- 1 yr'. Phosphate was applied in microgranular form as superphosphate (Gem

Gardening, Accrington). It was applied by hand in one dressing in week 15 (April)

1990. The powder was thoroughly mixed with a few handfuls of sand top-dressing to

improve the uniformity of distribution within each sub-sub-plot and to avoid losses to the

wind. Cross contamination between adjacent sub-sub-plots during treatment fertiuiser

application was avoided by using a 2 m square, 400 mm high, open-bottomed wooden

box.
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WEEK NUMBER SAND USGA SOIL

15 (April)	 N, P	 N, P	 N, P

18 (April)	 N	 -	 -

19(May)	 -	 N	 -

21(May)	 N	 -	 -

24 (June)	 N	 N	 N

27 (July)	 N	 -	 -

28 (July)	 -	 N	 -

30 (July)	 N	 -	 -

33 (August)	 N	 N	 N

36 (September)	 N	 -	 -

37 (September)	 -	 N	 -

39 (September)	 N	 -	 -

TABLE 2.4

Dates of treatment fertiliser application to each of the construction types in

1990, 1991 and 1992.

2.10 NITROGEN FERTILISER DISTRIBUTION PATTERNS

The uniformity of fertiliser distribution within the sub-sub-plots was of major

importance. Seemingly trivial differences in the method of application could produce as

great as six-fold variation in the rate of application within the 2 m square areas. Such

inconsistencies could produce marked variations in the turf with respect to colour, vigour

and botanical composition etc, representing a major source of error in turf assessment. It

was also necessary that the method used was speedy enough to ensure that dressings to

the whole trial or to each block could be completed in one day. This reduced the

influence of temporal or climatic factors as sources of error during fertiliser application.

The use of an 8 1 watering-can fitted with a rose had provided a satisfactory means of

fertiliser application when used with the box in earlier work (Canaway et al. 1987, Lodge

et a!. 1990). In the present study, the highest rates of nitrogen fertiliser being applied

were such that inconsistencies in distribution could produce local high-spots in which the

rate became toxic to the grass. It was necessary therefore to examine the degree of

uniformity of distribution produced by several variations in the route taken by the

watering can over the sub-sub-plot in order to arrive at the most uniform distribution

method.
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During a dressing, fertiliser was applied in 6 1 of solution from an 8 1 watering can. The

rose was pointed downwards and when held around 300 mm from the surface produced a

spread of around 300 mm. Using this method, five routes over a 2 m square area for the

can, containing water, were tried. Eighty-one saucers, as used in the irrigation

distribution work (Section 2.7), were spread evenly over the ground in the open-

bottomed box. Each route was repeated five times in order to obtain measurable

quantities of water in each saucer. The five paths investigated are shown in Figure 2.8.

METHOD 1	 METHOD 2	 METHOD 3

.

METHOD 4	 METHOD 5

KXXE1

FIGURE 2.8

Methods of fertiiser application using an 8 litre watering can applied to a 2 m x 2 m area.

Table 2.5 shows the maximum percentage deviations from the mean volume of water

collected by the saucers for the five paths investigated. From these data it was clear that

Method 3 represented the most uniform distribution pattern and this was adopted for all

dressings applied during this study.

DISTRIBUTION MAXIMUM

PATTERN	 DEVIATION

__________	 (%)

1	 49

2	 78

3	 30

4	 55

5	 65

TABLE 2.5

Maximum percentage deviation from the mean rate of "fertiliser" application within a

sub-sub-plot for 5 different methods of distribution.
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2.11 MAINTENANCE DURING TREATMENT APPLICATION

During the period of differential irrigation, nitrogen and phosphate application, potassium

and magnesium were applied to the entire trial in the form of potassium chloride and

magnesium sulphate. These nutrients were applied in solution at rates of 180 kg K 20 ha-'

yr-' and 110 kg MgO ha-' yr1 in three dressings in weeks 15 (April), 24 (June) and 33

(August). Dressings were applied in solution using a spray boom mounted on a

lightweight turf tractor.

A single dressing of a micro-nutrient fertiiser (Microcal ICI) was applied to all plots at a

rate of 4 gm-2 in week 15 (April) 1990 and 1991. This fertiiser contained the following

nutrients: S (15%); CaO (7.5%); Fe (12%); MgO (4.5%); Mn (2.5%); Zn (1%); Cu

(0.5%); B (0.1%); and Mo (0.005%).

From week 36 (September) 1990 artificial wear was applied to the trial. The machine

used for this purpose was a D.S. 2 wear machine, described by Canaway (1982). Two

aspects of golf-type wear are simulated, the compacting pressure exerted by players

standing on the surface, and the horizontal, abrasive action brought about when players

walk or turn. The machine weighed 166 kg and had two sets of wheels mounted on

separate front and rear axles. The horizontal, tearing forces were achieved by coupling

the front and rear axles by pulleys of unequal size. This arrangement caused differential

slip to occur between the two sets of wheels. The severity of the slip was determined by

altering the ratio of the pulleys in the drive mechanism. Golf spikes were fitted to the

wheels, the number of spikes per unit area corresponding to the numbers found on a

typical golf shoe. The pulley ratio selected to simulate golf-type wear was 20 : 18

(Canaway 1982).

Wear treatments were carried out every week from week 36 (September) 1990 until the

close of the trial period in week 43 (October) 1992, except when the area was considered

unfit for play due to frost or snow. The numbers of weekly passes made with the

machine during the treatment application programme are given in Table 2.6. These were

chosen to simulate the seasonal changes in wear undergone by golf greens. Also given in

Table 2.6 are the details of the mowing and mechanical maintenance procedures carried

out during the experimental period.
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Mowing	 The height of cut was reduced from 8 mm to 6 mm in week 23 (June)

1990 and to 5 mm in week 26 (June) 1990. This was relaxed to 7

mm in week 48 (November). Mowing was carried out twice per

week until week 22 (May). From then until week 42 (October) this

was increased to 3 times per week. The height of cut was reduced to

5 mm in week 14 (April) and relaxed to 6 mm in week 43 (October).

Verticutting The thal was lightly verticut once every fortnight from week 18

(April) 1990 to week 42 (October) throughout the experimental

period.

Aeration Aeration was achieved using slit tines of 150 mm in length fortnightly

throughout the 1989-90 winter until week 17 (April). From then the

slit tines were replaced by chisel tines of 100 mm in length used once

per week until week 44 (November) when the deep slitting régime

was resumed. This chisel / slit tine treatment was repeated throughout

the experimental period.

Top dressing Top dressing was applied to the trial on six occasions during the

growing season at a rate of 1 kg rn-2. The sand sub-plots were treated

with a medium-fine sand of similar particle size distribution and

chemical analysis to the rootzone media. USGA and soil sub-plots

were top dressed with a mix of the same type as the USGA rootzone.

Top dressing was worked in using a hand lute.

Wear	 From week 36 (September) 1990, one pass per week until week 15

treatment (April) when two passes per week were made. Between weeks 24

(June) and 39 (September) four passes per week were made, after

which this was returned to one pass.

TABLE 2.6
Summary of trial management and wear treatments

2.12 DISCUSSION
The three construction treatments incorporated into the trial represent three widely

differing growth media and the maintenance of turf on each demanded correspondingly

different management procedures. For example, the verti-drain treatment was applied,

during the establishment period, only to the soil constructions, because the SWT

constructions exhibited no requirement for this. Similarly, in the treatment programme,
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fertiliser nitrogen was applied to the three construction types in three correspondingly

different numbers of dressings (see Table 2.4). This was because, intuitively, the less

the proportion of clay minerals and organic matter in the rootzone, the less the nutrient

retention capacity, and hence the need to supply nitrogen in smaller, more frequent

quantities throughout the growing season. Scientifically, this represents a departure from

a purist approach. Effects attributable to the construction media alone could not be

distinguished from those brought about by differential fertiliser dressing times or rates.

If fertiliser nitrogen had been applied to the entire trial in 9 dressings, as for the sand

constructions, this would have been contrary to the normal practice pertaining to soil

construction greens. It was therefore decided to consider each construction type as a

package of construction-related factors. In practice, this simply involved considering the

differential fertiliser application frequencies, top dressing applications, and the

preliminary levels and infiltration rates adjustments as additions to the open-ended

number of differences between the construction types investigated. The three

construction treatments may however, in some circumstances, be considered as

reresentatives of a continuum with respect to the amount of organic matter and clay

minerals which contribute to the general buffering capacity of the rootzones.

The fertiliser treatment programme provided four periods when the amounts of fertiliser

applied to each constuction type were the same. These were at the beginning and end of

the growing season, and after one third and two thirds of the treatment fertiliser had been

applied. Evaluation of the turf therefore usually took place during these periods in order

to maintain the relevance of the treatment design.

One objective of the research was to describe the dynamics of water within golf greens,

including its loss by evapotranspiration (El). The commercial computer system utilised

to predict ET water losses, and control the irrigation treatment programme, did so from

locally obtained meteorological data (see Section 2.9). This predicted value in effect

presaged any direct measurement of ET losses. Under UK conditions however, no

comparison between measured and predicted values of ET from golf green turf have been

carried out. This research therefore presented an opportunity to do so. Because no such

comparison had taken place, the imposition of three irrigation treatments on the basis of a

theoretical and un-tested measure of ET may seem inappropriate. The irrigation

treatments imposed were therefore considered simply to represent under-, standard and

over-watering of the turf. The term theoretically derived ET (TDET) was used to relate to

the three irrigation treatments imposed.
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The research objectives of the project, outlined in Section 1.10, indicate the manner in

which the work is reported. The following three chapters address the treatment effects on

the physical properties and water relations of the turf produced, ecological processes

including botanical composition and rootzone chemical changes, and playing quality

phenomena. The sixth chapter describes a method of using multivariate analysis

techniques to collate information on turf quality and indicate appropriate management

practices.
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PLATE 1

View of the trial ground in the spring of 1990.
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PLATE 2

View of the trial ground in the spring of 1992.
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CHAPTER 3 - STUDIES IN WATER RELATIONS

3.1 INTRODUCTION

The basic objective of the irrigation of golf green turf is to use water to maintain the best

possible surface in terms of visual and playing quality. In order for irrigation

management to be most effective, the appropriate frequency of application and amount of

water applied in each case needs to be known. In theory, these factors are dependent on

the rate of loss of water by evapotranspiration, the amount of plant-available water the

green construction or rootzone is capable of holding, and the speed with which water

arriving at the surface is absorbed.

The concept of plant-available water is not readily defmed. Veihmeyer & Hendrickson

(1931) proposed that the "field capacity" could be considered as the upper limit of plant

available water when gravitational drainage is not impeded. These workers also defined

the lower limit as the "permanent wilting point" which represented the moisture content of

the soil when the leaves of plants growing in it reached a stage of wilting from which they

did not recover when placed in a saturated atmosphere without the addition of water to the

soil (Hendrickson & Veihemeyer 1934). A major drawback of the permanent wilting

point is that different plant species may indicate differing permanent wilting points in the

same soil, due to inherent, specific differences in drought tolerance (Slatyer 1957).

This approach to the definition of plant-available water in golf greens may however retain

some value. This is because the differing soil / construction types under consideration in

this study support the same species maintained in basically the same growth form in each

case. The concept of permanent wilting point came out of agricultural studies in which

maintaining and improving yield was the main consideration. On golf green turf the

maintenance of quality is the chief objective. For practical purposes then, the lower limit

of desirable soil water content may be said to be that water content below which water

availability restricts one or more aspects of turf quality. These considerations would

indicate that the measurement of evapotranspiration (ET) and soil water content relative to

field capacity, coupled with some form of quality evaluation, could provide the

information necessary for deriving the optimum irrigation strategy for the three types of

golf green construction under examination.

There have been two approaches to the measurement of evapotranspiration from close-

mown turf. These are the water-balance and energy-balance methods which are

discussed in general terms by Beard (1985). Most work on turfgrass ET has utiuised the

water-balance method. This is based upon the relationships described by the equation:
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P-O-U-ET-i-AW=O	 (4.1)

in which:

ET = evapotranspiration

= change in soil water storage during the specified measurement period

P = amount of precipitation

0 amount of runoff

U = amount of drainage beyond the rootzone.

Using this equation, P, 0, U and AW are measured in order to derive ET by difference.

The water balance method of deriving ET has been successful in much recent turfgrass

research using lysimeters (eg Feidhake et a!. 1983, Johns & Beard 1981, Johns et a!.

1983). Lysimeters are well suited for the monitoring of turfgrass ET due to the largely

homogeneous nature, high shoot density and shallow rooting systems of the vegetation.

The energy balance method of measuring ET is founded on the work of Penman (1948,

1963), and incorporates the concept of potential evapotranspiration (PET). This is

defined as the evaporation from an extended surface of short green vegetation that fully

shades the soil surface, exerts little or no resistance to the flow of water, and is

maintained under non-limiting water conditions. This definition applies to well irrigated

turfgrasses and can be measured by recording the ambient weather conditions and the

aerodynamic nature of the evaporating surface.

The Meteorological Office Rainfall and Evaporation Calculation System (MORECS)

provide PET figures, measured by the energy balance method (Monteith 1981) for 40 x

40 km square areas of the UK for various crop plants, including grass mown at 150 mm.

By altering a factor related to the bulk surface resistance term of the Penman-Monteith

formula, the restrictive effects of increasing soil moisture deficits on ET are also

accounted for, enabling MORECS to provide values of actual ET (AET). Aronson et a!.

(1987) tested a model, based on the Penman formula, for predicting ET losses from well

- watered turfgrass mown at 50 mm. A small number of golf courses, located mainly in

the USA and on the Continent, have incorporated on-site weather stations, like the one

used to bring about the irrigation treatments (Section 2.6 vii), linked to computers which

generate theoretical PET figures by similar means and can automatically control the

delivery to sprinider systems to replace predicted losses.
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Actual ET can be measured using lysimeters. However, the lysimeter must adequately

reflect the soil conditions supporting the turf, and the variability of the measurements

obtained is very much dependent on its size. Tovey et a!. (1969) described turfgrass ET

and the moisture release characteristics of a sandy loam and a loam soil. These workers

estimated ET using weighing lysimeters of between 1.0 and 1.8 m 3 in volume. Such

apparatus may accurately monitor the water balance of the whole construction profile, but

the procedure is too costly to provide data for the examination of more than one or two

experimental treatments. Feidhake eta!. (1983) measured turfgrass ET using very much

smaller weighing lysimeters of only 0.0 12 m3 in volume and 229 mm depth. The

suspended water table design of golf greens (USGA 1989) relies on the existence of an

interface, at a depth of 300 mm, between a sandy rootzone and a coarse sand blinding

layer in order to bring about the water retention properties of the construction. A

lysimeter designed to monitor ET and moisture content changes within such a profile

must therefore be of a size to incorporate this interface.

Under UK conditions no direct measurements of very fine turfgrass ET have been made.

Most work on turfgrass evapotranspiration has been carried out in the USA under climatic

conditions and with turfgrass species that are not generally found in the UK. The

appropriate use of ET prediction models for golf greens in the UK remains to be tested.

In this study, ET was measured using small-scale weighing lysimeters. These were large

enough to contain the entire rootzone and water retention elements of the construction

types, but were of conveniently manageable size.

The regular weighing of lysimeters provides information regarding the changes in soil

water content which may occur. Because each one can be saturated and allowed to drain

freely, a value of field capacity may be obtained. When returned to the ground,

subsequent weights may be expressed as the difference or the soil moisture deficit (SMD)

in mm. This is useful since all the components of the water balance equation (Equation

3.1) may then be expressed in the same units. Also, the special, theoretical characteristics

of the suspended water table (SWT) form of golf green construction may be examined.

For a SW'!' construction, theory suggests that if irrigation is applied in excess of that

required to lower moisture deficit to field capacity, the excess will be lost as drainage. If

rainfall plus irrigation is equal to ET then the rootzone will be maintained at field capacity

and if the inputs are less than the ET losses, then the rootzone will dry out. However,

this theory has not been tested in the field.
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Understanding of water loss from the rootzone may be enhanced by studying the

rootzone structure and moisture release characteristics. This would enable the rootzone

water content to be expressed as the the equivalent tension, or suction, with which the

water is retained. This gives an indication of the difficulty which the turf experiences in

actual water uptake. Thus, if the equivalent tension at field capacity were known, the

lysimeter SMD values (in mm) could be translated into equivalent tensions (in kPa) using

the characteristic moisture release curves of each construction. Rootzone structure and

moisture release curves were therefore obtained in order to determine the water content of

each rootzone at which water availability was likely to become limiting.

The effectiveness with which a golf green absorbs plant-available water is also governed

by its infiltration rate. If this is appreciably less than the delivery rate, then ponding and

runoff may occur, giving rise to a range of turf - related problems and even closure of the

golf course. As was discussed in Section 1.3, rootzone texture and structure are of major

significance in determining turfgrass infiltration rates, but other factors may also come

into play. The infiltration rates of the three types of golf green construction were

therefore compared over the trial period in order to establish the importance of this feature

with respect to irrigation strategies.

3.2 MATERIALS AND METHODS

The measurement of soil moisture deficit (SMD)

In March 1990 small scale, bucket-type, weighing lysimeters were installed in each of the

36 destructive sampling plots (DSPs - Section 2.2). The design of the lysimeters is

shown in Figure 3.1. They consisted of a 370 mm length of plastic drainage pipe (BS

4660 - outside diameter 249 mm), with a stainless steel mesh and nylon voile held across

the bottom to facilitate vertical water movement but preventing loss of the solid contents

of the lysimeter. The mesh was made of woven stainless steel wire, 1.6 mm thick with

hole size 6.9 mm, and was screwed to a stainless steel retaining ring. The inner cylinder

fitted closely inside an outer sleeve made of UPVC pressure pipe (BS 3505 - outside

diameter 271 mm). The lysimeters were extracted from the sleeve by means of a

purpose-built tool which hooked onto three lifting bolts situated at equal distances around

the circumference of the top of the lysimeter (see top view, Figure 3.1).

The lysimeters contained a 350 mm deep core through the respective construction types

(see side view, Figure 3.1). The cores, of 236 mm diameter, were extracted with

minimal disturbance to the profile using an appropriately sized cutting tube. The depth of

the cores were adjusted to fit the lysimeters by the addition or removal from the bottom
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of the cores of subsoil, in the case of the soil constructions, or blinding sand for the SWT

constructions. After placing the mesh and voile over the bottom, the cores were then

transferred into the lysimeter tubes and the lifting bolts installed. The holes made by the

removal of the cores were widened to allow the insertion of the outer sleeve tubes which

remained in position throughout the study.

In week 12 (March) 1992, drainage collecting saucers, of approximately 2.8 litre

capacity, were placed beneath the lysimeters on the SWT constructions to collect water

which passed down through the voile and mesh. These consisted of a plastic disc welded

onto the bottom of a 65 mm length of the drainage pipe used for the manufacture of the

lysimeters.

The saucers were not placed beneath the soil construction lysimeters for two reasons.

Firstly, the collecting saucers would have broken the continuum between the lysimeter

contents and the underlying subsoil. This would have prevented any capillary rise, or

suction, originating from below and consequently made the soil lysimeters un-

representative of the conditions in the surrounding turf. This break was already present

on the SWT constructions in the form of the drainage aggregate carpet. Secondly,

observations in the winter of 1991 / 1992 revealed that on the soil constructions a "water

table" was formed, the height of which fluctuated between the rootzone surface and the

subsoil throughout the wetter months of the year. Any collecting vessel would have

become permanently full of groundwater whenever this water table rose above its rim at a

depth of 370 mm.

The soil construction water table was not a true groundwater table as it did not affect the

other two construction types. Water was held in the soil rootzone presumably due to

impeded drainage. Its height was monitored using piezometer tubes set into the soil near

each lysimeter. These consisted of 350 mm long plastic tubes (diameter 25 mm). The

piezometers were inserted into previously bored holes lined with coarse sand. The water

table height was recorded, at the time of each lysimeter weighing, by measuring the

distance from the soil surface to that of the water which collected in the tube. The water

was then removed with a syphon pump so that the water table equilibrated with the

piezometers after each measurement.

The surfaces of the lysimeters were kept flush with the surrounding turf by regulating the

amount of either subsoil or drainage aggregate upon which the lysimeter units rested. On

the soil constructions, the level of subsoil was regulated to ensure a water continuum was

maintained between the lysimeter subsoil and the underlying layer. This also permitted
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the uninterrupted imposition of the close-mowing, mechanical and wear treatment

programme on the lysimeter turf, with the exception of the damaging aeration procedures

using slit and chisel tines. The lysimeters were avoided when carrying out these

operations.

The lysimeters were weighed to an accuracy of 2 g on an electronic balance (Ohaus,

model 1S45, capacity 45 kg) every seven days from week 24 (June) to week 47

(November) 1990, from week 20 (May) to week 43 (October) 1991 and from week 12

(March) to week 43 (October) 1992. The overall weight of each of the units was of the

order of 32 kg.

In week 12 (March) 1992, the weight at "field capacity" of each lysimeter was found by

immersing each one in water to within 1 or 2 mm of the top for 24 hours in the case of the

soil constructions and 4 hours for the SWT constructions. The lysimeters were then

weighed immediately, to obtain the saturated weight (Wsat in kg), then allowed to drain

for 24 hours and reweighed to obtain the field capacity weight (Wf in kg)..

In week 22 (May) 1991, cylindrical cores of 80 mm length and 54 mm internal diameter

were taken from each of the DSPs. One core was taken from each of four depths (10 - 90

mm, 90 - 170 mm, 170 - 250 mm, 250 - 330 mm) throughout the rootzone media and

blinding layers of each DSP. This was achieved using a soil corer which was recessed to

house the cylinders (Dagg & Hosegood 1962). The top 10 mm of the turf, which

consisted almost entirely of grass, thatch and root material, was removed when the

samples were taken. Bulk density (D b) was calculated from the oven dry (105°C) mass

of soil in each cylinder divided by the cylinder volume. On the soil construction types,

high stone contents for depths below 250 mm (in the subsoil) meant core sampling was

not possible. In consequence, the mean bulk density of the subsoil was established from

three widely spaced locations on the paths surrounding the trial by the sand displacement

method of Smith and Thomasson (1974). The bulk densities of the different layers in

each DSP were then used to estimate the dry weight (DW) of the respective lysimeter

contents. From this information, the actual moisture content (AMC) of each lysimeter

(expressed as equivalent depth of water in mm) at field capacity (AMC f ) was derived

from Equation 3.2:

AMCfC = (Wfc - DW - LW) x 21.652	 (3.2)



62

where LW is the weight of the empty lysimeter (established before installation). The

saturated VMC (AMC sat) was determined by adding the volume (in mm) of water lost

over the 24 hour drain period to AMCf.

The soil moisture deficit (S MD), in mm, of the lysimeters was obtained from Equation

3.3:

SMD = (Wfc - Wvc3 X 21.652	 (3.3)

where Wk is the lysimeter weight (in kg) at the time of each weekly weighing.

On those occasions when a water table was present in the piezometers, the SMD values

increased by a factor which was not a function of either the treatments or the general

growth of the turf. In order to avoid the positive values of SMD which this created, a

crude estimate of the SMD of the soil constructions was therefore calculated for the

unsaturated region of each lysimeter above the indicated water level. This was achieved

using Equations 3.4 to 3.7:

ws ((h - pz) / h) x
	

(3.4)

wx = Wweek - ws
	

(3.5)

fcx= (pz/h)xWf	 (3.6)

SMD=(wx-fcx)x21.652
	

(3.7)

where pz is the depth of the water table from the surface (in mm), ws is the weight of the

saturated region (in kg), wx is the weight of the unsaturated region (in kg), fcx is the field

capacity weight of the unsaturated region (in kg) and h is the height of the column of soil

in each lysimeter (350 mm). Adjusted values of SMD were between 7 and 9 mm less

than unadjusted values in weeks when SMD was within 10 mm of field capacity, and this

difference fell to between 1 and 3 mm in the driest weeks.

The measured values of SMD were compared with the predicted figures for soil obtained

from the Meteorological Office and applying to the 40 x 40 km square in which the trial

was situated. These data are calculated using the Penman / Monteith prediction (Monteith

1981) of potential and actual evapotranspiration losses from grass of 150 mm height.
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The measurement of evapotranspiration (ET) - water balance method.

Weekly weight changes were converted to millimetres by dividing by the lysimeter

volume to give the equivalent change in the depth of water held in the lysimeter (AMC).

At the time of each weighing, following the installation of the drainage collecting saucers

in week 12 (March) 1992, the volume of water collected in each was removed with a

stirrup pump, measured (in ml) and discarded. These values were then similarly

converted to millimetres to give the drainage figures (D) for the calculation of ET.

From a knowledge of the mean delivery rate of each individual sprinkler system to the

locations of each lysimeter (see Section 2.8), the cross sectional area of the lysimeters and

the duration of each of the daily irrigations, the theoretical total amount of irrigation water

(I) reaching the lysimeters during each weekly period was computed. The rainfall (P)

which fell between weighings was also noted. The slope of the trial was only 1.25 %, so

net runoff was assumed to be zero. The measured weekly evapotranspiration (ET m), in

mm week-1 , was therefore calculated as:

ETm ((P + I) - D - iMC) x (7/n)	 (3.8)

where n is the number of days between measurements (usually 7).

The measurement of ET - energy balance method

Values of ETm were compared with the appropriate Penman / Monteith prediction

(Monteith 1981) of potential and actual evapotranspiration losses from grass of 150 mm

height (ETpMet and ETaMet) as issued by the Meteorological Office. In addition, the

mean daily wind speed, mean and minimum daily air temperature, and daily total solar

radiation, provided by the on-site weather station, were used to derive a prediction of

PET (ET 00 ) using a model based on that described by Aronson et al. (1987). A

summary of this method is provided below.

The model was based on the modified Penman equation (Burman et al. 1980, Penman

1948), and the exact form of the equation used was:

ETE	 = A (Rn + G) + _y_15.36 wf (ea - ed)	 (3.9)

A+y	 A+y

where ETE = energy available for vapourisation of water in J m 2 day-1 ; A is the slope of

the vapour pressure - temperature curve in kPa °C-'; y is the psychrometer constant (from

Penman 1948) = 0.11915 kPa °C-'; Rn is net radiation in J m 2 day-'; G is heat flux to
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the soil in J rn- 2 day-' (assumed to be zero on a daily basis); wf is the wind function
(dimensionless); and (ea - ed) is the mean daily vapour pressure deficit in kPa. ETE was

converted to mm day-' (or mm week-') using the latent heat of vapourisation at the mean

daily temperature.

The wind function (wf) (Schwab et a!. 1985) used was:

wf= 1.0 +0.00621 U2	 (3.10)

where U2 is the wind velocity (km day-') at a height of 2 m.

The saturation vapour pressure (svp) at daily mean air temperature was used for ea, and at

the mean daily dewpoint temperature for ed. The dewpoint temperature was set equal to

the daily minimum temperature (Merva & Fernandez 1985). The svp (in kPa) for a given

temperature (in °C) was calculated by the approximation of Bosen (1960) as reported in

Burman eta!. (1980). This is shown by Equation 3.11:

svp = 3.38639 [(0.00738T + 0.8072) - 0.00001911.8T + 481 + 0.0013 16] 	 (3.11)

where T is the temperature of interest in °C.

Net radiation (Re) was calculated from the expression of Schwab et a! (1985):

R = (1- r)R YTa4 (0.56 - 0.08 's/ed) (0.10 + 0.9n/N)	 (3.12)

where r = albedo (set at 0.23), Rs is incoming solar radiation (J rn- 2 day-i), Ta is the mean

daily air temperature (°K), is the Stefan-Boltzmann constant. Daily records of incoming

solar radiation were coupled with extraterrestrial radiation (from Smithsonian tables) to

obtain estimates of n/N (the ratio of actual to possible hours of sunshine).

On-site meteorological data were obtained from the automatic weather station (Section 2.6

vii), using instruments provided by Campbell Scientific Inc. Solar radiation was

measured with a LiCor solar radiation sensor, temperature using an electronic temperature

probe and wind speed with an R.M. Young Wind Sentry.

The ET estimate provided by the unspecified and inaccessible software of the on-site

computer (ETTORO) was also examined.
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Structure and moisture release characteristics

Prior to the calculation of bulk density (Db) as described above, moisture release

characteristics were measured for the cores collected from each of four depths from the

DSPs in week 22 (May) 1991. Similar cores were also taken in week 10 (March) 1990,

prior to the application of wear and of differential nitrogen and irrigation treatments. On

this occasion, only the 10 - 90 mm depth was sampled, and 2 samples were taken from

each DSP.

The core contents were held in place within the cylinders using a disc of voile held with a

rubber band. Field and saturated core weights were obtained before placing the cylinders

on a ponded, sand tension table (van der Haarst & Stakman 1965, Hall et al. 1977).

Cylinders were allowed to equilibrate for 4 days before weighing at 0 kPa moisture

potential and returning to the ponded tension table. The moisture potential was then

decreased and the process repeated. The cylinders were weighed after equilibration at -

1.5, -3.0, -4.5, -6.0, -7.5 and -9.0 kPa (i.e. at tensions of 0.15, 0.30, 0.45, 0.60, 0.75

and 0.90 m) Water potential was then increased and the process repeated, ascending

through the same steps.

The equivalent pore diameters (d - in m) corresponding to the applied tensions (h - in m)

were related by the formula (Payne 1988):

d=3x 10-5 /h
	

(3.13)

The mean bulk density and stone content of the subsoil was established from three widely

spaced locations on the paths surrounding the trial by the displacement method of Smith

and Thomasson (1974). Particle density (Dr) of the cylinder samples was calculated by

the organic matter content method of van Wijk & Beuving (1984), using the equation:

D =	 100	 (3.14)

(zJDom) + ([100z1/Dmm)

where:

Dom = true density of the organic matter component (1.46 t m3)

Dmm = true density of the mineral matter component (2.66 t m3).

Organic matter content (z in percent) was determined by loss on ignition (Baker 1985).

Particle density of the subsoil samples were measured by the specific gravity method
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(Smith & Thomasson 1974). The percentage total porosity (P) of each cylinder sample

was then calculated as:

P 0 = (1 -D1,/D)x 100
	

(3.15)

The water content of the cylinders at the various moisture potentials was expressed as the

percentage soil volume or volumetric moisture content (VMC - %). This was calculated

as:

VMC=(W1-Wd)/V)xlOO	 (3.16)

in which W1 is the sample weight at the specified tension (in g) and Wd is the oven dry

mass of the core (in g) and V is the cylinder volume (in ml).

Infiltration rates
In week 26 (June) 1989, week 37 (September) 1989, week 11 (March) 1990, week 10

(March) 1991, and week 11 (March) 1992, the rate of infiltration of standing water on the

surface of the DSPs was measured by the method of Schmidt (1980) described in Section

2.6 vi. Five such measurements were taken from each DSP, and the analysis performed

on the mean of these.

3.3 RESULTS
Soil Moisture Deficit (SMD)
The saturated and field capacity water status of the lysimeters were measured after two

seasons of differential nitrogen and irrigation treatments. Possible treatment effects were

therefore examined and AMCsa t was found to differ significantly between constructions.

AMCf did not significantly differ. The AMC data are shown in Table 3.1. The greatest

loss of water between the saturated state and field capacity was shown by the USGA

construction which lost 24 mm. The sand and soil constructions lost 9 and 11 mm

respectively.

The SMD data were expressed in relation to the individual field capacity figures of each

lysimeter (Equations 3.3 to 3.7). In 1990, no significant interactions between irrigation

and construction were observed for SMD measurements. In 1991, irrigation treatments

produced the same SMD trends as were observed in 1992 and these data were described

by Lodge & Baker (1992). The mean SMDs of the three construction types for 1990 and

1991 showed that the soil construction consistently maintained the lowest SMD (ie least

negative - the water content was greater) and the USGA construction maintained the
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highest (ie more negative - the water content was less). The amplitude of seasonal

fluctuation in SMD was of the order of 45 mm on the soil constructions and 60 mm on

the SWT constructions in both years. Because the piezometers and drainage collecting

saucers were not installed until the begining of the 1992 season, and the main area of

interest was in the irrigation treatments, the bulk of this section deals with data collected

in 1992.

CONST. AMCr AMCsat

SAND	 129	 138

USGA	 144	 168

SOIL	 131	 142

TABLE 3.1.

Actual moisture content (in mm) at field (AMCfc) and saturated (AMCsat) capacity of the

lysimeters on the three construction types measured after two seasons of differential

nitrogen fertiliser and irrigation treatment. The LSD (p ^ 0.05) for the main effect of

construction on AMCsat was 19 mm. AMCf did not significantly differ.

4 L_
12
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FIGURE 3.2

Mean weekly temperature (°C) and total rainfall

for each week of the 1992 measurement period.
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The total rainfall and mean weekly temperature for each week throughout the 1992

measurement period are shown in Figure 3.2. The total amount of irrigation supplied to

the lysimeters of each of the three treatments over the 1992 measurement period were 72

mm (60% TDET), 122 nmi (100% TDET) and 170 mm (140% TDET). The upper and

lower figures represent 59% and 139% of the 100% TDET amount respectively,

corresponding closely to the intended treatment programme. The total amount of rainfall

over this period was 275 mm. This had the effect of reducing the degree of difference

between the irrigation treatments to 87% and 112% of TDET for the lower and upper

irrigation treatments respectively. The distinction between the irrigation treatments was

therefore most apparent during dry periods.

The nitrogen fertiliser treatment had no significant effect on SMD either as a main effect

or in interaction with the construction and/or irrigation treatments. The mean SMDs of

the sand, USGA and soil (adjusted for water table fluctuation) construction types in

response to the irrigation treatments applied during the 1992 measurement period are

shown in Figure 3.3. The general seasonal trends shown by the SWT constructions were

very similar. A large increase in SMD in week 20 (May) coincided with a sharp rise in

temperature (Figure 3.2). Similarly, a sharp fall in SMD in week 35 (August) coincided

with an exceptionally high rainfall (Figure 3.2).

Differential irrigation treatment responses became apparent (though not significant) on the

SWT constructions less than two weeks after the onset of treatment in week 19 (May).

The SMD was consistently greater for the 60% TDET treatment on both SWT

constructions throughout the measurement period. On the sand constructions, the SMD

response to the 140% TDET replacement treatment was almost identical to that of the

100% TDET treatment On the USGA construction the same was true from around week

37 (August), although during most of the treatment period the 140% TDET treatment

showed slightly lower SMD values.

The highest SMD was observed in week 26 (June). The effects of the irrigation

treatments on SMD of the three construction types on this occasion are shown in Table

3.2. On the soil constructions, SMD was significantly less than that of the SWT

constructions for all irrigation treatments. The 140% TDET treatment gave a lower SMD

than the 60 and 100% treatments on all three construction types. On the sand

constructions, the overall mean SMD was not significantly different from that of the

USGA constructions, and the effects of the 100 and 140% TDET treatments did not

significantly differ. On the USGA constructions, the three increasing irrigation

treatments brought about three decreasing SMDs.
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FIGURE 3.3

The effects of three different rates of irrigation on SMD (mm) on

the three construction types over the 1992 measurement period.

Vertical bars represent the LSD (p ^ 0.05) between irrigation

treatments for each construction type upon the same date.
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IRRIGATION	 CONSTRUCTION TYPE

TREATMENT	 SAND	 USGA	 SOIL

60% TDET	 -74.3	 -72.2	 -40.7

100% TDET	 -55.0	 -67.5	 -42.5

140% TDET	 -58.5	 -55.8	 -33.5

MEAN	 -62.6	 -65.2	 -39.0

TABLE 3.2

The effects of three irrigation treatments on SMD (mm) of the three

construction types in week 26 (June) 1992, the lowest values observed throughout

the measurement period. LSD for the construction x nitrogen interaction

was 8.5, and for the main effect of construction 5.9.

By week 43 (October), one month after the end of irrigation treatment, both SWT

constructions maintained a steady state which was arrived at after the heavy rain of week

37 (August), but the 60% TDET treatments continued to show the greater SMD (Figure

3.3). This state was around -20 mm for the 140% and 100% TDET treatments on both

SWT constructions, and around -30 mm on the sand construction and -35 mm on the

USGA construction for the 60% TDET treatment.

WEEK NUMBER I MONTH

FIGURE 3.4

MORECS prediction of soil moisture deficit (mm) for the 1992 measurement period for

the 40 x 40 km square in which the trial was situated.
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The general seasonal variation in the SMD of the soil constructions followed essentially

the same pattern as the SWT constructions. From week 32 (August) to the end of

September, SMD showed a gradual return to field capacity status. The irrigation

treatments had no significant effects, although the greatest SMD, in week 26 (June), was

8 mm less (-32 mm) on the 140% TDET treatment than that of the 100% and 60% TDET

(-40 mm).

The MORECS estimates of SMD for the corresponding period are shown in Figure 3.4.

The seasonal variation followed the same general pattern as that of all three construction

types, but the scale of variation was most comparable with that of the 60 % TDET treated

SWT constructions. By week 35, the MORECS prediction of SMD had returned to

within 10 mm of field capacity (0 mm).

Evapotranspiration (ET)

During the measurement of ETm, errors arose after wet weather which were most

probably attributable to the measurement of "D" with the drainage collecting saucers.

When the drainage volumes exceeded the capacity of the saucers (about 62 mm) and

overflowed, the value of D was underestimated, giving an exaggerated value of ETm.

An arbitrary figure of 50 mm was therefore chosen so that when D exceeded this, the

individual lysimeter data were discarded from the calculations. Similarly, on occasions

after wet weather, the values of D for some lysimeter units were found to be excessively

high, indicating that water may have entered the saucers by means other than drainage

through the lysimeters. Runoff water, for example, may have run down the outside of

the lysimeters and entered the saucers. This phenomenon tended to give values of ETm

which were negative. When this occurred the individual, negative, ET m measurements

were discarded (ie when ETm was found to be less than zero). Discarding was carried

out on 119 of the 624 data points in the 1992 measurement experiment. Of these, 64

were recorded in the particularly wet period between weeks 35 (September) and 43

(October).

Having made these omissions from the data, the mean weekly evapotranspiration of the

two SWT constructions, derived by the water balance method (Equation 3.8), from the

1992 measurement period is shown in Figure 3.5 (ET m). Also shown are the predictions

derived by the Aronson method (ET 00 ), the MORECS (ETMet) and the on-site

TORO system (ETTORO). No significant differences in ET m in response to the

construction, irrigation or nitrogen fertiliser treatments were found.
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Weekly evapotranspiration rates (mm week-') measured for 5 mm turf (ET m) and ET

predictions by MORECS for 150 mm grass in the 40 x 40 km square in which the trial

was situated (ET Met), by the Aronson method (ET Aronson) and by the TORO computer

software (ET TORO) over the 1992 measurement period.
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Scattergram of measured weekly ET (ET m) against the corresponding Aronson (ET

Aronson) and MORECS (ET Met) predictions (mm weelc').
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All methods followed broadly the same seasonal pattern. The mean weekly ET m rate

was 16.0 mm week t . The mean ratio of ETTORO to ETm over this period was 1.48, and

of ETMet for 150 mm grass to ETm was 1.42. The ET 00 prediction corresponded

more closely with ETm, the corresponding ratio being 0.90. The relationships between

ET m and ETAronson and ETm and ETMet are shown in Figure 3.6. The Aronson

prediction gave close agreement throughout the range of measurements, while the

exaggerated estimates of the Meteorological Office prediction showed the greatest

discrepancy in the lower values.

Drainage losses from both constructions took place at periods and with magnitudes

corresponding closely with those of the sum of irrigation and precipitation. The

differential effects of the irrigation treatments on the total drainage losses from the two

SWT construction types during the entire 1992 irrigation treatment period, and over the 8

("dry") weeks of the measurement period when rainfall was less than 5 mm, are shown in

Table 3.3. These data show that drainage losses from the USGA construction were

higher than from the sand for the 140% TDET irrigation treatment both throughout the

treatment period, and during dry periods when the treatments were the most distinct

IRRIGATION	 ALL WEEKS	 DRY WEEKS

TREATMENT SAND	 USGA	 SAND	 USGA

60% TDET	 72	 71	 3.4	 2.4

100% TDET	 210	 232	 13.1	 12.7

140% TDET	 326	 433	 16.7	 45.2

TABLE 3.3.

The effects of the three irrigation treatments on total depth of water (mm) lost through

drainage on the sand and USGA construction types for the entire treatment irrigation

period of 1992 and for the 8 of those weeks when rainfall was less than 5 mm (dry

weeks).
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Structure and characteristic moisture release curves

The effects of the nitrogen fertiliser treatment on porosity and characteristic moisture

release curves were slight and are not described here. The irrigation treatments had no

effects on any of the features described below.

The total porosity of the three construction types from the 10 - 90 mm depth cores on the

two sampling dates are shown in Table 3.4. Total porosity was lower on all three

construction types at the later date. This reduction was most marked on the soil

constructions, the total porosity of which fell by 4.7 percentage points over the 13 month

period during which wear and differential irrigation and fertiliser treatments were applied.

CONSTRUCTION TYPE	 LSD

	

_________	 SAND	 USGA	 SOIL	 (p ^ 0.05)

	

March 1990	 42.0	 43.3	 45.2	 0.93

May 1991	 40.6	 42.3	 40.5	 1.43

TABLE 3.4

Total porosity (%) of the 10- 90 mm depth of the three construction types in March 1990

(before the application of wear and differential nitrogen fertiliser and irrigation treatments)

and in May 1991.

The reduction in total porosity on the SWT constructions was considerably smaller and in

all cases there was no significant responses to the irrigation treatments. At the 170 - 250

mm sample depth, which frequently incorporated subsoil, total porosity of the soil

constructions was 36.3%. This was significantly less (p ^ 0.05) than the porosity of the

two shallower samples.

The organic matter content and bulk densities of the 10 - 90 mm cores on the two

sampling dates are shown in Tables 3.5 and 3.6 respectively. Organic matter content

increased slightly over the treatment period and was greatest on the soil and least on the

sand constructions. At the 170 - 250 mm sample depth, organic matter content of the soil

was 3.5 %. This was significantly lower (LSD [p ^ 0.05] = 0.57) than that of the

shallower sample depths.

The bulk density of the soil constructions increased over the treatment period, while that

of the SWT constructions showed little change. At the 170 - 250 mm sample depth, bulk

density of the soil was 1.65 t m 3. This was significantly greater (LSD [p ^ 0.05] = 0.03)

than that of the shallower sample depths.
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CONSTRUCTION TYPE	 LSD

	

_________	 SAND	 USGA	 SOIL	 (p ^ 0.05)
	March 1990	 0.2	 1.6	 5.5	 0.94

May 1991	 0.8	 1.8	 5.6	 0.68

TABLE 3.5

Organic matter content (%) of the 10 - 90 mm depth of the three construction types in

March 1990 (before the application of wear and differential nitrogen fertiliser and

irrigation treatments) and in May 1991.

CONSTRUCTION TYPE	 LSD
_________ SAND	 USGA	 SOIL	 (p ^ 0.05)

March 1990	 1.54	 1.49	 1.40	 0.94

May 1991	 1.57	 1.51	 1.51	 0.68

TABLE 3.6

Bulk density (t m-3) of the 10- 90 mm depth of the three construction types in March

1990 (before the application of wear and differential nitrogen fertiliser and irrigation

treatments) and in May 1991.

During the 1991 assessment, the VMC values at the lowest moisture potential (-9.0 kPa)

showed an increase with respect to the -7.5 kPa moisture potential values. This

erroneous phenomenon was probably due to the entry of air into the tension table,

breaking the continuity of the applied suction. The -9.0 kPa values were therefore

omitted from the data that were presented. Returning the cylinders to a tension of 0 kPa

brought about only a slight increase in VMC on all construction types, most of which

occurred between -3.0 and 0 kPa moisture potential.

The VMC of the 10 - 90 mm depth samples of the three construction types on both

sampling dates at the suctions applied with the tension table are shown in Figure 3.7.

The individual responses of the three construction types were generally very similar on

both sampling dates. At -4.5 kPa moisture potential, the sand and USGA constructions

had lost around 69 % and 64 % of their saturation capacity (assumed to be total porosity)

respectively. By -7.5 kPa tension, these values had increased to 80 % and 70 %. The

soils lost 11 % of their saturation capacity by -4.5 kPa moisture potential and by -7.5 kPa

this had increased to 16 % of saturated capacity.
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FIGURE 3.7

Volumetric moisture content (VMC) of the 10- 90 mm sample depths of the three

construction types at moisture potentials of between 0 and - 7.5 kPa. Open and solid

markers refer to the week 11 (March) 1990 and the week 22 (May) 1991 assessments

respectively. Also shown are the saturated and field states from the 1991 assessment.

Vertical bars represent LSDs (p^0.05) for comparisons between construction types in

199 1. The corresponding LSDs from 1990 were all appreciably smaller and have

therefore been excluded from the figure.

Also shown in Figure 3.7 are the saturated and field moisture content of the soil in the

cylinders and the field moisture content at the time of sampling in week 22 (May) 1991.

The saturated values were slightly higher on all three construction types than the

corresponding total porosity values given in Table 3.4.

The data presented in Figure 3.7 were expressed as the percentage of total pore space of

differing size classes and these are shown in Table 3.7. The most notable change was a

reduction in pore spaces greater than 200 Lm diameter on the soil constructions, while the

proportion of the pore spaces less than 40 m diameter increased. Pore size class

distribution remained relatively constant on the USGA constructions, while on the sand

constructions, the 100 - 67 im diameter class showed a slight shift to the less than 40 .Lm

diameter class.
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PORE	 SAND	 USGA	 SOIL

DIAMETER ____ ____ ____ ____ _____ _____

	

(pm)	 1990 1991 1990 1991 1990 1991

	> 200	 17	 14	 28	 30	 9	 0

	

200 - 100	 22	 24	 31	 26	 2	 4

	

100-67	 35	 26	 7	 6	 3	 3

	

67-50	 8	 8	 3	 3	 2	 4

	

50-40	 1	 3	 2	 6	 1	 2

	

<40	 18	 25	 30	 29	 82	 87

TABLE 3.7

Percentage of pore spaces in each diameter range (jtm) of the 10 - 90 mm depths of

sample from the three construction types in week 10 (March) 1990 and week 22 (May)

1991.

DEPTH	 CONSTRUCTION TYPE

(mm)	 SAND	 USGA	 SOIL

	

10 - 90	 10.9	 12.0	 31.9

	

90 - 170	 10.4	 11.2	 29.7

	

170 - 230	 14.9	 11.0	 26.8

	

230 - 310	 19.9	 13.4	 -

MEAN	 14.0	 11.9	 29.5

SMD (mm)	 -38.3	 -49.2	 -12.3

TABLE 3.8.

Field condition VMC (%) of the three construction types at the four sampling

depths in week 22 (May) 1991, and the corresponding SMD (mm) as measured

with the lysimeters. LSDs (p ^ 0.05) for the VMC measurements were 3.13

for the construction x depth interaction, 2.57 for the main effect of

construction, and 7.61 for the SMD measurements.

The variation in VMC of the three construction types with depth of sample in the field

condition is shown in Table 3.8. Also shown are the corresponding SMD values

obtained from the lysimeter measurements for the sampling period (week 22 (May) 1991.

These data show a slight increase in water content at the bottom of the sand construction

and towards the surface of the soil construction. Water content down the USGA
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construction was more or less uniform. The overall water content was lowest on the

USGA construction and highest on the soil. The relative VMC values of the three

construction types showed the same relationships to one another as the corresponding

SMD values.

Infiltration rates

The infiltration rates of the SWT constructions were between 30 and 50 times greater than

those of the soil constructions on all assessment dates. The data for the two were

therefore presented in separate figures.
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FIGURE 3.8

Infiltration rates (mm hr-') of the two SWT constructions on 5 occasions during the trial

period. Vertical bar represents the LSD (p^0.05) for the main effect of construction type.

ns denotes non-significant differences.

Figure 3.8 shows the infiltration rates of the sand and USGA constructions on three

occasions prior to, and two following, the onset of wear and the irrigation and fertiliser

treatment programme. Before wear and differential treatment application, infiltration rates

remained around 600 mm h-' for both SWT constructions. That of the USGA

construction was significantly greater in week 37 (September) 1989. Afterwards, rates

fell to around 40 % of the early values in week 10 (March) 1991, and to around 10 % in

week 11 (March) 1992.

The soil construction infiltration rates are shown in Figure 3.9. These remained below

10 mm h- 1 for the 1990, 1991 and 1992 assessments, but showed a temporary rise to 22



30

E

w
I-

I
z
0
I-

I
I-
-J
LIz

20

10

0

79

mm h-i in week 37 (September) 1989. This assessment was carried out three weeks after

the verti-drain treatment described in Section 2.6 vi.

Infiltration rates on the SWT constructions were significantly greater at the higher rate of

nitrogen fertiliser application (410 kg N ha-' yr-i). This phenomenon was not observed

on the soil constructions. Changes in infiltration rate on each construction type between

March 1990 and March 1992 in response to nitrogen fertiliser rates are shown in Table

3.9.
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VERTI-DRAIN
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j /\ IRRIGATION TREATMENTS
YI1\	 i	 BEGIN
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	 --- SOIL
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+
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FIGURE 3.9

Infiltration rates (mm hri) of soil constructions on 5 occasions during the trial period.

Vertical bars represent the standard deviation of the data.

DATE	 CONSTRUCTION TYPE

SAND	 USGA	 SOIL	 LSD

__________ N2	 N4 N2 N4	 N2	 N4 (p ^ 0.05)

March 1990	 615	 596	 545	 532	 1	 2	 ns

March 1991	 182	 245	 197	 377	 1	 2	 29

March 1992	 39	 54	 56	 84	 2	 3	 18

TABLE 3.9

Changes in infiltration rate (mm h-i) on each construction type between March 1990 and

March 1992 in response to nitrogen fertiliser rates of 110 kg N ha-i yr' (N2) and 410 kg

N ha-i yr-' (N4). The LSDs refer to comparisons between means of the same

construction type, ns denotes such differences which were non - significant.
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3.4 DISCUSSION

The high level of rainfall received during the 1992 irrigation treatment period

unfortunately reduced the severity of the irrigation treatments quite considerably. This

highlights the difficulties of using the automated irrigation control system, which was

unable to account for rainfall, and was discussed in Section 2.8. The conditions which

prevailed during 1992, in comparison with earlier particularly dry years, did not produce

any serious drought symptoms on any fine turf area in the locality of the trial. For future

studies investigating turf irrigation in the UK, this would suggest that field trials should

be sited in areas such as East Anglia where low rainfall is more certain and irrigation

treatments may be more tightly controlled. SMD responses to the irrigation treatments did

occur however on all three construction types, and therefore some conclusions may be

drawn regarding the nature of the interactions between the three construction types and

irrigation.

The definition of field capacity as the amount of water remaining after the saturated

lysimeters had drained for 24 hours was largely arbitrary since different soils may

continue to drain for many weeks (van Bavel et a!. 1968). This may have caused

discrepancies to occur between the measured field capacities and the "stable state" SMDs

of the three construction types. The observed stable state SMD of the lysimeters

throughout the wetter periods of the year may have represented the true field capacity

more closely, particularly on the suspended water table constructions. Such a

discrepancy would be more likely to occur, however, in finer textured soils rather than

the comparatively coarse SWT rootzones, and notably did not occur on the soil

constructions.

For an SWT construction which is at field capacity, theory suggests that if irrigation is

applied at a rate above that required to lower the SMD to field capacity, the excess will be

lost. If rainfall plus irrigation is equal to ET then the rootzone will be maintained at field

capacity and if the inputs of rainfall and irrigation are less than evapotranspiration the

rootzone will dry out.

On the sand construction, the SMD data agreed to some extent with the theory of the

suspended water table. The 100% and 140% TDET treatments produced very similar

effects on SMD, while SMD for the 60% TDET treatment increased, especially during the

drier period from July to mid September. During the course of the measurement period

however, all three construction types exhibited moisture deficits which showed the same

seasonal pattern as that predicted by MORECS.
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In all cases the effect of even the highest rate of irrigation was not able to prevent the

development of large, seasonal SMDs. The moisture deficits could have been

substantially reduced on several occasions by rainfall alone, even without the more or less

constant supply from the irrigation system. This would suggest that either ET losses

were generally underestimated, or that water arriving at the surface of the turf was not

incorporated into the available space and a good deal by-passed the rootzones either as

runoff or drainage or both. Moisture deficits occurring on the USGA construction may

have been due to greater drainage losses. The drainage volume data appear to support

this hypothesis.

The SWT principle would therefore appear not to function exactly as its designers had

intended with respect to water retention. The differential SMDs which developed in

response to the differing irrigation treatments must have come about to some extent by

differential drainage or runoff losses. This would imply that factors affecting these

features, such as rootzone infiltration rate and structure, are of greater significance in

affecting plant-available water.

On the soil constructions, both the 140% and the 100% TDET replacement treatments

were also inadequate to maintain SMD at a state approaching field capacity. This may

have been due to underestimates of ET (and TDET derivation) as discussed above, or

may reflect a tendency towards greater water use on this construction type. In general,

the turf growing on the soil constructions was of a denser, more lush nature than that

grown on the suspended water table constructions (see Chapter 4). Greater water loss by

ET may therefore have taken place due to there being a greater surface area of transpiring

leaves. Drainage, ET and runoff losses were not measured on the soil constructions.

This may indicate an area where further research is necessary.

A possible source of error arising in the measurement of ET m may have been the

estimation of the amount of irrigation water arriving at each lysimeter ("I" in equation

3.8). Other workers (eg Feidhake et al., 1983) applied irrigation water to lysimeters

using a graduated cylinder at the time of each weighing, and Feldhake et a!. (1984),

investigating the effects of irrigation on ET, covered each lysimeter in order to prevent

sprinkler irrigation water entering them. This experiment was designed to examine only

major changes in ET which may have occurred in response to the applied treatments,

since this is the first measurement of ET losses from turf mown at 5 mm in the UK. If

similar methods are to be used to monitor finer changes in such turfgrass ET, for example

inter - specific differences, the method of irrigation application would have to be more

precise.



82

Aronson et a!. (1987) tested the formulae for deriving ET 00 against the loss of water
from 50 mm turf for which water availability was not limiting. That water availability is

not limiting is an essential precept for the application of the Penman formula (Penman

1948, 1963) or its derivatives. The close correspondence of the ETm measurements with

the predicted values of ET 00 would therefore imply that the SMDs observed in the

experiment did not restrict the biological processes involved in the control of ET and that

no major differences existed in the rate of ET from 5 mm and 50 mm turf.

The correspondence is however somewhat surprising since the formula for deriving

ET 00 contains no canopy resistance term which is generally considered essential for

accurate prediction of actual ET from crops (Kim & Beard 1988). Johns et a!. (1983)

found that the actual values of surface resistance to ET of well watered alfalfa, barley and

sugar beets were comparable to those of St Augustine grass (Stenotaphrum secundatwn)

turfs and concluded that ET rate was controlled to a large extent by factors external to the

plant rather than by stomata! control. If the same conclusions may be applied to the

Festuca / Agrostis / Poa swards described here, although experimental error may have

shrouded some physiological responses, ET losses were mainly determined by

meteorological phenomena and the influences of the construction types or the irrigation

treatments on ET were negligible. This highlights the importance of the influence of

construction and/or rootzone type on water retention, drainage and runoff in turf

management

The VMC values (in %) of the tension table cylinders could be converted to SMD values

(in mm), assuming that the ratio of sample cylinder VMC to cylinder field capacity VMC

is the same as that of sample lysimeter moisture content to lysimeter field capacity

moisture content. The difficulty is in identifying the appropriate tension to define the

moisture content at field capacity. Webster & Beckett (1972) found that the tension in the

surface horizons of well - drained, English soils was typically 3 - 7 kPa during winter

and spring and therefore proposed that 5 kPa could be used. Other workers have found

that higher values are more appropriate. For example, Haise (1955) found that 10 kPa

was a suitable value, while Colman (1947) found that values as high as 33 kPa were

acceptable.

The range of tensions applied by the sand tension table may therefore reflect little more

than the gravitational forces affecting the water content of the three constructions.

Considering the mean cylinder VMCs of each construction type on the cylinder sampling

date in week 22 (May) 1991, the closest correspondence with the SMDs measured with
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the lysimeters was achieved by using field capacity tension equivalents of 3.0 kPa,

around 2.0 kPa and 7.5 kPa for the sand, USGA and soil constructions respectively. Re-

drawing the characteristic moisture release curves of the three constructions using SMDs

derived from these field capacity tensions shows that between field capacity and a SMD

of 70 mm (approximately the largest measured in 1992 on the SWT constructions), water

is held between tensions of 3.0 and 6.0 kPa on the sand, and between 1.5 and 6.0 kPa on

the USGA constructions. In contrast, on the soil constructions, the 0 to 9 kPa tension

range was not able to reduce SMD to below the equivalent field capacity.

These results imply that the sand tension table is adequate to study moisture release

characteristics of pure sand and USGA constructions, but for soil - based media much

greater tensions need to be applied to adequately simulate field conditions. Plant roots are

able to extract water from soil pores as small as 0.2 J.Lm diameter, corresponding to

tensions of 1500 kPa (Payne 1988). Between field capacity and 70 mm SMD, on the

SWT constructions, water is lost from pore sizes greater than 50 .Lm. This indicates that,

on the SWT constructions, turfgrass responses to the irrigation treatments (see Chapter 4)

may have been brought about by little more than gravitational water loss.

The loss of water by drainage from the SWT constructions, and the USGA construction

in particular, when SMDs were high, may reflect the hysteresis effect of re-wetting soils

(Poulovassilis 1962). Briefly, this phenomenon means that for a given applied tension, a

soil may hold more water during drying than during wetting. This phenomenon would

explain why the cylinder weights hardly increased at all as the tension table was returned

to 0 kPa water potential. Rewetting dry rootzones may therefore necessitate holding

water at lower tensions than those which are finally achieved for periods long enough for

equilibration to take place. Since the critical ranges of tension governing the water

content of the SWT constructions lie around the gravitational region, then either a

constant through-flow of water, or "backfilling" by blocking drainage outlets and

applying irrigation, until equilibrium is achieved may provide methods of returning

depleted rootzones to field capacity.

The soil construction infiltration rates were unacceptably low (Baker & Richards 1993)

for virtually the entire duration of the trial, with the brief exception of the period

immediately following the verti-drain treatment. The mean output rate of the sprinlders

(24.3 mm - see Section 2.7) did not exceed the lowest infiltration rate on the SW].'

constructions and so virtually all irrigation water arriving on these constructions may be

assumed to have penetrated the turf surface. On the soil constructions, however, the low
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infiltration rates meant that an appreciable proportion of both rainfall and irrigation must

have flowed off the piots.

The main structural differences between the SWT rootzones and the soil construction lay

not as major variations in total porosity, but as differences in moisture release

characteristics or pore size distribution. The infiltration of surface water, as measured in

this study, is largely a mass flow process taldng place under the influence of gravity. The

vast differences in infiltration rates between the soil and the SWT constructions may

therefore reflect variation in the proportions of pore spaces of sizes subject to gravitational

water loss. For example, pores greater than about 67 tm diameter (ie. equivalent to

moisture potentials of less than -4.5 kPa) comprised 63 % of the total pore space of the

SWT constructions, but only 7 % of that of the soil constructions. This may account, to

some extent, for the differences in infiltration rates.

The soil physical performance of the USGA mix and pure sand rootzones were, in

essence, very similar, especially when compared with the soil rootzone. Both the SWT

rootzones had infiltration rates above 20 mm h-'. Although the relationship between

particle size and pore size distribution in soils is a complex one, it is likely that the slightly

coarser sand grains of the USGA rootzone (Section 2.4) compared with those of the sand

will have given rise to the slightly larger proportion of total pore space of diameter greater

than 100 jim and the differences in the movement and retention of water.

A striking feature of the infiltration rate data was the decline which took place on the SWT

constructions following the onset of wear. This took place despite the fact that structural

features of these rootzones showed little corresponding variation. This agrees with the

observations of Schmidt (1980), who found that, after eight years of wear treatment, both

air porosity and infiltration decreased, but air porosity reduction was less than the

decrease in water infiltration. Schmidt suggested that, with time, the shifting of the mix

of particles impeded water movement by increasing tortuosity rather than by reducing

total pore space. In effect, water infiltration may have been limited by the sealing of the

surface. The wear treatment applied in this study may therefore have limited the

infiltration of water on the SWT constructions by this means, rather than compaction of

deeper layers of the rootzone.

On the soil constructions however, some structural changes did take place, namely a 7

percentage points reduction in the total pore space greater than 67 j.Lm diameter. Had the

infiltration rates been generally greater, this phenomenon may have induced a general

decline in infiltration rates over the wear period.
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The capping of the SWT constructions is likely to have come about through the build up

of organic matter from dead leaves or other organisms such as algae which were observed

in the turf. This would indicate that scarification procedures are of some considerable

importance in the maintenance of satisfactory infiltration rates on sand - based rootzone

media.

On the soil constructions, the short-lived effects of the verti-drain treatment may have

been due to the collapse of the holes over the winter of 1989 / 1990. This would suggest

that the procedure should be employed on a regular basis for its advantages to be

maintained. It was noted at the time of carrying out the verti-drain operation that

considerably greater quantities of sand could have been applied. Given the importance of

the proportion of larger pore spaces through which water may flow under gravity in a

golf green, it is likely that the effectiveness of the verti-drain treatment may be enhanced

and prolonged by the application of liberal quantities of a uniform, coarser, material

(sand) following treatment.
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CHAPTER 4 - ECOLOGICAL PROCESSES

4.1 INTRODUCTION

A better understanding of the ecological processes occurring in golf greens should help

the greenkeeper to target management practices more accurately towards improving turf

quality. A first step towards this goal is to consider the dynamics of species composition

which may take place in greens in response to the treatment factors imposed. Each

treatment combination may, in time, produce a characteristic and more or less stable

community. Each community may then remain in a state of equilibrium, provided the

management factors associated with it are kept constant. The time delay between the

sowing of the bare seed-bed and the development of the equilibrium condition of the turf

may vary, depending on the consequences for the plants of the particular treatment

combinations, but a description of its community at any point between these two periods

would represent a momentary state during a directional change in condition.

This approach is analagous to the classical concept of vegetational succession and climax

originated by Warming (1896) and developed by Clements (1916). These workers

considered only natural vegetation and their ideas have been subject to numerous

criticisms. For example, the concept of vegetational stability demands a reference to a

time scale and, for many natural populations this scale exceeds that of the lifespan of

man. Over such a time scale other factors, such as climate, which may influence the

process of succession, may change. Climax vegetation is therefore an abstract concept.

Over the relatively short duration of the trial however, observed changes in sward

composition may be considered as successional changes, the course of which are

influenced by the treatment factors imposed. It may therefore be possible that the results

obtained over the trial period could be extrapolated to predict the eventual outcome of the

treatments over longer periods more representative of the lifespan of an actual golf green.

The measurement of species performance in a golf green is to some extent made easier by

the fact that the height of the above ground community is so low. This means that vertical

stratification is minimal (though by no means non-existent) and the community can

effectively be considered two dimensional. An informative estimate of turfgrass

performance would therefore be that of percentage ground cover occupied by the overall

set of grasses, and the proportional contributions of individual species to this. Ground

cover is usually measured using a point quacirat. The principles of cover assessment have

been thoroughly and critically discussed by Goodall (1952). For the applications of these

methods to close mown turf a number of considerations call for comment. The diameter

of pins used in point quadrats may greatly affect the estimate of cover obtained, the larger
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the diameter the greater the estimate (Goodall 1952). This phenomenon is of major

importance in fine turf situations where the size of the plants being measured are small.

To approximate more closely to an infinitesimally small point, the optical point quadrat

was developed (Laycock and Canaway 1980). With this, points are obtained using pairs

of pins held horizontally one above the other such that the tips may be aligned by eye to

define a very small point on the ground below. Hits or misses at each point are then

recorded.

Another method of measuring species performance in close-mown turf is to examine

shoot density. For the species under consideration, in established turf, individual whole

plants cannot readily be recognised, but individual tillers are relatively easily

distinguished. The generally high densities, and small plant sizes, means that

measurement procedures are rather time consuming which explains the dearth of literature

on tiller density of mixed species, fine turf. Tiller density is of interest because, for a

given level of total ground cover, it provides an indication of average plant size. This

may reflect general features of the turf such as perceived visual quality and wear

tolerance, thus providing a standard method of assessing the relative performance of golf

greens with respect to these features. This is considered further in Chapter 6. Tiller

density, in conjunction with ground cover measurements, may also be used to indicate

morphological changes which may take place in turfgrass species in response to the

treatment factors imposed and the environments subsequently created.

The particular species composition and growth forms of the swards of golf greens arise in

response to interactions between a massive range of climatic, seasonal, edaphic, biotic,

genetic and managerial factors. Effects observed in response to the treatments carried out

in this study must therefore be considered in this wider context. For example, the

perceived main effects of construction type on sward composition may have come about

through its influence on the relative rate of germination from the original sowing mixture

(Section 2.6), on the relative rate of development of incoming propagules of species other

than those sown, on the relative rate and form of growth and development of established

individuals, and on the nature of any interference which may take place between the

species eventually present. The identification of the exact means by which treatment

factors bring about changes in sward composition is therefore extremely difficult.

Ecological studies are frequently performed which aim at relating particular edaphic

features with plant growth responses and establishing a degree of causality between the

two. The treatment factors imposed in this project brought about changes in sward

composition chiefly through events taking place in the rootzone media. Physical
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distinctions, such as water relations and soil structure and texture, came about largely

through the construction and irrigation treatments and were described in Chapter 3.

Edaphic factors pertaining to the nutritional effects on the swards would have been

influenced to a much greater extent by the interactions of these features with the nitrogen

and phosphate fertiliser treatments imposed. Thus, phosphate fertiliser treatment effects

may be a more direct function of the actual levels of available phosphate created in the

rootzone, as influenced by factors such as its pH and organic matter content, in addition

to the rootzone physical features and the rate of fertiliser application. Measurements of

the rootzone phosphate levels, pH and organic matter content may therefore help to

illuminate any causal relationships with the observed sward characteristics.

The measurement of plant - available soil phosphate is complicated by the fact that the ion

is partitioned between an inorganic matrix, mineral surfaces, organic matter and the soil

solution. The concentrations in the soil solution are extremely low (Wild 1988b) and

"surface" phosphate, which is probably the most relevant factor, may only be defmed by

the method of its determination. However, provided care is taken to use standard

procedures for its measurement, it may be posssible for comparisons between soils to be

made with some degree of confidence.

The solubiity of fertiliser nitrogen applied to golf greens, and the consequent mobility of

the nutrient, means that the nitrogen levels in the rootzone are extremely variable. For

this reason, measurements of rootzone nitrogen levels of fertilised turf at any one time are

of limited value and cannot be meaningfully compared over time. The macro-nutrients

potassium and calcium are however readily measureable and, although fertilser

applications of these elements were not incorporated into the treatment programme of the

trial, their levels in the rootzones may have been a function of some treatment factors or

their effects and have subsequently influenced the recorded sward characteristics.

In this chapter, above ground characteristics of the plant communities arising in response

to the treatment factors imposed are described in terms of; (i) the changes in ground

cover after three years of differential treatment, (ii) the progress of these changes over the

trial period, and (iii) the tiller density at the end of the trial period. These data are

examined alongside measurements of rootzone pH, phosphate, potassium, calcium and

organic matter content in an attempt to generate hypotheses and general statements

pertaining to the relationships between construction or rootzone type, fertiliser and

irrigation management and the botanical nature of golf greens.
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4.2 MATERIALS AND METHODS

Ground cover

Cover and botanical composition were assessed in week 27 (July) 1989, weeks 12 - 13

(March) and 39 - 40 (September - October) 1990, weeks 11 - 12 (March) and 39 - 40

(September - October) 1991, and weeks 13 (March) and 39 - 41 (September - October)

1992 using an optical point quadrat frame (Laycock and Canaway 1980). Five pairs of

pins were used in the frame, each pair separated by 10 cm. The frame was placed

systematically 20 times on each sub-sub-plot such that the whole 2 x 2 m area was

examined and 100 points were obtained in each case. In addition to the living, sown

species (Festuca rubra and Agrostis spp.), Poa annua cover was recorded. Dead

material was defined as grass which was no longer green, and bare ground as hits directly

onto the rootzone material. Prostrate, semi-decayed organic material was defined as litter.

Bryophytes and other plant species were identified and recorded when hit.

Shoot density

Shoot density was measured between September and November 1992 in order to

correspond with the ground cover assessment of weeks 39 - 41 (September - October) of

that year. Counts were made of the numbers of shoots of Agrostis spp., P. annua and F.

rubra in each of nine cores taken from each sub-sub-plot. The cores were taken from

systematically arranged points corresponding to the corners, centre and side-mid-points

of an hypothetical square of side 1.3 m placed in the centre of each sub-sub-plot. The

corer used was a hollow tine core with an internal diameter of 10 mm.

Although every effort was made to ensure that all treatments were applied evenly to each

sub-sub-plot, heterogeneity in shoot density within individual sub-sub-plots was

frequently apparent. This was evident as the patchy occurrence of individual species

within the living sward and of the whole sward itself. For the shoot density

measurements, within sub-sub-plot variability due to this patchiness was often likely to

have been large because, in essence, only 9 observations were made in each case. By

dividing the shoot density values by the corresponding proportion of total live cover

(TLC - measured with the point quadrat and therefore based on 100 observations),

estimates of the shoot density of the grass actually present were obtained. This

transformation was of greatest significance when total live cover was substantially less

than 100 %. One advantage was that the inverse of cover adjusted shoot density could

provide an indication of the "size" of individual shoots.
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Rootzone pH, P, K, Ca and organic matter content

Rootzone samples, consisting of approximately 500 g formed from 25 sub-samples, were

taken from each sub-sub-plot to a depth of 100 mm in weeks 11 (March and 42 (October)

of 1990, 1991 and 1992. (The October 1992 data had not been analysed at the time of

writing and hence is not described in the following section). Each sample was air dried,

broken up and passed through a 2 mm sieve prior to analysis. P and K were extracted

with 0.5 M acetic acid. Flame photometry was used to determine K, and P was measured

by the method of Murphy & Riley (1962) which estimated the total amount of labile

phosphate extracted from the sample. The calcium content of the samples collected in

March 1991 was extracted with 1 M ammonium nitrate and measured by the method

described by Gough (1973) for the estimation of magnesium. Calcium content of the

extract was measured with an atomic absorption spectrophotometer (Instrumentation

Laboratory 357). The pH of the samples was determined by adding 25 ml distilled water

to 20 ml of sample. After stirring, the mixture was allowed to stand for 1 hour at 20 °C

and then pH was measured by a combined glass-reference electrode inserted into the

sample/water mixture. The organic matter content of the samples collected in March 1992

was measured by the loss in weight after ignition in a muffle furnace at 400 °C for 8

hours.

4.3 RESULTS

Initial botanical status

The percentage cover of the sown species, (Agrostis spp., F. rubra) on each construction

type in week 12 (March) 1990, immediately before differential irrigation and fertiliser

treatments were started are shown in Table 4.1. The soil construction supported the

highest cover of Agrostis spp. whilst the USGA and sand constructions showed

successively lower amounts of this species. F. rubra was most abundant on the

suspended water table constructions (sand and USGA) and least so on the soil. At this

time there was a 1% cover of P. annua on the soil constructions and none on either the

sand or USGA constructions. Ground not covered by grass species consisted, at this

stage, generally of the respective rootzone media.

Main effects of construction and irrigation

Ground cover

Over the five assessments of ground cover and botanical composition, the main effect

irrigation treatment, and the irrigation interaction with the construction treatments,

produced no significant changes in total live cover (TLC), or in the contributions to this

of F. rubra and the weed species Poa annua L.
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SAND USGA SOIL	 LSD

_________________ ________ ________ ________ (p ^ 0.05)

Agrostis spp.	 21	 35	 83	 8.6

F. rubra	 52	 46	 11	 8.7

Total	 73	 81	 94	 -

TABLE 4.1.

Percentage cover of sown species in week 11 (March) 1990, prior to

differential irrigation and fertiliser treatment.

The presentation of changes in botanical composition over the course of the trial period is

of course dependent on the particular interactive combinations of treatments under

consideration (see Section 2.2). In order to provide a general overview of botanical

composition changes on the three construction types, however, the mean cover of

Agrostis spp., F. rubra and P. annua and, by summation, the total cover provided by all

these species (1'LC) on the sand, USGA and soil constructions are shown in Figure 4.1.

On the sand constructions, the mean TLC showed an overall decline over the treatment

period. This decline took place chiefly at the expense of F. rubra. Cover of Agrostis

spp. generally increased over the treatment period and P. annua cover remained relatively

low. On the USGA constructions, P. annua remained virtually absent throughout the trial

period and Agrostis spp. increased markedly as F. rubra declined. Mean TLC remained

relatively constant. On the soil constructions, the initially low cover of F. rubra

continued to decline over the treatment period, as did that of Agrostis spp. However, the

cover of P. annua increased while the TLC remained relatively constant. Each

construction showed a general, temporary decline in ground cover of all species in week

11 (March) 1991.

Shoot density

The main effects of the irrigation treatment had no effect on the mean total shoot density

(sum of Agrostis spp., F. rubra and P. annua counts) across each construction type,

measured in October 1992. Values were 41.9, 65.8 and 93.4 thousand shoots nr 2 (LSD

[p ^O.05] = 7.2) on the sand, USGA and soil constructions respectively.
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FIGURE 4.1

Changes in mean cover of Agrostis spp., P. annua, F. rubra and litter etc. on the sand

(top), USGA (middle) and soil (bottom) construction types between week 11 (March)

1990 and week 42 (October) 1992.
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Mean, cover-adjusted, shoot density values for the three construction types were 63.8,

88.9 and 103.9 thousand shoots rn-2 respectively (LSD [p ^0.05] = 6.0). The shoot

density of Agrostis spp., adjusted for the relative cover of the species, was significantly

affected by the construction type. Values were 67.4 on the sand, 93.9 on the USGA and

132.4 thousand shoots rn-2 on the soil constructions (LSD [p ^0.05] = 28.8). The shoot

density of P. annua, adjusted for the relative cover of the species on the sand was 10.8,

on the USGA was 35.0 and on the soil constructions was 80.4 thousand shoots rn-2

(LSD [p ^0.05] = 29.3).

Rootzone analyses

The mean rootzone pH and phosphate content of the three construction types was

unaffected by the main irrigation treatment throughout the trial period. The pH values of

the rootzone media in week 11 (March) 1990, immediately prior to the application of

differential fertiliser and irrigation treatments, were 5.0, 4.5 and 6.1 (LSD [p ^ 0.051

0.16) for the sand, USGA and soil constructions respectively.

The mean phosphate contents of the three rootzone media showed a continual general

decline over the course of the trial period. These data are shown in Figure 4.2. The soil

constructions consistently showed the greatest phosphate content and the USGA

constructions showed the least. From initial levels of 19.6, 15.9 and 23.9 mg l' of air

dried rootzone media for the sand, USGA and soil constructions, phosphate content fell

to the levels recorded in March 1992 by 43, 48 and 53% respectively. Both rootzone pH

and phosphate content were greatly affected by the fertiliser treatments.

Rootzone calcium content measured in March 1991 showed no significant response to

irrigation treatments, but was significantly different (p ^0.001) among construction

types. Calcium concentrations were 0.4, 1.2 and 16.7 mg 1-' on the sand, USGA and

soil constructions respectively (LSD [p ^0.05] = 1.6). Organic matter content measured

in March 1992, also showed no significant response to irrigation treatments, but was

significantly different (p ^ 0.00 1) among construction types. Organic matter contents

were 0.5, 1.3 and 3.8 % on the sand, USGA and soil constructions respectively (LSD [p

^ 0.05] = 1.6).
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FIGURE 4.2

Changes in rootzone phosphate concentration (0.5 M acetic acid extract) on the sand,

USGA and soil construction types between week 11 (March) 1990 and week 11 (March)

1992. The vertical bar represents LSD (p^0.05) for all possible pairs of means

presented.

In contrast to the results for calcium and organic matter, the potassium content of the

respective rootzone media was affected by the differential irrigation rates. These data,

collected in week 41 (October) 1991, are shown in Table 4.2. Rootzone potassium

content showed a significant decline on the SWT constructions with increasing rate of

irrigation. On the soil constructions this relationship was not so clearly defined, although

potassium content at 140 % TDET was significantly lower than that at 100 % TDET. The

effects of increasing irrigation in lowering potassium concentration first became

significant on the sand constructions in October 1990 and on the USGA constructions in

October 1991.

Time trends for rootzone potassium content are shown in Figure 4.3. The mean

potassium content of all three rootzone media increased between the March and October

measurements in 1990 and 1991 and decreased in the winters of 1990/9 1 and 199 1/92.

The greatest fluctuation took place between March 1991 and 1992. From initial levels in

March 1990, which did not differ significantly between construction types, the highest

mean rootzone potassium content in March 1992 was recorded on the soil constructions

and the lowest was on the sand constructions, although the overall mean was not

significantly different from the initial value.
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IRRIGATION RATE SAND USGA SOIL

60% TDET	 62	 83	 64

100% TDET	 46	 51	 72

140% TDET	 37	 48	 53

MEAN	 48	 61	 63

TABLE 4.2

Main effects of irrigation on rootzone potassium concentration (mg F' of rootzone media)

on each of the three construction types in October 1991. LSDs (p ^O.05) were 6.8 for

comparisons between means of the same construction type, 11.5 for all comparisons in

the construction x irrigation interaction and 3.6 for the main effect of construction.
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FIGURE 4.3

Changes in rootzone potassium concentration (0.5 M acetic acid extract) on the sand,

USGA and soil construction types between week 11 (March) 1990 and week 11 (March)

1992. Vertical bar represents LSD (p^O.O5) for all possible pairs of means presented.

Interactions with fertiliser treatments

Total live cover (TLC)

Most of the variation among the trial plots came about in response to the interactions of

the construction types with both the fertiliser and the irrigation treatments. The TLC on
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the three construction types in week 42 (October) 1992 in response to three seasons of

treatment with five rates of nitrogen, with and without the phosphate fertiliser treatment,

are shown in Figure 4.4. On the SWT constructions treated with phosphate fertiiser,

TLC increased with increasing rate of nitrogen application to maximum values of 95% on

the sand constructions at rates of both 235 and 410 kg N ha-' yr-', and 98% on the

USGA constructions at a rate of 410 kg N ha-' yr-'. Above these rates live ground cover

showed a marked decline. The USGA construction sub-plots not treated with phosphate

fertiliser reached a maximum of 85% cover at 235 kg N ha-' yr', but maintained a lower

cover at all rates of nitrogen. Sand construction sub-sub-plots not treated with phosphate

fertiliser showed no significant response to nitrogen fertiliser and showed a mean total

live ground cover of 48%. On the soil constructions the application of phosphate

fertiliser had no significant effect on total live ground cover. Mean values increased with

increasing nitrogen from 76% at the lowest rate to between 96 and 98% at rates of 235 to

635 kg N ha-' yr'.

0	 100 200 300 400 500 600 700

NITROGEN RATE (kg N ha 1 yr1)

FIGURE 4.4

The effects of 5 rates of nitrogen fertiliser with and without phosphate fertiliser on the

percentage TLC on the three construction types in week 41 (October) 1992. Vertical bar

represents LSD (p^O.OS) for comparing all possible pairs of means presented.

A significant interaction took place between the irrigation, construction and nitrogen

fertiliser treatments with respect to TLC. On the SWT constructions, at the highest rate of

application of nitrogen fertiliser (635 kg N ha-' yr-'), the lowest rate of irrigation (60%

TDET) produced a reduction in TLC which did not occur at the higher irrigation rates.

This effect was greatest on the USGA constructions, and was only apparent at the 635 kg

N ha-' yr-' fertiiser rate. This TLC data from week 41 (October) 1992 is shown in Table
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4.3. The effect was not detected at all on the soil constructions and occurred, for the

most part, during the growing season of 1991.

IRRIGATION RATE SAND USGA SOIL

60% TDET	 41	 13	 99

100% TDET	 67	 60	 99

140% TDET	 65	 72	 98

TABLE 4.3

The effects of three rates of irrigation on total live cover on each of the

three construction types receiving the highest rate (635 kg N ha-' yr') of nitrogen fertiliser

application in week 42 (October) 1992 (%). The LSD (p ^0.05) for all possible pairs of

means presented was 16.3

Percentage of individual species comprising TLC

Having described the responses of TLC to the treatments applied, the proportional

contribution of Agrostis spp., F. rubra and P. annua to this feature may be examined.

This approach helps to distinguish treatment effects on TLC from effects differentially

taking place on individual species.
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FIGURE 4.5

The effects of 5 rates of nitrogen fertiliser application and three of irrigation on the

percentage of TLC occupied by Agrostis spp. in week 41 (October) 1992. Vertical bar

represents LSD @^0.05) for comparing all possible pairs of means presented.
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The percentage of TLC across all three construction types in week 41 (October) 1992

contributed by Agrostis spp. in response to the nitrogen fertiliser treatments, at the three

rates of irrigation are shown in Figure 4.5. For all rates of irrigation, the general

response to increasing nitrogen rate was to show an initial rise in the proportion of TLC

of Agrostis spp., followed by a fall as the highest rates of nitrogen were approached.

Maximum values in all three cases lay between 235 and 410 kg N ha-' yr'. The response

was shallowest at the highest rate of irrigation and most marked at the lowest rate. At the

highest rate of nitrogen the percentage of ThC of Agrostis spp. had fallen to 44% at 60%

TDET irrigation rate, whilst at 140% TDET cover only fell to 74%. A similar set of

responses was observed in the week 11 (April) 1992 assessment.

0 100 200 300 400 500 600 700
NITROGEN RATE (kg N hayr1)

FIGURE 4.6

The effects of 5 rates of nitrogen fertiliser application with and without phosphate

fertiliser on the percentage of TLC occupied by Agrostis spp. on each of the three

construction types in week 41 (October) 1992. Vertical bar represents LSD (p^0.05) for

comparing all possible pairs of means presented.

The percentage of TLC in week 41 (October) 1992 contributed by Agrostis spp. in

response to the nitrogen and phosphate fertiliser treatments on each of the three

construction types is shown in Figure 4.6. On the SWT constructions the proportional

contribution increased by 24 % from 72% on the sand constructions and by 9% from

86% on the USGA constructions, as nitrogen rates increased to 410 kg N ha- 1 yr'. At the

highest rate of nitrogen the percentages on the SWT constructions fell. On the soil

constructions the percentages showed an initial rise to 76% as nitrogen rates increased to

110 kg N ha-' yr-', but thereafter showed a marked decline to 24% at the highest rate of
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nitrogen fertiliser application. On the SWT constructions the percentage of TLC as

Agrostis spp. was greater on those sub-sub-plots treated with phosphate fertiliser. This

effect was greatest on the sand constructions and was not significant on the soil

constructions.

The percentage of TLC in week 41 (October) 1992 occupied by F. rubra fell on all three

construction types with increasing rate of nitrogen fertiliser. The effects of the nitrogen

and phosphate fertiliser treatment are shown in Figure 4.7. The highest proportion of F.

rubra (25% of TLC on the sand, 11% on the USGA and 4% on the soil constructions)

was found on the sub-sub-plots receiving the lowest rate of nitrogen fertiliser (35 kg N

ha-' yr- i). As the rate of nitrogen application increased the proportional contributions fell

rapidly, reaching 6, 5 and 2% on the respective construction types at a nitrogen fertiliser

rate of 235 kg N ha- 1 yr-'. Phosphate fertiiser application reduced the percentage

contribution of F. rubra to TLC, most notably at the lower rates of nitrogen fertiliser

application. Fertiliser nitrogen had no significant effect on the proportion of TLC on the

soil constructions occupied by F. rubra.
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FIGURE 4.7

The effects of 5 rates of nitrogen fertiliser application with and without phosphate

fertiliser on the percentage of TLC occupied by F. rubra on each of the three construction

types in week 41 (October) 1992. Vertical bar represents LSD (p^O.05) for comparing

all possible pairs of means presented.

Over the treatment period the percentage TLC as F. rubra declined on all three

constructions. The rate of this decline was enhanced on the SWT constructions by higher

rates of application of nitrogen. A similar, although less pronounced effect, was

observed on the sand constructions in response to the phosphate treatment. Sand
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construction sub-sub-plots which received phosphate fertiliser showed consistently lower

proportions of F. rubra.

The effects of nitrogen and phosphate fertiliser treatment on the percentage of TLC in

week 41 (October) 1992 of P. annua on the three construction types, is shown in Figure

4.8. The proportion was considerably greater on the soil construction, on which it

increased with increasing nitrogen application to a maximum of 76% of TLC at the

highest rate (635 kg N ha-' yr'). On the SWT constructions the percentage contribution

of P. annua also increased at this rate of nitrogen. The phosphate fertiliser treatment had

no significant effect on P. annua cover.
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FIGURE 4.8

The effects of 5 rates of nitrogen fertiliser application with and without phosphate

fertiliser on the percentage of TLC occupied by P. annua on each of the three construction

types in week 41 (October) 1992. Vertical bar represents LSD (J)^O.OS) for comparing

all possible pairs of means presented.

At rates of nitrogen up to 410 kg N ha-' yr-' the proportional contribution to TLC in week

41 (October) 1992 of P. annua at all three rates of irrigation, did not significantly differ

and had a mean value of 10%. At the highest rate of nitrogen fertiliser application this

rose to 55% at an irrigation rate of 60% TDET, 33% at 100% TDET and 25% at 140%

TDET (LSD [p ^0.05] = 11.4).
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FIGURE 4.9

Changes in percentage of TLC of P. annua in response to 5 rates of nitrogen fertiliser

application (Ni - N5) on the soil construction type between week 11 (March) 1990 and

week 42 (October) 1992. Vertical bar represents LSD (p^0.05) for comparing all

possible pairs of means presented.

The development over the treatment period of the nitrogen response of percentage TLC as

P. annua on the soil constructions is shown in Figure 4.9. These data show that from

March 1991 the 410 and 635 kg N ha- 1 yr-' rates gave successively higher cover of P.

annua, in comparison with the lower rates of nitrogen fertiliser application.

The most common weed species, in addition to P. annua, was Sagina procumbens (Ard.)

(peariwort) in week 41 (October) 1992. This occurred almost exclusively on the soil

constructions and was most abundant (between 1 and 2% cover) on those plots receiving

the lower rates of nitrogen fertiliser. Two species of moss were recorded on the trial.

These were Eurhynchium praelon gum (Hedw.) and Brachytheciuin rutabuluin (Hedw.).

The largest amounts of cover of each of these mosses, 8 and 3% respectively, were

recorded on the soil construction sub-sub-plots receiving the lowest rate of nitrogen

fertiliser (35 kg N ha-' yr- i). E. praelongum was found to be most abundant on the soil

plots receiving the highest rate of irrigation (140% TDET). Ground cover not occupied

by moss or the three grass species was almost invariably occupied by litter which

consisted of the dead leaves of the grasses in varying degrees of decay.



120

100
>-c.1

WO

I.—•	 60
00
Oo=0
cn.

20

-0-
-D--
-a--

SAND

USGA

SOIL

102

Shoot density

The total shoot density increased significantly (p^O.001) with the application of

phosphate fertiliser on the sand and USGA constuctions. These data are shown in Table

4.4.

CONSTRUCTION	 PHOSPHATE TREATMENT

TYPE	 0 kg P2 O 5 ha-' yr-'	 50 kg P2O 5 ha-' yr-'

SAND	 28.0	 55.8

USGA	 50.3	 81.3

SOIL	 93.1	 96.4

TABLE 4.4

Main effects of phosphate fertiliser on total shoot density (shoots m 2/l000) on each of the

three construction types in October 1992. The LSD (p ^0.05) was 9.6 for comparisons

between means of the same construction type and 10.9 for all possible comparisons of the

means presented
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FIGURE 4.10

The effects of 5 rates of nitrogen fertiliser application on total shoot density on the sand,

USGA and soil construction types in October 1992. Vertical bar represents LSD

(p^O.O5) for comparing all possible pairs of means presented.
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The effects of nitrogen on shoot density are shown in Figure 4.10. Total shoot density

increased with increasing rate of nitrogen fertiliser on the soil constructions. On the SWT

constructions the general response to increasing nitrogen rate was to show an initial rise

in total shoot density, reaching a maximum between 200 and 300 kg N ha-' yr' and

falling back as the higher rates of nitrogen were approached. Total shoot density was

consistently greatest on the soil constructions and least on the sand constructions.

The effects of phosphate fertiliser on cover-adjusted shoot density on each of the three

construction types are shown in Table 4.5. Cover-adjusted shoot density was greatest on

the soil and least on the sand constructions. Phosphate fertiliser treatment significantly

increased (p ^0.05) cover-adjusted shoot density, a response which was greatest on the

USGA constructions, but not apparent on the soil constructions.

CONSTRUCTION	 PHOSPHATE TREATMENT

TYPE	 0 kg P2 O 5 ha-' yr' 50 kg P2 O 5 ha-' yr' MEAN

SAND	 58.3	 68.9	 63.6

USGA	 78.0	 99.6	 88.9

SOIL	 104.5	 103.3	 103.9

MEAN 80.3 	 90.6	 ________

TABLE 4.5

Main effects of phosphate fertiiser application on cover-adjusted, total shoot density

(shoots m 2/1000) on each of the three construction types in October 1992.

LSDs (p ^0.05) were 15.1 for comparisons between means of the same construction

type, 12.3 for the construction x phosphate fertiliser interaction and 8.7 and 6.0 for the

main effects of phosphate and construction type respectively

Rootzone pH, phosphate and potassium content

The effects of the five rates of nitrogen and two of phosphate fertiliser on rootzone pH in

week 41 (October) 1991 are shown in Figure 4.11. On the soil constructions pH fell

from mean values of 6.0 to 5.6 as nitrogen fertiliser rate was increased from 35 to 635 kg

N ha-' yr- 1 . The soil construction values showed no significant effects of phosphate

fertiliser on soil pH. On the SWT constructions, pH was consistently lower on the

USGA constructions at nitrogen rates of 235, 410 and 635 kg N ha-' yr' with and

without phosphate fertiliser. Rootzone pH declined initially and then increased as

nitrogen fertiliser rates were increased. The nitrogen rates at which pH reached minimum

values were 110 for sand constructions not receiving phosphate fertiliser, 235 kg N ha'
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yr-' for sand constructions receiving phosphate, between 235 and 410 kg N ha-' yr' for

USGA constructions not receiving phosphate and 410 kg N ha-' yr-' for USGA

constructions receiving phosphate. The minimum pH was 4.1, on the USGA

constructions receiving phosphate fertiliser and a nitrogen rate of 410 kg N ha-' yr', and

the maximum was 5.4, on the sand constructions receiving no phosphate fertiliser and

nitrogen at a rate of 635 kg N ha- 1 yr'.
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FIGURE 4.11

The effects of 5 rates of nitrogen fertiliser application with and without phosphate

fertiliser on rootzone pH of the three construction types in week 41 (October) 1991.

Vertical bar represents LSD (J)^O.OS) for comparing all possible pairs of means.

The effects of nitrogen and phosphate fertiliser on measured phosphate content of the

rootzones of the three constructions are shown in Figure 4.12. Phosphate levels

generally declined with increasing rate of nitrogen fertiiser, an effect which was most

apparent between 35 and 235 kg N ha4 yr-'. Levels were consistently greater on SWT

sub-sub-plots treated with phosphate fertiliser. Phosphate and nitrogen fertiliser

treatments had no significant effects on measured phosphate content of the soil

constructions in week 41 (October) 1991.

In week 41 (October) 1991 rootzone potassium content declined consistently on all three

construction types with increasing rate of nitrogen fertiliser. These data are shown in

Figure 4.13.
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FIGURE 4.12

The effects of 5 rates of nitrogen fertiliser application with and without phosphate

fertiliser on rootzone phosphate content (0.5 M acetic acid extract) of the three

construction types in week 41 (October) 1991. Vertical bar represents LSD (p^O.O5) for

comparing all possible pairs of means presented.
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FIGURE 4.13

The effects of 5 rates of nitrogen fertiliser application on rootzone potassium content (0.5

M acetic acid extract) of the three construction types in week 41 (October) 1991. Vertical

bar represents LSD (p^O.O5) for comparing all possible pairs of means presented.
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4.4 DISCUSSION

The differing species contributions arising from the same seed mixture (see Section 2.6)

on the three construction media prior to the application of fertiliser and irrigation

treatments may have come about through differing rates of germination of each species on

each construction. The sizes of the seeds of F. rubra and Agrostis spp. are markedly

different. The original 80 : 20 mix of the two species actually produced a seed number

ratio of 1 F. rubra: 3.7 Agrostis spp. (from the data of Shildrick 1984). Thus if

germination rates were equal, Agrostis spp. would be expected to possess an initial

numerical advantage over F. rubra. But the fact that the larger-seeded, and therefore

initially more self sufficient, F. rubra established to a greater extent on the sand

constructions, while the greater numbers of tiny seeds of Agrostis spp. established more

quickly on the inherently more fertile soil constructions, may point to the influence of

differential fertility levels influenciiig the respective development of differing seed species

before and after germination.

Immediately prior to differential treatment application, the total ground cover had not

reached 100 % on any construction type which may indicate that inter- and intra - specific

competition for resources was not the overriding limiting factor, but that differential rates

of establishment and early growth were of greater significance. It is not possible to say,

on the basis of these data, at what point and by what means in the early stages of grass

development from dormant seed, the different construction types exerted their influence.

The subtlety with which different substrates affect germination and establishment have

been demonstrated for many species (see Harper (1977) for an extensive discussion) and

a study of turfgrass species germination alone could fill several very interesting theses.

The game of golf is concerned with established turf only, and the mechanisms by which

differing construction media influence final sward composition are consequently of

limited significance. F. rubra is considered to be a highly desirable component of golf

green swards (Anon. 1989b). These observations may therefore suggest that further

research be carried out examining the effects of varying sowing mixtures and rootzone

media on established sward species composition.

The general decline in F. rubra cover on all three construction types over the trial period

may have arisen through straightforward inability of the species to sustain growth under

the environmental conditions imposed. The greatest general, proportional decline in F.

rubra cover took place over the winter of 1990/91, during which the weather was

particularly harsh and wear treatments had begun to be applied. Agrostis spp. also

declined over this period, but recovered the following growing season, a recovery which

F. rubra failed to achieve. Canaway (1978) found that F. rubra was slightly more wear
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tolerant in monoculture than Agrostis spp. These data may therefore indicate that

turfgrass wear tolerance is controlled by a different set of processes to the recovery from

wear (or any other "catastrophic" event). Agrostis spp. would appear to be more

vigorous with respect to F. rubra in the recovery from wear.

On the soil constructions, this recovery period coincided with a rapid expansion in P.

annua cover which took place chiefly at the expense of Agrostis spp. The weed may

therefore be considered as having colonised the space created by the winter decline of

1990/91. Lush (1988a & b) observed that P. annua initially colonised bare patches

brought about by disturbances in the surface of golf greens. Lush suggested that the

balance finally achieved between Agrostis stolonfera (sown in the swards studied) and

P. annua in any particular green, reflected the possibility of such disturbances taking

place. The studies of Lush were carried out on a real golf green which was subjected to

play and the random occurrences of disturbances. In the work described here, random

disturbances were kept to a minimum. Since the soil construction rootzone was sterilised

prior to sowing, the occurrence of P. annua must have come about mainly through the

successful establishment and growth of incoming P. ann ua propagules, most probably

seeds, rather than the recruitment of seeds from a seed bank in the soil. The widely

differing degrees of P. annua ingress on the three construction types must therefore have

come about through the differential effects of the rootzone media on P. annua germination

and establishment.

Again, the identification of the exact features of differing rootzone media which determine

the suitability or otherwise for the successful germination and early growth of P. annua

would represent a major study. Possible areas of investigation might include the effects

of differential moisture potentials, substrate structure and texture, surface

microtopography, specific heat capacity, pH, and organic matter and nutrient content. All

these features clearly vary between construction media. One feature worthy of

consideration is that the seed of P. annua is approximately 27 % in weight that of F.

rubra, whereas Agrostis spp. seed is only 7 % of that weight. If seed size is of

significance in determining germination success in grasses, as was proposed by Kittock

& Patterson (1962), then the proportionately larger size of P. annua seeds may provide

sufficient resources to quickly establish a newly arrived plant as a competitor in

established turf, provided the rootzone is hospitable to genuination. Given that P. annua

is so ubiquitous and is usually, though not always, considered to be an undesirable

component of golf green swards, studies specifically aimed at identifying the main

environmental or edaphic determinants of its germination may indicate useful techniques

for the control of its infestation of golf greens.
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The substrate determinants of germination are not necessarily the same factors which

influence plant and community development. As the individual plant grows it exploits

larger volumes of space within the environment of the green and is therefore subject to the

modifying influences of larger numbers of environmental variables, some of which were

measured in this study. In addition, competitive interference processes take place as the

"spaces" of individual piants merge with those of neighbouring plants. Isolating any one

environmental feature and associating it with a particular sward characteristic is therefore

extremely difficult and requires precisely targetted experiments in order to do so. A major

objective of this research however was to generate hypotheses which may subsequently

be tested with such experiments, and these data invite many such hypotheses.

The increasing Agrostis spp. cover and decreasing F. rubra with increasing rate of

nitrogen application was not unexpected and has been reported several times (Skirde

1974, Woolhouse 1981, Lawson 1987, Lodge et a!. 1990). The transition was not a

simple displacement of one species by another however. Changes in the cover of litter

(dead material) accounted for the greater part of the changes in Agrostis spp. cover on the

suspended water table constructions. Plant death was associated with both high and low

rates of nitrogen fertiliser, low rates of irrigation, and was especially apparent on the sand

constructions not receiving phosphate fertiliser. These effects of high nitrogen have

frequently been ascribed to over - acidification due to the acidic nitrogen source used

(Skogley 1967, Robinson 1980). But, although the soil chemical data presented refer to

the period 12 months before the October 1992 botanical composition data, the rootzone

pH values actually increased on the SWT constructions in response to the higher nitrogen

rates. The lowest pH values were recorded from the sub-sub-plots maintaining maximal

live ground cover. Rootzone pH cannot therefore be considered in isolation as a factor

affecting turfgrass survival.

The acidifying effects of ammonium sulphate application come about due to the

nitrification of ammonium (NH) to nitrate (NO 3-) by Nitrosomonas and Nitrobacter

bacteria. This process releases H+ ions which lowers the pH, a phenomenon clearly

demonstrated by Duisberg & Buehrer (1954). Munk (1958) showed that low soil pH

(pH 4.4 in his experiments) substantially depressed NH4 oxidation, but Purchase

(1974) showed that the nitrite oxidisers (Nitrobacter) were also very sensitive to

phosphate deficiency. Therefore a possible reason why pH did not continue to fall at the

higher nitrogen rates on the SW].' constructions, a result expressed to a lesser extent on

the phosphate-treated sub-sub-plots, may be that phosphate levels were reduced to a point

which limited the nitrification process. Also, the decline in extractable phosphate may
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have been due to the ion becoming insoluble at the lower pH values and therefore not

measureable.

Some of the death, or reduced vigour, of grass may have come about through phosphate

deficiency itself. Symptoms of this could be seen quite clearly during the summer

months as a purple tinge to the turf (Wild & Jones 1988). This was most apparent on

sand and USGA construction sub-sub-plots receiving high rates of nitrogen and no

phosphate. But the relatively high ground cover on the USGA sub-sub-plots receiving

no phosphate and 235 kg N ha-' yr 1 coincided with rootzone phosphate levels of less

than 7 mg F'. This study indicates therefore, that rootzone phosphate levels alone, as

measured by the technique described, cannot fully explain the botanical changes which

took place and highlights the importance of examining rootzone texture and construction

type when considering the effects of phosphate application to golf green turf.

The enhancing effects on grass death of nitrogen fertiliser at the lowest rate of irrigation

may suggest that some soluble substance, normally leached out or further down the

profile, accumulated to toxic levels in the rootzones. The nitrogen fertilisers used were

very soluble in water. The high rates of application may therefore have raised the osmotic

potential of the rootzones to damaging levels. This hypothesis agrees with the

observation that plant death was greatest on the USGA constructions which also showed

the greatest soil moisture deficits (Chapter 3) at the height of summer.

When water and phosphate fertiliser were not limiting, ground cover remained high with

nitrogen rates of up to 410 kg N ha-' yr' . Depletion of rootzone phosphate and

potassium may therefore have come about by nitrogen - stimulated growth and removal of

clippings. This was proposed by Colclough & Lawson (1989). The seasonal changes in

potassium content appeared to follow the pattern of increasing during the growing

season, when "luxury" rates of the ion were supplied, and declined during the winter

when leaching losses will have taken place. A similar effect was reported by Childs &

Jencks (1967). This is consistent with the view that rootzone potassium content is

controlled by the nature and extent of the cation exchange sites on clay minerals and

organic matter. A mechanism therefore exists for the progressive loss of potassium by

equilibration in the soil solution of potassium from exchange sites, through-flow of water

and re-equilibration. The significant effects of the irrigation treatments on rootzone

potassium levels supports this.

However, seasonal variation was not observed in the rootzone phosphate levels.

Phosphate levels in the soil solution are, by contrast with potassium, extremely low,
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being of the order of 0.5 mg 1-1 (Wild 1988b). The lack of response to irrigation

treatments and lack of seasonal variation of rootzone phosphate levels may therefore be

due to the readiness of the ion to be retained on surfaces in the rootzone. That phosphate

levels were lowest on the sand constructions may reflect the smaller area of mineral

surface to which phosphates may have adhered, and the smaller quantities of organic

matter from which it may have been released by mineralisation. In general, the soils

might have been expected to have a very high phosphate buffering capacity (Olsen &

Watanabe 1970), and the sand constructions a low one. In this respect the botanical

composition changes in response to the phosphate fertiliser treatment illustrated the effects

of phosphate buffering. Thus, both total live cover and cover-adjusted shoot density

responded greatly to phosphate fertiliser application on the sand constructions, while the

USGA constructions, which contained a little organic matter and more mineral surface

than the sands, responded slightly less so, and the soil constructions responded hardly at

all.

Some research has suggested that the application of phosphate fertiliser encourages the

ingress and development of P. annua (Goss eta!. 1975, Waddington et a!. 1978). These

suggestions were barely supported by these findings. Phosphate fertiliser had no

significant effect on P. anniw cover for example. Considering the soil construction sub-

sub-plots as representatives in time of a series of successional changes, it might be

predicted that P. annua, which was present in all soil sub-sub-plots, will continue to

expand in cover and eventually totally dominate the swards. The speed of this expansion

would appear to be a function of the nitrogen input alone. Phosphate levels in the soil

were however consistently higher than on the SWT constructions, from which P. annua

was virtually absent. Confusion may have arisen due to a general failure by research

workers to acknowledge the effects of rootzone texture or, more specifically, of buffering

capacity. Thus, if P. annua is able to establish on a rootzone with a low phosphate

buffering capacity, the efficacy of phosphate fertiliser in stimulating growth may result in

enhanced development of P. annua cover. This may take place due to the enhancement of

shoot density and competitive vigour in general, in the same way in which both nitrogen

and phosphate fertiuiser appeared to enhance the growth of Agrostis spp. at the expense of

F. rubra on the SWT constructions, and nitrogen alone enhanced develpment of P. annua

at the expense of Agrostis spp. on the soil constructions. The continuation of the trial for

a few more years may have some merit in this respect. The possible influences of

phosphate fertiliser on the development of P. annua on the SWT constructions may then

be observed.
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CHAPTER 5 - THE GOLF BALL IN PLAY

5.1 INTRODUCTION

In order to assess the ways in which the differential treatments affect the green in terms of

their influence on playing quality, it is necessary to simulate the behaviour of golf balls in

play. As far as the green is concerned, this involves the simulation of putting and of ball

impacts.

The "standard" putt produced by the Stimpmeter (Stimpson 1974, Radko 1977a, b,

1978) is commonly used to produce the rolls for the measurement of green "speed". This

may be defined as the distance which a golf ball travels across the surface of a green after

being projected at a given velocity. The Stimpmeter consists of a straight, v-shaped

aluminium ramp down which a ball is rolled. The ball is placed in a notch near the top of

the ramp and the ramp is then tilted forward. When the ramp reaches an angle of about

22° to the horizontal, the ball falls out of the notch and rolls across the turf with an initial

speed of 1.9 m s -1 (Haake 1989). The distance travelled by the ball from the end of the

ramp is taken as a measure of the turf speed. This device was used by Engel et a!

(1980), Colclough (1989) and Baker and Richards (1991) to assess the effects of various

construction and maintenance procedures on golf greens.

During the present study a number of problems and concerns arose with respect to the use

of the Stimpmeter. Firstly, the roll of the ball after leaving the Stimpmeter in some cases

was found to exceed the length of the diagonal of the 2 m x 2 m plots used in the trial.

Secondly, the observed effects of treatments on golf ball roll induced by the stimpmeter

may have been confounded by effects on the downward impact of the ball onto the turf

brought about by the instantaneous change of direction of travel at the base of the ramp.

Also, the v-shaped section of the Stimpmeter made two points of contact with the ball and

thus imparted topspin as the ball descended the ramp. The manner in which this affected

ball roll distance on different surfaces was unknown and may have led to confusion

between spin retention and ball roll phenomena in the data. Finally, in the research

situation, which demanded repeated measurements of green speed, the Stimpmeter is

slow and there was the possibility of variation in the initial Stimpmeter release angle as a

result of operator error which would result in increased variability in the measured green

speed. In an attempt to address these problems, and hence reduce errors in the

measurement of ball roll, an apparatus was designed for the measurement of green speed

in research situations.
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Turf phenomena which may influence ball roll were listed in Section 1.9. One such

factor is the "upward" growth rate of the sward. Although golf greens are maintained at

fairly consistent cutting heights, the growth rate may be such that effects on ball roll

become apparent very soon after mowing. A measure of the rate of vertical growth, or

clipping "yield", as it may affect ball roll, is readily obtained from the fresh weight of

clippings produced after mowing. If the treatment effects on this feature show a similar

pattern to those on ball roll, a relation between ball roll and rate of upward growth may be

indicated.

Considering chip and drive shots onto the green, the chief criterion of concern to the

player is the total distance travelled by the ball after impact. This was measured by

Coiclough (1989) and termed "holding power". In order to understand more fully how

management factors affect this property, it is necessary to consider other characteristics of

rebound. Haake (1991a,b,c) developed an apparatus to project consistent, simulated

shots. He put forward a physical model which partially described the post-impact

behaviour of balls hitting turf with backspin at oblique angles. This required five input

parameters, four of which were to derive the rebound velocities of non-spinning, vertical

impacts. The fifth was the coefficient of turf friction which modified the model to

account for the interaction between the backspin of the ball and the green. Suitable values

for these constants were derived by iterative searching procedures and tested against

observations of actual impacts recorded on film. The derivation of the five input

parameters, and Haake's model itself, is complex and the testing apparatus extremely

cumbersome. If statements about the golf ball impact characteristics of a particular green

are to be made, it would be advantageous if they were based on a few readily obtainable

measurements.

The fifth parameter of Haake's model, the coefficient of turf friction, was related to the

horizontal moments of a spinning golf ball impacting at an oblique angle. An apparatus

which may provide an indication of the forces acting on the horizontal moments of the

motion of impacting golf balls is one designed to measure soil shear strength in the

surface layers of the turf with which the ball interacts. The other input parameters of the

model pertained to factors related to the reaction of the turf to the vertical moments of the

ball's motion. A readily measured feature which may provide a summarised indication of

these parameters is that of hardness. Coiclough (1989) measured the hardness of fine

turf using a Clegg Impact Soil Tester (Clegg 1976). Hardness is known to have an

influence on the impact behaviour of footballs (Baker and Isaac 1987, Bell and Holmes

1988) and cricket balls (Lush 1985). Colclough (1989) found that hardness declined

with increasing nitrogen input and, like stopping distance, was greater in un-limed plots.
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In this study, the relationships between measured aspects of post-impact ball behaviour,

hardness and shear strength were therefore explored.

The various aspects of post-impact ball behaviour which can be measured are clearly

inter-related in a complex manner. One method of reducing a large set of inter-related

measured variables to a smaller, more manageable set is to use the method of principal

components analysis (PCA) (Hotelling 1933, Chatfield & Collins 1980). This multi-

variate technique uses the correlation matrix of measured variables to project stands onto a

single line such that the sum of squares of their distances from the line is mininiised. The

distances of the stands from the first axis are then used to derive stand positions on an

orthogonal second axis. The reference axes of the data set are thus changed to a new

orthogonal framework, the origin of which represents the centroid of the whole set of

stands.

The first axis or principal component has maximum correlation with the data variables,

the second also has maximum correlation with the data variables but is uncorrelated with

the first. A complete description of the data would require as many axes as there are

variables in the data. However, the method concentrates the variability such that the first

axis accounts for the largest proportion of the variation in the data set, and subsequent

axes account for proportionately less and less variation. Later-derived axes may therefore

be ignored because they represent only a fraction of the original variation.

Each measured variable has a characteristic component loading in relation to each axis.

Variables with similar distributions among the stands being analysed wifi have similar

component loadings which provide the coordinates of an ordination of variables using the

same axes as those derived for the stands. The relationships between variables may

therefore be observed by plotting the measured variable coordinates on the derived

components or axes. This form of diagram is known as a biplot. The coordinates of

each measured variable in relation to the centroid or origin indicate the direction and extent

to which that variable is associated with the axis concerned. A general impression of how

the variables inter-relate and of what each derived axis, or component, actually represents

may be obtained from the biplot. The effects of treatments may then be examined by

performing ANOVA on the individual plot scores in relation to each axis.

In this chapter, the effects of the treatments on ball roll characteristics are examined

alongside measurements of clipping "yield". Treatment effects on simulated golf ball

impacts are also examined, and the possibility of using simple measures such as hardness
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and shear strength to summarise the nature of golf greens with regard to golf ball impacts

is explored.

5.2 MATERIALS AND METHODS

Ball roll apparatus and test methods

The apparatus consisted of a ramp fabricated from 50 mm bore, 4 mm guage steel tubing

which had been cut longitudinally in half. The overall length of the ramp was 1020 mm.

Beyond a distance of 20 mm from the lower end, the ramp was curved to produce an arc

of length 100 mm and radius 286 mm. This made an angle of 20° between the remaining

900 mm of the ramp and the horizontal. These features are shown in Figure 5.1. The 20

mm horizontal section of the ramp was ground to a fine edge around the bottom of the

semi-circular cross section to bring about a smooth transition from the end of the ramp

onto the turf. The apparatus was supported at the stated angles by means of two steel

legs bolted to a tongue welded to the lower side of the ramp c. 20 mm from the top. After

grinding the inner face of the ramp to a smooth surface the whole apparatus was coated

with several layers of a tough, gloss lacquer.

STEEL STOPPER
SEATED IN SLOT

ARC LENGTH:
	 GOLF

	

100mm
	 BALL
	

25 mm
20°

9', -ø

	

r = 286 mm	
LEG	

308 mm
r

200 mm
FOOT...

I

20 mm

FIGURE 5.1

Schematic diagram of golf ball roll ramp showing dimensions of individual components.

Fine slots were cut in opposite edges of the ramp to house a removable steel strip which

could be used to set the release height of the ball. Slots were cut such that releases could

be made from heights of 50, 100, 150, 200, 250 and 300 mm from the lowest point of

the ball to the ground.
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The gradual curve at the base of the ramp was designed such that no more than one point

of contact was made between a Titleist 384 90 golf ball and the ramp during the ball's

journey down the ramp and the transition onto the turf. Similarly, the internal diameter of

the ramp was chosen to minimise lateral movement of the ball during descent, whilst

maintaining a single, central plane of revolution of the ball and avoiding the development

of topspin.

Following tests involving repeated rolling of Titleist 384 90 wound golf balls from each

release height over a level, uniform, artificial turf surface, it was found that roll length

increased linearly over the range between 50 and 300 mm. This linear relationship was

expressed by the equation:

y = 6.59x + 22.9 (r2 = 0.995)	 (5.1)

in which x was the roll ramp release height (mm) and y was the distance (mm) between

the end of the ramp and the fmal resting place of the ball.

On the trial it was found that the release height of 200 mm produced rolls which

consistently remained within the confines of the sub-sub-plots. Two balls were rolled

from this height across the diagonal in both directions on each of the 90 sub-sub-plots in

one block of the trial after mowing at 5 mm. The same procedure was carried out

immediately afterwards using a Stimpmeter. This was performed in week 27 (July) 1991

when the turf had fully established and a great deal of heterogeneity of turf types existed

on the trial due to the imposition of the treatment factors.

Using the mean distance travelled of the four readings for each sub-sub-plot, simple

linear regression of the ramp speeds was carried out on the Stimpmeter speeds. This

showed a highly significant (p ^ 0.000 1), linear relationship between the two measures.

The equation for the line was;

y = 0.973x + 0.675 (r2 = 0.77 8)	 (5.2)

in which x was the roll ramp speed (m) and y the Stimpmeter speed (m). Substituting the

mean Stimpmeter value obtained from the 90 sub-sub-plots into Equation 5.1, the

equivalent release height required to produce Stimpmeter-like rolls was found to be 352

mm. For roll ramp distances within a range of about 1.5 m to 3.0 m, Equation 5.2 may

be used to convert roll ramp distances to the more commonly quoted Stimpmeter values,

or vice-versa.
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During practical use, the ramp was found to be considerably quicker to use than the

Stimpmeter in circumstances in which repeated measurements needed to be made.

Maintaining a clean and dry inner face of the ramp was essential, since foreign bodies on

its surface collected in the centre of the semi-circular cross section where contact with the

rolling ball was made.

Ball roll or green 'speed' was measured using the steel ramp described above. Balls were

released down the ramp through a vertical height of 200 mm. Two balls were rolled

across a diagonal of each 2 m x 2 m plot in opposing directions and the mean distance

travelled of the four readings was used in the analysis. A method, put forward by Brede

(1991), of correcting the distorting effects of downslope gravitational accceleration in the

calculation of mean green speed values was not applied. This was because the mean

slope diagonally across each sub-sub-plot was less than 1 %, and therefore such a

correction, according to Brede, would have produced no significant improvement in

accuracy. Roll assessments took place as soon as possible after mowing at 5 mm when

the surface was not wet with rain or dew.

Clipping yield

Total clipping yields (fresh weight) were measured by weighing the clippings obtained

from a powered pedestrian mower with the blades set at 5 mm applied to each sub-sub-

plot after the trial had been left unmown for 5 days.

Golf ball impact studies

Golf ball impacts were simulated using a firing device developed from a baseball practice

machine (Haake 1987, 1989, 1991a). Balls were projected with a backspin of

approximately 770 rad s 1 (7162 rpm), a velocity of 22 m s 1 at an angle of 53°. These

settings represented typical impact criteria obtained from a 5-iron shot delivered by a

"scratch", professional golfer (Haake 1989) and generally ensured that projected balls

remained within the sub-sub-plots after impact.

Several aspects of the behaviour of the ball following impact were recorded. Post-impact

behaviour was divided into two phases, the bounce and the roll. The bounce phase was

considered to be the movement of the ball after the initial impact until it next made contact

with the ground. This trajectory may be assumed to be parabolic. As such it may be

fully described in terms of the angle and velocity of rebound. Thereafter it was assumed

for convenience that the ball travelled across the surface, although subsequent smaller

bounces may have taken place.
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The position of the end of the first bounce was located by eye. A second worker

recorded the height of the bounce to the nearest 50 mm by reading off from a scale

painted across an upright 2 m x 2 m board placed close to the plane of travel of the ball.

The lengths of the bounce, the roll and the overall distance travelled by the ball were then

measured.

Since the ball may have deviated from its initial direction of travel after impact, the check

distance ("screw back" or "roll on"), in the line of travel of the ball after the first bounce,

was calculated from the distance measurements by triangulation. Negative values of this

indicated that the ball doubled back at the end of the first bounce.

The velocity (v) and angle of rebound with regard to the horizontal was estimated by

triangulation of the vectors for horizontal (u i) and vertical (u) velocities. The vertical

velocity (u) was found from the equation for linear motion (Equation 5.3):

u 2 = U2 +2 g 5
	

(5.3)

in which g = acceleration due to gravity (9.8 m s-1 ) and assuming that the vertical velocity

(u) at the maximum height reached (s) was 0 m s'. The horizontal velocity was then

calculated by solving the trajectory equation (Equation 5.4) for u using half the bounce

length (x) and the bounce height (y):

y = u x/u - 1/2 g(x/u) 2	(5.4)

The depth of the pitchmark for each impact was also measured using a USGA greens

hardness tester by the method described by Haake (1989).

Surface hardness was measured using a Clegg Impact Soil Tester (Clegg 1976). A 0.5

kg impact hammer was dropped down a guide tube through a height of 300 mm and an

accelerometer in the hammer recorded the deceleration in gravities. Shear strength was

measured using a Geonor Inspection Vane Borer (Geonor AS, Oslo, Norway). This

consisted of a steel shaft to one end of which was attached a four-bladed vane. The

gradual turning of a handle attached to the other end of the shaft exerted a torque which

was measured with a spiral spring housed in the handle. The smallest of a series of vanes

was selected. This consisted of four blades each 20 mm wide by 40 mm long, and

measured shear strength in the range 0 to 20 t rn- 2. The vanes were inserted into the turf

so that their upper edge just disappeared below the surface. The handle was then slowly
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turned at constant speed until the handle followed the vanes around or fell back to a lower

torque reading. This occurred when the shear strength of the rootzone failed under the

force applied by the turning of the handle. Maximum shear strength was then read off

the graduated scale. The mean of five tests per plot for both hardness and shear strength

was used in the analysis.

The ball roll studies described in this chapter were carried out in weeks 13 (March), 21

(May), 31 (July) and 41 (October) 1991. Clipping yield fresh weight assessments were

carried out in weeks 23 (June) and 31 (July) 1992. The ball impact tests were carried out

in weeks 21 (May) and 30 (July) 1992 when each constuction type had received 33 and

67 % of the annual nitrogen application. For both ball roll and impact measurements, the

type of golf ball used was a Titleist 384 90 wound ball. Principle components analysis

(PCA) of the key measured variables (namely the total distance travelled, u, u s,, v, the

check distance and the pitch-mark depth) was performed in order to indicate more clearly

any inter-relationships between post-impact measurements which might exist. ANOVA

was subsequently carried out on the resulting factor scores, and correlations between ball

behaviour measurements and botanical composition data (Chapter 4), hardness and shear

strength were calculated.

5.3 RESULTS

Ball roll and clipping yield tests

The effects of the nitrogen and phosphate fertiiser treatments on the mean ball roll of all

four assessments carried out in 1991 on the SWT constructions (sand and USGA) is

shown in Figure 5.2. Ball roll declined at a diminishing rate with increasing nitrogen

input on both constructions treated with phosphate fertiliser. On sand construction sub-

sub-plots not receiving phosphate fertiliser, this decline was much less marked. At the

highest rate of nitrogen fertiliser, the USGA sub-sub-plots not receiving phosphate

fertiiser showed a slight increase in ball roll.

Ball roll on the soil constructions showed a decline at a diminishing rate with increasing

rate of nitrogen fertiliser. This is shown in Figure 5.3. This reponse showed no

significant interaction with either phosphate fertiliser treatment or rate of irrigation.

The effects of nitrogen and the three irrigation treatments on ball roll on the sand and

USGA constructions are shown in Figures 5.4 and 5.5 respectively. Both constructions

showed an increase in ball roll at the higher rates of nitrogen fertiliser and with decreasing

rate of irrigation. This increase was greatest on the sand constructions. The interaction

of construction type, nitrogen and phosphate fertiliser and irrigation treatment was
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significant (p ^ 0.05) and these data suggested that the increase in ball roll on sand

constructions at high nitrogen fertiliser rates without phosphate fertiliser was greater at the

lower rates of irrigation.

0 100 200 300 400 500 600 700

NITROGEN RATE (kg N ha'yr1)

FIGURE 5.2

The effects of 5 rates of nitrogen fertiliser application on the SWT construction types,

with and without phosphate fertiliser on mean ball roll (m) in 1991. Vertical bar

represents LSD (p^0.05) for the comparison of all possible pairs of means presented.

1.8

1.7
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NITROGEN RATE (kg N hayr1)

FIGURE 5.3

The effects of 5 rates of nitrogen fertiliser application on the soil construction type on

mean ball roll (m) in 1991. Vertical bars represent standard errors (SEs) of the means

presented.
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FIGURE 5.4

The effects of 5 rates of nitrogen fertiliser application on the sand construction type at

three rates of irrigation on mean ball roll (m) in 1991. Vertical bar represents LSD

(p^O.O5) for the comparison of all possible pairs of means presented.
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FIGURE 5.5

The effects of 5 rates of nitrogen fertiliser application on the USGA construction type at

three rates of irrigation on mean ball roll (m) in 1991. Vertical bar represents LSD

(p^O.05) for the comparison of all possible pairs of means presented.
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FIGURE 5.6

The effects of 5 rates of nitrogen fertiliser application on the SWT construction types,

with and without phosphate fertiliser, on MCY (fresh weight) in weeks 23 (June) and 32

(July) 1992. Vertical bar represents LSD (p^O.05) for the comparison of all possible

pairs of means presented.

The effects of the nitrogen and phosphate fertiliser treatments on the mean clipping yield

(MCY - described as fresh weight) of the two assessments carried out in 1992 on the

SWT constructions is shown in Figure 5.6. Clipping yield showed a generally sigmoid

increase with increasing nitrogen input on these constructions treated with phosphate

fertiliser. On USGA sub-sub-plots not receiving phosphate fertiliser this increase was

much less marked, and on the sand constructions yield increased only slightly. MCY on

the soil constructions increased in a linear manner over the range of increasing nitrogen

fertiliser. This is shown in Figure 5.7. This reponse showed no significant interaction

with phosphate fertiliser treatment.

The interactive effects of construction type and irrigation rate on MCY are shown in Table

5.1. On the SWT constructions, clipping yield was significantly less (p ^ 0.05) on the

underwatered (60 % TDET) plots.
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FIGURE 5.7

The effects of 5 rates of nitrogen fertiliser application on the soil construction type on

MCY (fresh weight) in weeks 23 (June) and 32 (July) 1992. Vertical bars represents SEs

of the means presented.

IRRIGATION SAND USGA SOIL

RATE ______ ______ ______

60% TDET	 3.9	 3.5	 5.0

100% TDET	 4.2	 5.4	 5.0

140% TDET	 4.2	 5.5	 4.0

MEAN	 4.1	 4.8	 4.7

TABLE 5.1

The effects of differing rates of construction and irrigation on clipping yield

(g rn-2 day' - fresh weight) at a mowing height of 5 mm. These data represent

the mean of two assessment carried out in June and July 1992. LSD (j) ^ 0.05) for all

means presented was 0.85.

The correlation coefficients of mean ball roll for all four 1991 assessments with the

corresponding ground cover means of the two botanical composition assessments in 1991

(Chapter 4) are shown in Table 5.2. Total live cover was calculated as the net cover of

Agrostis spp., F. rubra and P. annua. Ball roll was negatively correlated with total live

cover, and its main component Agrostis spp, and positively correlated with F. rubra.

Ball roll showed a negative correlation with P. annua cover, although the strength of the

relationship was weaker than with other components of ground cover.
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GROUND CORRELATION

COVER	 WITH BALL

___________	 ROLL

Total live cover	 -0.77

Agrostis spp.	 -0.80

F. rubra	 0.60

P. annua	 -0.26

TABLE 5.2

Correlation coefficients of mean ball roll with the corresponding means of the two

botanical composition assessments carried out in 1991. The least significant correlation

coefficients for p ^ 0.05, 0.01, and 0.O0lwere 0.195, 0.254, and 0.321 respectively.

Impact study data

The main effects of construction type and irrigation treatment on hardness, as measured

with the Clegg Impact Soil Tester, were highly significant (p ^ 0.001). These data are

presented in Table 5.3. Hardness increased with decreasing rate of irrigation and was

greater on the soil constructions. The effects of irrigation were most apparent on the soil

constructions and not at all apparent on the sand constructions.

IRRIGATION SAND USGA SOIL MEAN

RATE ______ ______ ______ ______

60% TDET	 87	 95	 115	 99

100% TDET	 88	 89	 110	 96

140% TDET	 88	 83	 103	 91

MEAN	 88	 89	 109	 -

TABLE 5.3

The effects of the construction and irrigation treatments in 1992 on turf hardness

(gravities). LSD (p ^ 0.05) for the main effect of irrigation was 2.8 and for construction

was 3.3.

Both the nitrogen and phosphate fertiliser showed similarly significant interaction (p ^

0.00 1) with construction treatments. The effects of phosphate fertiliser on hardness of

each construction are shown in Table 5.4. On the SWT constructions, the application of

phosphate fertiliser reduced hardness.
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CONSTRUCTION	 PHOSPHATE TREATMENT

TYPE	 (kg P20 5 ha-' yr')

___________________	 0	 50

SAND	 90	 86

USGA	 92	 86

SOIL	 109	 110

TABLE 5.4

The effects of phosphate fertiiser on hardness (gravities) on each of the

construction types. LSD for comparing all the means presented

was 4.1, and for means with the same construction, 2.5.

The effects of nitrogen fertiliser on hardness of each construction type are shown in

Figure 5.8. On all three construction types, hardness declined as nitrogen fertiliser rates

were increased from 35 to 235 kg N ha- 1 yr4 . The extent of this decline was greatest on

the soil constructions.
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FIGURE 5.8

The effects of 5 rates of nitrogen fertiliser application on the three construction types on

mean hardness (gravities) in 1991. Vertical bar represents LSD for comparison of all

possible pairs of means presented.
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Shear strength was greatest on the soil constructions. The mean shear strength values of

the sand, USGA and soil constructions were 4.8, 5.5 and 9.4 t rn-2 respectively. The

LSD (p ^ 0.05) for the main effect of construction on shear strength was 0.87. On the

sand constructions, the application of phosphate fertiliser significantly increased shear

strength. The mean shear strength values of the sand constructions receiving phosphate

fertiliser was 5.3 t rn-2, and of those not receiving it was 4.3 t rn-2. The LSD (p ^ 0.05)

for this interaction was 0.51.

The main effects of the construction and irrigation treatments on the total distance

travelled by golf balls after impact in both assessments carried out in 1992 are shown in

Table 5.5. The soils gave the largest total distances. This declined with increasing

irrigation rate. Nitrogen fertiliser had no effect on total distance travelled, either as a main

effect or in interactions. On sub-sub-plots not treated with phosphate fertiliser, total

distance travelled was significantly greater (p ^ 0.05, mean = 1.52 m) than on treated

sub-sub-plots (mean = 1.38 m). The LSD for the main effect of phosphate fertiliser was

0.13.

IRRIGATION SAND USGA SOIL MEAN

RATE ______ ______ ______ ______

60% TDET	 1.45	 1.74	 2.05	 1.75

100% TDET	 1.16	 1.22	 1.93	 1.44

140% TDET	 1.22	 0.86	 1.59	 1.17

MEAN	 1.22	 1.27	 1.86	 -

TABLE 5.5

The effects of the construction and irrigation treatments in 1992 (mean of two dates)

on the total distance travelled after impact by golf balls fired to simulate a 5-iron

shot (m). LSD (p ^ 0.05) for the main effect of irrigation was 0.21,

and for construction was 0.30.

The general inter-relationships between the aspects of post-impact ball behaviour in the

1992 assessments are given in the form of a correlation matrix, derived from the mean

measures for each sub-sub-plot, in Table 5.6.



TD

Total distance (TD)	 1.00

U	 0.81

U,	 0.49

Net velocity (V)	 0.60

Check distance (CD) 	 0.63

Pitchmark depth (PMD) -0.38

126

U,	 U,	 V	 CD PMD

1.00

	

0.71
	

1.00

	

0.83 0.98
	

1.00

	

0.12	 -0.25	 -0.17
	

1.00

	

-0.06
	

0.31
	

0.24	 -0.69 1.00

TABLE 5.6

Correlations amongst various aspects of golf ball behaviour after impact. Values of

the correlation coefficient (r) for p ^ 0.05, 0.01 and 0.00 1 are 0.195, 0.254 and

0.276 respectively. Correlations significant at p ^ 0.00 1 are shown in bold.

Many of the correlations were significant (p ^ 0.00 1) though not very strong. These

inter-relationships may be indicated more clearly using the biplot of the same component

loadings obtained from the PCA. The first three axes derived by the PCA accounted for

59 %, 34 % and 5 % of the variation observed in the data. A biplot of the first and

second axes (components I and II) therefore described 93% of the observed variation.

This biplot, showing the inter-relations of the 6 measured features shown in the

correlation matrix, is given in Figure 5.9.
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FIGURE 5.9

Component loadings of the 6 measured variables showing orientation with respect to the

first two components derived by PCA from the golf bail impact data collected in 1992.
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The observations most closely associated with Component I were pitchmark depth (PMD)

and check distance (CD). These were strongly negatively correlated, indicating that as the

Component I score declined, pitch mark depth became greater, the check distance was

reduced and balls "screwed back" on themselves to a greater extent. The rebound

velocity features (ui , u,, and v) were most closely associated with the orthogonal

Component II and were highly positively correlated with each other. Thus, as

Component II scores declined, so did the rebound velocities. The total distance travelled

by balls was most associated with Component II, but was also associated with check

distance, in Component I, which comprised, of course, the second part of the ball's

Journey.
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FIGURE 5.10

The effects of 5 rates of nitrogen fertiliser application on the sand construction type, at

three rates of irrigation, on Component I score from the PCA of the ball impact data

collected in 1992. Vertical bar represents LSD (p^0.05) for all possible pairs of means.

The effects of the nitrogen and irrigation treatments on Component I scores for the sand

and USGA construction types are shown in Figures 5.10 and 5.11 respectively. On the

sand constructions, the 140 % and 100 % TDET treatments did not significantly differ at

each rate of nitrogen fertiliser, but Component I scores were significantly less with the 60

% TDET treatment. Increasing nitrogen fertiiser gave a general increase in Component I

score, and this increase was greater at the higher rates of irrigation. On the USGA

constructions, the interactive effects of irrigation and nitrogen fertiliser were very

pronounced. At the 60 % TDET irrigation rate, Component I scores were slightly greater
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at nitogen rates of 235 and 410 kg N ha-' yr'. At 100 % TDET, scores increased with

increasing nitrogen rate and appeared to level off above 235 kg N ha-' yr-'. At the highest

rate of irrigation, scores continued to increase with nitrogen fertiliser to reach maximum

values at4lO kgNha-' yr-'.

0 100 200 300 400 500 600 700

NITROGEN RATE (kg N ha1yr1)

FIGURE 5.11

The effects of 5 rates of nitrogen fertiliser application on the USGA construction type, at

three rates of irrigation, on Component I score from the PCA of the ball impact data

collected in 1992. Vertical bar represents LSD (j)^0.05) for all possible pairs of means

presented.

On the soil constructions, no significant interaction with irrigation treatment was observed

with regard to the Component I scores. Scores showed a continuous increase with

increasing nitrogen and this response is shown in Figure 5.12.

The phosphate fertiliser treatment showed a significant interaction with construction type

with regard to Component I scores. The mean values are shown in Table 5.7. Phosphate

fertiliser increased Component I scores on the sand and USGA constructions, but had no

significant effect on the soil constructions. This increase was greatest on the sand

construction.

The effects of the irrigation and nitrogen fertiliser and construction treatments produced

differences in the Component II scores which were apparent as the main effect only.

Increasing rate of irrigation showed a decrease in Component II score across all

treatments. The mean scores for irrigation rates of 60, 100 and 140 % TDET were 0.24,

0.06, and -0.29 respectively, and the LSD (p ^ 0.05) was 0.27. The Component II score
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FIGURE 5.12

The effects of 5 rates of nitrogen fertiliser application on the soil construction type on

Component I score from the PCA of the ball impact data collected in 1992. Vertical bars

represent SEs of the means presented.

FIGURE 5.13

The effects of 5 rates of nitrogen fertiliser application on the mean of all three construction

types on Component II score from the PCA of the ball impact data collected in 1992.

Vertical bars represent SEs of the means presented.
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of the soil constructions was significantly greater than those of the sand and USGA

constructions. The mean scores for the sand, USGA and soil constructions were -0.75, -

0.37 and 1.12 respectively, and the LSD (p ^ 0.05) was 0.42.

The main effect of the nitrogen fertiliser treatment on Component II scores is shown in

Figure 5.13. Component II scores were very low at the lowest rate of nitrogen (35 kg N

ha-' yr'), rose sharply an N2 (110 kg N ha-' yr- i ) and then gradually declined with

increasing nitrogen rate.

CONSTRUCTION	 PHOSPHATE TREATMENT
TYPE	 (kg ha-' yr' P)

____________________	 0	 50

SAND	 -1.17	 0.26
USGA	 -0.59	 0.18

SOIL	 0.65	 0.68

TABLE 5.7

The effects of phosphate fertiliser on Component I scores on each of the

construction types. LSD for comparing all the means presented

was 0.51, and for means with the same construction, 0.36.

The correlations between the first two components of the PCA and total distance travelled

by balls after impact, and measurements of hardness, shear strength, ground cover

features and mean clipping yield (MCY) are shown in Table 5.8. Neither hardness or

shear strength showed any significant correlation with Component I. This component

showed positive correlation with total live cover, Agrostis spp. and P. annua, and

negative correlation with F. rubra and the cover of dead material. Component II showed

a positive correlation with shear strength, total live cover and P. annua. The total distance

travelled after impact showed no correlations with the other features of the turf at p ^

0.005.

These data show that Component I, increasing values of which indicated the tendency of

impacting balls to create large pitch marks and screw back upon themselves, was

associated with high amounts of live cover, the main components of which were Agrostis

spp. and P. annua growing at a fast rate. Component II, which was related to the

velocity of rebound, was associated with high total live cover in general and the cover of

P. annua in particular. Shear strength measurements provided some indication of ball

behaviour characteristics described by Component II.
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MEASURE	 Component I Component II Total distance

Hardness	 -0.19	 0.15	 0.26
Shear strength	 0.23	 0.43	 0.20

Total live cover	 0.45	 0.36	 0.06
Agrostis spp. cover	 0.29	 0.05	 -0.19

P. annua cover	 0.38	 0.42	 0.27
F.rubra cover	 -0.50	 -0.20	 0.04

Dead material cover	 -0.28	 -0.16	 0.04
MCY	 0.45	 0.08	 -0.04

TABLE 5.8

Correlations between the first two components of the PCA analysis and the total distance

travelled by balls after impact and other aspects of the turf. Values of the correlation

coefficient (r) for p ^ 0.05, 0.01 and 0.00 1 are 0.195, 0.254 and 0.276 respectively.

Correlations significant at p ^ 0.001 are shown in bold.

5.4 DISCUSSION

The treatment factors incorporated into the trial initiated a very wide range of responses in

the turf of both a physical and biological nature. It is difficult to imagine however, how

some physical distinctions, such as those between the construction types, might have

influenced ball roll by means other than their influence on the turf species at the surface.

The pronounced effects of the treatments on species composition, pattern and form,

discussed in Chapter 4, and on growth rate as described above, were therefore mirrored

by similarly pronounced treatment effects on ball roll.

Considering botanical composition, the data would imply that faster putting surfaces are

characterised by a lower proportion of Agrostis spp. and a high proportion ofF. rubra in

the sward. This may be interpreted as a consequence of the different nature of the leaf

surface of each species with which the ball interacts. Canaway & Baker (1992) found a

similar effect using bowls, and Baker & Richards (1991) also found that fescue turf

generally gives a faster putting surface than bent. This interpretation is complicated

however by the fact that the cover of F. rubra was proportionately very low and also that

it tended to be most abundant in low fertility sub-sub-plots on which total live cover was

generally low. The greater proportion of low-lying litter and dead material also present in

these plots presented a smoother, less cushioned surface to the ball which slowed it down

to a lesser extent. The increase in ball roll at high nitrogen on the under-watered SWT

constructions was almost certainly attributable chiefly to this feature of ground cover.
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On the soil constructions, total live cover was always greater than 95 % but fertiliser

nitrogen showed a marked effect on ball roll. The proportion of P. annua showed a

simultaneous increase with nitrogen and the possibility that this species might present a

slower surface in comparison with the Agrostis spp., which it tended to displace, may

therefore not be discounted. However, the uniformity of the fertility response across all

construction types does suggest that differential overall growth rates between swards

were a major factor influencing ball roll. There was a distinct "reciprocal" similarity

between the measurements of ball roll and those of clipping yield in the nature of the

responses to all the treatments imposed. Coiclough (1989) reported similarly reduced ball

roll in response to nitrogen and phosphate fertiliser on fine turf before any significant

changes in botanical composition were observed. Thus it would appear that the growth

of turf in the time between mowing and play is governed to a great extent by climatic and

fertility factors and may be suffiently rapid to affect putting speeds.

The observed responses of mean clipping yield to the treatment factors imposed are of

interest and merit some discussion in themselves. On the sand and USGA constructions,

the overall growth responses to nitrogen were clearly determined by the application or

otherwise of phosphate fertiliser. Indeed, on the sand constructions in particular, it may

be said that phosphate fertiliser application is absolutely essential for any significant

upward growth to take place at all. By contrast, on the soil constructions, MCY response

to nitrogen showed no dependence on phosphate whatsoever, and was apparently not

limited even at the highest rate of nitrogen application. An effect of rootzone texture on

effective fertility is therefore indicated. This form of response is consistent with the

concept of phosphate buffering capacity (Wild 1988b) based on the clay mineral and

organic matter content, which was discussed in Sections 1.7 and 4.4.

The total distance travelled by golf balls after impact, or the "holding power" (Colclough

1989), was chiefly affected by the construction type and the rate of irrigation. The

response to irrigation treatment showed a similar form to that described for the soil

moisture deficit in Chapter 3 (Table 3.2). Thus, as rootzones dried out in their respective

characteristic ways, golf balls travelled further after impact. The soils however showed a

higher water content (smaller SMD) than the SWT constructions but generally showed a

greater total distance of travel after impact. This would indicate that rootzone water status

alone cannot be used to indicate post-impact golf ball behaviour and that structural and

textural aspects need to be considered.
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Buchanan (1984) discussed the features which may affect the holding power of greens,

and his basic tenet was that hardness is the main determinant of the outcome of impacts.

This affects the ratio of rebound to incoming ball velocities or the coefficient of restitution

(Daish 1972). Considering the treatment responses of hardness as measured with the

Clegg Impact Soil Tester (CIST), their direction and magnitude certainly reflected the

responses of total distance travelled after impact. The effects of nitrogen fertiliser on

CIST measurements, though quite large, were not however reflected in the total distance

response. Similarly, and perhaps in consequence, the correlation between hardness and

total distance travelled was comparatively weak. This anomaly may be attributable to the

actual level of hardness measured by the CIST and that actually relevant to the behaviour

of the incoming ball. The 2.5 kg mass of the CIST hit the turf at a speed of about 2.4 m

s- 1 . The balls used in this study hit the turf at a speed of about 22 m s-'. The respective

rates of deceleration on impact were therefore of quite different orders of magnitude. At

the speed of impact of the CIST decellerometer, the differential treatment effects on turf

growth were therefore likely to be of greater significance in their effects on recorded

hardness. The incoming balls, on the other hand, frequently penetrated the surface and

interacted with deeper layers of the turf profile. Thus, rootzone texture and water status

were found to be of greater significance with respect to the velocity of rebound. This

would indicate that the CIST may be an inappropriate device for measuring hardness as it

affects golf ball impacts, and one operating on the same principle but at greater velocities

may be more informative.

The PCA analysis split the data set describing the behaviour of golf balls into two

seemingly logical axes. Component I isolated features relating to spin retention at the end

of the first bounce and indicated that this might be some function of the depth of

pitchmark permitted by the green. Component II isolated those features pertaining to the

velocity of rebound after impact and might be thought of as related to the coefficient of

restitution. The sensitivity of Component Ito all treatments indicated that spin retention is

determined to a large extent by the "biological" features of the turf. These include

botanical composition, growth rate and extent of live ground cover, all of which features

correlated with Component I scores. Madison (1962) defined the amount of above

ground growth of turf as "verdure". Component I could therefore be described as the

verdure component of the turf. Similarly, factors pertaining to the "structural" aspects of

the deeper layers of the turf profile affected Component II scores and these showed

similar responses and significant correlation with shear strength measurements which

bypassed the effects of verdure. The main effect of the lowest rate of nitrogen on

Component II scores may have come about due to a lower root density associated with
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the very low total live cover. Further investigation would be necessary to establish the

relationships between root density and the measures reported here.

The total distance travelled was a function of both components, but was more closely

associated with Component II since, for the iron shot simulated in this study, the first

bounce represented the largest proportion of the total distance travelled. If different golf

ball flight criteria had been applied, for example, if a lower iron or driver - type shot had

been simulated, the biological factors which influenced spin retention may have been of

greater significance in determining the overall distance travelled after impact. The holding

power of a green, and the expected outcome of impacts, may therefore be summarised in

terms of component scores on each of the two axes. In order to estimate such scores,

some measure of verdure could be used to establish the green status with respect to

Component I, and a measure of hardness, derived from the decelleration of a measuring

device projected at a velocity comparable to that of a golf ball in play, to establish the

green status with respect to Component II. Such a method of summarising this aspect of

the playing quality of a green would need to be tested alongside golf ball behaviour

measuresments for a range of iron and driver shot simulations, but may ultimately

provide a useful method of golf green classification and standardisation with respect to

play.
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CHAPTER 6- THE QUALITY OF GOLF
GREENS

6.1 INTRODUCTION

Establishing methods for the objective assessment of turigrass visual quality has been the

goal of many workers (eg Kamps 1969, Shildrick 1981, Bourgoin eta!. 1985, Newell &

Gooding 1990). However, the quality of a golf green is determined not only by its

appearance but also by its quality of play and its capacity to provide a suitable surface

throughout the year. Quality is therefore a multi-faceted feature.

The subjective assessment of turfgrass visual quality by simply asking people to score

surfaces relative to one another can give an idea of what particular visible features are

considered desirable. In the present study, such data may be analysed by ANOVA and

statements may be made about the fertiliser and irrigation requirements of the best looking

surfaces on each of the three construction types. Correlations between such assessments

and objectively measured features such as ground cover, species composition and shoot

density, may then indicate the objective measures pertaining most closely to the visual

aspects of turf quality.

Techniques of measuring the red: far red ratio from plants provide data which bear a

close correlation with visual merit (Birth & McVey 1968, Biran & Bushkin-Harav 1981,

Gooding & Gamble 1990). Such measures are, however, subject to great variation over

time. The actual values depend, for example, on the quality and intensity of sunshine at

the time of assessment, and on the initial method of instrument calibration. No standard

procedure of reflectance ratio measurement has, to date, been devised. The objective

assessment of turfgrass colour on the other hand, using automatic colour meters, does

provide a consistent statement of at least one aspect of turfgrass appearance which can be

compared with other, isolated, measurements. The "L" (white - black), "a" (red - green)

and "b" (yellow - blue) values obtained with a colour meter are internationally accepted as

a standard means of assessing the colour of objects. Studies of turfgrass colour using

such devices (eg Kavanagh et a!. 1985, Kimura et a!. 1989) therefore provide measures

of one visual aspect of turfgrass quality which can be directly compared with data from

totally unrelated sites.

The relationships between objective measures related to both the biology and the

"mechanics" of turf, some of which have been described in previous chapters in terms of

the influences of treatments upon them, and the overall quality of golf greens is by no

means simple. For example, attempts to relate soil physical phenomena such as moisture
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content directly with post-impact golf ball behaviour are extremely difficult (see Chapter

5). The number of such objective measurements which could be carried out is open

ended, and many correlations will exist within such measurements.

A classification of data from a survey of a large set of golf green surfaces, based on the

correlations between measurements of differing aspects of quality, would enable workers

to identify particular types, or classes, of greens. General characteristics pertaining to

the quality of each class may then be described. Subsequently, a small number of

observations of any green may be used to place that green into the most appropriate class.

This having been done, statements about the quality of the surface, and hence how it

compares with others, may be made on the basis of the characteristics associated with the

class. Techniques for achieving such a classification are to be found in the field of multi-

variate analysis.

Methods of classifying a large set of stands on the basis of sets of data from each one

have been utilised to maximal value by the NCC for the classification of the vegetation

types encountered in the British Isles (Anon. 1992a). Information from many different

sites concerning the species composition and relative abundance was collated and

analysed by a system which first arranged the sites in a matrix of inter-stand distances (or

similarities). The matrix was then bi-sected according to its most natural line of

separation, and the same procedure performed on the resulting two halves. This

procedure was repeated until the desired size of classes was achieved. The resulting

dichotomous dendrogram provided the framework for a key for the placing of new stands

into a pre-determined class.

Classification of multivariate data sets is frequently carried out mathematically using one

of the many techniques known as cluster analysis. For a review of these techniques,

Jardine & Sibson (1971) provides a thorough mathematical treatment of the subject, and

Everitt (1974) discusses the relative merits of differing approaches. If observations are

taken on only two variables, the simplest, and arguably the best (Cormack 1971), way of

finding natural groupings in a set of data is to plot the data on a scattergram and examine

the graph visually. With more than two variables, principal components analysis (PCA)

can be used to provide an effective reduction in dimensionality and scattergrams of the

first and second principal components can be examined for clustering, If more than two

components are needed to give a satisfactory representation of the data, then an

algorithmic clustering of the scores on the appropriate number of components is called

for.
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Cluster analysis algorithms require the data to be expressed as a matrix of similarity

coefficients between all possible pairs of stands. There are numerous such measures in

use and they are usually defined to lie in the range 0 to 1. This can subsequently be

expressed as a percentage. Chatfield & Collins (1980) discuss the differing coefficients

and their relative merits. For the purposes described here however, the choice of

similarity measure, and indeed of actual cluster analysis algorithm, is of limited

significance provided a sensible classification is fmally achieved.

The derivation of a dendrogram indicating the locations of suitably defined classes

facilitates the generation of an artificial key based on the objective measures used. Stands

not included in the original classification data set may therefore be placed in a class, using

the key, provided the stand is located within the volume of the original similarity matrix.

Clearly, if a classification is to be of value, the range of stand types needs to be large and

to include representatives of extreme types. The objective assessments of the 180 sub-

sub-plots of the trial certainly showed a wide range of results, as described in the

preceding chapters. By classifying objective assessment data from the sub-sub-plots by

PCA and cluster analysis, it was envisaged, in this study, that classes of turf could be

identified on the basis of a limited number of objective assessments, and statements about

the classes made in terms of their visual and playing quality and the management

procedures associated with them. Direct correlations between perceived visual merit and

objective assessments were also examined as a means of identifying the most direct

indicators of visual merit from the range of objective assessments carried out.

6.2 MATERIALS AND METHODS

Visual merit

Visual merit evaluations of all sub-sub-plots were performed in 1991 and 1992. The

close proximity of a golf course to the trial provided a supply of golfers prepared to score

the 180 sub-sub-plots. Evaluators were asked "Please score the turf on the basis of how

nice, in your view, it appears to be." Individuals with experience of turf management or

assessment were not included because they would have biased opinions of what

constituted good or bad appearance. For example, they may have had pre-conceived

ideas of the relative merits of an individual species and their ability to recognise that

species in the sward would influence their choice of merit score irrespective of the general

appearance. In most cases, the wording of the request was clearly understood and did

not raise any queries from the evaluators.

The WRCC - 11 turf committee adopted the use of a uniform 1 to 9 scale for visual

assessments of turf quality (Horst et a!. 1984), in which 9 represents the most desirable.
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This system was used in this study. Evaluators were first asked to quickly examine each

block and select a 9-score and a 1-score sub-sub-plot in order to familiarise themselves

with the range. Like all other assessments, evaluations were carried out in rows across

the trial from east to west in order to avoid confounding plot and sub-plot effects with

temporal or human vacillation during data collection. The time taken by the evaluators to

score the 180 sub-sub-plots was between 20 and 30 minutes, or between 7 and 10

seconds per sub-sub-plot.

In 1991, both golfers and non-golfers performed the evaluation in order to establish

wether their respective opinions of turf quality differed. In order to improve the

standardisation of the merit scores from different evaluators, the scores were converted to

z-scores. ie

z-score = sub-sub-plot score - mean score for the evaluator 	 (6.1)

standard deviation

In week 22 (May), 12 golfers (handicap < 25) and 9 non-golfers performed the

assessment. Outliers were rejected by correlating individual evaluator z-scores with the

overall mean for golfers or non-golfers. Evaluators giving correlation coefficients of less

than 0.70 were rejected and the means recalculated. The grand mean of all the retained

evaluators, pooling golfers and non golfers, was used to sort the 180 sub-sub-plots into a

ranking order. The linear regressions against this series of the golfers and non-golfers

were then compared. This showed no significant difference between the evaluation

regressions of the two groups. In 1992, merit assessments were therefore carried out in

weeks 15 (April), 23 (June) and 32 (August) by seven suitable evaluators and the mean

scores over all assessments were analysed by ANOVA and used in subsequent

comparisons.

Colour

Grass colour was assessed by taking a sample of the clippings from each sub-sub-plot

mown at 5 mm in weeks 11 (April), 23 (June) and 31 (July) 1992. Samples were placed

on a 9 cm diameter tray to a depth of 1 cm. The "L", "a" and "b" values of the clippings

were then determined with a D25L - PC2 Delta Tristimulus Colorimeter System (Kirstol

Ltd. Stalybridge) with a 95 cm viewing port. The "L" values denote the brightness, 100

describing pure white and 0 signifying black. Negative "a" values describe the intensity

of greenness, the more highly negative the figure, the greener the grass. The more

yellow the sample, the more positive the "b" value.
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Classification

Principal components analysis (PCA) was performed on 12 objective measures,

consisting of the total live cover (TLC - %), total cover of the sown species (F. rubra and

Agrostis spp.) [SOW - %], cover of P. annua (POA - %) and shoot density adjusted for

total live cover (see Chapter 4) [ADJ - /100 000 shoots rn- 2]. These data were collected in

October 1992. The mean of the three assessments of colour "L", "a" and "b" values were

also included, as were the rootzone pH, phosphate (P205 - mg 1- air dried rootzone

medium), potassium (K20- mg 1 air dried rootzone medium) content measured in

October 1991, and the calcium content (Ca - mg 1- 1 air dried rootzone medium) measured

in March 1991 and the organic matter content (OM - %) measured in March 1992.

Subsequently used abbreviations and units are shown in brackets.

The first five principal components derived by the analysis accounted for 85 % of the

variation in the data. The component scores for each sub-sub-plot on these axes were

then used to derive a similarity matrix. The similarity measure (s,1) used was the simplest

of its kind and called "City Block", derived by the equation:

sij = l-IX1-xjj
	

(6.2)
range

in which x and x are the component scores of the ith and jth sub-sub-plots respectively.

The similarity matrix was then analysed by complete linkage cluster analysis. This is an

agglomerative procedure which built up the hierarchical tree by grouping individuals into

sets of increasingly disiniilar clusters. The "distance" between two clusters was defmed

by this method as the disimilarity between their most remote pair of individuals. Groups

of sub-sub-plots were selected by eye within the resulting hierarchical tree or

dendrogram. The criteria used for their definition, or for "chopping the tree" at

appropriate branches, were that about ten classes, with an average membership of 18 sub-

sub-plots should be identified.

An artificial key to the classes

The mean values for the objective measures were calculated for each class. From this

information, and the loadings of each measured variable on the first five principal

components, a dichotomous key was prepared. This was aimed at placing a particular

turf type into the appropriate class by means of a series of questions. The answers to

these questions were based upon the objective measures recorded and indicated the class

to which a particular surface belonged.
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Overall quality evaluation

The mean values for each class of the visual merit rating, ball roll, and Components I and

II from the impact study PCA described in Chapter 5 were calculated in order to provide

an indication of the overall quality of each class in terms of both visual and playing

characteristics. The construction type and irrigation and fertiliser regimes associated with

each class were also assessed.

6.3 RESULTS

ANOVA of merit z - scores

The means of the merit z -scores collected in 1992 showed that evaluators were able to

distinguish between treatment effects on turf of a high order of interaction. The effects of

the nitrogen and phosphate fertiliser treatments on visual merit of the three construction

types are shown in Figure 6.1.

0 100 200 300 400 500 600 700

NITROGEN RATE (kg N ha1yr1)

FIGURE 6.1

The effects of 5 rates of nitrogen application, with and without phosphate fertiliser, on

mean visual merit of the three construction types in 1992. Phosphate fertiliser had no

significant effect on the soil constructions, and so only the mean across the phosphate

treatments are presented for this situation. Vertical bar represents LSD (p^0.05) for all

possible comparisons of the means presented.

Phosphate fertiliser had no significant effect on merit on the soil constructions and so the

means shown for each nitrogen rate represent those across the phosphate fertiliser

treatment for this construction type. On the sand constructions, visual merit was

consistently the lowest when not treated with phosphate and showed very little response
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to nitrogen fertiliser. Sand and USGA sub-sub-plots treated with phosphate fertiliser

both gave the highest merit ratings at a nitrogen fertiliser rate 410 kg N ha-' yr', and did

not significantly differ at any rate of nitrogen. Merit scores increased with increasing rate

of nitrogen and fell at the highest rate (635 kg N ha-' yr-'). The USGA constructions sub-

sub-plots not treated with phosphate fertiliser showed a similar response to nitrogen as

those treated with phosphate, but merit ratings were consistently lower and showed a

maximum at a nitrogen rate of 235 kg N ha- 1 On the soil constructions, maximum
visual merit was reached at a nitrogen rate of 235 kg N ha-' yr'. At rates above this, the

soil construction visual merit declined only slightly and, at the highest rate of nitrogen,

this construction gave the highest visual merit score of the three.

2.0

0 100 200 300 400 500 600 700

NITROGEN RATE (kg N ha1yr1)

FIGURE 6.2

The effects of 5 rates of nitrogen application, at three rates of irrigation, on mean visual

merit of the sand constructions in 1992. Vertical bar represents LSD (p^0.05) for all

possible comparisons of the means presented.

The lowest rate of irrigation produced a greater reduction in merit at the highest rate of

nitrogen fertiiser on the sand construction types. This phenomenon occurred also, and to

a greater extent, on the USGA constructions, on which the 100 % TDET irrigation rate

also produced a slight reduction in merit at the highest rate of nitrogen. These results are

shown in Figures 6.2 and 6.3 for the sand and USGA constructions respectively. This

nitrogen/irrigation interaction was not observed on the soil constructions.
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HGURE 6.3

The effects of 5 rates of nitrogen application, at three rates of irrigation, on mean visual

merit of the USGA constructions in 1992. Vertical bar represents LSD (p^0.05) for all

possible comparisons of the means presented.

OBJECTIVE MEASURE	 CORRELATION COEFFICIENT
_____________________ WITH VISUAL MERIT - 1992

Total live cover (FLC) 	 0.83

Cover of sown species (SOW)	 0.57

Cover of P. annua (POA)	 0.24

Proportion of P. annua in TLC	 0.10

Cover-adjusted shoot density (ADJ)	 0.32

Colour meter "L"	 0.20

Colour meter "a"	 -0.29

Colour meter "b"	 0.55

TABLE 6.1

Correlation coefficients between the means of objective assessments and subjective

evaluations of visual merit carried out in 1992. Values for the correlation coefficient for p

^ 0.05, 0.01 and 0.001 are 0.195, 0.254 and 0.321 respectively.
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Correlations between objective and subjective visual merit assessments

The correlation coefficients between the mean visual merit assessments for each sub-sub-

plot for 1992 and the corresponding objective assessments of the visual aspects of the

turf are shown in Table 6.1. An additional measure shown in the Table refers to the

proportional contribution of P. annua to total live ground cover.

Total live cover showed the strongest positive correlation. The cover of the sown species

(F. rubra and Agrostis spp.) showed positive correlation, and the correlations with P.

annua as a whole and as a proportion of total live cover were weakly positive. The

strongest correlation with the colour meter values was with the "b" value, indicating that a

greater degree of yellowness was associated with merit by the viewers.

.3

I-
z.1
LU

zo
0
a-

0
0

-.3
-.3

.4

-.2
z
LU.l
z
00
a.

02
0•

-.3

o
0

00	 0	 0	
(d)

-.5 -.4 -.3 -.2 -.1 0 .1 .2 .3

COMPONENT I

FIGURE 6.4

Scattergrams of Component I/Component 11(a), Component Ill/Component IV (b),

Component 11/Component IV (c) and Component 1/Component 111(d) showing the

distribution of the sub-sub-plots after PCA. Visual merit scores, grouped into

excellent/good, fair/poor and bad classes are shown in (a).
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Classification

In order to indicate the arrangement of the 180 sub-sub-plots in the multi-dimensional

space defined by the similarity matrix, the scattergram displays of the component scores

on some combinations of the first four principal components are shown in Figure 6.4.

Figure 6.4a and 6.4d showed that a distinction between two major clusters occurred

across Component I, and that any subsequent classification ought to take account of this

division. No other distinctions of such clarity could be identified on a subjective basis.

Superimposing some of the visual merit information obtained in 1992 onto the

appropriate points in Figure 6.4a indicated that variations in perceived merit might show

clusters within the two major goupings observed.

MEASURED	 PRINCIPAL COMPONENT

VARIABLE	 I (45 %)	 II (16 %)	 III (9 %)	 IV (8 %)	 V (7 %)

	

TLC	 -0.23	 -0.54	 0.01	 0.13	 0.21

	

SOW	 0.07	 -0.66	 0.35	 0.00	 -0.01

	

POA	 -0.33	 0.17	 -0.40	 0.14	 0.24

	

ADJ	 -0.18	 -0.25	 -0.28	 -0.56	 0.26

	

"L"	 -0.29	 0.03	 0.39	 0.40	 -0.02

"a" 0.03	 0.31	 0.60	 -0.19	 0.63

"b" -0.36	 -0.15	 0.01	 0.34	 0.07

	

pH	 -0.37	 0.22	 0.10	 0.03	 -0.03

	

P2 O 5	 -0.26	 0.10	 0.19	 -0.04	 -0.56

	

K2O	 -0.26	 -0.01	 0.26	 -0.57	 -0.32

	

Ca	 -0.41	 0.05	 -0.04	 -0.05	 0.07

	

OM	 -0.39	 0.00	 -0.07	 -0.13	 0.08

TABLE 6.2

Latent vectors (or component loadings) of the 12 measured variables on the first 5

principal components. The percentages of the total variation accounted for by each

component are shown in brackets.

The latent vectors, or component loadings, of each input variable in the PCA indicated the

direction and extent with which each input variable was associated with each principal

component. The loadings of the 12 input variables on the first five principal components

which were used in the subsequent cluster analysis are shown in Table 6.2. The

percentage of the total variation in the data accounted for by each component is also

shown. Scores on component I increased with decreasing cover of P. annua, and



40

1-
z
w

C-)

U—
w

r

!" OUTLIERS

G (11) H (22)	 1(16)

50

60

70

80

90

(34)

145

decreasing pH, calcium and organic matter content. Scores on Component II increased

with decreasing cover of the sown species (F. rubra and Agrostis spp.), and on

Component III, scores increased with increasing colourmeter "a" values. Component IV

scores increased with decreasing cover-adjusted shoot density and rootzone potassium

content, and Component V scores increased with increasing colourmeter "a" values and

decreasing rootzone phosphate levels.

100

FIGURE 6.5

Dendrogram produced by complete link cluster analysis of the first 5 PCA axes.

Numbers in brackets indicate the numbers of sub-sub-plots assigned to each group.

The complete link cluster analysis dendrogram divided the 177 sub-sub-plots into 9

classes (A to I) with 3 outlying sub-sub-plots, the classification of which was rejected.

The resulting dendrogram is shown in Figure 6.5. Class membership ranged from 7, in

Class F, to 38, in Class E. The positions of each of the clusters, or classes, in multi-

dimensional space are shown in the PCA scattergrams in Figure 6.6. The axis pairings

and their ranges correspond to the scattergrams indicating the entire data set in Figure 6.4.

Classes were generally distinct, but consideration of position on several components was

necessary before a particular surface could be assigned to a class. The major distinction
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occurring in the plane of Component I (Figure 6.4a and 6.4d) showed itself in the

objective clustering procedure as the early separation of groups A, B and C. The

membership of these groups comprised all of the left hand cluster of Figures 6.4a and

6.4d, although some members of Class C occurred in both of the major clusters.
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FIGURE 6.6

Scattergrams of Component I/Component 11(a), Component Ill/Component P1 (b),

Component 11/Component IV (c) and Component I/Component 111(d) showing the

distribution of the sub-sub-plots in classes A to I derived by complete link cluster analysis

of the first 5 PCA axes (factors).

The mean values for each class of each of the 12 measured variables which were used to

derive the PCA are shown in Tables 6.3 and 6.4. The standard errors are provided in

parentheses. Table 6.3 gives the data for those measurements which pertained to the

"visual" aspects of the turf. Table 6.4 gives the data for those measurements which

pertained to the "chemical" nature of the rootzones.
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CLASS	 MEASURED VARIABLE

	_______ TLC	 SOW	 POA	 ADJ	 "L"	 "-a"	 "b"

A	 98 (0.5)	 30 (49)	 68 (5.1)	 1.1 (.06)	 32 (.33)	 9.3 (.15)	 22 (.20)

B	 88 (1.9)	 66 (3.0)	 22 (2.3)	 1.0 (04)	 32 (.16)	 8.2 (10)	 21 (.11)

C	 72 (6.3)	 50 (2.4)	 22 (59)	 1.2 (07)	 30 (33)	 7.8 (.28)	 19 (33)
D	 56 (34)	 55 (35)	 1(0.3)	 0.6 (.04)	 31 (.17)	 7.1 (.20)	 19 (.18)

E	 44 (2.8)	 42 (2.9)	 3 (0.8)	 0.6 (.0	 30 (.14)	 7.6 (.16)	 18 (14)
F	 89 (4.0)	 86 (4.6)	 3 (1.5)	 1.7 (.14)	 30 (50)	 8.1 (.38)	 19 (.17)

G	 86 (2.8)	 85 (2.9)	 <1(06)	 0.8 (.06)	 31 (15)	 7.8 (.22)	 19 (.27)

H	 92 (1.4)	 92 (1.5)	 <1(0 .3)	 0.8 (.05)	 30 (.11)	 8.5 (.13)	 18 (.16)

I	 89 (3.0)	 87 (37)	 2 (1.1)	 0.7 (.05)	 31 (.12)	 9.5 (.13)	 20 (.11)

TABLE 6.3

Mean (and SE) values of each of the "visual" measured variables for each of the 9 classes

generated by the PCA/cluster analysis.

CLASS	 MEASURED VARIABLE

_______	 pH	 P205	 K20	 Ca	 OM

A	 6.7 (.12)	 14 (1.8)	 28 (3.3)	 18 (.55)	 3.8 (.08)

B	 6.7 (.06)	 14 (.62)	 48 (2.9)	 17 (.59)	 3.9 (.04)

C	 5.8 (.13)	 7.2 (.62)	 39 (3.5)	 9.7 (1.8)	 2.8 (.37)

D	 5.5 (.08)	 15 (.95)	 30 (1.4)	 1.0 (.14)	 0.9 (.10)

E	 5.3 (.04)	 6.0 (.43)	 21 (.69)	 0.5 (.04)	 0.8 (.08)

F	 5.1 (.10)	 12 (1.5)	 36 (3.7)	 2.9 (1.8)	 1.5 (.43)

G	 5.2 (.06)	 10 (1.2)	 30 (1.8)	 1.1 (.18)	 1.1 (.09)

H	 5.0 (.04)	 5.2 (.52)	 25 (1.3)	 0.9 (.12)	 1.1 (.11)

I	 5.1 (.06)	 6.4 (.46)	 18 (.96)	 0.8 (.10)	 0.8 (.10)

TABLE 6.4

Mean (and SE) values of each of the rootzone "chemical" measured variables for each of

the 9 classes generated by the PCA/cluster analysis.

Artificial key to classes

From the information given in the dendrogram of Figure 6.2, Tables 6.3 and 6.4, and the

component loadiiigs given in Table 6.2, the "Artificial Key to Classes" shown below was

derived. Qustions 1 and 2 related to the positions on Components I and II respectively.

The remaining questions reflected a combination of the components.
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KEY TO CLASSES

1 P. annua cover> 10 %, rootzone pH> 6.0, rootzone calcium content> 15 mg 1

air dried rootzone (ADR), organic matter content> 3 %.. . .Go to Question 3.

Not this collection of attributes.. . .Go to Question 2.

2 Total live cover <60 %, sown species contribution <60 %.. . .Go to Question 4.

Not this collection of attributes... .Go to Question 5.

3 P. annua cover> 50 %, Colourmeter "a" values> 9, total live cover> 90 %, rootzone
potassium content> 35 mg 1-' ADR.. . .CLASS A.

P. annua cover <50 %, Colourmeter "a" values < 9, rootzone potassium content <35
mg l' ADR.. . .CLASS B.

4 Rootzone phosphate content> 10 mg 1-' ADR.. . .CLASS D.

Rootzone phosphate content < 10 mg 1-' ADR.. . . CLASS E.

5 Total live cover < 80 %, P. annua cover> 10 %, organic matter content> 2 %,

rootzone pH> 5.5, rootzone calcium content> 5 mg F 1 ADR.. . . CLASS C.
Total live cover> 80 %, P. annua cover < 10 %, organic matter content < 2 %,

rootzone pH < 5.5, rootzone calcium content < 5 mg 1- 1 ADR.. . .Go to

Question 6.

6 Cover adjusted shoot density> 100 000 shoots m 2, rootzone phosphate content> 10

mg 1-' ADR material, rootzone calcium content> 2 mg 1- 1 ADR.. . . CLASS F.

Cover adjusted shoot density < 100 000 shoots m-2, rootzone phosphate content < 10

mg 1-1 ADR material, rootzone calcium content <2 mg 1-' ADR. . .Go to Question 7.

7 Colourmeter "a" values <8, rootzone phosphate levels > 7 mg 1-' ADR.. . .CLASS G.

"a" values > 8, rootzone phoshate levels <7 mg 1- ADR... .Go to Question 8.

8 "a" values < 9, "b" values < 19, rootzone phosphate levels < 6 mg 1- air dried

rootzone.. . .CLASS H.

"a" values> 9, "b" values> 19, rootzone phosphate levels > 6 mg 1-' air dried

rootzone.. .CLASS I.
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Surface quality

The mean scores for each class, expressed as a percentage of the observed range, of the

visual merit ratings of 1992, ball roll from 1991, and position on the Components I and II

derived from the impact study of 1992 described in Chapter 5 are shown in Table 6.5.

CLASS VISUAL BALL ROLL COMPONENT COMPONENT

______	 MERIT __________	 I	 II

A	 64(1.8)	 18(1.9)	 70(2.9)	 63(3.6)

B	 59 (2.1)	 37 (3.0)	 46 (1.7)	 64 (1.8)

C	 46 (5.7)	 46 (7.2)	 44 (3.9)	 48 (2.7)

D	 27 (3.4)	 78 (3.0)	 30 (2.3)	 38 (2.2)

E	 25 (2.9)	 48 (3.3)	 38 (2.2)	 35 (1.8)

F	 58 (5.7)	 35 (5.3)	 48 (4.7)	 40 (2.9)

G	 52 (6.5)	 44 (3.5)	 34 (3.0)	 47 (3.6)

H	 66 (3.5)	 21(2.2)	 42 (2.4)	 44 (2.1)

I	 72(4.1)	 20(3.1)	 67(2.9)	 44(2.5)

TABLE 6.5

Mean scores for each class (percentage of observed range) of visual merit ratings 1992,

ball roll 1991, and position on the Components I and II derived from the impact study of

1992.

Characteristics of the classes
Given that the treatments received were known for each member of each class, the classes

were described individually in terms of their overall visual and playing quality and the

management procedures whereby the respective surfaces came about. By converting the

ball roll data to Stimpmeter green speeds (Equation 5.2), the classification of speeds by

Radko (1977) allowed the ball roll characteristics to be expressed in Radko's terminology

of slow, medium/slow, medium, medium/fast and fast for regular and tournament play.
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CLASS DESCIUPTIONS

CLASS A: Visually good. Regular play - medium, tournaments - very slow. Iron

shots show good spin retention but rebound at high speed. All soil constructions. Mean

nitrogen rate - 540 kg N ha-' yr'.

CLASS B: Visually fair to good. Regular play - medium, tournaments - slow. Iron

shots show medium spin retention and rebound at high speed. All soil constructions.

Mean nitrogen rate - 153 kg N ha- 1 yr'.

CLASS C: Very variable. Visually poor. Regular play - medium, tournament - slow.

Post-impact ball behaviour too variable for general statements. 60% soil construction,

33% USGA. Mean nitrogen rate - 247 kg N ha- 1 yi-'. 80% received no phosphate.

CLASS D: Visually poor. Regular play - medium/fast, tournament - medium/slow.

Iron shots show poor spin retention and low rebound velocities. 60% - pure sand, 40% -

USGA. Mean nitrogen rate - 50 kg N ha-' yr-'. 80% received phosphate.

CLASS E: Visually very poor. Regular play - medium, tournament play - slow. Iron

shots show poor spin retention and rebound at low velocities. 71% - sand, 29% -

USGA. Mean nitrogen rate - 393 kg N ha-' yr'. 13 % received phosphate.

CLASS F: Visually fair. Regular play - medium, tournament play - slow, lion shots

very variable but rebound velocities fairly low. 71% - USGA, 29% both sand and soil.

Mean nitrogen rate - 238 kg N ha-' yr-'. Phosphate applied to all.

CLASS G: Visually fair. Regular play - medium, tournament play - slow, lion shots

show medium spin retention and rebound velocity. 73% - USGA, 27% - sand. Mean

nitrogen rate - 180 kg N ha-' yr'.

CLASS H: Visually good. Regular play - medium, tournament play - slow, lion

shots show medium spin retention and rebound velocity. 68% - USGA, 32% - sand.

Mean nitrogen rate - 180 kg N ha-' yr'. 50 % received phosphate.

CLASS I: Visually excellent. The slowest putting speeds of the trial. Regular play -

medium, tournament - very slow, lion shots show good spin retention and medium

rebound velocities. 50% - sand, 50% - USGA. Mean nitrogen rate - 382 kg N ha- 1 yr'.

94 % received phosphate. 80 % received inigation above ET demand.

6.4 DISCUSSION

On the basis of the visual merit evaluations only, recommendations for the optimum

nitrogen fertiliser regimes for each construction type could be drawn up by fitting curves

to the merit response data and establishing the rates at which maximum visual merit

would be obtained. The shapes of these responses indicted at first that inverse

polynomial curves might be appropriate. These were used successfully by Canaway

(1985a,b) for the establishment of the appropriate nitrogen fertiliser rate for maximising
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ground cover of Lolium perenne football turf. It was found however that the rapid fall-

off in visual merit which took place on the SWT constructions at the highest rate of

nitrogen detracted from the accurate fitting of such curves.

By imagining free-hand curves fitted to the merit response data, it is possible to say that

optimum nitrogen rates for both SWT constructions lay between 350 and 400 kg N ha-'

yi- 1 when phosphate fertiliser was applied, and around 240 kg N ha-' yr' on the USGA

constructions when no phosphate fertiliser was applied. These observations represent

optimum rates which are slightly higher than those reported by Lawson (1987) who

found that optimum nitrogen rates for Festuca / Agrostis turf grown on pure sand lay

between 200 and 400 kg N ha-' yr'. On sand constructions, the application of phosphate

fertiiser would appear to be absolutely essential. On the soil constructions, nitrogen

fertiiser rates of between 200 and 400 kg N ha-' yr- 1 produced the best looking surfaces

in 1992, and the application of phosphate fertiliser was not necessary. On both SWT

constructions, the data indicated that the application of decreasing amounts of irrigation

lowered the optimum nitrogen fertiliser input rates. These complementary effects of

irrigation and nitrogen fertiliser agree with the findings of Madison (1962) and Mantell

(1966) referring to the growth of turf consisting of pure stands of A. capillaris and

Kikuyugrass (Pennisetum clandestinuin) respectively.

The results indicated that, of the range of objective measurements carried out, the

assessment of total live cover by means of a point quadrat (Laycock & Canaway 1980)

provided the most closely correlating objective measure pertaining to the perceived visual

quality of mixed species golf green turf. The relative contribution of P. annua to the

swards did not greatly affect perceived merit. The range of variation in total live cover

over the trial was however very large (Chapter 4), and many of the swards were

consequently not representative of golf green surfaces. Since evaluators were asked to

score sub-sub-plots for merit within a range determined by the trial itself, the results

highlighted the importance of total live cover but, in doing so, may have obscured the

likely influence of more subtle factors such as shoot density. This has been associated

with visual merit in mono-culture situations (Gooding & Newell 1991). Similarly, the

apparent preference for colour meter yellowness may simply have described the

abundance of the lighter coloured P. annua on the soil constructions (see Chapter 4)

which constituted 33 % of the total number of sub-sub-plots, had generally high total live

cover and consequently acquired high merit ratings. The possible influences of differing

species composition effects on perceived merit might therefore have been obscured.
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The evaluation of colour was independent of the percentage ground cover and reflected

the colour of the actual grass present. In theory, these assessments, coupled with

statements of total live cover, might account for a great deal of the variation in perceived

visual merit. The fact that more than one species contributed to the total live cover and

colour assessments complicated this however. If an experiment were conducted in which

total live cover (and all other factors) were kept constant, but the relative contributions of

different species to the swards were varied, the relationships between perceived merit and

the objective measures of clipping colour and sward composition could, to some extent,

be elucidated. Objective assessment of turfgrass visual merit could then be conducted on

the basis of measurements of total live cover, the relative contributions of individual

species and the colour of clipping as measured with a colour meter. The possible use of

other measures of turfgrass performance, such as shoot density and leaf width, which

have been of value in single species situations (Brede & Duich 1982, Turgeon 1985,

Gooding & Newell 1991), probably demands further investigation before application to

mixed species sward evaluation.

The presentation of the visual merit ratings of each of the derived classes alongside the

corresponding ball roll and impact evaluations highlighted the point that good visual and

playing quality generally demand contrasting surfaces. Thus, for example, the fastest

greens were among the least attractive surfaces and vice-versa. However, the slower

speeds associated with the desirable feature of increased growth might be improved by

increased frequency and/or decreased cutting height. An actively growing, more

vigorous sward should be able to tolerate such conditions. The variations observed

within the classes with respect to the post - impact ball behaviour reflected the variability

of the original data, in addition to the limitations of the classification procedure discussed

below. But major differences in both visual and playing quality responses were identified

by the classification, despite these measurements not being included in the derivation of

the classes. This testifies to the potential of the method as a means of classifying golf

greens on the basis of overall quality on a wider basis.

The early separation of the soil construction classes, A and B, reflected the great

differences in performance between these and the suspended water table constructions

(SWT) which the data presented in ANOVA form in previous chapters demonstrated.

However, on the basis of a visual analysis, clustering within the two "clumps" separated

along Component I of the cluster PCA was not very distinct. This may imply that these

points represented locations in a continuum of variability in which no natural groupings

actually occurred. This is theoretically possible given, for example, that the nitrogen

fertiliser treatment was applied at five progressively increasing rates. Similarly, in
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Chapter 4 the concept of descriptions of the surfaces representing a momentary state

during a gradual directional change in condition was put forward. In this respect, the

positions of the sub-sub-plots within the similarity matrix may intrinsically vary with

time, and may show a continual trend with time as they might have done in response to

nitrogen fertiliser. Such a continuum of variability would imply that, beyond the clear

separation of groups A and B, the identification of further classes was purely artificial.

This is a familiar debate discussed, with reference to the classification of plant

communities, by Gauch (1982). The continuum concept would certainly explain the

variability observed within the classes with respect to both the objective and subjective

variables measured.

While recognising the likely drawbacks of the classification procedure, the mathematical

method used was successful in producing a classification of the surfaces. The set of

classes of surface, isolated from the similarity matrix by the cluster analysis, appeared to

be logical and therefore could possibly have been identified subjectively, rather than by

the chosen algorithm, were this practicable. The key to the classes could be used to

classify any one of the 177 sub-sub-plots which generated the classification if the user

were provided with the appropriate objective measures. The obvious limitation is

however that greens not included in the original classification may not "fit" into a class

because their particular range of objectively measured characteristics were not

encompassed within that of the original similarity matrix. For example, it is quite

possible for a pure sand golf green to have a pH of more than 6.0, but an organic matter

content considerably less than 3 %. Such a surface could not get past question 1 in the

Key to Classes. This limitation was anticipated and highlights the need to sample a wide

range, and much larger set, of greens in order to derive the initial classification before the

technique could be utilised as a viable means of golf green classification.

If a wider range of soil types were sampled, the distinction between the soil and the SWT

construction types would probably be filled in by turf on soils with intermediate soil

chemical and physical properties. Considering the Key to Classes, the placing of a green

into a class relied on both physico-chemical and visual assessments. If a classification

were to be made which encompassed a wider range of soil types, it could be anticipated

that further objective measures, summarising differences in soil texture, structure, depth,

infiltration rate and so on, all features which may affect one or more aspects of overall

quality, would be necessary in order to accurately locate greens within a similarity matrix

and a subsequent classification. Also, seasonal variation in the measured parameters

would need to be taken into account by taking more than one assessment per year for each

site. Like the classification of the vegetation of the British Isles (Anon 1992a), a
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practicable classification scheme for golf greens would require an initial survey of greens

in which many objective tests were carried out as well as assessments of playing

qualityand perceived merit. The data set must also encompass as large and wide-ranging

a set of greens as possible. The initial labour requirements for the establishment of such a

system of golf green classification would be great, but the methodology has been shown

to work and the benefits for the sport would be considerable.
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CHAPTER 7 - FINAL DISCUSSION AND
CONCLUSIONS

7.1 INTRODUCTION

One of the major objectives of the research, outlined in Section 1.10, was to illustrate

how different fields of scientific work may be drawn upon in studies of golf green

maintenance. Concepts from the fields of soil physics, grassland ecology, ballistics and

multivariate analysis were applied to investigate the relevant aspects of golf green science.

In this wider context, this thesis represents little more than a general overview of the

subject.

The nature of empirical research is such that explanations for observations cannot be

provided, but hypotheses may be generated which may subsequently be tested. Since

much of the work described was empirical, few definite conclusions could be made, but

the directions which further research might take were indicated. In this chapter,

conclusions derived in the body of the thesis are summarised, and some areas of further

research are suggested.

7.2 WATER AND THE GOLF GREEN

Much research has been carried out to establish the differing evapotranspiration (ET) rates

of turfgrass cuiltivars and species (see Section 1.4). Techniques for ET measurement are

therefore quite refined and the methods employed in this study could have been improved

considerably were this the sole objective. It would appear that models for predicting

turfgrass ET from meteorolgical data on the basis of Penman's original studies (Penman

1948, 1963) can provide a reasonable degree of accuracy. Such models may therefore be

utilised to form the basis of irrigation management schedules. However, the study also

demonstrated that accurate estimation of ET loss represents only a part of the effective use

of irrigation in golf green maintenance. Major consideration must be given to the

construction type and the nature of the rootzone medium.

In turf science a great deal has been made of the relationships between particle size

distribution, or mechanical analysis, infiltration rates and moisture retention. While such

relationships clearly exist (see for example Schmidt 1980), this study demonstrated their

complex nature, and highlighted the need to consider the influence of structural as well as

textural aspects of soils. The measurements of porosity, and pore size distribution

revealed differences between all three construction types, responded to wear treatments

over time, and showed proportional variation with infiltration rates and moisture deficits.

A refined assessment of soil structure may therefore be of greater practical value in
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determining irrigation and other management requirements than mechanical analysis.

Turfgrass experiments aimed specifically at illucidating the relationships between these

factors would be of immense value.
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FIGURE 7.1

Schematic cross sections of a SWT or sand based rootzone (left) and a soil rootzone

(right) showing deep and shallow rooting on each respectively. The insets show how,

with the same total porosity, the larger proportions of small pores on the soil can increase

water retention with respect to the SWT constructions. The SWT construction type is

able to compensate for this by having a greater root depth.

One important feature which was not examined in this study was root depth. However, a

brief examination of the three rootzones revealed that, at the end of the trial period, roots

had ramified throughout the rootzones and extended even into the blinding layer of the

SWT constructions, but reached a depth of only about 100 mm on the soil constructions

(unless the roots had grown down the hole created by a verti-drain tine). It was observed

that turfgrass quality was largely unaffected by the development of significant moisture

deficits within the rootzones, and that the water retention capacity of the SWT rootzones
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was considerably less than that of the soil constructions at tensions below field capacity.

Therefore, it may be hypothesised that moisture availability was generally adequate

because the effective rootzone volume was enhanced on the SWT constructions, and

because the available water content of the upper layers of the soil constructions was

greater. This hypothesis is illustrated in Figure 7.1.

To some extent the rate of infiltration may represent the ease with which deeper areas of

the rootzone may be replenished with water. The SWT constructions, which had high

infiltration rates and deeper rooting, may therefore be able to accommodate infrequent,

heavy irrigation treatments (replacing accumulated ET losses). The soil constructions on

the other hand, with low infiltration rates and shallower rooting, may be better suited to

frequent, light irrigation, which it did in fact receive.

The frequency of irrigation is of great importance. A widely held belief is that a "little and

often" approach is best, but this has been criticised for encouraging shallow, and

consequently drought intolerant, rooting and the enhanced encroachment of P. annua on

the permanently moist surface. The alternative is less frequent, greater irrigation

applications, aimed at rapidly reducing moisture deficits when a critical point is reached.

With this approach, conflict may arise between the biological needs of the turf, and the

desires of golfers to play on moist surfaces which "hold" the ball.

On the basis of this study, it may be concluded that optimum irrigation frequency is a

function of the structure and infiltration rate of the rootzone, and the amount of water

necessary is a function of ET. Unfortunately, the experimental treatments employed

provided little information regarding the relationships between drought tolerance,

irrigation frequency and construction or rootzone type. This highlights the need to target

research pojects more specifically towards these goals.

7.3 FERTILISER USE ON GOLF GREENS

From a turf management perspective, a number of observations regarding the effects of

nitrogen and phosphate fertiliser may be of significance. Maximising live cover was

found to be of great importance with regard to turf quality. In order to maintain

maximum live cover on soil constructions, a minimum nitrogen fertiliser input rate of 235

kg N ha-' yr' was appropriate. On the USGA constructions the same minimum rate of

nitrogen was suitable, but the application of phosphate was necessary to obtain maximum

benefit On the pure sand constructions maximum ground cover was achieved at nitrogen

input rates of between 235 and 410 kg N ha-' yr-' and the application of phosphate

fertiliser was essential.
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These values reinforce the results of much previous work (Section 1.6). It is important to

note that the number of applications of nitrogen fertiliser differed for each construction

type (Section 2.9). If the soil constructions had received the nitrogen treatment in nine

dressings per year, as did the sand constructions, the sward composition may have been

different.

The necessity, or otherwise, for the application of phosphate fertiliser to fine turf would

appear to hinge on both the levels of phosphate measured in soil extracts and on the

texture of the rootzone media itself. Serious consideration should therefore be given to

the quantities of clay minerals and organic matter present. In this respect, mechanical

analysis will clearly be of importance. The effects of phosphate fertiiser on P. annua

ingress were not fully explored by this study. However, as with the effects on overall

turf quality, the influence of phosphate on P. annua is likely to be similarly dependent on

rootzone texture.

The maintenance of stable and appreciable quantities of F. rubra in the swards on the

construction types examined would appear to be beyond the capacity of the particular

management factors under examination to achieve. There was a good deal of evidence to

suggest that the development, or otherwise, of P. annua in golf green turf was highly

dependent on the capacity of the rootzone to facilitate the successful germination and

establishment of the seeds of the species, whilst subsequent growth and development rate

was influenced by general fertility factors.

From an aesthetic point of view, the trial surfaces of the "finest" appearance were the

USGA constructions receiving 410 kg N ha-' yr- 1 . 50 kg P205 ha-' yr-'. and the highest

rate of irrigation (140 % TDET). On the sand constructions, maximum visual quality was

maintained at similar nitrogen and phosphate fertiuiser rates, but no difference between the

140% and 100% TDET surfaces was observed. On the soil constructions maximum

visual quality was maintained over the 235 - 410 kg N ha-' yr' rates and was unaffected

by the phosphate and irrigation treatments.

7.4 IMPLICATIONS FOR THE GAME

This study highlighted the complexity of the relationships between putting speed and

management factors. One of the most important observations was that speed was

inversely related to turf growth rate. Since vigorous growth was also associated with

enhanced visual merit, it is clear that a compromise between these two features of overall
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quality has to be reached. The ability of actively growing swards to tolerate closer

mowing may be one means of achieving such a compromise.

The techniques developed for assessing the post-impact behaviour of golf balls were

reasonably successful. The length and height of the immediate bounce after impact was

found to be a function of the physical nature and water content of the rootzone media, and

the capacity of retained spin to hold balls in the subsequent roll phase was affected by the

"lushness" of the turf. A series of experiments in which rootzone water content, structure

and texture were varied and monitored would shed more light on the complex

relationships between soil type and golf ball behaviour. It is likely that, at this stage, an

empirical approach to such experiments is most suitable, because the inter-relationships

between all the possible variables involved when spinning golf balls collide with turf are

so complex and poorly understood.

Defining the optimum state in which both the vigour of the turf and the quality of play are

maximised is extremely difficult. This difficulty is confounded to some extent by the lack

of any generally accepted "standards" of playing surface. Thus, what constitutes healthy

turf may be fairly easily identified, but there have been no studies, to date, investigating

what golfers actually consider to be a good surface. They are likely to have widely

different views on this subject. A good deal of animosity between greenkeepers and

golfers (who generally constitute the greens committees) might be avoided if standards of

playing quality could be formally defined.

7.5 THE CLASSIFICATION OF GOLF GREEN QUALITY

The multi-faceted nature of the quality of golf greens is such that to attempt to place a

particular green on a single scale of overall performance is unwise. Nor is the situation

one of "horses for courses", in which a particular type of green may be identified as being

"best" for a particular situation. The problem lies with the fact that golfers generally have

differing views on what constitutes a good or a bad green. This is perfectly acceptable,

given that the ultimate objective of golf green management is to enhance the pleasure of

playing golf.

Separating overall quality into visual and playing components, and the latter further into

putting and impact performance, was shown to be a realistic breakdown of what is

understood by golf green quality. This allowed the quality of greens to be expressed in

each of the component terms, without specifying an ultimate form of green. In theory,

this approach should offend nobody.
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Having identified the components of quality, the objective measures which most closely

corresponded with the perceived merit in each case may be used to eliminate the need for

consulting golfers for their subjective opinions. This represents a step towards being able

to classify the performance standard of any one green on the basis of a few objective

tests. However, the classification method examined in this study went further and

attempted to define the quality of greens on the basis of semi-permanent features of the

turf which were unlikely to vary greatly over the year or in response to differing weather

conditions.

This procedure was successful to some extent, but was severely limited by the small

number of objective assessments which were used in the analysis. Additional measures

should have been included, chosen to sumrnarise differences in, for example, soil texture,

structure and infiltration rate. These features were shown to affect at least some aspects

of quality.

A practicable classification scheme for golf greens would therefore require an initial

survey of greens in which many objective tests were carried out as well as assessments of

playing quality and perceived merit. The success or otherwise of such a scheme would

be dependent largely upon the relevance to overall quality of the chosen objective

measures.
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