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We show that repulsive local Coulomb interaction alone can drive valence-skipping charge disproportionation in
the degenerate d-band, resulting in effective negative-U . This effect is shown to originate from anisotropic orbital-
multipole scattering, and it occurs only for d1, d4, d6, and d9 fillings (and their immediate surroundings). Explicit
boundaries for valence-skipping are derived, and the paramagnetic phase diagram for d4 and d6 is calculated. We
also establish that the valence-skipping metal is very different, in terms of its local valence distribution, compared
to the atomiclike Hund’s metal. These findings explain why transition-metal compounds with the aforementioned
d-band fillings are more prone to valence-skipping charge order and anomalous superconductivity.

I. INTRODUCTION

Some elements in the Periodic Table have a strong tendency
to occur only in certain valence states when compounded.
Whenever one particular intermediate valence state is very rare
or completely missing, the corresponding element is denoted
as valence-skipping. The most prominent examples are the
post-transition metals, Tl, Bi, Sb, etc., which display missing
valences in many of their compounds [1]. In general, valence-
skipping is driven by a negative effective Coulomb repulsion
Ueff , but the mechanism causing this is debated. Anderson
[2] showed that static lattice relaxation can drive Ueff < 0.
However, Varma [1] noted that even free atoms have reduced
Ueff in the unfavorable valences, and he proposed an intra-
atomic electronic mechanism. More recently, the electronic
route has been discredited for these elements in favor of the
lattice relaxation mechanism [3].

Apart from the post-transition metals, valence-skipping
has also been observed in transition metals [1] with a
dn → dn−1 + dn+1 type of charge disproportionation. Ex-
perimentally, the most evident examples are the iron com-
pounds (La,Ca)FeO3 [4,5], (La,Sr)FeO3 [5,6], and Sr3Fe2O7

[7], where Mössbauer spectroscopy has established valence-
skipping Fe4+ → Fe3+ + Fe5+, (d4 → d3 + d5) charge-order,
even in the absence of lattice relaxation [4,7]. Theoretically,
Katayama-Yoshida and Zunger [8] showed that effective
monopole screening of intra-atomic interactions indeed can
give rise to Ueff < 0 in transition-metal impurities. This idea
has been used to explain the charge-order in YNiO3 within a
two-band eg model [9]. But the complete d-band still deserves
more attention.

The fact that some authors even refer to valence-skipping as
“mysterious” [10,11] shows the need for better understanding
of the underlying mechanism behind this phenomenon and its
systematics. The resulting negative-U model, however, has
been studied extensively and shown to drive both charge-
order and anomalous superconductivity [12]. So unveiling the
mysteries of valence-skipping could pave the way for more
exotic physics.

In this article, we show that the higher orbital-multipole part
of the repulsive intra-atomic Coulomb interaction alone can
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drive valence-skipping in the degenerate d-band. This effect
is found to be limited to the particular fillings d1, d4, d6,
and d9, and their immediate surroundings. From a multiplet
analysis, we derive explicit bounds for valence-skipping,
and finally the emerging anomalous valence fluctuations in
the paramagnetic metal are studied. We note and discuss
the correlation of the orbital-multipole active fillings in the
compounded transition metals with experimental results for
(i) charge disproportionation in d1: V4+, d4: Fe4+, Mn3+,
d6: Co3+, and d9: Au2+, and (ii) anomalous super conductivity
in d4: Ru4+, d6: Fe2+, and d9: Cu2+.

II. MODEL

Let us begin by constructing a minimal model for the
correlated d-band. We assume that the Coulomb interaction is
local and rotationally invariant, a good first approximation for
transition metals [13]. Under this assumption, the interaction
is exactly given by the Slater-Condon angular-momentum
expansion, and the Slater integrals F (0), F (2), and F (4) [14].
For the electron hopping, we use a degenerate semicircular
density of states, and we take the half-bandwidth as our unit
of energy.

In general, the local interaction describes electron-pair
scattering between local two-particle states, and rotational
invariance ensures that these processes conserve local total
orbital momentum L and total spin S. As we are going to see,
anisotropic orbital-multipole scattering (i.e., for L > 0) has an
intrinsic connection to valence-skipping. To make this clear,
we now seek to isolate this contribution to the interaction.

Within the Slater-Condon interaction, the F (0) term is a
density-density interaction with isotropic scattering, while the
F (2) and F (4) terms have different scattering strengths for all L
and S. Interestingly, their orbital-multipole anisotropies cancel
out when F (4)/F (2) = 9/5. This corresponds to a Laporte-Platt
degenerate point of the Slater-Condon interaction with large
accidental degeneracies of multiplets [15].

Spurred by this observation, we investigated the Slater-
Condon interaction in detail [16], and we found that in
this point it simplifies to the rotationally invariant Kanamori
interaction [17], having the compact form

Ĥ = (U − 3J )N̂ (N̂ − 1)/2 + J (Q̂2 − Ŝ2), (1)
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where N̂ is the total number operator, and Ŝ2 and Q̂2 are the
total spin and quasispin operators [14].

The Kanamori interaction and the roles of its coupling
parameters, the Hubbard U , and Hund’s rule J have already
been studied extensively [18]. This makes the reduction of
the Slater-Condon interaction (at the Laporte-Platt degenerate
point F (4)/F (2) = 9/5) very interesting. At this point, U and
J alone can be used to determine F (k).

But let us first establish our claim that anisotropic orbital-
multipole scattering is indeed missing in Eq. (1). We need not
worry about the density-density interaction giving isotropic
scattering (like the F (0) term). So all nontrivial scattering in
Eq. (1) stems from J (Q̂2 − Ŝ2), where Ŝ2 (acting in spin space)
does not differentiate between orbital angular-momentum
channels L directly. The quasispin operator Q̂2, however,
does differentiate in L, but it scatters only in the monopole
channel (L = 0) [14]. This proves our point that the Slater-
Condon interaction, at the Laporte-Platt degenerate point
F (4)/F (2) = 9/5, is free from anisotropic orbital-multipole
interactions. Hereafter we will refer to these interactions as
simply “multipole interactions.”

Guided by our findings, we propose the following
reparametrization of the Slater-Condon interaction:

F (0) = U − 8

5
J, F (2) = 49

(
1

γ
+ 1

7

)
J, F (4) = 63

5
J, (2)

using U , J , and 1/γ , where 1/γ controls the relative
strength of the multipole interactions. A cautionary remark
is needed: the multipole parametrization is arbitrary (Ref.
[19] uses another equivalent form), and the choice of 1/γ in
Eq. (2) is a matter of taste. [Our choice is motivated by the
simple form Eq. (2) takes in terms of the Racah parameters,
A = U − 3J , B = J/γ , and C = J .] However, the Kanamori
limit, without multipole terms, is well defined by 1/γ = 0.
In what follows, we set 1/γ = 1/4, which corresponds to
F (4)/F (2) ≈ 0.65, in the relevant regime for the transition
metals [20].

III. ATOMIC ENSEMBLE LIMIT

We are now in a position to start our study of the d-band
model. Much can in fact be learned in the limit of strong
interactions, where the system turns in to an ensemble of
isolated atoms with known N -electron ground-state energies
EN [14,21,22]. For the ensemble with integer average filling
n, the obvious ground-state candidate is the homogeneous
state with energy En. But there is also the possibility of
phase-separated mixtures of atomic states with N1 and N2

electrons. In general, such a mixture has the energy E
(n)
N1,N2

=
EN1 + (EN2 − EN1 )(n − N1)/(N2 − N1) assuming N1 < n <

N2.
We have compared all candidate states for every integer n

and located the ground-state crossings as a function of J/U

and 1/γ ; see Fig. 1 for an example. We find that (as in Fig. 1)
the valence-skipping dn−1 + dn+1 state is the ensemble ground
state in the range jd1 < J/U < jd2, with 1/γ -dependent
bounds jd1 = 1/(3 + 8/γ ) and jd2 = 1/(3 + 2/γ ), but only
for n = 1, 4, 6, and 9. For the other integer n, the dn−1 + dn+1

state never becomes the ground state. When J/U > jd2, the
ensemble has a valence-split type of ground state for all n,
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FIG. 1. (Color online) Ensemble energies as a function of J/U

for all mixed-valence states (gray lines) relative to the atomic d6

ground state (black line) for 1/γ = 1/4. The energy crossings jd1

and jd2 (dotted lines) into the d5 + d7 valence-skipping (red line) and
d5 + d10 valence-split (green line) phases are indicated.

composed by d0 + d5 for n < 5 and d5 + d10 for n > 5 (as
in Fig. 1). The final phase diagram is shown in Fig. 2. Due
to the growing importance of nonlocal interactions at high
polarization, we refer to Appendix B for a separate discussion
of the valence-split states.

With this background, we can understand the connection
between valence-skipping and effective negative-U . The ef-
fective Hubbard repulsion Ueff is given by [8]

Ueff = En+1 + En−1 − 2En = 2
(
E

(n)
n−1,n+1 − En

)
, (3)

and Ueff < 0 occurs only for concave series En−1, En, En+1.
In the case of a valence-skipping ensemble ground state
dn−1 + dn+1, we are guaranteed that E

(n)
n−1,n+1 < En, and

Eq. (3) directly gives Ueff < 0.
But what is now the role of the multipole interactions?

From the ensemble-phase diagram (Fig. 2), it is clear that
the multipole interaction strength 1/γ directly controls the
extent of the valence-skipping phase, and in the limit 1/γ → 0
this phase disappears. We conclude that the valence-skipping
ground state is realized by the multipole interactions.
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FIG. 2. (Color online) Ensemble phase diagram in the (J/U ,
1/γ ) and (F (4)/F (2), F (0)/F (4)) plane for integer average fillings n.
The valence-skipping dn−1 + dn+1 phase is only present for n = 1, 4,
6, and 9. The dotted line corresponds to 1/γ = 1/4.
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FIG. 3. (Color online) Atomic ground-state energy contributions
for all N -electron fillings: density-density (squares), spin and qua-
sispin scattering (triangles), and the multipole energies EN (circles),
up to (irrelevant) linear shifts μN . Note that only EN is locally
concave, and only for N = 1, 4, 6, and 9, where the valence-skipping
state has a lower multipole contributionE (N)

N−1,N+1 = (EN−1 + EN+1)/2
(diamonds).

To understand why the effect is limited to only certain
fillings, we decompose the atomic ground-state energies
En in Kanamori and multipole contributions. As seen in
Fig. 3, the isotropic and monopole terms are convex (as long
as U − 3J > 0). However, the multipole energy EN = EN −
(U − 3J )N (N − 1)/2 − J (〈Q̂2〉 − 〈Ŝ2〉) is locally concave,
but only for the special fillings N = 1,4,6,9, and it can
therefore give Ueff < 0 for sufficiently large J/γ . Because
of this, we will henceforth denote these fillings as “multipole-
active.” Further, using the fact that E

(N)
N−1,N+1 < EN in the

valence-skipping interaction regime for all multipole-active
fillings N , one can directly show that E

(n)
N−1,N+1 < E

(n)
N±1,N for

N ≶ n ≶ N ± 1. Thus in the immediate surroundings of each
multipole-active filling N , an ensemble with average filling n

in the range N − 1 < n < N + 1 also has a valence-skipping
ground state with energy E

(n)
N−1,N+1.

Let us close the discussion of the ensemble by recasting the
valence-skipping criteria J/U > jd1 in terms of F (k),

F (4)

F (2)

F (0)

F (4) − 1
9

9
5 − F (4)

F (2)

<
40

441
. (4)

As F (4)/F (2) varies weakly within the transition metals,
fulfillment of Eq. (4) is mainly driven by ligand-induced
effective monopole screening of F (0) [8].

IV. LATTICE MODEL

With these insights, we leave the subject of the strong-
coupling limit and consider the full model with its competition
between itineracy and local interactions. The ground state
is calculated using the variational Gutzwiller method [23–
25], previously shown to give phase diagrams in qualitative
agreement with dynamical mean-field theory [26]. We limit
the discussion to translationally invariant paramagnetic wave
functions, employing the most general variational ansatz with
the symmetry of our model.

Here we report results for d6 (particle-hole symmetric to
d4), whose phase boundaries are shown in Fig. 4, together
with the local entanglement entropy (defined as the von
Neumann entropy S = −Tr[ρ̂ ln ρ̂] of the site local many-body
density matrix ρ̂) contours of the metal [27]. The low J/U
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FIG. 4. (Color online) Phase diagram for d6, with 1/γ = 1/4,
showing the contours of the local entanglement entropy of the metallic
state, and the metal-insulator phase boundaries (blue lines); first-
and second-order transitions are indicated (solid and dotted lines,
respectively).

region (J/U < jd1) agrees qualitatively with the three-band
Kanamori model [28,29] and will not be discussed further. A
quantitative comparison is left for future works [16].

Our current interest lies in the Hund’s-metal [18] and
valence-skipping regimes (jd1 � J/U � jd2). In general, for
fixed J/U there is a critical coupling U = Uc where the
metal-insulator transition occurs. But as seen in Fig. 4, the
Uc of the Hund’s metal grows with increased J/U , and when
J/U → jd1 it diverges (Uc → ∞). At this point, J/U = jd1,
the metallicity prevails for any U because the energy cost
for charge fluctuations is zero, Ueff(jd1) = 0. When entering
the valence-skipping regime (jd1 < J/U < jd2), Uc becomes
finite again as a reentrant valence-skipping d5 + d7 insulator
emerges. Yet, approaching the upper boundary J/U → jd2,
Uc diverges again. Further increasing J/U rapidly reduces Uc

in favor of a valence-split d5 + d10 insulator.
How is then the metal influenced by the change in the

ensemble ground state from d6 to d5 + d7? In terms of local
valences, the single-particle hopping in the metal generates a
distribution of adjacent valences. This distribution, however,
is strongly dependent on the intra-atomic interaction.

To investigate this, we compute the reduced local many-
body density matrix ρ̂ [27], and calculate the valence weights
ρN as traces of ρ̂ in every N -electron subspace. The valence
distributions ρN for the Hund’s and valence-skipping metals
are shown in Fig. 5, at the points marked out in the phase
diagram (Fig. 4). In each case, ρN for the corresponding
noninteracting metal (U = 0) and insulator (U → ∞) are
shown for comparison.

The Hund’s metal in Fig. 5(a) has an atomiclike valence
distribution that is substantially narrower compared to the
noninteracting metal. Most of the weight is concentrated in
the range N = 5–7, with a strong prevalence toward the
total average valence n = 6. Turning to Fig. 5(b) and the
valence-skipping metal, we find the same narrowing down
of the distribution, but without any certain valence prevalence.
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FIG. 5. (Color online) Histograms of valence weights ρN as a
function of filling N for the points marked in Fig. 4, with 1/γ = 1/4.
The correlated metal (red) is shown together with the corresponding
U = 0 noninteracting metal (green), and the U → ∞ insulator (blue),
for (a) the Hund’s metal, and (b) the valence-skipping d5 + d7 metal.

Thus, in comparison to the Hund’s metal, there is a substantial
reduction of the average d6 valence. This type of reduction is
the hallmark of the anomalous valence fluctuations driven by
the effective negative-U in the valence-skipping region.

V. DISCUSSION

We have shown that the local multipole interactions
drastically reduce the effective Hubbard repulsion Ueff in
the d-band, even making it possible to reach negative-U
(Ueff < 0). Moreover, this multipole reduction is only obtained
for four out of ten possible integer d-band fillings, namely d1,
d4, d6, and d9. Admittedly, we have used an oversimplistic
model of the d-band. But the valence-skipping active fillings
is a fundamental property of the Coulomb interaction, and it
applies to the entire class of transition metals.

Experimentally, valence-skipping is most clearly observed
when accompanied by charge order and Ueff < 0, as in the iron
d4 compounds discussed in the Introduction [4–7], and noble-
metal d9 systems such as CsAuI3 [30]. However, multipole-
reduced but positive Ueff � 0 also generate valence-skipping
in terms of polarons at elevated temperatures, T � Ueff .
This type of thermally induced valence-skipping has been
used to explain the polaronic conduction in d6 (La,Ca)CoO3

[31] and d4 (La,Ca)MnO3 [32]. For the d1 filling, some
of the candidate transition-metal complex-oxide compounds
are not even thermodynamically stable [1], e.g., La2V2O7

phase-separates directly to LaVO3 and LaVO4 (d1 → d0 + d2)
[33].

So returning to the propositions of Anderson [2] and Varma
[1], we conclude that for multipole-active fillings, the electron
interaction can drive valence-skipping even in the absence of
lattice relaxation. One such example is La1/2Ca1/2FeO3, which
charge-orders to 3(d3.5) → 2(d3) + d5 [4], while in other
cases both multipole interactions and static lattice relaxation
combine to give Ueff < 0. Note that the valence-skipping phase
of the multipole-active fillings is also present for finite crystal
fields � as long as � � U , as explicitly shown in Appendix
A for the case of cubic crystal-field splitting. Strong cubic
crystal fields �c � U shift the valence-skipping from d6 to
d7, as also observed in YNiO3, where the valence-skipping
charge order is isolated to the crystal-field-split eg states,
t6
2ge

1
g → t6

2ge
0
g + t6

2ge
2
g [9].

From the Gutzwiller calculations, it is clear that multipole
interactions also affect the metallic state. The importance of
the metallic valence distribution has been discussed in a recent
study of SrCoO3 using the Kanamori interaction [34]. Here a
follow-up study also including multipole interactions through
the Slater-Condon interaction would be very interesting.

Although valence-skipping is experimentally most evident
in charge-ordered compounds, negative-U is also a potential
electron-pairing mechanism for superconductivity [12]. There-
fore, it is worth noting that the cuprate (d9: Cu2+), ruthanate
(d4: Ru4+), and iron pnictide and chalcogenide (d6: Fe2+)
superconductors all have multipole-active d-band fillings.

VI. CONCLUSION

To conclude, we have shown that, in the vicinity of the
multipole-active fillings d1, d4, d6, and d9, the multipole part of
the Slater-Condon interaction can alone drive valence-skipping
dn → dn−1 + dn+1 and negative-U in the degenerate d-band.
Furthermore, the valence fluctuations in the valence-skipping
metal are drastically different compared to the atomiclike
Hund’s metal. None of these effects is captured by the
Kanamori interaction, due to its lack of anisotropic multipole
interactions.
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APPENDIX A: CRYSTAL FIELDS

In the main text of this article, we employed the locally
rotationally invariant model, which enabled direct derivation
of analytic expressions for the valence-skipping phase bound-
aries, jd1, jd2, and Eq. (3). However, this simplification raises
the question of whether the valence-skipping phenomenon is of
physical relevance for real materials where the local symmetry
is lowered by the lattice point group.

To address this issue, we test the robustness of the phases
in the atomic ensemble limit in the case of the cubic point
group. By combining the local interaction (with 1/γ = 1/4)
with a cubic crystal field �—lifting the degeneracy of the
eg and t2g irreducible representations of the d-orbitals—the
stability of the charge disproportionate phases can be assessed
directly; see Fig. 6. Note that for all multipole-active fillings,
the valence-skipping phases prevail for � � U .

The robustness of the valence-skipping phases for the
multipole-active fillings with respect to a cubic crystal field
shows that the valence-skipping phenomenon is relevant for
many 3d transition-metal systems. The observed importance
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FIG. 6. (Color online) Ensemble phase diagram for finite cubic crystal-field splittings � (with 1/γ = 1/4). For all multipole-active fillings
d1, d4, d6, and d9, the valence-skipping dn−1 + dn+1 is present for � � U . For strong cubic crystal fields � > U , all these phases persist except
the d6 phase, which vanishes in favor for the eg valence-skipping phase emerging for d7.

of the multipole scattering in reducing Ueff could very well
turn out to be one of the missing pieces in the unconventional
superconductivity puzzle.

We also note that the d9 valence skipping state turns out
to be completely insensitive to the crystal-field strength, see
Fig. 6, as also in the � → ∞ limit the resulting effective
two-band eg Hamiltonian displays the same valence-skipping
charge disproportionation. This is directly relevant for the
cuprate family having very strong cubic crystal fields.

This also leads us to the limit of infinite cubic crystal
fields � → ∞. The same type of ensemble analysis can
of course be performed using the atomic multiplets of the
effective model for an eg or t2g manifold (for which the
Coulomb interaction simplifies to the Kanamori interaction).
As the Kanamori interaction has the simple form of Eq. (1),
the ground-state multiplets have only two contributions as a
function of filling N : (i) a quadratic contribution from the
pair interaction N (N − 1), and (ii) a piecewise linear “Hund’s
exchange” contribution from the corresponding (Q̂2 − Ŝ2)
term, with a discontinuity at half-filling analogous to the one
shown in Fig. 3.

Now, valence-skipping charge disproportionation is only
stabilized in the eg case, in which Hund’s exchange stabi-
lizes the valence-skipping e1

g → e0
g + e2

g and e3
g → e2

g + e4
g ,

corresponding to d7 and d9, respectively. These valence-
skipping phases are present for � > U ; see Fig. 6. In the t2g

case, the same mechanism instead drives a valence-split dis-
proportionation, with combinations of empty and half-filling
(t0

2g + t3
2g) or half-filling and completely filled (t3

2g + t6
2g);

see the yellow phase regions in Fig. 6. For the eg and t2g

effective models, where the Coulomb interaction simplifies to
the Kanamori interaction, the interaction parameter constraint
for valence phase separation is U − 3J < 0. This has been
suggested to be the case for the effective eg model of
YNiO3 [9].

APPENDIX B: VALENCE-SPLIT STATES

The observed valence-split states appearing in the phase
diagram of both the itinerant and atomic ensemble incarnations
of the model call for a small digression. As previously
noted, this class of ensemble ground states of multiplets with
disparate fillings, e.g., d0 + d5, is unlikely to occur in real
materials, as the low-energy effective model is expected to
break down for strong orbital polarizations.

However, in the atomic ensemble limit the valence-split
states naturally occur as special cases of binary mixtures of
valence states with a fixed average filling n. The particular
phase-separated mixtures d0 + d5 and d5 + d10 turn out to
have the lowest possible energy given by E

(n)
0,5 for n < 5

and E
(n)
5,10 for n > 5, respectively, compared to all other

possible configurations in the (green) range of interaction
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parameters in Fig. 2. As with any binary phase-separated
ensemble state, the split-valence states corresponds to an
ensemble with two valence configurations in proportion so as
to produce the average filling n. For example, in the nominal
d6 ensemble (with n = 6), the corresponding valence-split
ensemble ground state has the following proportions: 4/5 parts
of d5 and 1/5 parts of d10, giving the average electron count
of n = 5 × 4/5 + 10 × 1/5 = 6.

The valence-split state is a direct effect of the Kanamori
part of the local interaction. It can be understood directly in
the limit of zero multipole interaction 1/γ = 0, where the

valence-split state appears for J/U > 1/3 (i.e., when U −
3J < 0). The energy contributions to the local interaction can
then be inferred directly from Fig. 3. The prefactor U − 3J

of the density-density contribution N (N − 1) is now negative,
causing the multiplet energies to be concave in both ranges
0 � N � 5 and 5 � N � 10. However, it is the Q2 − S2 term
in Eq. (1) that divides the interval N ∈ [0,10] into two pieces,
due to its discontinuous slope at N = 5. The resulting form of
the ground-state multiplet energies gives directly the d0 + d5

and d5 + d10 configurations as the ensemble ground states in
the two regimes n < 5 and n > 5, respectively.
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