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Abstract

In the field of optimization, the perspective that the problem data are subject to
uncertainty is gaining more and more interest. The uncertainty in an optimiza-
tion problem represents the measurement errors during the phase of collecting
data, or unforeseen changes in the environment while implementing the opti-
mal solution in practice. When the uncertainty is ignored, an optimal solution
according to the mathematical model can turn out to be far from optimal, or
even infeasible in reality.

Robust optimization is an umbrella term for mathematical modelling method-
ologies focused on finding solutions that are reliable against the data perturba-
tions caused by the uncertainty. Among the relatively more recent robust opti-
mization methodologies, an important concept studied is the degree of conser-
vativeness, which can be explained as the amount of targeted reliability against
the uncertainty while looking for a solution. Because the reliability and solution
cost usually end up being conflicting objectives, it is important for the decision
maker to be able to configure the conservativeness degree, so that the desired
balance between the cost and reliability can be obtained, and the most practical
solution can be found for the problem at hand.

The robust optimization methodologies are typically proposed within the
framework of mathematical programming (i.e. linear programming, integer pro-
gramming). Thanks to the nature of mathematical programming, these method-
ologies can find the exact optimum, according to the various solution evaluation
perspectives they have. However, dependence on mathematical programming
might also mean that such methodologies will require too much memory from
the computer, and also too much execution time, when large-scale optimization
problems are considered. A common strategy to avoid the big memory and exe-
cution time requirements of mathematical programming is to use metaheuristic
optimization algorithms for solving large problem instances.

In this research, we propose an approach for solving medium-to-large-sized
robust optimization problem instances. The methodology we propose is a
matheuristic (i.e. a hybridization of mathematical programming and meta-
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heuristic). In the matheuristic approach we propose, the mathematical pro-
gramming part handles the uncertainty, and the metaheuristic part handles the
exploration of the solution space. Since the exploration of the solution space is
entrusted onto the metaheuristic search, we can obtain practical near-optimal
solutions while avoiding the big memory and time requirements that might be
brought by pure mathematical programming methods. The mathematical pro-
gramming part is used for making the metaheuristic favor the solutions which
have more protections against the uncertainty. Another important characteris-
tic of the methodology we propose is concurrency with information exchange:
we concurrently execute multiple processes of the matheuristic algorithm, each
process taking the uncertainty into account with a different degree of conserva-
tiveness. During the execution, these processes exchange their best solutions.
So, if a process is stuck on a bad solution, it can realize that there is a better
solution available thanks to the information exchange, and it can get unstuck.
In the end, the solutions of these processes are collected into a solution pool.
This solution pool provides the decision maker with alternative solutions with
different costs and conservativeness degrees. Having a solution pool available
at the end, the decision maker can make the most practical choice according to
the problem at hand.

In this thesis, we first discuss our studies in the field of robust optimiza-
tion: a heuristic approach for solving a minimum power multicasting problem
in wireless actuator networks under actuator distance uncertainty, and a linear
programming approach for solving an aggregate blending problem in the con-
struction industry, where the amounts of components found in aggregates are
subject to uncertainty. These studies demonstrate the usage of mathematical
programming for handling the uncertainty. We then discuss our studies in the
field of matheuristics: a matheuristic approach for solving a large-scale energy
management problem, and then a matheuristic approach for solving large in-
stances of minimum power multicasting problem. In these studies, the usage of
metaheuristics for handling the large problem instances is emphasized. In our
study of solving minimum power multicasting problem, we also incorporate the
mechanism of information exchange between different solvers. Later, we discuss
the main matheuristic approach that we propose in this thesis. We first apply
our matheuristic approach on a well-known combinatorial optimization prob-
lem: capacitated vehicle routing problem, by using an ant colony optimization
as the metaheuristic part. Finally, we discuss the generality of the methodol-
ogy that we propose: we suggest that it can be used as a general framework on
various combinatorial optimization problems, by choosing the most appropriate
metaheuristic algorithm according to the nature of the problem.
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Chapter 1

Introduction

Let us consider the field of operations research, and the optimization problems
studied within this field, related to transportation, supply chains, scheduling,
etc. In operations research, such problems are mathematically modelled, and
then these models are solved by mathematical programming (collective name for
techniques like linear programming, integer programming, etc.), or by heuristic
algorithms which find near-optimal solutions in short amounts of times.

A traditional approach in optimization is to model the problems determin-
istically, without the consideration of uncertainty. In deterministic optimization
problems, all problem data (all the coefficients of the objective function and
the constraints) are represented as fixed numbers. The reality, however, is not
deterministic. Random behavior of the nature and/or the measurement errors
during the collection of problem data causes the coefficients in the reality to
differ from the nominal coefficient values (i.e. coefficient values assumed in the
mathematical model). The difference between the nominal value of a coefficient
and its value in reality is called the perturbation on that coefficient (Nemirovski
[2009]).

The perturbations on coefficients can have very undesirable effects. For ex-
ample, let us consider a cost minimization problem and let us consider that there
are perturbations on the objective function coefficients. Because of these pertur-
bations, a solution which seems optimal according to the nominal coefficient
values can turn out to be far from optimal and very costly in reality. In addition,
when we consider that there are perturbations on the constraint coefficients, the
feasibility of the solution is in danger as a solution which is feasible according
to the nominal coefficient values can be infeasible according to the coefficient
values in reality.

To deal with the perturbations on the problem data, two schools of thoughts
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emerged in the last decades: stochastic programming (Birge and Louveaux
[1997]) and robust optimization (Kouvelis and Yu [1997]; Ben-Tal and Ne-
mirovski [2000]; Bertsimas and Sim [2004a]). In the school of stochastic pro-
gramming, the problems are modelled by using the information on the behavior
of the uncertainty (i.e. the probability distribution information of the uncertain
data), and solutions which will be satisfactory with high probabilities are sought.
There might be cases, however, in which there is not enough information to de-
fine the uncertainty by probability distributions. In such cases, it can be easier
to define lower and upper boundaries, or discrete collections of possible values
for data perturbations. In this way of defining the uncertainty, it is not neces-
sary to include probability distribution information in the mathematical model,
it is enough just to say that the data are somehow perturbed complying with the
boundaries/collections. For dealing with this kind of uncertainty, robust opti-
mization can be used. We can think of robust optimization as an umbrella term,
as there are multiple methodologies treating the uncertainty similarly. In the ro-
bust optimization school, mathematical models are prepared in a “cautious” way
(with protective assumptions that some or all coefficients might end up having
critical values) so that the solution will be satisfactory, always or most of the
time.

Robust optimization methodologies are usually based on mathematical pro-
gramming techniques like linear programming, mixed integer linear program-
ming, etc. While these mathematical programming techniques are frequently
used and are able to solve many popular problems, there are cases where heuris-
tic methods are preferred. The reason for this preference is usually because
mathematical programming techniques consume too much time and computer
memory for solving a problem. To avoid big time and/or memory requirements
of mathematical programming, one can use metaheuristic algorithms. A meta-
heuristic algorithm can be explained as a high-level master strategy, which can
be used as a guideline for developing a heuristic search method to find near-
optimal solutions for the optimization problem at hand (Yang [2011]). Ge-
netic algorithms (Holland [1975]; Goldberg [1989]), simulated annealing (Kirk-
patrick et al. [1983]) and ant colony optimization (Dorigo et al. [1991]; Dorigo
[1992]) are examples for metaheuristic algorithms. Despite the fact that the
metaheuristic algorithms do not guarantee to find the optimal solution, they can
be preferred for their lower computational time and memory requirements, in
comparison to the mathematical programming approaches. In the field of meta-
heuristics, a recent development is matheuristic algorithms (Raidl and Puchinger
[2008]; Maniezzo et al. [2009]). A matheuristic algorithm is based on the ideas
of metaheuristics, but also incorporates mathematical programming components
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for solving a portion of the problem. In other words, a matheuristic is a hy-
bridization of metaheuristics and mathematical programming.

An important concept in robust optimization is the degree of conservative-
ness, which means how much the wanted solution has to be protected against
the uncertainty. This degree of conservativeness concept is previously discussed
in Ben-Tal and Nemirovski [1999, 2000]. Let us first consider the type of un-
certainty which affects the cost of a solution (because of uncertain coefficients
in the cost function). With this type of uncertainty, in a solution space, there
might be solutions which have very low potential costs, but also are very risky,
in the sense that their costs could jump to much higher values in some critical
scenarios. A more conservative solution could have higher minimum cost, but
would be safer, as its cost would not suffer a significant increase in critical sce-
narios. Let us now consider the type of uncertainty which affects the feasibility
of a solution (because of uncertain coefficients in the constraints). With this
second type of uncertainty, there might be solutions which have very low costs,
but also which can turn out to be infeasible in many critical scenarios. On the
other hand, a more conservative solution could have a higher cost, but would
be feasible in many more scenarios. It is useful for a decision maker to analyze
solutions with different potential costs and different conservativeness degrees,
so that she/he can see the effects of the uncertainty on the problem, and pick
the solution which seems the most practical one.

In our research, the purpose is to build a matheuristic robust optimization
framework, for finding practical uncertainty-aware heuristic solutions for larger
problem instances. The characteristics of our framework are as follows:

• Matheuristics. The framework involves matheuristic hybridization: we
embed the mathematical formulations of robust optimization into meta-
heuristic optimization algorithms. This allows us to do heuristic optimiza-
tion avoiding the big time/memory requirements of pure mathematical
programming approaches, while still evaluating each solution under un-
certainty by using the ideas of robust optimization.

• Solution pools. Within this framework, the purpose is to generate solution
pools, not single solutions. A solution pool is a collection of solutions with
varying conservativeness degrees, and costs. Therefore, these solutions
are alternatives to each other. For the decision maker, having a solution
pool instead of a single solution can be much more useful, because, she/he
can analyze various alternative solutions, see the trade-off between solu-
tion cost and robustness by looking at how the cost and robustness change
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from solution to solution, and, in the end, she/he can pick the most practi-
cal solution. In our framework, solution pools are generated by executing
multiple matheuristic optimization processes concurrently, with each op-
timization process focused on a different conservativeness degree. These
processes also exchange solutions with each other so that no optimization
process is stuck on a dominated solution.

Our research consists of multiple studies. These studies can be grouped as
follows:

• Robust optimization studies. We have studied an aggregate blending prob-
lem, and minimum power multicasting problem in wireless actuator net-
works. While studying these problems, the techniques we have used do
not involve matheuristics, but they do involve robust optimization, there-
fore, they are related to the overall goal of our research.

• Matheuristic optimization studies. Under this title, we have first studied
the minimum power multicasting problem. The goal was not robustness,
but the effectiveness in solving the large-scale instances heuristically, by
executing a metaheuristic solver and a mathematical programming solver
in parallel with the help of a solution sharing mechanism between the two
solvers. In more details, when a solver is stuck on a local minimum, it
can get unstuck by importing a better solution from the other solver. This
is a matheuristic technique, as a mathematical programming solver and
a metaheuristic solver are combined. Also, the solution sharing mecha-
nism between the solvers is re-used in our matheuristic robust optimiza-
tion framework. Secondly, we have studied a large-scale energy manage-
ment problem. In the large-scale energy management problem, we have
used a matheuristic technique, where an outer simulated annealing algo-
rithm uses an embedded mathematical programming model to evaluate
the performance of a solution, by also considering the uncertainty. In the
way the uncertainty handled here, this problem is set apart from robust
optimization, as a solution’s average performance over the scenarios is
measured, not the performance in the worst-case scenario. However, as
a matheuristic approach and uncertainty are involved, this study can be
considered as quite related, and a stepping stone to our final matheuristic
robust optimization framework.

• Study on matheuristic robust optimization. This is the study which in-
volves the main methodology proposed in this thesis. In this study, we
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first apply the ideas of our matheuristic robust optimization for solving a
well-known combinatorial optimization problem: vehicle routing problem
(VRP). In more details, we have studied the two extensions of capacitated
VRP (CVRP): capacitated vehicle routing problem with uncertain travel
costs (CVRPU), and capacitated vehicle routing problem with time win-
dow constraints and uncertain travel times (CVRPTWU). Complying with
the characteristics of our matheuristic robust optimization framework that
we will discuss in the end, CVRPU and CVRPTWU are solved by execut-
ing multiple ant colony optimization (ACO) algorithms concurrently, with
each ant colony focused on a different conservativeness degree, and in the
end, solution pools are generated. After working on these CVRP varia-
tions, we also discuss the generality of this methodology, and how it can
be treated as a framework for solving various combinatorial optimization
problems under uncertainty.

The structure of this thesis is as follows. First, in chapter 2, we give a de-
scription of robust optimization and discuss the state of the art. Later, in chapter
3, we present our studies related to the field of robust optimization. Chapter
4 discusses our studies related to the field of matheuristics. In chapter 5, we
present our matheuristic robust optimization studies for solving CVRP problems
subject to uncertainty. In chapter 6, we discuss the generality of our matheuris-
tic robust optimization methodology and we suggest that it can be considered
as a framework for solving various combinatorial optimization problems with
uncertain data. Finally, in chapter 7, we draw our conclusions.
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Chapter 2

Classic Robust Optimization

2.1 Basic Description

Robust optimization approaches assume that the coefficients of a mathematical
model can not be known exactly. So, depending on the particular robust opti-
mization approach, a robust counterpart of a mathematical model is generated
to explicitly consider the uncertainty within the optimization process.

Let us consider the following simple 0-1 linear program:














minimize
∑

j∈J
c j x j

subject to
∑

j∈J
ai j x j ≤ bi ∀i ∈ I

x j ∈ {0, 1} ∀ j ∈ J

(2.1)

In the example 0-1 linear programming model (2.1), x j is the j-th binary de-
cision variable, c j is the j-th coefficient of the objective function, ai j is the j-th
left-hand side coefficient of the i-th constraint, bi is the right-hand side constant
of the i-th constraint, J is the set of the indices for the coefficients (columns of
the model) and I is the set of the indices for the constraints (rows of the model).
Also, for simplicity, let us assume that all the coefficients (ai j, bi, c j) are greater
than or equal to 0.

The uncertainty is usually considered in two alternative forms: interval form
and the discrete scenario form. They can be explained in further details as fol-
lows.

Uncertainty in the interval form. Let us consider the uncertainty representa-
tion in the interval form. If we assume that the objective coefficients are subject

7
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Figure 2.1. A shortest path problem instance, where the uncertainty is ex-

pressed in the interval form.

to uncertainty, we say that c j are not exactly known numbers anymore, but they
are c j ∈ [c j; c j]. Similarly, for ai j values under uncertainty, we say ai j ∈ [ai j; ai j].
We assume in this case that ai j and/or c j values can turn out to be any value in
the reality out of their intervals, and they are independent from each other. We
also assume that within these intervals, we do not know anything related to the
probability distributions: we do not know which values within these intervals
are more likely. Finally, when representing the uncertainty via intervals, we de-
fine a scenario as a collection of assumptions, where a specific value is assumed
by each uncertain coefficient out of its interval.

Uncertainty in the discrete scenario form. Let us consider the uncertainty
representation in the discrete scenario form. This form of representation is used
when we have a finite set of most likely scenarios available to us, where each
scenario contains assumed values for uncertain coefficients.

Figures 2.1 and 2.2 summarize these two forms of uncertainty representa-
tion, by taking a small shortest path problem as an example.

The rest of this chapter will list robust optimization methodologies to give a
short summary of the state of the art.
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Scenario c1,2 c2,3 c3,6 c1,4 c4,5 c5,6

1 6 3 1 6 5 2
2 5 4 2 5 2 1
3 7 4 2 6 2 3

Figure 2.2. A shortest path problem instance, where the uncertainty is ex-

pressed in the discrete scenarios form.

2.2 Exact Robust Optimization Methodologies

2.2.1 The Soyster Approach

In Soyster [1973], the author considered uncertainty in the interval form and
proposed a methodology where the problem is optimized according to the most
pessimistic scenario.

Let us think of the example (2.1) and let us assume that we have uncertainty
on all coefficients. Considering that the uncertainty of interval form imposes
c j ∈ [c j; c j] and ai j ∈ [ai j; ai j], when we apply the Soyster approach, we get:















minimize
∑

j∈J
c j x j

subject to
∑

j∈J
ai j x j ≤ bi ∀i ∈ I

x j ∈ {0, 1} ∀ j ∈ J

(2.2)

that is, the minimization is done according to the maximum possible values of
the coefficients.

Note that, even if in this example we assume that the worst-case scenario
is the scenario where all the uncertain coefficients are maximized, in the case
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of some other problems, it might not be straightforward to know what is the
worst-case scenario. Therefore, a very general definition of the Soyster approach
would be the approach of minimizing the solution cost according to the scenario
where the cost coefficients (c j) are perturbed in such a way that the total solution
cost is maximized, and the constraint coefficients (ai j) are perturbed in such a
way that the constraint left-hand sides are as close as possible to violating the
constraints.

The limitation of the Soyster approach is that it is not possible to configure
the level of conservatism. By considering the most pessimistic scenario, the
Soyster approach will always go with full conservatism.

2.2.2 Absolute Robustness Approach

The absolute robustness approach is discussed in Kouvelis and Yu [1997]. The
authors consider the uncertainty in the discrete scenario form, affecting the ob-
jective function coefficients. According to this approach, considering that we
have a set of scenarios S, and that the value of an objective function coefficient
c j within a scenario s ∈ S is expressed by cs

j , each solution is evaluated according
to the scenario in which its cost is maximized. In other words, like in Soyster
approach, each solution is evaluated according to its worst-case scenario. There-
fore, the model (2.1) turns into:



















minimize max

¨

∑

j∈J
cs

j x j

�

�

� s ∈ S

«

subject to
∑

j∈J
ai j x j ≤ bi ∀i ∈ I

x j ∈ {0, 1} ∀ j ∈ J

(2.3)

Having a similar perspective with the Soyster approach, this absolute robust-
ness approach shares the same drawback: the conservativeness degree can not
be configured, and always the most robust solution is sought.

2.2.3 The Robust Deviation Approach

In Kouvelis and Yu [1997], in addition to the absolute robustness approach, an
approach called robust deviation approach (also known as the minimax regret
approach) is discussed. The authors consider the uncertainty in the form of
discrete scenarios; however, the applications of this approach on problems with
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uncertainty of interval form have been done as well (see, for example, Karaşan
et al. [2001]; Montemanni and Gambardella [2005]; Montemanni [2007]).

The robust deviation approach is based on the concept of “regret”. Let us
think of the example problem (2.1) and let us assume that the objective coeffi-
cients c j are subject to uncertainty. Also, let us define sol_1 as a solution that
the decision maker accepted for the example problem (2.1) before knowing the
exact values for c j. Even if sol_1 is feasible, if the decision maker knew the
exact values for c j in advance, she/he would go for a cheaper solution sol_2.
The difference between the solution costs of sol_1 and sol_2 is called the re-
gret. The robust deviation approach is focused on finding the solution where the
maximum possible regret is minimized.

Again, like in the Soyster approach and the absolute robustness approach,
the robust deviation approach is limited in the sense that the decision maker is
not able to configure the level of conservatism.

2.2.4 The Ellipsoid Approach

In Ben-Tal et al. (Ben-Tal and Nemirovski [1997, 1999, 2000]) and also inde-
pendently in El Ghaoui et al. (El Ghaoui and Lebret [1997]; El Ghaoui et al.
[1998]), the authors consider a robust optimization methodology where the
conservatism can be configured. The idea can be explained as defining an el-
lipsoidal uncertainty set where the considered perturbations are contained. In
other words, all the perturbations that we want to be protected against are in-
cluded in the uncertainty set. The maximum total amount of perturbation from
the uncertainty set is added into the objective function and/or into the left-hand
side of the uncertain constraint for having robust solutions.

Let us assume that p j values are perturbations on objective coefficients or
the coefficients of a row i, depending on the problem. We can formulate the
uncertainty set as:

U =

¨

p j

�

�

�

r

∑

j∈J

(p j)2(x j)2 ≤ Ω
«

(2.4)

In (2.4), by increasing Ω, the perturbations considered by the uncertainty set U
can be increased. So, Ω is the conservativeness parameter.

The ellipsoid approach was applied to linear programming problems with
uncertainty of the interval form on the coefficient constraints in Ben-Tal and
Nemirovski [2000]. Also, in Bertsimas and Sim [2004b], the authors discuss
the application of this approach into 0-1 linear programming problems with
uncertainty on the objective function coefficients.
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The ellipsoidal shape of the protection area imposes non-linear additions to
an originally linear mathematical model. These non-linear additions turn the
problem into conic quadratic problems.

As a linearized and simplified version of the ellipsoid approach, the polyhe-
dral uncertainty set approach can be considered. In this simplified approach, the
uncertainty set imposes that the total amount of perturbations are less than Θ
(i.e. U = {p j |

∑

j∈J p j ≤ Θ}). However, in Ben-Tal and Nemirovski [1999], in
favor of using the ellipsoid approach, the authors argue that “in some important
cases, there are ‘statistical’ reasons which give rise to ellipsoidal uncertainty”
and that large-scale conic quadratic problems can be solved by recent interior
points optimization methods.

2.2.5 The Bertsimas-Sim Approach

In Bertsimas and Sim [2003, 2004a], the authors propose a robust optimization
methodology for which the degree of conservatism can be configured. In addi-
tion to this, unlike the ellipsoid approach, the Bertsimas-Sim approach can be
linearized assuming that the original problem is linear.

According to this approach, the uncertainty is bounded by the concept of un-
certainty budget. For the objective function, the uncertainty budget is Γ0. For
the constraint i, the uncertainty budget is Γi. When a full perturbation happens
on a coefficient (i.e. when the coefficient’s value in reality is perturbed fully
towards its worst case, making it equal to its maximum possible value), its re-
lated Γ (Γ0 or Γi, depending on where the coefficient belongs) is decreased by
1. When, say, a half perturbation happens on a coefficient (i.e. when the coef-
ficient is perturbed halfway towards its worst-case value, making it equal to the
value at the middle between its best-case value and its worst-case value), its re-
lated Γ is decreased by 0.5. After the uncertainty budget is finished, we assume
that no more perturbations will happen on the rest of the coefficients, there-
fore, we leave them at their best-case values. The uncertainty budgets represent
the amount of perturbations allowed. By setting values for these uncertainty
budgets, the decision maker can configure the conservatism.
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When we apply the Bertsimas-Sim approach to (2.1), we get:























































minimize
∑

j∈J
c j x j

+max
n

c j x j + c+j (c j − c j)x j

�

�

∑

j∈J
c+j ≤ Γ0; 0≤ c+j ≤ 1 ∀ j ∈ J

o

subject to
∑

j∈J
ai j x j

+max
n

ai j x j + a+i j(ai j − ai j)x j

�

�

∑

j∈J
a+i j ≤ Γi; 0≤ a+i j ≤ 1 ∀ j ∈ J

o

≤ bi ∀i ∈ I

x j ∈ {0,1} ∀ j ∈ J
(2.5)

where c+j and a+i j represent the perturbations on the coefficients c j and ai j, re-
spectively. Notice that, unlike the ellipsoid approach, (2.5) does not contain
non-linear operators like square and square root. Because of this, (2.5) can be
expressed as a linear program.

The formulation (2.5) corresponds to the way of thinking which says that
the Γ0 number of coefficients which will maximize the cost, and the Γi number
of coefficients which will (maybe critically) drive each constraint i towards the
feasibility boundary denoted by bi, are assumed to be in their highest values.
To sum up, the most “disturbing” coefficients are assumed to be perturbed. This
pessimistic way of thinking makes the model favor robust solutions.

2.3 Metaheuristic Robust Optimization Methodologies

In addition to the field of mathematical programming, uncertainty and robust
optimization have also been studied in the field of heuristics. We now mention
some examples within this field.

2.3.1 Robust Optimization with Simulated Annealing

In Bertsimas and Nohadani [2010], the authors propose a metaheuristic robust
optimization technique. In this study, the authors consider problems in which
the decision variables are continuous, and the uncertainty is on the decision
variables.

In this approach, a simulated annealing algorithm is executed, with a given
conservativeness degree, ∆. Given a solution x , and a minimization problem
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P, let us now define DETEVAL(x) as the objective function of the deterministic
counterpart of P, and ROBEVAL(x) as the objective function according to the
uncertainty-aware counterpart of P. Let us also define Around(x ,∆) as a set of
solutions around the solution x within the radius ∆. Now, in terms of DETEVAL,
we can define the robust objective function as ROBEVAL(x) as:

ROBEVAL(x) =max{DETEVAL(x ′) | x ′ ∈ Around(x ,∆)}

Minimizing the result of ROBEVAL corresponds to following a min-max ap-
proach: considering that various outcomes can be obtained from a solution due
to the uncertainty, we are trying to minimize the cost of the worst outcome.

2.3.2 Evolutionary Multiobjective Optimization Algorithms Deal-

ing with Uncertainty

From the field of evolutionary algorithms, evolutionary multiobjective reliability-
based optimization emerges. In this field, usually, a multiobjective evolutionary
algorithm is developed, for handling a problem under uncertainty. The first
objective is the minimization of the solution cost, and the second objective is
the maximization of the reliability (or robustness, if the second objective mod-
els the uncertainty by following the school of robust optimization). The main
advantage of this approach is that, the evolutionary algorithm, at the end of its
execution, provides a solution pool, allowing the decision maker to see the trade-
off between solution cost and reliability by analyzing various solutions. Among
the frequently used multiobjective optimization algorithms for this kind of op-
timization, there are nondominated sorting genetic algorithm 2 (NSGA-II; see
Deb et al. [2002]), and strength pareto evolutionary algorithm 2 (SPEA2; see
Zitzler et al. [2001]). Some examples of evolutionary multiobjective reliability-
based optimization studies are Li et al. [2005]; Gunawan and Azarm [2005];
Deb et al. [2009].

2.4 Matheuristic Framework for Robust Optimization

In section 2.2, we have discussed popular exact methods to retrieve robust so-
lutions. These approaches, especially when we consider non-trivially sized in-
stances of combinatorial optimization problems, might require large amounts of
execution time and memory, because of many binary decision variables. The
framework we ultimately propose in this thesis focuses on execution speed and
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lower memory requirements, and provides a heuristic solution pool after a single
concurrent execution.

For quickly obtaining heuristic solution pools for combinatorial optimization
problems under uncertainty, the ideas of evolutionary multiobjective reliability-
based optimization mentioned in section 2.3.2 can be applied as well: an evolu-
tionary multiobjective optimization algorithm can be developed, in which the
objectives are the cost evaluations according to various conservativeness de-
grees, and/or robustness in terms of satisfying the constraints. The importance
of the techniques we propose within our framework is that they can be built upon
an existing metaheuristic. Let us say we have an uncertainty-unaware combina-
torial optimization problem P, and there is a well-known metaheuristic in the lit-
erature for solving P. In this case, for solving the uncertainty-aware counterpart
of P, one can quickly apply the techniques proposed within our framework (con-
current generation of solution pools with information exchange), without having
to make fundamental modifications on the underlying metaheuristic algorithm.
Therefore, for obtaining solution pools for the uncertainty-aware counterpart
of P, our approach can be more practical than implementing an evolutionary
algorithm from scratch. Further discussions on this are made in chapter 6.
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Chapter 3

Robust Optimization Studies

In this chapter, we discuss our studies (Montemanni et al. [2012]; Toklu and
Montemanni [2011a,b, 2012b]) which are related to robust optimization. These
studies are not part of our matheuristic framework, because no metaheuristic
was involved.

3.1 Aggregate Blending Problem

We now present our aggregate blending problem study. In this study, a linear-
programming-based approach (to be explained in section 3.1.2) was developed
by R. Montemanni and N.E. Toklu. The results of this work show that this ap-
proach is competitive, for which the details will be discussed in section 3.1.3.

In the construction industry, the aggregate blending problem can be fre-
quently faced. According to this problem, we have different fractions available.
The goal is to mix these fractions into a final blend, the crucial decisions being
how much of each fraction should exist within the final blend. Each fraction
itself contains various amounts of ingredients, and we have to make sure that,
in the final blend, each ingredient will be in the desired amounts, so that the
final blend is strong and reliable.

In the aggregate blending problem, the amount of the ingredients in each
sample of fraction is actually subject to uncertainty. Ignoring this uncertainty
might lead to wrong assumptions about the quantities of the ingredients in the
final blend. As a result of having wrong quantities, the quality of the final blend
might be compromised. Because of this, a robust aggregate blending solution is
a solution which stays away as much as possible from the infeasibility borders.

Examples of aggregate blending studies can be found in Lee [1973]; Tuba-
canon et al. [1980] for asphaltic concrete mixes and in Ritter and Shaffer [1961];
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Neumann [1964] for sub-base granular material for highways. In addition to
the construction industry, the blending problem can be encountered in other do-
mains like in food, chemical, pharmaceutical and petrochemical industries (see
Toklu [2005]; Venter [2010]).

In the literature, various methods were proposed for solving the aggregate
blending problem: graphical technique, trial-and-error technique, linear pro-
gramming, least-square optimization, and so on (see Lee [1973] and Toklu
[2002] for a detailed review of the classical methods). Studies which consider
the uncertainty were also reported in Sargent [1960], Easa and Can [1985b]
and Easa [1985]. In Easa and Can [1985b], Easa [1985], and Toklu [2005],
the aggregate blending problem was treated as a weighted multiobjective prob-
lem, the objectives being the minimization of the cost, and the maximization of
the robustness. In Easa and Can [1985b] and Easa [1985], the authors used
quadratic programming. In Toklu [2005] the authors used genetic algorithm.
In our study Montemanni et al. [2012], we show that this multiobjective nature
of the problem can be modeled by linear programming, and we then report our
competitive results.

3.1.1 Formulation of the Aggregate Blending Problem

Let us now look at the classical formulation of the aggregate blending prob-
lem without the consideration of the uncertainty. First, we define the following
problem data:

• I ∈ {1,2, ...}: the set of ingredients (also |I | is the number of ingredients).

• J ∈ {1,2, ...}: the set of fractions (also |J | is the number of fractions).

• Gi j ∈ [0;1]: How much of fraction j consists of the ingredient i, repre-
sented as a ratio (in terms of volume or weight, depending on the particu-
lar problem at hand).

• C j( f a): Cost function associated with fraction j ∈ J , where the argument
f a represents the fraction amount.

• [si; ri]: The interval of desirable amount of ingredient i ∈ I in the final
blend.

Our decision variables are:

• x j: The amount of fraction j ∈ J in the final blend.
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We are now ready to define how a valid aggregate blending solution looks
like. The total amount of fraction amount ratios should be 1:

∑

j∈J

x j = 1 (3.1)

The amount of each ingredient i in the final blend must be within an interval:

si ≤
�

∑

j∈J

Gi j x j

�

≤ ri ∀i ∈ I (3.2)

The amount of fraction x j for each j ∈ J must be a positive real number:

x j ≥ 0 ∀ j ∈ J (3.3)

Given these constraints, we can now summarize the classical aggregate blending
problem, AGGBLEND, in which the objective is the minimization of the total cost,
as follows:

AGGBLEND







minimize
∑

j∈J
C j(x j)

subject to (3.1), (3.2), (3.3)

The model AGGBLEND, assuming that the cost function corresponds to a simple
multiplication with a cost coefficient (i.e. assuming C j(x j) = c j x j), can be solved
by using a linear programming solver (see IBM CPLEX [2014], Gurobi [2014],
GNU Project [2014]).

When the cost function C j is non-linear, we can approximate to each curve
of C j by using piecewise a linear cost function. This way of handling the non-
linear cost functions is equivalent to how the “non-constant cost functions of
aggregates” were handled in Easa and Can [1985a].

To express the piecewise linear cost function, let us now make the following
definitions:

• S( j): Number of linear pieces in the cost function of fraction j.

• α jk: The cost at the beginning of the k-th linear piece of fraction j.

• a jk: The amount ratio of fraction j which marks the beginning of its k-th
linear piece. In other words, the k-th linear piece of fraction j is active
when the amount of the fraction j is between a jk and a j,k+1.
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In figure 3.1, an example of a piecewise linear cost function is given.
This piecewise linear nature of the problem can be solved by a mixed integer

linear programming model. For the model, let us define two groups of decision
variables:

y jk =

(

1 if the amount ratio of the fraction j is between α jk and α j,k+1

0 otherwise

The other group of decision variables is u jk, which stores how much of fraction
j is used within the linear piece k. Given these definitions above, we are now
ready express our model AGGBLENDPL, which considers the piecewise linear cost
function, as:

AGGBLENDPL


























































































minimize
∑

j∈J

S( j)
∑

k=1

�

a jk y jk +
(a j,k+1− a jk)
(α j,k+1−α jk)

u jk

�

(3.4)

subject to
S( j)
∑

k=1
y jk = 1 ∀ j ∈ J (3.5)

y jk ≥ u jk ∀ j ∈ J ; ∀k = 1, 2, . . . , S( j) (3.6)

u jk ≤ α j,k+1−α jk ∀k = 1, 2, . . . , S( j) (3.7)

∑

j∈J

S( j)
∑

k=1

�

α jk y jk + u jk

�

= 1 (3.8)

si ≤
∑

j∈J

�

Gi j

S( j)
∑

k=1

�

α jk y jk + u jk

�

�

≤ ri ∀i ∈ I (3.9)

y jk ∈ {0,1} ∀ j ∈ J ; ∀k = 1,2, . . . , S( j) (3.10)

u jk ≥ 0 ∀k = 1,2, . . . , S( j) (3.11)

where the constraints (3.5) impose that only one linear piece has to be selected.
The constraints (3.6) say that the u jk variables can have values greater than 0,
only when the k-th linear piece is active (i.e. only when y jk = 1). The constraints
(3.7) define the upper bounds for the u jk variables. The constraints (3.8) and
(3.9) are the piecewise-linear-counterparts of (3.1) and (3.2), respectively. The
constraints (3.10) and (3.11) define the domains of the variables y jk and u jk.
Finally, the objective (3.4) is the piecewise-linear-counterpart of the objective of
AGGBLEND, imposing the minimization of the total cost.

To sum up, when the cost function is purely linear, we can use the linear
programming model AGGBLEND. When the cost function is nonlinear, we ap-
proximate that nonlinearity by expressing the cost function by using a piecewise
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Figure 3.1. An example of piecewise linear cost function, approximating a

nonlinear cost function (shown by the dotted curve). In this example, we have

three linear pieces (i.e. S( j) = 3).

linear approach, and then we use the mixed integer linear programming model
AGGBLENDPL. In section 3.1.2, we discuss the robust counterparts of these mod-
els.

3.1.2 Robust Linear Programming Formulation

In the reality, the amount of ingredient i in fraction j (i.e. Gi j), varies from sam-
ple to sample. Ignoring this fact might lead to a final blend with low qualities.
Therefore, we need robust models which provides solutions protected against
the uncertainty.

In the literature, probabilistic approaches exist (Tubacanon et al. [1980];
Lee and Olson [1983]) for finding solutions which are protected against the
uncertainty. These approaches assume that the probability distributions of Gi js
are known. This assumption, however, brings the main drawback of stochastic
optimization approaches: collecting the probability distribution information can
prove to be very difficult for the decision maker. In fact, it might be as difficult
as knowing the Gi j values. Therefore, a robust approach which does not require
any probability distribution assumptions might be much more practical.

Previously, the robustness in aggregate blending was considered in Neumann
[1964], where the authors minimized the mean deviation, ensuring that the so-
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lution is as far as possible from the borders of infeasibility. In Easa and Can
[1985a], the authors proposed a quadratic programming approach which can
show the decision maker a trade-off between cost and robustness. In our study,
we present a smaller robust model which can be solved by using linear program-
ming, and which can, like the approach of Easa and Can [1985a], show the
trade-off between cost and robustness.

Detailed comparisons with the studies in the literature will be given in section
3.1.3.

To define our robust model, let us first define wi as the safest value within
the interval [si; ri]. This means, the most robust solution would be a solution in
which the amount of each ingredient i is wi. In many cases, intuitively, wi would
be set as the value in the middle of the interval [si; ri] (i.e. ri+((ri− si)/2) ). In
the literature, various objectives were formulated to minimize the distance from
wi. The most popular formulations are:

D1 =
∑

i∈I

�

�

�

�

�

wi −
∑

j∈J

Gi j x j

�

�

�

�

�

D2 =
∑

i∈I

 

wi −
∑

j∈J

Gi j x j

!2

D3 =max
i∈I

(
�

�

�

�

�

wi −
∑

j∈J

Gi j x j

�

�

�

�

�

)

Both D1 and D2 measure the uncertainty-vulnerability by the total amount of
(squared, in the case of D2) deviation from wi ∀i ∈ I . In D3, the maximum
among all the deviations from wi ∀i ∈ I is taken as the uncertainty-vulnerability
measure. Taking the maximum deviation, instead of the total deviation, prevents
the model from giving a solution in which the total deviation ends up being low
but actually one of the ingredient amounts is critically close to the border of
infeasibility. In our study, being inspired by D3, we have introduced:

D4 =max
i∈I
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�

�
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�

wi −
∑

j∈J
Gi j x j

� ri − si
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Like in D3, the maximum deviation is used as the measurement in D4. However,
in D4, the amount of a deviation is calculated relative to the size of its [si; ri]
interval, so that extra care is taken with critically small intervals.
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We are now ready to define our robust model as the minimization of D4,
given a budget. For configuring the budget, we use a parameter δ, from which
the cost upper bound is calculated by C∗AGGBLEND

· (1+ δ), where C∗AGGBLEND
is the

optimal cost found by the uncertainty-unaware model AGGBLEND. Given these
definitions, we formulate our robust model as follows:

RAGGBLEND







































































minimize z (3.12)

subject to
∑

j∈J
C j(x j)≤ C∗AGGBLEND

(1+δ) (3.13)

∑

j∈J
x j = 1 (3.14)

si ≤
∑

j∈J
Gi j x j ≤ ri ∀i ∈ I (3.15)

∑

j∈J
Gi j x j ≥ wi −

ri − si

2
z ∀i ∈ I (3.16)

∑

j∈J
Gi j x j ≤ wi +

ri − si

2
z ∀i ∈ I (3.17)

x j ≥ 0 ∀ j ∈ J (3.18)

where the objective (3.12) imposes the minimization of the variable z, which
stores the value of D4. The constraint (3.13) imposes the cost upper bound con-
figured by the parameter δ. The constraint (3.14) says that the total amount
of the fractions must be 1. The constraint (3.15) is the same as (3.2), saying
that the [si; ri] interval must be respected. The constraints (3.16) and (3.17)
shrink the interval according to the value of z, and impose that the amount
of each ingredient i stays within its related shrunk interval. The shrinking of
interval is as follows: when z = 1, an interval [si; ri] is not shrunk at all,
staying the same. When, z < 1, the interval [si; ri] is shrunk around wi val-
ues, its size becoming the original size multiplied by zi, therefore becoming:
�

wi −
ri − si

2
z ; wi +

ri − si

2
z

�

. To sum up, the model is focused on shrink-

ing the [si; ri] intervals as much as possible and find a feasible solution for these
shrunk intervals without violating the budget. As these intervals get shrunk more
and more, the ingredient amounts in the solution become closer to wi values,
and farther from the borders of [si; ri], therefore increasing the robustness.

Note that all the constraints are linear in RAGGBLEND. This means, adding
robustness considerations into the original model AGGBLEND does not increase
the time complexity. In case where we have a nonlinear cost function to which
it is possible to approximate by using a piecewise linear cost function, the same
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robustness approach can be applied on AGGBLENDPL, and the robust counterpart
of AGGBLENDPL model would stay as a mixed integer linear programming model.
In practice, an overhead in terms of time exists because of the fact that the robust
models need the cost of the optimal solution of the uncertainty-unaware model
(in the budget constraint (3.13)). This requirement, however, can be avoided, if
the decision maker has an absolute constant budget value available in advance.

3.1.3 Experimental Results

We now compare the results of our approach with the results of some previous
studies appeared in the literature.

3.1.3.1 Comparison against Ritter and Sha�er [1961]

In Ritter and Shaffer [1961], the first usage of linear programming for aggregate
blending is introduced. Uncertainty was not considered, and a technique for
approximating nonlinear cost functions was not proposed. The model is similar
to AGGBLEND, with an additional contraint for plasticity index, which was also
inserted into our models for the sake of comparison.

The authors of Ritter and Shaffer [1961] use an example of with 37 frac-
tions and 9 ingredients. They solve this example to optimality, and they also
discuss some alternative solutions. These alternative solutions, however, seem
to break some constraints, probably because of numerical issues introduced by
their solving tools. In this comparison, we use their feasible and optimal solu-
tion. The comparison is presented in table 3.1, where the optimal solution of
Ritter and Shaffer [1961], the optimal solution of AGGBLEND, and more robust
alternative solutions of RAGGBLEND are evaluated in terms of cost and D4. We
have to stress that, we excluded the ingredients 4 and 7 from the evaluation
of robustness, because each feasible solution has to have the amount of these
ingredients at the border of infeasibility, therefore including these ingredients in
the robustness evaluation would always result in D4 = 1. In the table, we can
see that the optimal solutions of Ritter and Shaffer [1961] and AGGBLEND are
almost the same, the difference being probably introduced by numerical issues.
In these optimal solutions, we can observe that the cost is very low, however,
also so is the robustness: D4 = 1 means that the amount of at least one of the
ingredients is touching the infeasibility border. We can see that the solutions of
RAGGBLEND can increase the robustness (i.e. can decrease D4), by sacrificing in
terms of solution cost, the amount of this sacrifice being dependent on δ.
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Table 3.1. Comparison of our approach against the study Ritter and Sha�er

[1961]

Solution Cost D4

Ritter and Shaffer [1961] 0.0847 0.9999
AGGBLEND 0.0831 1.0000

RAGGBLEND: δ = 0.30 0.1081 0.6103
RAGGBLEND: δ = 0.60 0.1330 0.4227
RAGGBLEND: δ =+∞ 0.1552 0.3170

3.1.3.2 Comparison against Neumann [1964]

In Neumann [1964], a quadratic programming model was proposed, in which
the minimization of the solution cost was not considered. The focus was on
maximizing the robustness. Differently from our approach where D4 is used, in
Neumann [1964], D2 was used as the measurement of robustness. The authors
used an example with 3 fractions and 8 ingredients. The comparison of our
results against theirs are given in table 3.2. In the table, it can be seen that,
compared to AGGBLEND and RAGGBLEND, the model of Neumann [1964] can
indeed find solutions with much lesser D2 values. However, when we measure
the robustness of these solutions in terms of D4, these solutions seem to be
touching the border of infeasibility (i.e. D4 ≈ 1). On the other hand, the solution
of RAGGBLEND, seems to be the most robust one in terms of D4, even if it has
higher D2 value. This means that, the understanding of robustness of D2 and
the understanding of robustness of D4 are not the same, driving the solver into
different solutions.

At this point, we would like to stress the main point of D4: especially when
facing [si; ri] intervals of different sizes, smaller intervals would be more critical
than the others, and it would be more important to measure the robustness
by considering the closeness to the safety curve relative to the interval sizes,
resulting in paying extra attention for those critical intervals.

3.1.3.3 Comparison against Tubacanon et al. [1980]

In Tubacanon et al. [1980], the authors present an approach in which the pur-
pose is the minimization of the cost, but the uncertainty is also considered: when
a solution violates the [si; ri] intervals probabilistically, a penalty is added onto
the cost. Because the probabilities are handled directly, the model is not linear.
Therefore, the authors propose to approximate this model by using an algorith-
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Table 3.2. Comparison of our approach against the study Neumann [1964]

Solution D2 D4

Neumann [1964]: solution 1 101.85 1.0802
Neumann [1964]: solution 2(a) 70.30 1.0456

AGGBLEND 215.89 0.9524
RAGGBLEND:δ =+∞(b) 174.43 0.8736

(a) This solution is not feasible according to a modern quadratic programming

solver (IBM CPLEX [2014]). The problem could be caused by numerical issues.

(b) Since the minimization of the cost is not a consideration in the study of Neu-

mann [1964] (i.e. the budget is infinite), we set the budget parameter of our

approach as +∞.

mic approach in which a linear programming model is solved iteratively. The
stopping criterion of this iterative approach does not tell how far the current so-
lution is from the optimality, and there is not a defined upper bound for number
of iterations. This implies that the approach is not a polynomial-time algorithm.

The authors test their approach on an example with 4 fractions and 9 ingre-
dients. The results are presented in table 3.3, where each solution is evaluated
in terms of the penalty system they propose, and also in terms of D4. In the
example, it can be seen that our approach is able to improve upon the solution
of Tubacanon et al. [1980], in terms of cost (when AGGBLEND is used, without
considering uncertainty at all), in terms of robustness (when RAGGBLEND with
δ = +∞ is used), and in terms of minimization of Penalty+Cost (when RAGG-
BLEND with δ = 0.15 is used). It can also be seen that the minimization of D4

is compatible with the robustness criterion of Tubacanon et al. [1980], as the
solution with minimum D4 yields zero penalty.

3.1.3.4 Comparison against Lee and Olson [1983]

In Lee and Olson [1983], a probabilistic model is proposed. For each Gi j, a
normal probability distribution is associated. Their proposed model involves
a hierarchical objective function: at each level of hierarchy, a sub-objective is
optimized, and a penalty is paid if a constraint is not satisfied. The hierarchy
of these sub-objectives are ordered as follows (from the most important to the
least important):

1. Satisfy the [si; ri] intervals, ignoring the uncertainty at this level.
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Table 3.3. Comparison of our approach against the study Tubacanon et al.

[1980]

Solution Cost Penalty Penalty+Cost D4

Tubacanon et al. [1980] 90.19 8.80 98.99 0.5818
AGGBLEND 81.06 940.84 1021.90 1.0000

RAGGBLEND : δ = 0.10 89.23 15.66 104.89 0.7144
RAGGBLEND : δ = 0.15 93.31 0.66 93.97 0.5716
RAGGBLEND : δ = 0.20 97.44 0.01 97.45 0.4309
RAGGBLEND : δ = 0.25 101.38 0.00 101.38 0.3739
RAGGBLEND : δ =+∞ 103.43 0.00 103.43 0.3428

2. Satisfy the budget constraint (analogous to the budget constraint of RAG-
GBLEND model).

3. Minimize the probability of violating the [si; ri] intervals, taking into ac-
count the uncertainty. Dealing with probability distributions, this step adds
nonlinearity to the model.

4. Minimize the total cost.

5. Satisfy the constraint which says that a given amount of a certain fraction
has to be used.

The authors propose the usage of their approach in two modes. The first of
these modes is the deterministic mode, in which the 3rd sub-objective is dis-
abled. Since the nonlinearity of the model comes from the 3rd sub-objective,
the deterministic mode reduces the model into a linear approach, solvable in
polynomial-time. The second mode is probabilistic mode, in which the 3rd sub-
objective is enabled, making the model nonlinear.

Seeing that the fifth sub-objective is the least important one in the hierar-
chy, and that the results presented in Lee and Olson [1983] do not seem to be
satisfying it, we have excluded it from the comparison.

In Lee and Olson [1983], the authors use an example with 8 ingredients and
9 fractions. They generate two solutions: one deterministic solution, and one
probabilistic solution. In table 3.4, these solutions are compared to our solu-
tions, in terms of cost, the robustness criterion of Lee and Olson [1983] called
Critical Constraint Satisfaction Probability (CCSP), and D4. In the results, the
first observation we can make is that the deterministic solution of Lee and Olson
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Table 3.4. Comparison of our approach against the study Lee and Olson [1983]

Solution Cost CCSP D4

Lee and Olson [1983]: deterministic 1.035 0.3366 1.0000
Lee and Olson [1983]: probabilistic 1.328 0.6074(a) 0.7720

AGGBLEND 1.038 0.3314 1.0000
RAGGBLEND : δ = 0.05 1.090 0.4728 0.5956
RAGGBLEND : δ = 0.10 1.142 0.5512 0.5508
RAGGBLEND : δ =+∞ 1.150 0.5455 0.5472

(a) Erroneously reported as 0.8453 in Lee and Olson [1983]

[1983] and the solution of AGGBLEND are very similar. The second observa-
tion we can make is that the probabilistic solution of Lee and Olson [1983] is
the one with the highest CCSP value, but, in terms of D4, it is the RAGGBLEND

model which has found the most robust solution. When the probability distri-
butions are completely known, one could go for the approach of Lee and Olson
[1983], to make sure that the probability of satisfying the critical constraints is
high. However, here, the classical decision issue between a stochastic optimiza-
tion approach (which is the approach of Lee and Olson [1983], considering that
it relies on probability distribution information) and a robust optimization ap-
proach shows itself: it might be very difficult to find reliable information about
the probability distributions of the Gi j values, and using the approach of Lee and
Olson [1983] without truly knowing the probability distributions might result
in solutions which are much less reliable than anticipated. For obtaining robust
solutions without knowing anything except the boundaries of [si; ri] intervals, it
could be much more practical to use our RAGGBLEND approach.

3.1.3.5 Comparison against Easa and Can [1985a]

Easa and Can [1985a] propose a mathematical programming approach very sim-
ilar to our AGGBLEND and RAGGBLEND approaches, the difference being that, in
Easa and Can [1985a], the authors minimize D2 (instead of D4 which is used
by RAGGBLEND), and use quadratic programming to handle the square operation
within D2 (instead of linear programming used by RAGGBLEND to handle D4).
The authors also show that their quadratic programming formulation is solvable
in polynomial time. Like RAGGBLEND, they provide a budget constraint, so that
the trade-off between cost and robustness can be explored by the decision maker.

The authors use an instance with 8 ingredients and 3 fractions. By using
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Table 3.5. Comparison of our approach against the study Easa and Can [1985a]

Solution Cost D2 D4

Easa and Can [1985a] solution 1(a) 13.72 62.5 · 104 0.7649
Easa and Can [1985a] solution 2 13.50 63.5 · 104 0.7648
Easa and Can [1985a] solution 3 13.25 64.8 · 104 0.7654
Easa and Can [1985a] solution 4 13.00 66.2 · 104 0.7682
Easa and Can [1985a] solution 5 12.85 67.1 · 104 0.7702

Easa and Can [1985a] solution 6(a) 12.75 67.9 · 104 0.7618
Easa and Can [1985a] solution 7(a) 12.50 87.2 · 104 0.6464
Easa and Can [1985a] solution 8 12.30 125.4 · 104 0.9036
Easa and Can [1985a] solution 9 12.27 139.1 · 104 0.9825

AGGBLEND 12.27 139.1 · 104 0.9825
RAGGBLEND: δ = 0.05 12.88 89.5 · 104 0.6329
RAGGBLEND: δ = 0.10 13.49 85.6 · 104 0.6274
RAGGBLEND: δ =+∞ 13.50 86.4 · 104 0.6273

The best solutions in terms of cost, D2, and D4 for each approach are written in

bold.

(a) This solution is not feasible, according to Gurobi solver (Gurobi [2014]). This

solely depends on the advances in the numerical precisions of the solvers, and not

on a mistake of the authors of Easa and Can [1985a].

various budget levels, they produce various solutions. In table 3.5, our results
are compared to theirs. The first observation is that, when the uncertainty is
ignored and the purpose is set as the minimization of the cost, both approaches
can find the optimum solution. The second observation is that the approach of
Easa and Can [1985a] is able to find the solution with the minimum D2. When
it comes to D4, however, the best solutions come from our approach. Therefore,
our comments on the study of Neumann [1964] about the difference between
D2 and D4 apply here too.

3.1.3.6 Comparison against Easa and Can [1985b]

In Easa and Can [1985b], the authors propose an extension to their previous
study (Easa and Can [1985a]), where both the cost and D2 are formulated
within the objective function, each multiplied by a weight coefficient. By con-
figuring these weight coefficients, the decision maker can explore the trade-off
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Table 3.6. Comparison of our approach against the study Easa and Can [1985b]

Solution Cost D2 D4

Easa and Can [1985b]: solution 1 12.65 71.12 1.0000
Easa and Can [1985b]: solution 2 12.65 71.12 1.0000
Easa and Can [1985b]: solution 3 12.68 49.01 0.9937
Easa and Can [1985b]: solution 4 12.70 35.91 0.9977
Easa and Can [1985b]: solution 5 12.72 29.12 1.0000
Easa and Can [1985b]: solution 6 12.73 27.13 1.0000
Easa and Can [1985b]: solution 7 12.73 26.39 1.0000
Easa and Can [1985b]: solution 8 12.73 26.08 1.0000
Easa and Can [1985b]: solution 9 12.81 21.89 0.8070
Easa and Can [1985b]: solution 10 12.95 17.54 0.4684
Easa and Can [1985b]: solution 11 13.05 16.50 0.2511

AGGBLEND 12.65 70.25 1.0000
RAGGBLEND:δ = 0.01 12.77 41.09 0.7530
RAGGBLEND:δ = 0.02 12.90 23.19 0.5058
RAGGBLEND:δ = 0.03 13.03 16.56 0.2587
RAGGBLEND:δ =+∞ 13.04 16.52 0.2461

The best solutions in terms of cost, D2, and D4 for each approach are written in

bold.

between the cost and robustness.
In their study, the authors use an example with 7 ingredients and 3 fractions.

By using different weights, the authors generate various solutions. The com-
parison of our results on this example against their results are shown in table
3.6. In the results, again, it can be seen that while the approach of Easa and
Can [1985b] minimizes the D2, it is the RAGGBLEND model which finds the most
robust solution in terms of D4. Therefore, our comments in Neumann [1964]
and in Easa and Can [1985a] apply here too.

3.1.3.7 Comparison against Toklu [2005]

In Toklu [2005] a multiobjective genetic algorithm is proposed, where the mul-
tiobjective nature of the model is handled by adding the cost and robustness into
a single objective, by using weight coefficients. For measuring the robustness,
the authors use D1,

p

D2, and D3 formulations.
The authors use an example with a linear cost function, consisting of 10
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Table 3.7. Comparison of our approach against the study Toklu [2005], con-

sidering the examples with linear costs

Solution Cost D1

p

D2 D3 D4

Toklu [2005]:
D1 16.7170 9.4207 3.9113 5.6000 0.6405
p

D2 16.6723 9.6270 3.5983 2.2630 0.6276
D3 16.7680 11.4534 4.0567 2.0298 0.6339

0.75 D1+0.25 Cost 14.9846 9.7405 4.3105 2.6704 0.6165
0.50 D1+0.50 Cost 11.8899 12.1303 5.3276 2.8477 0.6119
0.25 D1+0.75 Cost 7.7629 17.9950 8.0723 5.7925 0.8274

Cost 7.2173 30.6231 12.6856 7.9999 1.0000
AGGBLEND 7.2173 30.6238 12.6858 8.0002 1.0000

RAGGBLEND:δ=0.05 7.5781 24.5230 10.0415 5.9763 0.7471
RAGGBLEND:δ=0.20 8.6607 21.0990 8.6244 4.9765 0.6221
RAGGBLEND:δ=0.35 9.7433 19.1429 7.9595 4.6895 0.5861
RAGGBLEND:δ=+∞ 16.2979 18.0596 7.6141 4.5149 0.5644

The best solutions in terms of cost, D1,
p

D2, D3, and D4 for each approach are

written in bold.

ingredients and 4 fractions. On this example, they obtain various solutions
by configuring their genetic algorithm approach into minimizing D1,

p

D2, D3,
(0.75D1 · 0.25Cost), (0.50D1 · 0.50Cost), (0.25D1 · 0.75Cost), and, finally, the
solution cost. The comparison between their solutions and our solutions are
given in table 3.7. In addition, to demonstrate that the genetic algorithm can
handle nonlinear cost functions directly, the authors use a version of the previ-
ous example with a nonlinear cost function, and obtain various solutions on it
by using various configurations. The comparison between their solutions for the
nonlinear example, and our solutions which were obtained by approximating
the nonlinearity by using piecewise linear cost function, are given in table 3.8.
In both tables, it can be seen that both approaches were able to find the optimal
solution when the goal was the minimization of the cost. We can also see that
the genetic algorithm approach was able to find the best solutions in terms of D1,
p

D2, and D3. Finally, once again, when we consider D4, which is the only Dn

robustness criterion relative to the interval sizes, we see that RAGGBLEND finds
the best solutions.



32 3.1 Aggregate Blending Problem

Table 3.8. Comparison of our approach against the study Toklu [2005], con-

sidering the examples with non-linear costs

Solution Cost D1

p

D2 D3 D4

Toklu [2005]:
D1 14.5952 9.4207 3.9113 5.6000 0.6405
p

D2 14.4811 9.6270 3.5983 2.2630 0.6276
D3 14.4368 11.4534 4.0567 2.0298 0.6339

0.75 D1 + 0.25 Cost 14.4313 9.4511 3.8033 2.3102 0.6075
0.50 D1 + 0.50 Cost 11.3894 12.1206 5.3210 2.8470 0.6042
0.25 D1 + 0.75 Cost 7.1004 17.9959 8.0736 5.7945 0.8273

Cost 6.3643 30.6233 12.6857 8.0000 1.0000
AGGBLEND 6.3643 30.6238 12.6858 8.0001 1.0000

RAGGBLEND:δ = 0.05 6.6825 26.1468 10.8384 6.6335 0.8291
RAGGBLEND:δ = 0.20 7.6372 21.9262 8.8863 5.0864 0.6358
RAGGBLEND:δ = 0.35 8.5918 20.2518 8.3607 4.8643 0.6080
RAGGBLEND:δ =+∞ 10.2247 18.2983 7.5159 4.5149 0.5644

The best solutions in terms of cost, D1,
p

D2, D3, and D4 for each approach are

written in bold.
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3.1.4 Protection against uncertain input data: an empirical study

The aim of this section is to validate the robust model RAGGBLEND from an em-
pirical point of view. The solutions provided by RAGGBLEND for different values
of the budget δ are assessed for different levels of uncertainty. Each level is iden-
tified by a parameter α. For each value of α, scenarios are generated with noise
affecting each passing percentage Gi j; the modified value for Gi j is generated at
random in Norm[Gi j;α(Gi j)2]: the normal distribution with meaning Gi j and
variance (αGi j)2. Values of α up to 3% are considered. In the literature, it has
been estimated that values of α on the order of 2% are typical in practice (Easa
and Can [1985b]). Practical situations are therefore covered by the experiments
described here.

For each uncertainty value α considered, one million scenarios were gener-
ated as described previously starting from the instance with linear costs taken
from Toklu [2005]. The solutions of models AGGBLEND and RAGGBLEND (with
different budgets δ) were generated according to the original Gi j values and
checked for feasibility on each of the scenarios. The proportion of scenarios on
which the provided solution was feasible is plotted in figure 3.2 for each model.
Uncertainty levels (α) are plotted on the x-axis. The budget parameter α ranges
between 0.0 (model AGGBLEND) and 0.6. Higher budget values yielded no im-
provement in the quality of the solution.

Figure 3.2 suggests that model RAGGBLEND provides important protection
against uncertainty even when just a small budget δ = 1% is set. However, small
budget values lead to a reduction in the solution quality for high uncertainty
levels α. Larger budget values are required to have good protection for all the
uncertainty levels considered. In general, satisfactory protection is achieved
with δ = 10%. Larger budget values lead to better protection. The robust model
improves upon the solution obtained by model AGGBLEND in the proportion of
satisfied scenarios up to approximately 0.55 for α = 0.02 (a typical value in
practice, according to Easa and Can [1985b]).

3.1.5 Validation of the optimization criterion D4

A marginal innovation introduced in this study is the optimization criterion D4.
While introducing the robust model RAGGBLEND, we argued that D4 is a promis-
ing criterion from a theoretical point of view. In this section we validate it against
previously appeared criteria from an empirical point of view. We consider two
variations of the robust model RAGGBLEND, in which criteria D1 and D3 are im-
plemented instead of D4. Criterion D2 was not tested since its implementation
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Figure 3.2. Protection provided by models AGGBLEND and RAGGBLEND with

di�erent budgets δ. The curve of AGGBLEND is labeled as �AGGBLEND�. The

curves of RAGGBLEND are labeled by their δ values.

would produce a non-linear model, which falls outside the scope of the present
work.

In order to plug the criterion D1 into our model, the following modifica-
tions to RAGGBLEND have to be done. The resulting model will be referred to as
RAGGBLENDD1

. A new set of free variables has to be introduced: zi will contain
the value |wi −

∑m
j=1 Gi j x j| for each i ∈ I . Variable z is not used anymore. The

objective function (3.12) is substituted by the following one:

minimize
∑

i∈I

zi (3.19)

while the constraints (3.16) and (3.17) are substituted by:
∑

j∈J

Gi j x j ≥ wi − z ∀i ∈ I (3.20)

∑

j∈J

Gi j x j ≤ wi + z ∀i ∈ I (3.21)

The same experimental setups described before are adopted, and the
results obtained by the original model RAGGBLEND and by its modifica-
tions RAGGBLENDD1

and RAGGBLENDD3
are reported in figure 3.3. Ratios



35 3.1 Aggregate Blending Problem

RAGGBLEND / RAGGBLEND : δ=0.6

D1

D3

R
a
ti

o

RAGGBLEND / RAGGBLEND

RAGGBLEND / RAGGBLEND

: δ=0.6
: δ=0.6

1.03

1.025

1.02

1.015

1.01

1.005

1

0.995

0.99
0.25% 0.50% 0.75% 1.00% 1.25% 1.50% 1.75% 2.00% 2.25% 2.50% 2.75% 3.00%

Uncertainty level α

Figure 3.3. Protection provided by di�erent optimization criteria. Budget

δ = 0.6.

RAGGBLEND

RAGGBLENDD1

and
RAGGBLEND

RAGGBLENDD3

are plotted for budget δ = 0.6 and increas-

ing values of the uncertainty α. The chart suggests that RAGGBLEND provides
a superior protection against uncertainty than RAGGBLENDD3

and (especially)
RAGGBLENDD1

for most of the values of α considered. The exception is repre-
sented by the highest values of α considered: in these cases the different models
tend to perform the same, with RAGGBLEND being even worse than the others
for α→ 0.3. This intuitively happens because the unpredictable random factor
tends to be dominant under these settings, and criticalities (at the basis of D4)
are lost. A hierarchic objective function, with D4 as the prominent criterion and
D3 as the secondary one, would probably be more indicated in such a context.
Notice however that - according to Easa and Can [1985b] - these values of α are
unlikely in practice. It is finally worth to mention that different budget values of
δ generate charts similar to that proposed in figure 3.3.
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3.1.6 Summary

A robust optimization approach for aggregate blending problem was studied.
Differently from other approaches in the literature, we measure the robustness
relatively to the size of the interval associated with the uncertain variable. This
allows our approach to take extra care with the critical intervals.

Considering the instance sizes of aggregate blending problem in the litera-
ture (usually less than 10 ingredients, and less than 10 fractions), and the fact
that the main decision variables are continuous, this study is a good example
of using mathematical programming for solving a robust optimization problem.
However, when it comes to bigger problems with combinatorial nature (i.e. with
binary decision variables), using a mathematical programming approach would
not be practical, as it would require too much execution time and memory. The
main focus of the present thesis is the handling of such big combinatorial op-
timization problems by using heuristic algorithms, which will be explained in
chapters 5 and 6.

3.2 Minimum Power Multicasting Problem

The minimum power multicasting problem (MPMP), and the minimum power
broadcasting problem (MPBP) are faced when wireless networks are to be es-
tablished in human-unfriendly environments, or in places where the existing
communication infrastructure is damaged by natural disasters, etc. (Leggieri
et al. [2008]). In MPMP, our assumption is that we have devices that we call ter-
minals, each terminal being able to receive and transmit data wirelessly by using
their antennas (Rappaport [1996]). Thanks to their ability to receive and trans-
mit, these terminals can act as routers too, redirecting the data they receive to
others. We also consider that these terminals are mobile devices, meaning that
they require batteries to keep functioning. Our overall goal in MPMP is to find
a routing scheme by configuring the coverage area of each terminal, such that a
source terminal can send data to a set of destination terminals. While achieving
this goal, in important fact to consider is that, as the coverage area of a terminal
is increased, its power consumption increases exponentially with the distance.
More power consumption means more cost spent on replacements of batter-
ies, meaning that coverage areas return to us as costs in the end. Therefore,
in MPMP, we have to find a routing scheme such that the total cost caused by
the coverage areas is minimized (Wieselthier et al. [2000, 2001]; Leggieri et al.
[2008]). The MPBP is a special case of MPMP, in which all the terminals except
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Figure 3.4. The wireless multicast advantage.

In this example, terminal A has extended its coverage area to be able to transmit

to terminal B. At this point, terminal A can also transmit to terminal C
in addition to terminal B, because terminal C has been included within the

coverage area of terminal C .

the source terminal are destination terminals. In the rest of this chapter, we will
collectively refer to MPMP and to MPBP as MPMP. For MPMP, various mathemat-
ical programming approaches and heuristic techniques were proposed. A survey
can be found in Guo and Yang [2007].

In MPMP, an important characteristic that should be mentioned is the wireless
multicast advantage (Wieselthier et al. [2002]). According to this characteristic,
when a terminal A is linked to terminal B, it extends its coverage area enough to
transmit to terminal B, and while doing this, it can also transmit to a terminal
C , if the terminal C is within this coverage area. This characteristic is visualized
in figure 3.4.

To sum up the high-level definition of MPMP, see the illustration in figure 3.5,
where a tiny instance and two example solutions are visualized.

In the classical MPMP, the data of the problem is the power requirement
for a terminal i to reach (i.e. to include in its coverage area) terminal j. In this
study, previously discussed in Toklu and Montemanni [2011a,b, 2012b], we con-
sider a variation of MPMP in which the power requirement values are subject to
uncertainty. This uncertainty represents the errors made while measuring/cal-
culating the distances between the terminals, unfriendly weather conditions and
unknown obstacles affecting the quality of the transmissions. We call this vari-
ation of the problem as MPMP with uncertain power requirements (MPMPU).
Note that, in MPMPU we study here, differently from classical robust optimiza-
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tion studies, we make assumptions about probability distributions: we assume
that each uncertain power requirement value belongs to an associated interval,
in which the probability distribution is uniform. Because of these assumptions,
MPMPU is actually closer to stochastic optimization field.

In our study, to handle MPMPU, we propose a 3-step heuristic approach
based on the mathematical programming previously discussed in Montemanni
and Mahdabi [2011]. In our approach, the following steps are taken:

• Step 1: An initial scenario is assumed, and a mathematical programming
formulation is executed to find the optimal routing scheme according to
the initial scenario.

• Step 2: The routing scheme found in step 1 is analyzed, and estimations
are made about the parts of the routing scheme which makes the network
most vulnerable to the uncertainty

• Step 3: Coverage areas of the critical parts (i.e. parts which are vulnerable
to uncertainty) of the routing scheme are increased, and the coverage ar-
eas of the non-critical parts of the routing scheme are decreased, in such
a way that the total power consumption of the network stays the same.
In other words, the power consumption of the network is slightly shifted
towards its critical parts.

3.2.1 Problem De�nition

The MPMP can be defined in terms of a graph G = (V, A), where V is the set
of terminals, and A = {(i, j)|i, j ∈ V} is the set of arcs. Within the set V , we
have a source terminal s. The set of destination terminals is represented by
D ⊆ (V\{s}). Each arc (i, j) ∈ A represents a connection between the terminals
i and j. The power requirement value ri j represents the power consumption
needed by terminal i ∈ V to establish the connection (i, j) ∈ A. The power
requirement for a terminal to connect to itself is defined as 0 (i.e. rii = 0).
The decisions we make in this problem are in terms of power consumptions,
represented by ρi. As we increase ρi, we increase its coverage area. If ρi ≥ ri j,
we say that the terminal i reaches terminal j (i.e. terminal i includes terminal
j within its coverage area). Given these defintions, our objective is to minimize
the total cost

∑

i∈V ρi, while making sure that each destination terminal i ∈ D
can receive data from the terminal s, directly or via the help of the intermediate
routing terminals. It is important to note the following two points: (i) it is
not necessary to reach the non-destination terminals (i.e. terminals excluded
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from the set D), but reaching these non-destination terminals and using them
as routers can prove to be useful; and (ii) both destination terminals and non-
destination terminals can be used as routers.

In MPMPU, we say that we do not know the power requirement values
exactly, so, we express the uncertain data by intervals. Therefore, we say:
ri j ∈ [r i j; r i j] ∀(i, j) ∈ A, i 6= j, and for self-loop arcs we say: rii = r ii = r ii =
0 ∀i ∈ V . Within the [r i j; r i j] intervals, we assume that the probability distri-
butions are uniform. We can now define a scenario z as a deterministic MPMP
instance in which each power requirement value r[z]i j is randomly picked from
the interval [r i j; r i j]. Because of the uncertainty, in MPMPU, we have to think
about the reliability of the network. Given that we have a set of scenarios ex-
pressed by Z , we measure the reliability in two ways:

• Total number of disconnections: in a scenario z ∈ Z , the number of discon-
nections is the number of terminals which were not able to receive the data
from the source because of the uncertainty. The total number of discon-
nections, is the number of disconnections summed over all the scenarios
in Z .

• Total number of flawed scenarios: A flawed scenario is a scenario in which
there is at least one disconnection. So, this measurement is found by the
number of flawed scenarios in Z .

In MPMPU, in addition to the objective of minimizing the cost, we are also look-
ing to increase the reliability of the network by minimizing the total number of
flawed scenarios, and the total number of disconnections.

3.2.2 Mathematical Programming Formulation for the Determin-

istic MPMP

Let us now look at the formulation of the deterministic MPMP, without the con-
sideration of the uncertainty, meaning that ri j values are exactly known constant
numbers.

First, we start by defining an array v i for each terminal i. In v i, all the ter-
minals j are ordered non-decreasingly according to ri j values. The k-th element
of v i is represented by v i

k. The first element of v i is always terminal i itself (i.e.
v i

1 = i). An example which illustrates the v i arrays can be seen in figure 3.6.
We now define x ik ∈ {0,1} variables. If x ik is set as 1, it is decided that a

terminal i should extend its coverage area just enough to reach its k-th closest
neighbour (i.e. v i

k); otherwise x ik becomes 0. To impose the flow of connectivity
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from terminal i to terminal j, we also define a variable yi j for each arc (i, j). By
using these variables, we can formulate MPMP as follows:

MPMP































































































minimize
∑

i∈V

|V |
∑

k=1
ri,v i

k
(3.22)

subject to
|V |
∑

k=1
x ik = 1 ∀i ∈ V (3.23)

(|V | − 1)
|V |
∑

k=k′:v i
k′
= j

x ik ≥ yi j ∀(i, j) ∈ A (3.24)

∑

j∈V
y ji −

∑

j∈V
yi j =







−|D| if i = s

1 if i ∈ D

0 otherwise

∀i ∈ V (3.25)

0≤ yi j ≤ |V | ∀(i, j) ∈ A (3.26)

x ik ∈ {0,1} ∀i ∈ V, ∀k ∈ {1,2, ..., |V |} (3.27)

In the model of MPMP, the constraints (3.23) say that only one x ik has to be set
as 1 for each terminal i. The constraints (3.24) provide the connection between
x ik and yi j variables. The constraints (3.25) make sure that the flow represented
by the yi j variables construct an arborescence starting at the source terminal s,
and ending at the destination terminals. Finally, the domains of yi j and x ik

variables, are specified by the constraints (3.26) and (3.27) respectively.
After getting the optimal result from the mathematical model of MPMP, one

can easily find the power consumption decisions for terminals as:

ρi =
|V |
∑

k=1

ri,vk
i
x∗ik

where x∗ represent the x values of the optimal solution.

3.2.3 Approaches to handle the uncertainty within MPMPU

While MPMP can be solved to optimality by using the model presented in sec-
tion 3.2.2, we need to change our approach for handling the uncertainty within
MPMPU.
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3.2.3.1 A straightforward approach

Let us first discuss a classical, straightforward approach. According to the straight-
forward approach, we depend on a protection parameter denoted by α ∈ [0;1].
This α protection parameter can be seen as the conservativeness degree configu-
ration mechanism of this straightforward approach. In this approach, we create
a special scenario in which all the power requirements are equal to r i j+(r i j−r i j).
With α= 0, the coverage area requirements are assumed to be at their best-case
values. As α value increases, the coverage area requirements are assumed to
be at more pessimistic values. With α = 1, we assume the worst-case scenario,
and the model becomes equivalent to the Soyster approach discussed in section
2.2.1.

3.2.3.2 The 3-step approach

Now, we discuss our 3-step approach, which is an extension to the straightfor-
ward approach, and which has shown improved results in our experiments over
randomly generated instances. Like the straightforward approach, the 3-step
approach depends on the parameter α. In addition to α, we now define the
parameter β , with the condition 0 ≤ β ≤ α. The parameter β represents the
minimum protection that should be provided in the entire network.

Step one. The straightforward approach is executed, which provides the initial
decisions about the coverage areas. The initial decision about the coverage area
of a terminal i ∈ V is expressed by ρ̂i. These initial decisions are subject to
change in the next steps. Also, we define λi as the most distant terminal reached
by the terminal i according to the special scenario of α. Therefore, we say:

λi = j such that rαi j = ρ̂i

Finally, the cost of the solution, which is to stay the same during the next steps,
is defined as:

C =
∑

i∈V

ρ̂i

Step two. In this step, we estimate which parts of the network are most vulner-
able against the uncertainty.

Let us now define the concept of dependency. Under a scenario in which we
assume the power requirement value for each (i, j) ∈ A is rβi j = r i j +β(r i j − r i j),
if a terminal k′ receives data from terminal k, we say that terminal k′ depends
on terminal k. Also, if another terminal k′′ receives data from terminal k′, we



42 3.2 Minimum Power Multicasting Problem

say that the terminal k′′ depends on terminals k and k′. The visualization of the
dependency concept can be seen in figure 3.7.

Now, we define the concept of critical dependency. Under the scenario in
which we assume the power requirement value for each (i, j) ∈ A is rβi j , if a
terminal k′ depends on a terminal k, but the connection (k, k′) can not be estab-
lished when we consider the worst-case scenario (in which the power require-
ment value becomes r i j for each (i, j) ∈ A), we say that the terminal k′ critically
depends on terminal k. We also say that terminal k weakly reaches terminal k′. If,
on the other hand, the connection (k, k′) can be established even in the worst-
case scenario, we say that the terminal k′ non-critically depends on terminal k,
and that the terminal k strongly reaches terminal k′.

Let us consider two terminals i and j, and formulate the query functions in-
dicating whether the terminal i reaches terminal j strongly or weakly, as follows:

STRONGLYREACHES(i, j) =

(

1 if ρ̂i ≥ r i j

0 otherwise

WEAKLYREACHES(i, j) =

(

1 if ρ̂i ≥ rβi j

0 otherwise

Now, let us define a function which indicates the quality of reaching from
terminal i to terminal j. If a terminal i strongly reaches terminal j, then we
say that the quality is 1, which is the maximum quality. If a terminal i reaches
terminal j such that its power consumption ρi is just enough to satisfy the power
requirement rβi j , we say that the quality is at minimum, therefore, 0. If terminal
i can not reach terminal j, there is no quality to assign. The function which
returns the quality of reaching from terminal i to terminal j is formulated as
follows:

QUALITY(i, j) =























1 if ρ̂i ≥ r i j

�

ρ̂i − r i j

r i j = r i j

�

− β

1− β
if r i j ≤ ρ̂i < r i j

Now, we are ready to define the algorithm which estimates the criticalities
of the terminals of the network. The algorithm we propose here depends on
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a recursive procedure. This procedure starts by visiting the source terminal s.
At each visited terminal, the procedure scans for all the terminals which can be
strongly or weakly reached. At each visit, the procedure updates a list called
cri t ical_dependencies. As the name suggests, this list stores the terminals on
which the currently visited terminal critically depends. At each new visit, all
the terminals within cri t ical_dependencies receive criticality points. The ter-
minals with more criticality points are heuristically identified to be the terminals
which make the connectivity of the network more vulnerable against the uncer-
tainty. The amount of increase in the criticality points is calculated according to
the quality of reaching to the currently visited terminal. In more details, lesser
quality means more criticality. At the end, the result of the execution of this algo-
rithm is the criticality value Ii for each terminal i. The details of this procedure
is given in algorithm 1.

Algorithm 1 The algorithm for estimating the criticalities of the terminals

1: initialize cri t ical_dependencies = 〈〉
2: initialize Ii = 0 ∀i ∈ V
3: call ESTIMATECRITICALITIES(s, 1)

4: function ESTIMATECRITICALITIES(visited terminal i, quality q)
5: mark terminal i as reached

6: score←

(

|V | if i ∈ D

1 otherwise

7: Id ← Id + (score · (1− q)) ∀d ∈ cri t ical_dependencies
8: for ∀ j ∈ V do
9: if node j was not marked as reached already then

10: if STRONGLYREACHES(i, j) then
11: call ESTIMATECRITICALITIES( j,QUALITY(i, j))
12: else if WEAKLYREACHES(i, j) then
13: push i into cri t ical_dependencies
14: call ESTIMATECRITICALITIES( j,QUALITY(i, j))
15: pop i from cri t ical_dependencies
16: end if
17: end if
18: end for
19: end function

Scanning for other terminals for each visited terminal, this implementation
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presented in algorithm 1 runs in O(|V |2) time. The criticality values, Ii, gener-
ated at this step, are to be used by the third step, in which the coverage areas of
the terminals are adjusted.

Step three. In this step, the final decisions about the power consumption values
(and therefore the coverage areas) are made. In more details, the power con-
sumption values of the terminals with higher critical values are increased, and
the power concumption values of the terminals with lower critical values are
decreased, in such a way that the total cost of the network stays the same (the
cost stays at C).

This step involves the execution of a linear programming model, formulated
as follows:

MPMPUSTEP3































maximize
∑

i∈V
(Ii + 1) +ρi (3.28)

subject to rβ
i,v i

k
≤ ρi ≤ r i,λi

∀i ∈ V, k ∈ {1, 2, ..., l : v i
l = λi} (3.29)

∑

i∈V
ρi ≤ C (3.30)

ρi ≥ 0 ∀i ∈ V (3.31)

In this model, the objective (3.28) imposes the maximization of the protections
on the terminals against the uncertainty, with the priority given to the ones with
the high criticality values. In constraints (3.29), the lower and upper bounds for
the power consumption for each terminal i is specified. The lower bound here
dictates that the protection on a terminal i can not go lower than the minimum
protection imposed by the parameter β . The constraint (3.30) imposes that the
total cost can not exceed C , the total cost obtained at the end of step 1. Finally,
the constraint (3.31) specifies the domains of the ρi variables.

At the end of the execution of the model MPMPUSTEP3, the adjusted power
consumption values are obtained. Note that the model in this step is linear with-
out any integer variables. This means that a Simplex (Dantzig [1963]) algorithm
execution, which has polynomial-time execution requirement in average, will be
enough to complete this step.

3.2.4 Experimental Results

Our 3-step algorithm was implemented in C++, by using Gurobi 4.5 library
for solving the mixed integer linear programming models. To evaluate the 3-
step approach, MPMPU instances were generated where the terminals are ran-
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domly placed, and each generated instance was solved by the straightforward
approach, and the 3-step approach. Then, the qualities of the solutions found
by each approach on each instance were compared, solution quality being mea-
sured in terms of flawed scenarios and total number of disconnections, over
10000 randomly generated scenarios. In other words, a Monte Carlo sampling
engine was used to generate scenarios and to test the qualities of the solutions.
While we had used the sampling technique for generating scenarios, formula-
tions for a more accurate estimations of the number of flawed scenarios can
be found in section 3.2.5. For generating an MPMPU instance, the following
procedure was applied:

• a 2-dimensional area with size 100×100 is prepared;

• for each terminal, a random-sized circle with a maximum radius R is gen-
erated, R being a parameter representing the size of uncertainty in the ex-
periment. This circle is randomly located within the 100×100 area. This
circle represents the area in which the terminal exists, its exact location
within this circle being unknown. Therefore, these circles represent the
uncertainty of MPMPU.

• given the definitions:

– B: the base transmitting cost parameter (B = 1 in our study);

– Q: the parameter representing the amount of exponential growth
of power requirement values as the distances between the terminals
grow (Q = 4 in our study);

– MINEUCDIST(i, j): considering the location circles of the terminals i
and j, this function returns the minimum euclidean distance between
the terminals i and j;

– MAXEUCDIST(i, j): the maximum euclidean distance between the ter-
minals i and j;

the following settings were prepared for each arc (i, j) ∈ A:

r i j =

(

0 if i = j
�

MINEUCDIST(i, j)
�Q if i 6= j

r i j =

(

0 if i = j
�

MAXEUCDIST(i, j)
�Q if i 6= j



46 3.2 Minimum Power Multicasting Problem

Table 3.9. Experimental results on a randomly generated instance

Approach Disconnections Flawed Scenarios

Straightforward approach 36273 6475
3-step approach, β = 0.5 10983 7701
3-step approach, β = 0.6 9106 6743
3-step approach, β = 0.7 7192 5657
3-step approach, β = 0.8 5400 4499

3-step approach, β = 0.85 4390 3796
3-step approach, β = 0.87 5044 3921

• One of the terminals is declared as the source terminal, and the other |D|
number of terminals are picked as destination terminals.

Let us now analyze the solutions provided by both approaches according
to α = 0.9 on a single instance. The instance was generated by following the
procedure above, with R = 1, with 20 terminals, 10 of them being destination
terminals. The results are shown in table 3.9. Considering that the solutions in
table 3.9 cost exactly the same, it can be seen that the number of disconnections
is significantly decreased by the 3-step approach. While it is difficult to come
up with a single value which will work best on all instances, from the table it
can be concluded that a huge gap between α and β decreases the success of the
3-step approach. For this particular instance, the best working β value seems to
be around 0.85.

By following the procedure for generating instances, multiple instances were
generated with different number of terminals, different number of destination
nodes and different values for R which controls the sizes of intervals of the un-
certain data. Each instance was solved by both approaches with α=0.8, β=0.75;
α=0.9, β=0.87; and α=0.95, β=0.93. The values for β were chosen according
to the averaged success of the 3-step approach over all considered instances. Re-
sults of the experiments can be seen in tables 3.10, 3.11, 3.12, 3.13, representing
experiments with R= 1, R= 2, R= 5, R= 10, respectively. In these tables, each
horizontal area (group of three rows separated by horizontal lines) represents
20 randomly generated instances with the specified number of terminals (|V |)
and destination terminals (|D|). Within each horizontal area, each row repre-
sents results obtained with different and values. The columns “Cost Save (%)”
show how much, in percentage, the solution cost (which is the same for both
the straightforward approach and the 3-step approach since the same α value is
used for them on each experiment) was decreased in comparison to the cost of
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Table 3.10. Experimental results on instances generated with R= 1

Cost Straightforward 3-Step Improvement
|V |, Save Approach Approach (%)
|D| α, β (%) D. F.S. D. F.S. D. F.S.

0.8, 0.75 11.21 20290.3 6816.35 12399.1 5968.4 36.50 12.08
10, 5 0.9, 0.87 5.60 11380.95 4172.5 6675.5 3502.6 38.36 15.29

0.95, 0.93 2.80 6037.45 2319 3201.95 1884.45 42.43 17.04
0.8, 0.75 11.00 24591.25 6171.4 12093.15 5430.45 39.99 10.86

10, 9 0.9, 0.87 5.50 13108.55 3650.9 6044.3 3049.8 41.27 4.41
0.95, 0.93 2.75 6807.05 1970.2 2780.05 1625 44.80 15.08
0.8, 0.75 11.42 51216 8680.7 33525.8 8324.75 35.12 4.43

20, 10 0.9, 0.87 5.71 30336.05 6121.65 18353.95 5642.9 41.16 8.38
0.95, 0.93 2.86 16581.9 3676.75 9615.7 3379.8 44.27 8.62
0.8, 0.75 11.36 96753.55 9055.85 56647.35 8659.75 41.56 4.40

20, 19 0.9, 0.87 5.68 57460.7 6748.35 33631.15 6328.2 41.28 6.17
0.95, 0.93 2.84 31454.2 4228.25 18502.05 3927.65 42.34 7.67
0.8, 0.75 12.01 55495.4 9372.2 37451.85 9184.1 33.16 2.03

30, 10 0.9, 0.87 5.99 33471.15 7292.45 21343.35 6981.1 37.63 4.28
0.95, 0.93 2.99 18596.75 4698 11506.9 4525.25 40.15 3.54
0.8, 0.75 11.79 117065.65 9753.9 67257.2 9572.95 42.03 1.88

30, 20 0.9, 0.87 5.89 73187.65 8206.05 35806.75 7731.8 49.79 5.83
0.95, 0.93 2.95 41285.55 5640.55 17926.95 5077.2 55.00 9.88
0.8, 0.75 11.70 177218.85 9782.2 110519.4 9554.75 36.63 2.33

30, 29 0.9, 0.87 5.85 111365.1 8278.1 58146.75 7955.15 46.29 3.79
0.95, 0.93 2.92 62791.6 5697 29180.8 5426.55 52.93 4.45

the conservative (α=1) solution, calculated as 1−
Cost

ConservativeCost
. The

column groups “Straightforward Approach” and “3-Step Approach” show how
much in average the results have disconnections (column denoted by “D.”) and
flawed scenarios (column denoted by “F.S.”). The column group “Improvement
(%)” show how much in average are the numbers of disconnections and flawed
scenarios are improved by the 3-step approach, in comparison to the straightfor-
ward approach. On an instance, the improvement as percentage is calculated as

1−
a
b

, a being the number of disconnections or flawed scenarios of the solu-

tion of the 3-step approach and b being the number of disconnections or flawed
scenarios of the solution of the straightforward approach.

In the tables 3.10, 3.11, 3.12, and 3.13, it can be seen that there is an av-
erage improvement provided by the 3-step approach in the experiments done
over each group of 20 randomly generated instances. Note that there were cases
in which the number of flawed scenarios were better when the straightforward
approach was used. For example, when we look at the experiment shown in ta-
ble 3.11, with α = 0.8 and β = 0.75, we can see that the average improvement
provided in terms of flawed scenarios by the 3-step approach is only 0.42, which
means within that set of 20 instances, there were cases where the straightfor-
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Table 3.11. Experimental results on instances generated with R= 2

Cost Straightforward 3-Step Improvement
|V |, Save Approach Approach (%)
|D| α, β (%) D. F.S. D. F.S. D. F.S.

0.8, 0.75 11.85 15779.5 6173.25 10010.5 5630 31.04 9.14
10, 5 0.9, 0.87 5.92 8348.3 3568.25 5208.25 3222.3 30.33 9.42

0.95, 0.93 2.96 4328.55 1917.05 2598.85 1733.65 32.17 8.87
0.8, 0.75 12.14 27083.45 6476.75 15035.65 5720.75 36.05 11.23

10, 9 0.9, 0.87 6.07 14285.95 3812.8 7185.3 3215.35 40.59 14.80
0.95, 0.93 3.03 7392.25 2060.15 3429.75 1745.2 43.90 14.47
0.8, 0.75 12.89 44900.3 8525.35 27646.6 8102.9 35.11 5.01

20, 10 0.9, 0.87 6.45 25678.6 5909.7 13733.95 5365.3 41.60 9.30
0.95, 0.93 3.22 13791.05 3535.15 6696.45 3132.1 47.94 12.51
0.8, 0.75 12.66 81451.3 8950.85 39866.9 8217.1 48.55 8.51

20, 19 0.9, 0.87 6.33 46087.65 6451.65 20888.7 5726.9 51.03 12.02
0.95, 0.93 3.16 24291.75 3931.05 10206.85 3438.15 53.76 13.23
0.8, 0.75 13.42 53459.5 9211.25 33258.1 8825.7 37.18 4.36

30, 10 0.9, 0.87 6.72 31944.5 6984.7 18092.3 6445.75 41.97 8.21
0.95, 0.93 3.36 17646.3 4430.9 8585.15 3982.2 48.55 10.21
0.8, 0.75 13.18 108737.85 9646.55 70539.15 9602.2 35.21 0.45

30, 20 0.9, 0.87 6.59 64843.05 7798.35 39072.4 7677.9 40.06 1.44
0.95, 0.93 3.29 36634.2 5199.85 18375.3 4815.5 53.48 7.94
0.8, 0.75 13.47 151890.15 9695.3 91034.45 9653.5 38.36 0.42

30, 29 0.9, 0.87 6.73 89855 7958.95 43270.35 7615.15 50.57 4.24
0.95, 0.93 3.36 49242 5294 18224.1 4817.2 60.72 8.77

Table 3.12. Experimental results on instances generated with R= 5

Cost Straightforward 3-Step Improvement
|V |, Save Approach Approach (%)
|D| α, β (%) D. F.S. D. F.S. D. F.S.

0.8, 0.75 15.46 16103.15 5520.45 9809.15 4781.3 35.54 12.99
10, 5 0.9, 0.87 7.72 8471.2 3134.45 4931.15 2618.95 36.87 15.81

0.95, 0.93 3.86 4351.7 1664.95 2300.55 1321.75 40.93 18.52
0.8, 0.75 14.94 27932.1 6120.05 11318.55 5062.65 54.76 17.28

10, 9 0.9, 0.87 7.47 14832.45 3569.05 5510.8 2792.75 57.56 21.76
0.95, 0.93 3.74 7669.7 1939.3 2778.8 1504.75 57.66 22.19
0.8, 0.75 16.02 40083.05 8382.8 23446.8 7978.5 39.17 4.81

20, 10 0.9, 0.87 8.00 21661.15 5631.55 11778.1 5124.55 42.31 8.70
0.95, 0.93 4.00 11288.6 3290.05 5357.8 2746 49.42 15.60
0.8, 0.75 16.03 72826.6 8865.3 44544.95 8756.35 36.42 1.18

20, 19 0.9, 0.87 8.02 39304.2 6249.4 20603.45 5993.2 44.57 3.97
0.95, 0.93 4.01 20640.5 3724.45 9670.4 3571.05 48.76 3.75
0.8, 0.75 17.00 50081.2 8828.4 36303.25 8702.95 28.65 1.60

30, 10 0.9, 0.87 8.50 28845.35 6264.2 18531.05 6061.5 37.48 3.81
0.95, 0.93 4.25 15104.55 3703.55 7371.25 3401.65 50.39 8.60
0.8, 0.75 16.12 103116.9 9376.9 61560.2 9168.25 39.99 2.29

30, 20 0.9, 0.87 8.05 61408.5 7263.85 34858.5 6983.45 43.64 4.19
0.95, 0.93 4.03 33453.8 4645.15 17703 4516.75 46.37 3.29
0.8, 0.75 16.77 129703.5 9521.8 66174.85 9387.3 47.19 1.38

30, 29 0.9, 0.87 8.38 70615.65 7422.15 30569.05 7075.95 53.39 4.44
0.95, 0.93 4.19 36570.05 4720.85 11899.9 4352.3 64.67 7.29
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Table 3.13. Experimental results on instances generated with R= 10

Cost Straightforward 3-Step Improvement
|V |, Save Approach Approach (%)
|D| α, β (%) D. F.S. D. F.S. D. F.S.

0.8, 0.75 16.85 13152 5357.4 8297.3 4992.85 34.09 6.65
10, 5 0.9, 0.87 8.41 6695.85 2927.15 4025.95 2659.3 36.23 9.03

0.95, 0.93 4.20 3402.35 1521.3 1786.4 1327.9 39.83 10.78
0.8, 0.75 17.17 23572 5906.2 13549.55 5414.05 33.10 7.77

10, 9 0.9, 0.87 8.57 12013.7 3313.95 5995.9 2847.95 40.05 12.68
0.95, 0.93 4.29 6101.75 1740.85 2916.15 1506.05 39.75 10.67
0.8, 0.75 18.25 34826.55 7501.8 19182.85 6761 45.53 10.40

20, 10 0.9, 0.87 9.11 17292 4544.5 8178.05 3892.85 50.06 14.75
0.95, 0.93 4.56 8798.8 2457.35 3605.85 1979.45 56.76 20.23
0.8, 0.75 17.68 60889.9 7908.5 33507.2 7717.4 43.77 2.46

20, 19 0.9, 0.87 8.82 32434.25 5059.2 16336.3 4795.2 48.98 5.21
0.95, 0.93 4.41 16464.5 2809.7 6774.2 2582 55.24 7.76
0.8, 0.75 16.77 129703.5 9521.8 66174.85 9387.3 47.19 1.38

30, 10 0.9, 0.87 9.15 22213.65 5284.55 11910.8 4766.2 46.15 9.77
0.95, 0.93 4.57 11577.6 3005.4 5720.9 2643.4 48.90 11.10
0.8, 0.75 18.33 40803.95 8045.45 24001.6 7556.55 40.66 5.97

30, 20 0.9, 0.87 9.22 47779.2 6219.95 24387.3 5997.3 47.03 3.26
0.95, 0.93 4.61 24803.6 3675.8 10766.95 3459.75 56.01 5.57
0.8, 0.75 18.45 89886.15 8911 52252.05 8822.55 41.39 0.92

30, 29 0.9, 0.87 9.13 53855.95 6388.95 24372.85 6147.4 50.31 4.11
0.95, 0.93 4.56 28081.6 3780 11384.05 3640.4 56.70 5.02

ward approach performed better (which reflects as negative improvement pro-
vided by the 3-step approach, bringing its overall average improvement towards
0). To get the best the 3-step approach and to prevent negative improvements,
one might use the fact that the 3-step approach actually provides 2 solutions:
one solution at the end of step 1 (which is equivalent to the straightforward ap-
proach), and one solution at the end of step 3. Considering that, in this partic-
ular study on MPMPU, we assume that the probability distributions are known,
a Monte Carlo sampling engine would quickly tell the decision maker which of
the two solutions performs better. This way, the decision maker would always
be provided with the better solution.

3.2.5 Calculation of the number of �awed scenarios in an MPMPU

solution

During our studies on MPMPU, we used a Monte Carlo sampling engine to gener-
ate scenarios and test the qualities of the solutions in terms of flawed scenarios.
Now, we give the formulations for estimating the number of flawed scenarios
more accurately. Note that, however, these formulations will require a lot of
execution time, therefore, a fast Monte Carlo sampling engine is usually much
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more practical.
A solution, generated by the straightforward approach or the 3-step ap-

proach, is a set of transmission power values for all terminals. According to
these transmission power values, for each arc (i, j), there is a probability to
reach terminal j. In this section, we provide the formulations to calculate the
probability to reach all destination terminals d ∈ D from the source terminal s.

Let us first define the concept of important arcs. An arc is an important arc
if it exists within a non-looping path which starts from the source terminal s
and reaches at least one destination terminal. The set of all important arcs are
denoted by A∗.

Since, the arcs are probabilistic, depending on the scenario, different impor-
tant arcs can be enabled or disabled. Therefore, we define a configuration K ⊂ A∗

as a set of important arcs, which represents the assumption that each important
arc (i, j) ∈ K can reach terminal j and each important arc (i′, j′) ∈ (A∗\K) can
not reach j′. Now we define a connective configuration as a configuration in
which the arcs provide at least one path to each destination terminal d ∈ D,
from the source terminal s.

To estimate the number of flawed scenarios, first, all important arcs are iden-
tified. This can be done by following all the paths from source terminal s to all
destination terminals by using a recursive depth-first search.

After identifying all important arcs, each possible configuration K ⊂ A∗ is
listed and its probability is calculated. For this purpose, we begin by formulating
the function PROBARC(i, j) which calculates the probability for arc (i, j) to reach
terminal j:

PROBARC(i, j) =







1 if ρi ≥ r i j

0 if ρi < r i j
ρi−r i j

r i j−r i j
otherwise

By using the function PROBARC(i, j), now we can formulate the function to
find the probability of a configuration as:

PROBCONFIGURATION(K) =
∏

(i, j)∈K

PROBARC(i, j) ·
∏

(i, j)∈A∗\K

(1− PROBARC(i, j))

The probability of having all destinations reached, PROBFLAWLESS, is then
calculated as the sum of the probabilities of all connective configurations:

PROBFLAWLESS =
∑

K⊂A∗
PROBCONFIGURATION(K) (3.32)
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The probability of having at least one destination terminal disconnected is
PROBFLAWED = 1 − PROBFLAWLESS. Among n trials of establishing connection,
the number of flawed scenarios is finally estimated as n · PROBFLAWED.

Estimating the flawed scenarios via mathematical means, this approach can
be used to verify the correctness of the sampling engine available. For this pur-
pose, the number of flawed scenarios of the solutions of some randomly gen-
erated instances were estimated by both sampling engine and the formulations
presented in this section. The results of these comparison are shown in 3.14.
The instances were generated with R = 1, and solved by the 3-step approach
with parameters α = 0.9, β = 0.87. Within the table, under the column group
“Estimated flawed scenarios”, the column “Sampling” represents the estimations
of the sampling engine, and the column “Formulations” represents the estima-
tions of the approach presented in this section. The column “Errors” represents
the error made by the sampling engine, in comparison to the estimations of the
formulations, calculated as (a− b)/10000 where a is the result of the sampling
engine, b is the result of the formulations and 10000 is the number of scenarios.
In the table, it can be seen that the absolute values of the errors made by the
sampling engine are always below 1%. Therefore, the results of the sampling
engine can be verified as close to the formulations.

3.2.6 Summary

A minimum power multicasting/broadcasting problem was tackled, in which
there is uncertainty on the power requirement for one terminal to reach another.
A straightforward approach, and our proposed 3-step approach were discussed
and compared. In the experiments, it was seen that the 3-step approach can
provide improvements over the solutions of the straightforward approach, con-
sidering the generated instances in which the terminals are randomly placed.

In this study, while defining the uncertainty, we have assumed that the prob-
ability distributions are known. Therefore, MPMPU is actually a stochastic opti-
mization problem, not a robust optimization problem. We can say that the rela-
tion of this study to our main research is in the method we use: the second step
of the 3-step approach involves detecting the parts of a solution most vulnerable
to the uncertainty, and patching the solution considering those vulnerable parts.
Detection of the vulnerable parts of a solution is inspired by the Bertsimas-Sim
approach (see section 2.2.5), which is used in our matheuristic robust optimiza-
tion studies as well (which will be explained in chapter 5), where the most
vulnerable coefficients used by a solution are found, and the evaluation of a so-
lution is done assuming that those coefficients will be perturbed the most by the
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Table 3.14. Flawed scenario estimations via the sampling engine and via the

formulation 3.32.

Estimated flawed scenarios
Instance Nodes Destinations Sampling Formulations Errors

1 10 5 2655 2671.01 -0.16%
2 10 5 1926 1944.24 -0.18%
3 10 5 2472 2499.67 -0.28%
4 10 5 1405 1430.72 -0.26%
5 10 5 1851 1838.57 0.12%
6 10 9 3432 3372 0.60%
7 10 9 1997 2028.36 -0.31%
8 10 9 5480 5445.85 0.34%
9 10 9 1026 1050.29 -0.24%

10 10 9 2347 2354.51 -0.08%
11 20 10 4407 4450.17 -0.43%
12 20 10 6710 6734.37 -0.24%
13 20 10 3245 3208.72 0.36%
14 20 10 1632 1600.92 0.31%
15 20 10 2836 2834.71 0.01%
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uncertainty. In the 3-step approach, the terminals which are more critical (there-
fore vulnerable against the uncertainty) for keeping the network connected are
heuristically estimated, so that the solution can be patched against the uncer-
tainty. In conclusion, we can say that this study involves the application of a
robust-optimization-inspired approach on a stochastic optimization problem.
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Figure 3.5. An example instance for MPMP, and two example solutions.

In solution #1, the source terminal sends its data to the destination terminals

3 and 4 by using the terminal 2 as a router. The terminal 2 is using the wireless

multicast advantage for routing the data it received to both destinations: it

extends its coverage area enough to include terminal 4 in its coverage area.

Terminal 3 also gets included within this coverage area. Therefore, the cost

of this solution is r1,2 + r2,4. In solution #2, the source terminal extends its

coverage area enough to include all the terminals, so that it can transmit to

the destination terminals. The cost of this second solution is r1,4.
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Figure 3.6. Visual explanation of the v i arrays via a portion of an example

MPMP instance.

When we sort all the possible targets for terminal 1 according to their power

requirement values, we can see that r1,1 ≤ r1,3 ≤ r1,2. Therefore, we say that

v1 = 〈1, 3,2〉.

Figure 3.7. Visual explanation of the concept of dependency on a portion of a

MPMP instance.

Here, we are considering the scenario in which the power requirement for each

(i, j) ∈ A is rβi j . It can be seen that the terminal 2 is receiving its data from

terminal 1 (the source terminal). Therefore, we say that terminal 2 depends

on terminal 1. Also, we see that terminals 3 and 4 receive their data from

terminal 2. Considering that terminal 2 receives its data from terminal 1, we

say that terminal 3 and terminal 4 depend on terminals 1 and 2.
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Chapter 4

Matheuristic Studies

We now explain our matheuristic studies. First, we discuss our shared incumbent
environment studies (Toklu et al. [2012]; Toklu and Montemanni [2012a]) for
solving MPMP (which was previously defined in section 3.2); then we discuss
our study for solving a large-scale energy management problem (Anghinolfi et al.
[2011b, 2012]; Toklu, Montemanni and Gambardella [to appear]).

4.1 A Shared Incumbent Environment for MPMP

Let us consider again the minimum power multicasting problem (MPMP), for
which the exact mixed integer linear programming model was given in section
3.2.1. Since the model contains integer decisions, solving it by using the exact
model requires a lot of execution time and memory. In this study, previously
discussed in Toklu et al. [2012]; Toklu and Montemanni [2012a], we are not fo-
cused on the uncertainty. Instead, we are focused on solving MPMP in a shorter
amount of time. For this purpose, we use a technique called shared incumbent
environment (SIE), which was first proposed in Mojana et al. [2011]. SIE is
an approach where its two components, a metaheuristic solver and an exact
mathematical programming solver, work in parallel on the same problem. As a
hybridization of metaheuristic search with mathematical programming, shared
incumbent environment can be classified as a matheuristic approach. The main
idea of SIE is that, when one component improves the best known solution,
it informs the other component. The other component then imports the new
best known solution as its current solution. In other words, the two components
share their incumbent solution. The overall method benefits from this sharing, in
such a way that one component fixes the weakness of the other. In more details,
a metaheuristic search is very good at finding practical solutions in early stages

57
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of the optimization process. Thanks to the metaheuristic search, the mixed in-
teger linear programming solver becomes aware of these practical solutions and
realizes more quickly which regions of the solution space are non-promising.
Pruning these regions out of consideration and focusing on more promising re-
gions, the efficiency of the exact solver can be increased. On the other hand,
metaheuristic search can get stuck in a local minimum. Since an exact solver
searches local subtrees in the solution space thoroughly, it can detect a better
solution which was missed by the metaheuristic search. After becoming aware
of the better solution thanks to the exact solver, the metaheuristic search can
become unstuck from its local minimum.

In this study, for solving MPMP, we use a SIE in which the metaheuristic
component is a simulated annealing (see Kirkpatrick et al. [1983]) based on the
study of Montemanni et al. [2005]. For the mixed integer linear programming
component, we use the formulations discussed in section 3.2.1.

4.1.1 The Simulated Annealing Approach

Simulated annealing is a metaheuristic search algorithm which is inspired from
the process of annealing in metallurgy (Kirkpatrick et al. [1983]), where the pur-
pose is to change the internal configuration of a material for making it stronger.
This process begins with heating the material, thus giving the atoms enough
energy to become unstuck from their initial positions. Then, a slow cooling is
applied, which slowly decreases the chances for the atoms to change to a worse
configuration, turning the process into a controlled local search. In the algo-
rithm, the temperature is represented by a variable t, which affects the chance
of accepting a candidate solution vector with a worse quality than the current
solution vector.

Simulated annealing for solving MPBP was proposed in Montemanni et al.
[2005]. In this study, we adapt the simulated annealing to MPMP by using
multicast incremental algorithm, instead of broadcast incremental algorithm, as
the initial solution generator. The rest of the simulated annealing approach stays
the same, except that the feasibility of a candidate solution is now determined by
checking if the destination terminals (instead of all terminals except the source)
are reached.

The detailed explanation of the simulated annealing process is as follows.
The simulated annealing begins with multicast incremental power algorithm,
which was proposed in Wieselthier et al. [2000]. This algorithm keeps a list
for connected terminals and another list for terminals which are not connected
yet. In the beginning, the only reached terminal is the source terminal. At each
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iteration, the algorithm finds the cheapest (i.e. the one with the lowest power
requirement value) connection (i, j), i being a connected terminal and j being a
terminal which is not connected yet. To realize the connection (i, j), the cover-
age area of terminal i is increased enough to reach terminal j. Then, terminal j
is moved to the list of connected terminals. These iterations go on until all ter-
minals are connected. The algorithm then initiates a phase called sweeping. In
this phase, some redundant connections are removed from multicast tree. The
idea is that if, for example, terminal i reaches the terminal j and both terminals
i and j reach terminal k, then terminal i actually does not have to reach k, so,
the coverage area of terminal i can be decreased. The final phase of multicast in-
cremental power algorithm is the removal of the paths which do not lead to any
destination terminals. This whole approach can be implemented in O(n3) time
and gives useful initial solutions for our simulated annealing implementation.

Simulated annealing is a process which keeps a current solution and gen-
erates candidate solutions in each iteration by modifying the current solution.
A candidate solution is probabilistically accepted as the new current solution or
ignored, where the probability of acceptance drops with the temperature. In this
study, the modification on the current solution is implemented as follows:

• Randomly select a transmitting terminal i and decrease its coverage area
so that it reaches its (k− 1)-th waypoint, instead of its currently reached
k-th waypoint.

• If all destination terminals are still connected to the network, the modifica-
tion is complete. Otherwise, select a terminal j 6= i, and increase its cover-
age area so that all the destination terminals are connected again (i.e. the
disconnectivity is fixed). The way of selecting terminal j is probabilistic.
With a probability pr , terminal j is selected in such a way that fixing the
disconnectivity will have the least addition of transmission power; with a
probability 1− pr , terminal j is selected randomly.

Finally, the whole simulated annealing approach can be expressed as follows:

• Step 1: Execute multicast incremental power algorithm and label its gen-
erated solution as the current solution and the best known solution.

• Step 2: Initialize the simulated annealing search, set the temperature t to
the value of the initial temperature parameter t ini t and set the iteration
counter to 1.

• Step 3: Modify the current solution. Name the modified version of the cur-
rent solution as the candidate solution. If the candidate solution is better
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than the current solution, label the candidate solution as the new cur-
rent solution. If not, label it as the new current solution with a probability
expressed by e(cost(candidate)−cost(current))/t . Also, if the candidate so-
lution is better than the best known solution, label the candidate solution
as the new best known solution.

• Step 4: If, for the last ct iterations, the best known solution is not improved,
decrease the temperature by multiplying it with the cooling parameter α
where 0 < α < 1. If the temperature is less than the minimum tempera-
ture tmin, finish the search; otherwise, increment the iteration counter and
return to Step 3.

In previous experiments Montemanni et al. [2005], it was observed that the
following parameter values are effective: pr = 0.2, t ini t = 0.2, ct = 30000,
α= 0.9, tmin = 0.1.

4.1.2 The Shared Incumbent Environment Implementation

Mixed integer linear programming is a problem-independent approach which ex-
plores the solution space thorougly and can proceed until the optimum is found.
The problem independency comes with the cost of large execution time require-
ments on large solution spaces. On the other hand, a metaheuristic search can
be designed in a very problem-specific way. In more details, problem-specific
heuristic operations can be performed iteratively in the metaheuristic search,
so that a very fast convergence is obtained. Such metaheuristics, however, can
result in early convergence: they can get stuck in a local optimum.

The shared incumbent environment is a hybrid approach which executes an
exact mixed integer linear programming solver component and a metaheuristic
search component in parallel. These two components work on a shared solution
vector. Therefore, when a component improves the solution, the other will be
aware of the improvement. The shared incumbent environment is based on
the idea that the different natures of exact and metaheuristic search can help
each other. For example, the metaheuristic search can be unstuck from a local
optimum when the exact solver discovers a new one in the solution space. Also,
the exact solver can be aware of many useful heuristic solutions thanks to the
metaheuristic search component, so, it can realize more quickly which areas of
the solution space are non-promising.

By using the components described in sections 3.2.1 and 4.1.1, it is possible
come up with a shared incumbent environment approach.
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The shared incumbent environment is implemented as a multi-threaded pro-
gram. The first thread executes a mixed integer linear programming solver and
the second thread executes the simulated annealing approach. A portion of
memory, called the shared memory, which is accessible by both threads, is al-
located for storing the shared incumbent solution. The thread which finds the
first solution copies the solution to the shared memory. Each thread, when it
improves its own current solution, checks the shared memory and if its new
current solution is better than the shared incumbent solution, that new current
solution is exported as the new shared incumbent solution. Also, each thread
periodically checks the shared memory to see if the shared incumbent solution
is better than the current solution of the thread. If so, the shared incumbent
solution is imported into the thread as the new current solution.

In the simulated annealing thread, when the simulated annealing search fin-
ishes because it reaches the minimum temperature, the search is restarted with
another random seed, with the maximum temperature.

When the time execution limit is reached, both threads end, and the best
solution known so far is obtained as the final solution.

4.1.3 Experimental Results

In this section, we present our experiments for evaluating the mentioned three
approaches (MILP – mixed integer linear programming approach, simulated an-
nealing, and shared incumbent environment). In short, the experiments were
conducted by randomly generating instances and evaluating the three approaches
by executing them on each instance. Details on generation of the instances
and evaluations of the approaches are presented in sections 4.1.3.1, 4.1.3.4 and
4.1.3.5. The comments on the obtained results are listed in section 4.1.3.6.

4.1.3.1 Generation of the instances

The procedure for generating an instance with |V | number of terminals and |D|
number of destination terminals is as follows. All |V | terminals are positioned
into random coordinates in a two dimensional area. One of them is labeled as
the source terminal and the other |D| of them are labeled as destination ter-
minals. For each pair of terminals (i, j) where i 6= j, the power requirement
value ri j is calculated as the euclidean distance between the two terminals to
the power of 4. Also, for each terminal i, rii is set as 0.
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4.1.3.2 Implementation details of the approaches

The three approaches, MILP, simulated annealing and shared incumbent envi-
ronment, were implemented in C++ programming language. For the MILP ap-
proach, the solver was allowed to use two cores of the processor. The simulated
annealing approach was implemented in such a way that two simulated anneal-
ing threads work in parallel and they inform each other when they improve the
best known solution. The mathematical formulation used in MILP and shared
incumbent environment approaches were solved by using IBM ILOG CPLEX 12.3
(IBM CPLEX [2014]).

4.1.3.3 Analysis on a single instance

According to the experiments, the most successful cases of shared incumbent en-
vironment are when the considered instance is too difficult for the MILP solver
to quickly converge to a solution. In such cases, the shared incumbent envi-
ronment is advantageous as it incorporates a metaheuristic which will make the
MILP component reach to more desired lower and upper bounds under limited
time.

As a representation of the usual behavior of the considered approaches on
difficult instances, let us take the results on a single instance with 180 terminals
where all terminals except the source terminal are destination terminals. The
behavior of the three approaches are shown in figure 4.1. In the figure, it can
be seen that the upper bound of MILP is still above 20 000 000 at the end.
While simulated annealing converges very quickly to useful results, it stagnates.
The shared incumbent environment keeps improving the solution cost while also
having a higher lower bound.

4.1.3.4 Comparison of the approaches on broadcasting problems

Multiple instances with different numbers of terminals were generated. For each
instance, all the terminals except the source terminal were declared as destina-
tion terminals. Therefore, these are MPBP problems. On each generated in-
stance, each approach was executed with a time limit of 3 000 seconds, and the
results were compared. All the experiments were done in a computer with Intel
Core 2 Duo P9600 2.66GHz processor and with 4GB RAM.

In Toklu et al. [2012], the comparison results on the broadcasting instances
were presented, shown in table 4.1. Further results on the broadcasting in-
stances were discussed in Toklu and Montemanni [2012a], which are shown in
table 4.2. In these tables, each row represents the average of results over 10
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Figure 4.1. The behavior of the three approaches (MILP, simulated annealing

(SA) and shared incumbent environment (SIE)) on a single example instance

with |V |= 180 and |D|= 179. The lower and upper bounds are titled as �LB�

and �UB�, respectively.

instances generated with the specified number of terminals (reported under the
column “|V |”). The most bottom row represents the average of results over all
considered instances. The column groups “Improvement over SA” and “Improve-
ment over MILP” show how much the shared incumbent environment was able
to improve in comparison to the simulated annealing approach and to the MILP
approach, respectively. The comparisons are done in terms of lower bounds
and upper bounds (i.e. solution costs) and they are reported as percentages.
For lower bounds, the improvements were calculated as (a/b) − 1 where a is
the lower bound reached the shared incumbent environment and b is the lower
bound reached by the MILP approach. For upper bounds, the improvements
were calculated as 1 − (a/b) where a is the upper bound reached the shared
incumbent environment and b is the upper bound reached by the specified ap-
proach. The numbers of instances where the shared incumbent environment was
able to improve are given in parentheses, next to the improvement percentages.

4.1.3.5 Comparison of the approaches on multicasting problems

Multiple instances with different numbers of terminals and different numbers of
destinations were generated. On each generated instance, each approach was
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Table 4.1. Comparisons of shared incumbent environment to other approaches

on broadcasting instances (Toklu et al. [2012])

Improvement over SA Improvement over MILP
|V | Lower bound Upper bound Upper bound

130 3.32 (10/10) -79.23 (0/10) -6.65 (0/10)
140 11.43 (10/10) -78.02 (0/10) -0.86 (1/10)
145 7.34 (9/10) 4.77 (6/10) 68.77 (7/10)
150 9.86 (10/10) 35.35 (7/10) 80.12 (9/10)
160 14.75 (10/10) 25.56 (7/10) 63.95 (9/10)
170 26.50 (10/10) 72.29 (9/10) 89.20 (9/10)
180 2.89 (10/10) 36.95 (9/10) 89.40 (9/10)
190 10.85 (10/10) 24.95 (9/10) 89.72 (9/10)
200 14.90 (9/10) 21.92 (9/10) 89.67 (9/10)

Average 11.32 (88/90) 7.17 (56/90) 62.59 (62/90)

Table 4.2. Comparisons of shared incumbent environment to other approaches

on broadcasting instances (Toklu and Montemanni [2012a])

Improvement over SA Improvement over MILP
|V | Upper bound Lower bound Upper bound

160 22.40 (10/10) -78.24 (0/10) -28.93 (4/10)
170 26.50 (10/10) 72.29 (9/10) 89.20 (9/10)
180 2.89 (10/10) 36.95 (9/10) 89.40 (9/10)
190 10.85 (10/10) 24.95 (9/10) 89.72 (9/10)
200 6.16 (10/10) 34.61 (9/10) 90.19 (10/10)

Average 13.76 (50/50) 11.00 (36/50) 65.92 (41/50)



65 4.1 A Shared Incumbent Environment for MPMP

executed for 3 000 seconds and their results were compared. Instances with
number of terminals 160 and 200 were solved in a computer with Intel Core
2 Duo P9600 2.66GHz processor and with 4GB RAM. Instances with number of
terminals 240 and 280 were solved in a computer with Intel Core i5 2.3GHz pro-
cessor and with 4GB RAM. The comparisons are shown in table 4.3 (note that,
for consistency within table 4.3, some results in table 4.2 are repeated). In the
table, each row represents the average of results on 10 instances generated ac-
cording to the specified number of terminals (reported under the column “|V |”)
and number of destinations (reported under the column “|D|”). For each group
of rows with the same number of terminals, there is a row, titled “Average” which
shows the results averaged over all instances in that group. The most bottom
row in the table represents the average of results over all generated instances.
In table 4.3, like in table 4.2, the column groups “Improvement over SA” and
“Improvement over MILP” show how much the shared incumbent environment
was able to improve in comparison to the simulated annealing approach and
to the MILP approach, respectively. The comparisons are reported in terms of
percentage improvements of lower bounds and upper bounds. The numbers of
instances where the shared incumbent environment provided improvements are
given in parentheses.

4.1.3.6 Comments on the results

From the results obtained on broadcasting instances, which are reported in table
4.2, it can be observed that the success of the shared incumbent environment in
comparison to the MILP approach depends heavily on the sizes of the instances.
In other words, it can be seen that, as the number of terminals increase, the
percentage improvements made over the solutions of the MILP increase. The
implication behind such results is that the exchange of information between
a metaheuristic and a MILP solver is useful in converging to low-cost results
on big instances. In addition to the improvements in terms of solution costs,
especially in broadcasting instances, improvements in terms of lower bounds
can be observed. This implies that the MILP solver was able to prune the non-
promising areas of the solution space more efficiently when it was supported by
a metaheuristic search component.

On the results obtained from the multicasting instances, which are reported
in table 4.3, the importance of the instance size can again be observed. Like in
the broadcasting results, as the number of terminals increase, the percentage im-
provements made over the solutions of the MILP increase. In addition, with the
same number of terminals considered, and with the exception of |V | = 160, the
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Table 4.3. Comparison of the shared incumbent environment to the other

approaches

Improvement over SA Improvement over MILP
|V | |D| Upper Bound Lower Bound Upper Bound

160 40 11.78 (10/10) -71.30 (0/10) 21.74 (3/10)
160 80 23.85 (10/10) -81.51 (0/10) 8.47 (2/10)
160 120 12.72 (10/10) -37.72 (1/10) 29.17 (3/10)
160 159 22.40 (10/10) -78.24 (0/10) -28.93 (4/10)
Average 17.69 (40/40) -67.19 (1/40) 7.61 (12/40)

200 50 26.86 (10/10) 164.96 (7/10) 69.61 (7/10)
200 100 13.89 (10/10) 25.64 (6/10) 63.00 (8/10)
200 150 16.06 (10/10) -10.41 (6/10) 54.29 (8/10)
200 199 6.16 (10/10) 34.61 (9/10) 90.19 (10/10)
Average 15.74 (40/40) 53.70 (28/40) 69.27 (33/40)

240 60 17.35 (10/10) 23.98 (6/10) 48.72 (7/10)
240 120 19.13 (10/10) -18.00 (5/10) 47.23 (5/10)
240 180 29.45 (10/10) 27.89 (8/10) 68.67 (9/10)
240 239 31.72 (9/10) 41.20 (10/10) 95.12 (10/10)
Average 24.41 (39/40) 18.77 (29/40) 64.94 (31/40)

280 70 17.76 (10/10) 49.62 (4/10) 38.45 (8/10)
280 140 27.38 (10/10) -7.09 (5/10) 54.03 (9/10)
280 210 27.95 (10/10) -36.77 (4/10) 31.27 (7/10)
280 279 35.54 (10/10) 20.97 (7/10) 68.21 (7/10)
Average 27.16 (40/40) 6.68 (20/40) 47.99 (31/40)
Overall 21.25 (159/160) 2.99 (78/160) 47.45 (107/160)
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average percentage improvements seem to be the highest when |D|= |V |−1 (es-
pecially with |V |= 200 and |V |= 240, both average percentages are the highest
and the number of improved instances are 10 on broadcasting instances). The
reason behind this could be that, some instances generated with |D| < (|V | − 1)
are actually equivalent to smaller problem instances when their the outermost
non-destination terminals are removed. As the MILP solver is more efficient
on simpler instances (as also implied by table 4.2 and table 4.3 for instances
with small number of terminals) the MILP solver could be more successful on
instances which are simplified because of this kind of equivalency, resulting in a
decrease of solution quality improvement of shared incumbent environment in
comparison to MILP on non-broadcasting instances.

Finally, both table 4.2 and table 4.3 show that the shared incumbent environ-
ment was more successful than simulated annealing in most of the cases. This
implies that the shared incumbent environment is a competitive heuristic.

4.1.4 Summary

A shared incumbent environment, which involves solution sharing between a
simulated annealing solver, and a mixed integer linear programming solver,
Within limited execution time, it was seen that, in general, over the considered
instances, the shared incumbent environment was able to improve over simu-
lated annealing and mixed integer linear programming approaches which work
independently.

Although in this study, the focus is on increasing the heuristic solution quali-
ties, and the uncertainty is not considered, the solution sharing mechanism used
here becomes an important component of our final matheuristic framework too,
within the robust multiple ant colony system, which will be explained in chapter
5.

4.2 Large-Scale Energy Management Problem

In this section, we discuss our studies (Anghinolfi et al. [2011b, 2012]; Toklu,
Montemanni and Gambardella [to appear]) on a large-scale energy management
problem (LSEMP). This problem is related to our studies both in the sense that
uncertainty is considered, and that matheuristic techniques are used.

This work is a joint effort between IDSIA (L.M. Gambardella, R. Montemanni,
N.E. Toklu), and DIST (Dipartimento di Informatica, Sistemistica e Telematica,
University of Genoa; D. Anghinolfi, C. Nattero, M. Paolucci). The DIST team de-
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veloped mathematical-programming-based modules (heuristic outage schedule
generator, weekly production planner, MIP outage scheduling model, timestep
production planner). The work contributed by N.E. Toklu is the local search
module, which contains a metaheuristic search, communicating with the mathe-
matical programming-based module. Involving a metaheuristic search with em-
bedded exact methods for solving an optimization problem under uncertainty,
this work is closely related to the matheuristic robust optimization framework
we ultimately propose in chapter 6. Both the mathematical-programming-based
modules and the metaheuristic local search module are explained in details in
section 4.2.3.

4.2.1 Introduction

As the requirement for electrical energy is growing rapidly, optimizing and coor-
dinating the operations of power plants in an economical way to satisfy energy
demand has become a crucial practical issue. Maintenance scheduling and pro-
duction planning of power plants are important for making sure that available
human resources and material resources for maintenance are used in reason-
able amounts and the equipment involved are kept in perfect efficiency, while
satisfying the customer demands (Porcheron et al. [2010]).

Studies have been made on power plant maintenance scheduling, by using
mixed integer programming (Dopazo and Merrill [1975]; Ahmad and Kothari
[2000]) and also by using metaheuristic methods, including genetic algorithms
(Gil et al. [2003]), and ant colony optimization (Foong et al. [2008]).

In LSEMP, two types of power plants, based on different power generation
technologies, are used to satisfy the power demands. Power plants of type 1 are
those that can be refueled while still operating. Power plants of type 2 are those
that need to be shut down from time to time to be refueled and maintained
(these are typically nuclear power plants). Overall, the problem considered
is to optimize both the maintenance scheduling for the nuclear power plants
(taking into account different resources and technical constraints) and the pro-
duction planning for all the power plants (again, taking into account technical
constraints), with the aim of minimizing overall costs while fulfilling energy de-
mands. Demands are affected by uncertainty in the model considered.

Since the LSEMP considered is a very large and complex problem, the ap-
proach proposed here involves the decomposition of the problem into smaller
subproblems, giving the opportunity of working separately on the maintenance
scheduling for nuclear plants and on the production planning of all the plants.
The method used for this decomposition approach is a combination of mixed
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integer linear programming for production planning, and of a simulated anneal-
ing (Kirkpatrick et al. [1983]) metaheuristics (embedding again a mixed integer
linear programming core) for maintenance schedule.

4.2.2 Problem de�nition

The problem studied in here is the one used within the ROADEF/EURO 2010
Challenge (Porcheron et al. [2010]). The data to decide on this problem are
the refueling amounts and production plans of all power plants, and also the
scheduling of the maintenance shutdown (outage) weeks for the power plants
of the second type. Multiple scenarios, modeling alternative customer demands
and therefore representing the uncertainty, are also considered in the problem:
a feasible solution is able to satisfy all possible scenarios. Because we have
to satisfy all the constraints in all scenarios, the problem can be classified as
a robust optimization problem. The objective function is defined as the cost
averaged over various scenarios (we can say that this is where LSEMP differs
from a classical robust optimization problem, because, with a pessimistic robust
optimization perspective, the highest cost encountered among all the scenarios
would be considered).

The problem includes constraints (numbered as 1 to 21), which effect the
production plans of power plants and scheduling the outages of type 2 plants.
These constraints will be formally defined in the reminder of this section, to-
gether with the other elements used to describe each problem instance. We refer
the reader to Porcheron et al. [2010] for the official description of the problem.

Main concepts. The definition of the LSEMP is based on the basic concepts de-
fined in the reminder of this section.
A timestep is the most elementary time unit of the problem. The index variable
for timestep is t. The first timestep is t = 0 and the last timestep is t = T − 1.
Some events depend on weeks, where each week contains an instance-dependent
number of timesteps. The index variable for weeks is h. The first week is h = 0
and the last week is h= H − 1.
Type 1 (T1) power plants can be refueled during production. The index variable
for these plants is j. The first T1 plant is j = 0 and the last is j = J − 1.
Type 2 (T2) power plants cannot be refueled during production. The index vari-
able for these plants is i. The first T2 plant is i = 0 and the last is i = I − 1.
Each T2 plant has K+1 cycles (indexed as k, ranging between k =−1 – starting
cycle – and k = K − 1), which are based on weeks and represent the produc-
tion/outage alternation. More precisely, within a cycle of T2 plant i, the follow-
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Figure 4.2. Sequence of cycles within a T2 power plant.

ing elements are defined: the outage weeks are those weeks in which a T2 plant
is shut off to be refueled; the first outage week is referred to as the decoupling
week; a set of consecutive weeks in which a T2 plant is active and producing is
called production campaign. The coupling week is the first week of a production
campaign. The sequence of cycles of a T2 plant is summarized is figure 4.2. Note
that outage weeks are to be decided during the optimization.
Each instance has multiple scenarios. Each scenario provide alternative values
for customer demands and different production limits for T1 plants. The index
variable for the scenarios is s. The first scenario is s = 0 and the last is s = S−1.

Decision Variables. The LSEMP has the following decision variables.
ha(i, k): decoupling week of T2 plant i at cycle k.
p( j, t, s): production of T1 plant j at timestep t in scenario s.
p(i, t, s): production of T2 plant i at timestep t in scenario s.
r(i, k): amount of refueling during the outage k of T2 plant i.
The following variable can be inferred by the previous ones, but it is useful to
define them explicitly.
x(i, t, s): stock level of T2 plant i at timestep t in scenario s.
ec(i, k): timesteps of the production campaign of cycle k for T2 plant i.
ea(i, k): outage weeks of cycle k for T2 plant i.

Constraints. The LSEMP considers the following 21 constraints.
[CT1]: For each scenario s the total production at each timestep t must be equal
to the given demand DEM t,s.
[CT2]: The production of each T1 plant must be between predefined time and
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scenario dependent given boundaries PM IN t,s
j and PMAX t,s

j .
[CT3]: Production of a T2 plant must be zero, when it is on outage.
[CT4]: The production of a T2 plant cannot be negative.
[CT5]: During each production campaign k of a T2 plant i, if the fuel level is
greater than or equal to a given threshold BOi,k, the production of that plant
must cannot be more than a given threshold PMAX t

i .
[CT6]: During the production campaign of a T2 plant i, if the fuel level is less
than the given threshold BOi,k, the production of that plant must follow a given
profile PBi,k, with a given tolerance ε.
[CT7]: The stock refilled during outage k of T2 plant i must be between given
boundaries RM INi,k and RMAX i,k.
[CT8]: Fuel stock at t = 0 must equal a given initial fuel stock X Ii.
[CT9]: The fuel stock x(i, t, s) of T2 plant i evolves according to production
p(i, t, s) and to the given lengthDt of timestep t.
[CT10]: The fuel stock of T2 plant i right after outage k is defined according to
some given refueling coefficients Q i,k.
[CT11]: The fuel stock levels before and after the refueling are bounded by the
given threshold AMAX i,k and SMAX i,k.
[CT12]: Modulation (oscillation) in the power produced by T2 plants causes a
wear of the equipment. Modulation is therefore constrained by two given pa-
rameters PMAX t

i and M MAX i,k.
The remaining constraints are specific to T2 plants outage scheduling.
[CT13]: Outage k of T2 plant i must start between given boundaries TOi,k and
TAi,k. Moreover, outages cannot overlap: DA(i, k) is the given length of outage
k for plant i.
[CT14]: The entire outage periods of T2 plants in a given set Am must be sched-
uled at least Sem weeks apart from each other.
[CT15]: This constraint is same with [CT14], except that a specific time interval
[I Dm; I Fm] is given, and the constraint only applies within the given time inter-
val.
[CT16]: All decoupling weeks of all T2 plants within the given set Am must be
scheduled at least Sem weeks apart from each other.
[CT17]: All coupling weeks of all T2 plants within the given set Am must be
scheduled at least Sem weeks apart from each other.
[CT18]: All coupling weeks of all T2 plants within the given set Am must be
scheduled at least Sem weeks apart from all decoupling weeks of the plants in
Am.
[CT19]: The outages of T2 plants require a number of regional-limited shared
human resources. The number of simultaneous outages in a same region is
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therefore constrained: Am is a set of T2 plants; Li,k,m ∈ [0, DAi,k[ is a time in-
terval (in weeks) indicating how long after the beginning of the outage k the
shared resources is required; T Ui,k,m specifies the number of weeks the shared
resource is required during outage k; Qm finally defines the available quantity
for the regional-limited shared resource.
[CT20]: It is forbidden to have too many simultaneous T2 plants’ outages. The
following instance-dependent parameters are required: Am(h) is the set of T2
plants. The set depends on the week index h; Nm(h) is the maximum number of
simultaneous outages allowed in week h.
[CT21]: The power capacity of the T2 plants on outage in a same region, in a
given time period, has to be below a given threshold. The following instance-
dependent parameters are required: Cm is a set of T2 plants; I Tm is a time period
in weeks; I MAXm is the threshold for total offline power capacity in a week.

Objective Function. The objective of the problem is to minimize the sum of:
(i) the cost of production for T1 plants averaged over all scenarios
(ii) the total cost of refueling for T2 plants, reduced by the scenario-averaged
cost of the remaining fuel at the end of the time horizon.

4.2.3 The MATHDEC approach

LSEMP is a difficult problem which requires both discrete decisions like outage
dates and continuous decisions like production plans and refueling/stock values.

Considering the complex nature of the problem and the huge values of the
parameters encountered in real instances, the problem can be classified, as a
matter of facts, as a very difficult problem to solve as a whole. The method we
propose, MATHDEC, decomposes the problem into smaller and easier-to-solve
subproblems. They cover, namely, the scheduling of the outages, a week-based
production planning and a more detailed timestep-based production planning.

To deal with the different subproblems, different modules have been devel-
oped. The overall architecture of the MATHDEC approach is depicted in figure
4.3, where the interactions among the different modules are shown. The re-
mainder of this section is devoted to the description of these modules.

4.2.3.1 The Heuristic Outage Schedule Generator module

The Heuristic Outage Schedule Generator (HOSG) module is an iterative heuris-
tic approach to generate outage scheduling for T2 plants. It does not consider
timesteps, but only weeks and does not take care of production/refueling issues.
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Figure 4.3. The overall architecture of the MATHDEC approach. In this

�gure, the rectangles represent modules and the arrows represent the data

passed between these modules.
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The main idea of HOSG is to have as many active cycles as possible (i.e. make
ha(i, k) 6= −1 for as many (i, k) possible), so that the work load on T1 plants
will be less: it has been experimentally found that high quality solutions have
this characteristic.

HOSG iteratively produces outage schedules and calls the MIP outage sched-
uler submodule, which is in charge of checking if a scheduling is feasible or
not according to constraints [CT13] to [CT21]. It is based on a mixed integer
programming model. A detailed definition of the model can be found in the
appendix section A.1.

In its first stage, HOSG executes MIP Outage Scheduler with all week inter-
vals containing −1, which means that it gives the disabling option for all cycles
of each T2 plant. After receiving a feasible schedule, HOSG initiates its second
stage.

In the second stage, HOSG initializes k′ = 1, which represents a cycle. Itera-
tively increasing k′, HOSG executes MIP Outage Scheduler, with intervals up to
k′ excluding −1 and the other intervals including −1. This means, cycles up to
k′ must be executed, they do not have the disabling option (i.e. ha(i, k) 6= −1 |
k ≤ k′). When a k′ is reached where a failure signal is received from MIP Outage
Scheduler, HOSG initiates its final stage.

The final stage is another iterative process which takes the last feasible sched-
ule received as a base. At each iteration, HOSG randomly picks a small subset
of the T2 plants and increases their number of mandatory cycles (i.e. number
of cycles k with ha(i, k) 6= −1). Then, MIP Outage Scheduler is executed. If a
feasible schedule is received, that schedule becomes the new base schedule for
the next iteration. This loop is exited after a given computation time (between
20 and 30 minutes in our implementation) is elapsed.

The output of this module is a feasible outage schedule given by ha(i, k)
values, typically with the number of mandatory cycles increased with respect to
the initial one.

4.2.4 The Local Search module

The Local Search (LS) module starts from the solution provided by HOSG, and
tries to improve it. LS still works on weeks only, but now production and refuel-
ing are taken into account, although in a relaxed way: they are aggregated per
weeks (instead of timesteps). A simulated annealing algorithm is implemented
where random variation to outage weeks are introduced at each iteration. A
solution vector, for each T2 plant i, stores K decoupling week values (ha(i, k)).
Each ha(i, k) is extended into a time interval [ha(i, k)−δ, ha(i, k) +δ], where
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δ is a radius value monotonically decreased during the computation. In our im-
plementation, the temperature T is in [0.1;1.0]. The search starts with T = 1.0
and at each iteration T is reduced by multiplying it by a cooling factor of 0.999.
When T ≤ 0.1 the search is restarted with T = 1.0. The set of time intervals
obtained is sent to the MIP outage scheduler submodule (see 4.2.3.1 and the
appendix section A.1 for more details) that return a feasible schedule fulfilling
the given time intervals if it exists, or a negative answer otherwise. In case a
feasible schedule is found, it is passed to the Weekly Production Planner sub-
module (WPP), which returns weekly production plans together with an estima-
tion of the objective function of the problem obtained by aggregating timesteps
into weeks. More in details, the WPP submodule receives an outage schedule
ha(i, k) and determines a rough approximation of the plant production, refuel-
ing and consequent costs. In particular, WPP solves a linear programming model,
which explicitly considers all the scenarios but takes planning decisions still on
a weekly base, and generates feasible refueling values. A detailed description of
the linear program is available in the appendix section A.2.

4.2.4.1 The Timestep Production Planner module

The Timestep Production Planner (TSPP) module implements the final stage for
solving the problem. The input of this module is an outage schedule (as ha(i, k)
values) generated by HOSG and improved by LS, and modulation reference val-
ues modiks and weekly refueling values generated by WPP.

The main idea of TSPP is to generate all production and refueling values
expanded into timesteps, with deviations from the reference modulation values
minimized.

At first, the weekly refueling plan is expanded into timesteps and adjusted to
satisfy [CT7] and [CT11]. Then, for each scenario, a linear programming model
is executed iteratively to generate the final solution. A complete description of
the linear program can be found in ithe appendix section A.3.

The linear programming model considers [CT1] to [CT5], as other con-
straints were already handled by other modules. The objective here is to mini-
mize the total deviations from the reference modulation given by WPP, and also
the average refueling cost over all scenarios.

For each scenario, a loop is executed, in which this linear programming for-
mulation is iteratively used. At the end of each iteration, the program adjusts
the modiks values if the deviation values are greater than 0. The program also
checks [CT7] and [CT11]. If they are not satisfied, it adjusts the fuel stock val-
ues. When the deviation values are 0 and [CT7] and [CT11] are satisfied, the
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loop reaches its end.
Finally, the module gives the timestep-based and scenario-aware production,

fuel stock and refueling values, which, together with the outage schedule gener-
ated previously, form a solution for the problem instance.

The module is started 12 minutes before the end of the available computation
time, in order to safely have a feasible solution before the deadline.

4.2.5 Experimental results

The algorithm MATHDEC, described in section 4.2.3, has been implemented in
C++, and ILOG CPLEX 11.0 IBM CPLEX [2014] has been used to solve mixed
integer linear programs.

In table 4.4 the results obtained by MATHDEC on the 10 realistic benchmark
instances Data Instances of ROADEF/EURO 2010 Challenge [2010] used within
the ROADEF/EURO 2010 Challenge Porcheron et al. [2010] are compared with
those obtained by the 18 teams that took part into the competition Results of
the ROADEF/EURO 2010 Challenge [2010]. Among the instances considered,
the following maximum values were encountered: number of timesteps 5817;
number of weeks 277; number of T1 plants 27; number of type T2 plants 56;
number of campaigns 6 and number of scenarios 121. For each instance, the best
and the average solution costs obtained within the competition (1 hour on a Intel
Xeon 5420 2.5GHz/8GB computer) are reported together with those obtained
by the MATHDEC approach (1 hour on a less performing but comparable Intel
Core 2 Duo 2.4GHz/3GB computer). The averages for each column are reported
in the last line of the table.

Table 4.4 suggests that the method MATHDEC obtains results comparable
with those of the methods presented at the ROADEF/EURO 2010 Challenge:
MATHDEC is never able to improve best challenge results, but finds better re-
sults than the average ones found during the challenge for all but 2 instances.
MATHDEC is also able to retrieve results of the same order of magnitude of
the best challenge results for 8 instances out of the 10 considered (interestingly
enough, the 2 problematic instances do not coincide with those for which MATH-
DEC is worse than the average results). The method presented is therefore fairly
robust: the best solutions of the competition were found by different methods,
each one typically “specialized” on some of the instances. Notice that the method
MATHDEC depends on heuristic choices, and multiple runs on the same instance
provide results deviating from those reported in table 4.4 by relatively factors in
the order of 1.00E+8. This does not affect our general considerations.
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Table 4.4. Results on the ROADEF/EURO 2010 Challenge instances

Instance Best Average MATHDEC

B6 8.34E+10 8.79E+10 9.11E+10
B7 8.12E+10 9.23E+10 8.63E+10
B8 8.19E+10 5.85E+11 3.19E+11
B9 8.18E+10 6.84E+11 2.50E+11

B10 7.78E+10 9.45E+10 8.52E+10
X11 7.91E+10 8.67E+10 8.43E+10
X12 7.76E+10 8.45E+10 8.33E+10
X13 7.64E+10 8.16E+10 8.37E+10
X14 7.62E+10 8.97E+10 8.49E+10
X15 7.51E+10 9.73E+10 8.02E+10

Averages 7.90E+10 1.98E+11 1.25E+11

4.2.6 Summary

A very large-scale real energy management problem has been described, and
a new matheuristic optimization approach to solve it has been discussed. The
method decomposes the initial problem into smaller subproblems, that are solved
by mathematical programming and metaheuristic tools. The benefit brought by
the decomposition have been shown empirically, through experimental results
on realistic instances.

This study is a milestone towards our matheuristic robust optimization frame-
work, as it shows that large robust optimization problems can be heuristically
solved by using matheuristic techniques.
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Chapter 5

Matheuristic Robust Optimization

Studies On Vehicle Routing

We now explain our matheuristic robust optimization methodology (Toklu et al.
[2013a,b]; Toklu, Gambardella and Montemanni [to appear]; Toklu et al. [2014];
Toklu, Montemanni and Gambardella [to appear]) for solving the well-known
vehicle routing problem (VRP). The section 5.1.1 gives a basic definition of the
capacitated vehicle routing problem (CVRP), and then the capacitated vehicle
routing problem with time window constraints (CVRPTW).

In the literature, among the significant robust optimization studies on CVRP
are Lee et al. [2012] and Agra et al. [2013], where the authors used exact meth-
ods inspired by the Bertsimas-Sim approach. In Lee et al. [2012], a CVRP with
uncertain travel times and deadline constraints are studied. The experiments
were done over instances with up to 100 customers. In Agra et al. [2013], a
CVRP with uncertain travel times/costs with time window constraints was con-
sidered. The experiments were done over instances with up to 50 customers.
These studies did not present results over larger instances, most probably be-
cause of the execution time and/or memory issues. In our matheuristic robust
optimization studies, although it is very unlikely to obtain optimal solutions be-
cause of the heuristic nature of our approaches, it is possible to obtain solution
pools (not just single solutions), over larger instances, in shorter amount of time.
In our experiments, we have obtained solution pools over instances with up to
200 customers.

In section 5.1, we make the basic definitions. In more details, we define the
capacitated vehicle routing problem (CVRP), our target problem; and then we
define the ant colony system (ACS) metaheuristic, an important component of
our study. After finishing the basic definitions, we discuss our studies in section
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5.2.

5.1 Basic De�nitions

5.1.1 Capacitated Vehicle Routing Problem

The VRP is a combinatorial optimization problem faced frequently in the domain
of logistics (Dantzig and Ramser [1959]; Laporte [1992]; Toth and Vigo [2001];
Baldacci et al. [2008]; Golden et al. [2008]; Baldacci et al. [2010]). In VRP,
there is a central location, called the depot, where the goods are stored and
there are customer locations. The goods stored in the depot are to be delivered
to all customer locations in an optimal visiting order by the vehicles. At different
customer locations, different amounts of the goods are demanded.

In this study, we consider capacitated VRP (CVRP). The term capacitated
means that the vehicles are limited in terms of how much demand they can
handle in this problem.

CVRP can be expressed on a graph G = (L, A) where L is the set of locations
(including the depot) and A is the set of arcs. An arc is a pair of locations (i, j),
where i, j ∈ L. In the finite set L, the locations are stored as indices in this
manner: L = {0,1, 2, ...}, where 0 represents the depot and nonzero integers
represent the customer locations. For each customer location, there is a positive
amount of demand (i.e. di > 0 | i ∈ (L\{0})). For the depot, the demand is 0
(i.e. d0 = 0). We have a set of vehicles V . Each vehicle has the same storage
capacity, shown as Q. A CVRP solution consists of routes for all vehicles, a route
being a vector of integers representing the locations to be visited in the specified
order. According to a solution x , the route of a vehicle v ∈ V is shown as x[v],
the length of the route x[v] is shown as |x[v]|, the k-th location to be visited in
route x[v] is shown x[v, k]. Considering that for each arc (i, j) ∈ A there is a
different travel cost ci j, the optimality is defined by the solution which has the
minimum total travel cost. In terms of a solution x , the constraints of CVRP can
be explained as follows. The tour of a vehicle v begins and ends at the depot:

x[v, 1] = x[v, |x[v]| ] = 0 ∀v ∈ V (5.1)

Other than the depot, a vehicle v must visit locations of valid customers:

x[v, k] ∈ (L\{0}) ∀v ∈ V ; k ∈ {2,3, ..., |x[v]| − 1} (5.2)
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A customer can be visited by a vehicle v only once:

x[v, k] 6= x[v, k′]

∀v ∈ V ; k, k′ ∈ {2, 3, ..., |x[v]| − 1}; k 6= k′ (5.3)

Two different vehicles v and v′ can not visit the same customer:

x[v, k] 6= x[v′, k′]

∀v, v′ ∈ V ; v 6= v′; k ∈ {2,3, ..., |x[v]| − 1}; k′ ∈ {2,3, ..., |x[v′]| − 1} (5.4)

A vehicle v must not try to handle a route with a total demand more than the
vehicle capacity Q:

∑

k∈{2,3,...,|x[v]|−1}

dx[v,k] ≤Q ∀v ∈ V (5.5)

In CVRP without the consideration of uncertainty, the solution cost of x , which
is to be minimized, can be defined as:

TRAVELCOST(x) =
∑

v∈V

|x[v]|
∑

k=2

cx[v,k−1],x[v,k] (5.6)

We can now sum up CVRP as:

CVRP

(

minimize TRAVELCOST(x)

subject to (5.1), (5.2), (5.3), (5.4), (5.5)

An illustration of deterministic CVRP can be seen in figure 5.1.

CVRP with time window constraints. Let us now define the CVRP with time
window constraints (CVRPTW). In CVRPTW, for each arc (i, j), we have two
kinds of associated data: ci j which represents the travel cost like in CVRP; and
t i j which represents the travel time. Also, in CVRPTW, each location i has these
additional associated data: time window beginning T B

i , time window ending T E
i ,

and the service time T S
i . According to CVRPTW, each customer at location i has

to be served within the time window [T B
i ; T E

i ]. If a vehicle arrives at the location
i before T B

i , it has to wait until T B
i , and then it can start serving the customer.

If a vehicle arrives at the location i later than T E
i , the solution is declared as

infeasible. At each location i, the vehicle has to wait for T S
i amount of time for

unloading its load and serving the customer at that location. The time window
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Figure 5.1. a) An example instance for CVRP. b) A practical solution which

has a total travel cost of 29. c) A less practical solution which has a total travel

cost of 45.



83 5.1 Basic De�nitions

for the depot is [0; EndT ime], where EndT ime represents the ending time of
the working day. Finally, the service time for the depot is T S

0 = 0.
Let us now express the time window constraints. For this purpose, we call

the time in which a vehicle v starts serving the customer at the k-th destination
on its route, the appearence time, denoted by Av

k. At the beginning, each vehicle
appears at the depot at time 0:

Av
1 = 0 ∀v ∈ V (5.7)

The appearance time of vehicle v to its k-th destination is equal to the time
window beginning of its k-th destination, or its appearance to its (k− 1)-th des-
tination plus the service time at its (k− 1)-th destination plus the time required
to travel to its k-th destination, whichever has the higher value:

Av
k =max(T B

x[v,k]; Av
k−1+ T S

x[v,k−1]+ t x[v,k−1],x[v,k])

∀v ∈ V ; k ∈ {2, 3, ..., |x[v]|} (5.8)

A vehicle v must not appear to any location on its route later than that location’s
time window ending:

Av
k ≤ T E

x[v,k] ∀v ∈ V ; k ∈ {1,2, ..., |x[v]|} (5.9)

Given these time window constraints, we can now summarize the CVRPTW as:

CVRPTW

(

minimize TRAVELCOST(x)

subject to (5.1), (5.2), (5.3), (5.4), (5.5), (5.7), (5.8), (5.9)

5.1.2 Ant Colony System Metaheuristic

Ant colony optimization (ACO; see Dorigo et al. [1991]; Dorigo [1992]) is a
name given to a class of metaheuristic optimization algorithms. The main idea
of ACO is to simulate how the ants in nature find efficient routes from their nests
to the food source. The inspiring behaviour of the ants is as follows. When an
ant finds a food source, it marks the path leading to it with pheromones. Over
time, various ants find various paths leading to the food source. However, since
going back and forth on the shorter paths is easier, pheromones on the shorter
paths will be reinforced frequently, and the pheromones on the longer paths will
evaporate in time. In the end, it can be observed that most of the ants will gather
around the shortest known path. In ACO, artificial ants “walk” on the solution
space of a combinatorial optimization problem, adding a decision to the solution
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vector at each step. When the solution is complete, it is evaluated according to
the objective function of the problem at hand. Then, the decisions made by the
ants are marked by pheromones, the quantity of the pheromones depending on
how good the solution is. In the case of a transportation problem like the trav-
eling salesman problem or the VRP, the arcs contained in a solution are marked.
In the next iterations, when artificial ants walk, they become influenced by the
pheromones, and their decisions are biased towards the pheromoned options.

In this study, we use an ACO variation called ant colony system (ACS), pre-
sented in Gambardella et al. [1999]. In Gambardella et al. [1999] what is pre-
sented is actually an improved ACS named multiple ant colony system (MACS).
The MACS algorithm activates two ant colonies, one responsible for minimizing
the number of vehicles needed by the solution, and one responsible for minimiz-
ing the total travel cost of the solution with minimum number of vehicle usage.
When the minimum number of vehicles are calculated easily at the beginning
(as in the case of CVRP without time window constraints), the MACS approach
becomes equivalent to the regular ACS. In the rest of this chapter, we will use
the term ant colony system (ACS) to collectively refer to the original ACS and its
extension MACS.

The important characteristics of ACS are:

• Each iteration of ACS, a new generation of ants walks, instead of a single
ant. This means, multiple solutions are constructed in one iteration.

• Only the ants that have found the best solution known so far is allowed to
attract other ants by putting pheromones.

We now look at the technical details of the ACS. The algorithm can be ex-
plained as follows:

• Step 1: An initial solution x ini t is generated by using a fast heuristic. In
the case of transportations problem like CVRP, this fast heuristic is usually
nearest neighbourhood heuristic (NNH; see Johnson and McGeoch [1997]
for details) which is going to be explained in details in section 5.1.2.1.

• Step 2: Another solution storage field, x best , is defined to keep the best
solution found by the algorithm. Initially, x best is set as the initial solution
x ini t .

• Step 3: A new generation of ants is activated. Each generation of ants
have a fixed number of artificial ants. Each ant within this generation
walks and constructs a solution. When the construction of a solution is
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finished, that solution’s quality is determined by the objective function. If
an ant comes up with a solution xnew which has a higher quality than x best ,
then the variable x best is set as the solution xnew (i.e. xnew is declared as
the new x best).

• Step 4: Artificial pheromones are put on the arcs of x best to attract the
ants of the next generations towards the best solution known so far.

• Step 5: If the finishing criterion is not met, then we return to step 3.
Otherwise, the algorithm stops.

Now, let us have a detailed look at how an artificial ant generates a solution
during its walk. Especially this part of ACS is usually specific to the problem at
hand. Therefore, in the remaining part of this section, we will consider the con-
struction of CVRP solutions. The procedure followed by an ant for constructing
a solution is as follows:

• Step 1: We begin by considering the first vehicle. The depot (i.e. the
location indexed as 0) is added to the solution as the first visited location
by the first vehicle.

• Step 2: Let us call a location visitable, if it is still not visited (i.e. if it
is not yet added to our solution by the artificial ant), and if adding this
location to the solution does not violate the capacity constraint of the cur-
rently considered vehicle. Also, if the problem at hand has time window
constraints, we say that a location is visitable if adding it to the solution
does not violate the time window constraints of that location. As long as
there are visitable locations, the artificial ant keeps adding new locations
to the solution. When there is no more visitable customer location, the
artificial ant adds the depot to the solution. Adding the depot to the solu-
tion means that the tour of the current vehicle is finished. If, according to
the solution, there are customer locations that are still not visited, a new
vehicle is considered, and the step 2 is repeated.

We now take a detailed look at the implementational details of the pheromones.
For this, we now make the following definitions:

• τi j: Amount of pheromones on the arc (i, j) ∈ A. Larger values for τi j

mean larger attraction towards the arc (i, j).

• W : The set of ants. At each generation this set is renewed, but the number
of ants, |W |, is fixed.
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• Nw: The set of locations visitable by the ant w ∈ W . At each step of the
ant w, this set is updated.

• HEURDIST(i, j): A heuristic expression of the distance between the loca-
tions i ∈ L and j ∈ L.

• ηi j: The heuristic closeness value, calculated as 1/HEURDIST(i, j).

• β: This is a parameter which specifies the importance of the closeness
factor in the decision process of an ant.

• α: This is a parameter within the interval [0; 1]. This parameter configures
the probability for an ant to exploration, or exploitation. In short, explo-
ration means to probabilistically make a decision; and exploitation means
to deterministically choose an arc which maximizes the value returned by
a certain formulation.

Let us now consider an ant w ∈ W , which is currently at location i (i.e. which
has added the location i to its solution in its most recent move) and now has to
decide its next location j. The ant w makes its choice as follows. With proba-
bility α, the ant goes for exploitation: a location j is chosen such that the value
of τi j · (ηi j)β is maximized. Otherwise, with probability 1 − α, the ant goes
for exploration: a location j is chosen probabilistically. The probability for an
exploring ant w at location i to pick the location j is formulated as follows:

pw
i j =







�

τi j · (η)β
�

/
�

∑

j′∈Nw
τi j′ · (ηi j′)β

�

if j ∈ Nw

0 otherwise

At the beginning of the optimization process, all the arcs are given this same
amount of pheromone:

τ0 = 1/(|L| ·OBJFUNC(sol_ini t))

where OBJFUNC(x) is the objective function of the CVRP variation that we are
solving. For the regular CVRP, this would correspond to the function TRAVELCOST(x)
which was defined in (5.6).

The ACS, during its execution, does two types of pheromone updates, local
and global:

• Local pheromone update: when an ant adds the arc (i, j) into its solution,
to decrease the interest of the other ants of that generation on the same
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path (so that they will be more interested in trying different paths), the
pheromone amount τi j on that arc is slightly decreased, by using the fol-
lowing formulation:

τi j = (1−ρ) ·τi j +ρ ·τ0

where ρ ∈ [0;1] is the parameter which configures the amount of decrease
in pheromones within the procedure of the local pheromone update.

• Global pheromone update: At each generation, to attract the ants of the
next generations towards a high-quality path, the pheromone amount τi j

on each arc (i, j) of the best known solution x best is updated as according
to the following formulation:

τi j = (1−ρ) ·τi j +ρ/OBJFUNC(x best)

At the end of each ant walk, a generated solution is improved by using a
local search heuristic called 3-opt. The details about this heuristic are given in
section 5.1.2.1.

5.1.2.1 Heuristic operators used by the ant colony system

Here, we explain the heuristic operators used by the ant colony system: nearest
neighbourhood search and 3-opt. Both these operators work on giant tours,
a giant tour meaning a vector which stores all the tours of all the vehicles. For
example, let us assume that we have two vehicles, and we have a solution where
the first vehicle visits the customers 1 and 2, and the second vehicle visits the
customers 3, 4, and 5. The giant tour representation of this solution would be
〈0, 1,2, 0,3, 4,5, 0〉 (where 0s represent the beginning and ending of a solution,
and also they act as separators between the tours of different vehicles).

Nearest neighbourhood heuristic. Nearest neighbourhood heuristic is a pop-
ular constructive algorithm in the literature. In the case of our studies, it adds
a new location into the giant tour at each step. In short, the algorithm can be
explained as follows:

• Step 1: The giant tour is initialized as 〈0〉. Also, the current location is
initialized as 0. We start considering the first vehicle.

• Step 2: Among the customer locations which are not visited yet, the
nearest visitable neighour (nearest meaning the location which has the
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least cost to travel to from the current location; visitable meaning that vis-
iting that location does not violate capacity and time window constraints),
is chosen as the target location. If the current vehicle has enough capacity
to visit the target location, the target location is added into the solution.
We then declare the target location as our new current location. If none
of the remaining customers are visitable, we add 0 to the solution and our
current location becomes 0 again, meaning that the current vehicle has
finished its tour and that we consider a new vehicle now.

• Step 3: If there are customer locations which are not visited yet, we go
to step 2. Otherwise, we finally add the last 0 into the solution, finish the
execution of this algorithm.

In the end, we have constructed a giant tour, which represents an initial
solution for the ACS.

For more details about nearest neighbourhood search, one can see Johnson
and McGeoch [1997].

3-opt local search. The 3-opt local search is another popular heuristic in the
literature. Again, in the case of our studies, it is applied on the giant tours.

The main idea is as follows. First, the initial giant tour is modified by remov-
ing three arcs from it, these three arcs having been selected randomly. The mod-
ified tour we have obtained is now a disconnected one. This disconnected tour
is then reconnected in multiple ways, giving us alternative modified connected
tours. If the best one among these reconnected tours is better than the original
tour, then that reconnected tour is chosen as the result of this 3-opt operation;
otherwise, the result is the original tour. The disconnection and reconnection
operations of the 3-opt algorithm are visualized in figure 5.2.

For more details about 3-opt, one can see Bock [1958], Lin [1965], Johnson
and McGeoch [1997]. A simpler variation of this method, 2-opt, can be found
in Croes [1958].

5.2 Our Studies for Solving CVRP with Uncertain Data

Here, we discuss our studies on CVRP with uncertain travel costs (CVRPU), and
CVRP with time window constraints with uncertain travel times (CVRPTWU),
in sections 5.2.1 and 5.2.2, respectively. In these studies, we present extended
versions of the ACS implementation reported in Gambardella et al. [1999]. In
the end, general comments about these studies are made in section 5.2.3.
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Figure 5.2. The disconnection and reconnection operations of 3-opt, explained

on a simple, single-vehicle tour example.
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5.2.1 The Capacitated Vehicle Routing Problem with Uncertain

Travel Costs

Let us now consider the CVRPU. According to different perspectives of robust
optimization, different methods can be taken to represent the travel cost uncer-
tainty in CVRP. In our studies, we express the uncertain travel costs as intervals.
Therefore, in CVRPU, for each arc (i, j) ∈ A, we say ci j ∈ [c i j; c i j]. This way
of modeling the CVRP with uncertain travel costs was previously done in the
literature in Lee et al. [2012]; Agra et al. [2013].

The objective function (5.6) of CVRP, TRAVELCOST, depends on ci j. Since
ci j are intervals in CVRPU, the function TRAVELCOST can not be used directly
here. Being inspired by the Bertsimas-Sim approach explained in section 2.2.5,
for handling the uncertain ci j cost coefficients, we now define another objective
function, PERTURBEDCOST, as follows:

PERTURBEDCOST(x ,Γ) =


















maximize
∑

v∈V

|x[v]|
∑

k=2

�

c x[v,k−1],x[v,k]+γx[v,k−1],x[v,k] · (c x[v,k−1],x[v,k]−c x[v,k−1],x[v,k])
�

subject to
∑

(i, j)∈A
γi j ≤ Γ

0≤ γi j ≤ 1 ∀(i, j) ∈ A
(5.10)

Based on a linear programming formulation, the function PERTURBEDCOST

is a function which finds the worst possible cost of a solution x , given that Γ
amount of perturbation on the travel cost data is assumed. The perturbation
assumption on a single arc (i, j) is represented by the variable γi j. When γi j = 0,
it is assumed that there is no perturbation at all on the travel cost of arc (i, j),
so, ci j becomes equal to c i j. On the other hand, when γi j = 1, it is assumed that
there is full perturbation on the travel cost of arc (i, j) towards its highest value,
so, ci j becomes equal to c i j. Also, when γi j is equal to, say, 0.5, the travel cost of
(i, j) is perturbed halfway towards its highest value, therefore, ci j becomes equal
to c i j+0.5 ·(c i j− c i j). Since the total amount of γi j perturbations is limited by Γ,
the Γ value works as the conservativeness degree parameter in this formulation.

The function PERTURBEDCOST can be expressed in an alternative way, with-
out actually running a linear programming solver. For making this alternative
expression, let Ax be the set of all arcs used in the solution x . Also, let us call
ĉi j = c i j − c i j the potential perturbation on the cost of the arc (i, j). The idea
here is as follows: we know that an arc (i, j) ∈ Ax will contribute at least c i j to
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the total cost of the solution x . However, more perturbation could occur on ci j

towards its worst-case value, which would result in an extra contribution to the
solution cost of x from the arc (i, j). So, ĉi j expresses this possible extra con-
tribution. Now, let us define Sor tedAx as an array, which contains all the arcs
(i, j) ∈ Ax , sorted non-increasingly according to their ĉi j values. We also define
Sor tedAx

k as the k-th arc of the array Sor tedAx . We are now ready to express the
function PERTURBEDCOST: for the first bΓc arcs within Sor tedAx , the travel costs
are assumed to be at their highest values, for the dΓe-th arc (i, j) of Sor tedAx ,
the travel cost is assumed to be equal to c i j + (Γ− bΓc) · ĉi j, and for the rest of
the arcs within Sor tedAx , the travel costs are assumed to be at their lowest val-
ues. This approach corresponds to the following way of thinking: perturbations
towards the higher values will happen on the arcs with the highest potential
perturbations. By using this way of thinking, we find the maximum possible cost
of a solution x , given that Γ amount of perturbations can happen in total. The
detailed algorithmic expression of the function PERTURBEDCOST can be found in
algorithm 2. Within this algorithm, the performance bottleneck is the sorting,
which, by using a non-specialized standard technique, requires O(|Ax | · log(|Ax |))
execution time.

Algorithm 2 Algorithmic expression of the function PERTURBEDCOST

1: function PERTURBEDCOST(x , Γ)
2: cost ← 0
3: uncer taint y_bud get ← Γ
4: for k = 1 To |Ax | do
5: (i, j)← Sor tedAx

k
6: if uncer taint y_bud get ≥ 1 then
7: cost ← cost + c i j

8: uncer taint y_bud get ← uncer taint y_bud get − 1
9: else if 0< uncer taint y_bud get < 1 then

10: cost ← cost + c i j + uncer taint y_bud get · ĉi j

11: uncer taint y_bud get ← 0
12: else if uncer taint y_bud get = 0 then
13: cost ← cost + c i j
14: end if
15: end for
16: return cost
17: end function

Having defined the cost function PERTURBEDCOST in (5.10) and in algorithm
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2, we are now ready to fully describe CVRPU as:

CVRPU

(

minimize PERTURBEDCOST(x ,Γ)

subject to (5.1), (5.2), (5.3), (5.4), (5.5)

that is, the maximum cost that can be encountered (expressed by PERTURBED-
COST) according to the perturbation upper bound Γ (which is our conservative-
ness degree parameter) is to be minimized, while satisfying the constraints of
the original CVRP model.

5.2.1.1 A Robust Ant Colony System for the CVRP

We have developed a robust ant colony system (RACS) for near-optimally solv-
ing CVRPU. The RACS is a version of ACS in which the objective function is
PERTURBEDCOST. Therefore, the conservativeness degree is configured by the
decision maker by setting the parameter Γ.

Experimental Environment. A term named the price of robustness is discussed
in Bertsimas and Sim [2004a]. In general, the price of robustness means the
sacrifice that must be made by the decision maker to have a robust solution.
In Bertsimas and Sim [2004a], the authors analyze the price of robustness by
showing how much is sacrificed from the optimality to increase robustness.

In this study, we analyze the price of robustness in two ways. First, we
analyze the computational price of robustness: we compare the execution speeds
of the regular ACS approach where a simple non-robust objective function is
used, and of the RACS approach which uses PERTURBEDCOST as its objective
function. This gives us an idea about how much speed is sacrificed to turn a
regular metaheuristic into an uncertainty-aware one. Second, we analyze the
operational price of robustness: given that the cost of a solution in the best-case
scenario is its potential of being low-cost, we analyze how much is sacrificed
from this potential for having a robust solution.

We have used CVRP instances called tai100a, tai100b, tai100c, and tai100d
where 100 customers are considered; and tai150a, tai150b, tai150c, and tai150d
where 150 customers are considered. These instances can be found in NEO
Networking and Emerging Optimization [2012]. All tai100 solutions require at
least 11 vehicles. All tai150 solutions require at least 14 vehicles, except for
tai150a, where 15 vehicles are required. Since these instances were originally
created for CVRP without the considerations of uncertainty, we have applied the
following procedure to convert them into CVRPU instances: for each arc (i, j),
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given that c′i j is the deterministic travel cost in the original CVRP instance, we
set c i j = c′i j and c i j = c′i j ·RND(1,1.5), where RND(a, b) is a random real number
between a and b.

The ACS and RACS approaches were implemented in C programming lan-
guage, configured to have 10 ants in a colony (like in Gambardella et al. [1999]),
with settings α = 0.99, β = 1, and ρ = 0.1 after some preliminary tuning. The
computer used for the experiments is Intel Core 2 Duo P9600 @ 2.66GHz with
4GB of RAM. Note that this configuration of number of ants in a colony, α, β ,
and ρ is used for our further ACS-based methodologies that will be presented
in sections 5.2.1.2 and 5.2.2.1 of this chapter. Also, all experiments presented
within this chapter were done on the same computer mentioned above.

Computational Price of Robustness. As mentioned previously, in CVRPU, for
evaluating a solution x by using the objective function PERTURBEDCOST, we have
to spend O(|Ax | · log(|Ax |)) amount of time. This is an increase on the execution
time requirement, considering O(|Ax |) amount of time which would be needed
by the objective function TRAVELCOST of the deterministic CVRP.

We now do an analysis of execution time requirement from a practical point
of view. The two metaheuristic algorithm implementations, ACS (which uses
TRAVELCOST objective function), and RACS (which uses PERTURBEDCOST objec-
tive function), are executed 5 times on the same instance files. Within 10 sec-
onds, the average number of iterations performed by each implementation is
noted. The results are presented in figure 5.3. From the figure, it can be seen
that the deterministic ACS approach works at approximately twice the speed of
the RACS approach.

Note that in the execution time comparison we do here, the entire iterations
of ACS and RACS are measured, where each iteration involves the solution con-
struction of all the ants of a colony, the execution of the 3-opt local search and
then the execution of the objective functions. Therefore, this is a comparison be-
tween ACS and RACS, rather than a comparison only between TRAVELCOST and
PERTURBEDCOST. While the results on the execution time difference between
only these functions would be much greater, we believe that the results pre-
sented here are the important ones, since these objective functions are expected
to be used within metaheuristic algorithms, not by themselves.

Operational Price of Robustness. We now analyze how much we sacrifice from
the solution’s potential in terms of being low-cost (i.e. solution cost in the best-
case scenario), when we increase the conservativeness degree for having more
robust solutions. For this analysis, we execute the RACS approach multiple times
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Figure 5.3. The average number of iterations performed by the ACS (deter-

ministic) and RACS (robust) approaches.

on each instance, each time with a different conservativeness degree, configured
by the parameter Γ. By collecting the different solutions generated by these
multiple executions, we form a solution pool. To see how each solution within
the solution pool performs under various scenarios, we now employ another
parameter, Υ, that we call the scenario assumption parameter. Each solution x
within the solution pool is evaluated according to PERTURBEDCOST(x ,Υ). By this
test, we learn how much a solution costs in the best-case scenario, in the worst-
case scenario, and in partially pessimistic scenarios. The results of these tests
are given in tables 5.1, 5.2, and 5.3. Among these results, let us have a closer
look at the results obtained on the instances tai100a and tai150a, for which the
surface plots are shown in figure 5.4. In the figure, for both tai100a and tai150a,
it can be seen that when Γ = 0, the obtained results have the lowest costs in the
best-case scenario (Υ= 0). However, as the scenario assumptions become worse
(as Υ is increased), it can be seen that those solutions are not robust, as they
turn into the most expensive solution. With the conservativeness degree around
Γ = 10, it can be seen that compromise solutions are found, where the best-case
costs are slightly more expensive, and the worst-case costs are lower. As the
Γ value is increased, it can be seen that we go towards the most conservative
solutions, where the best-case costs are relatively high, and the worst-case costs
are relatively low. With 0 ≤ Γ ≤ 25 in the case of tai100a, and with 0 ≤ Γ ≤ 30
in the case of tai150a, there seems to be a visible change in the behaviour of the
solutions. So, these regions show us the trade-off between cost potential and
robustness. With Γ > 25 in the case of tai100a, and with Γ > 30 in the case of
tai150a, the solutions seem to behave similar.
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Table 5.1. Results obtained from the experiments on the instances with 100

customers (Toklu et al. [2013a])

Instance Solution Cost evaluations
Γ Υ=0 Υ=10 Υ=25 Υ=50 Υ=75 Υ=101

0 2059.3 2262.51 2385.58 2483.72 2527.28 2542.42
10 2067.02 2214.54 2319.65 2413.89 2464.96 2484.68

tai100a 25 2075.1 2217.22 2314.17 2407.53 2456.8 2477.0
50 2100.52 2234.9 2332.78 2405.9 2440.32 2453.49
75 2105.73 2229.88 2316.01 2390.74 2428.53 2444.34

101 2110.14 2242.17 2331.53 2405.37 2440.95 2455.19
0 2059.3 2262.51 2385.58 2483.72 2527.28 2542.42
10 2067.02 2214.54 2319.65 2413.89 2464.96 2484.68

tai100b 25 2075.1 2217.22 2314.17 2407.53 2456.8 2477.0
50 2100.52 2234.9 2332.78 2405.9 2440.32 2453.49
75 2105.73 2229.88 2316.01 2390.74 2428.53 2444.34

101 2110.14 2242.17 2331.53 2405.37 2440.95 2455.19
0 1406.2 1574.7 1669.28 1725.35 1750.76 1762.02
10 1421.6 1540.59 1623.88 1676.82 1700.11 1710.43

tai100c 25 1442.17 1539.99 1603.83 1657.4 1682.63 1694.73
50 1463.51 1564.07 1621.19 1665.74 1687.35 1697.2
75 1447.11 1557.79 1620.49 1668.53 1694.19 1707.81

101 1463.25 1554.89 1606.65 1654.52 1677.93 1688.95
0 1596.31 1736.59 1835.16 1921.65 1969.65 1986.28
10 1607.26 1721.96 1812.32 1904.64 1954.99 1973.84

tai100d 25 1604.11 1712.9 1802.47 1888.03 1932.95 1948.57
50 1629.59 1737.5 1810.49 1884.54 1927.25 1943.91
75 1606.7 1728.08 1817.47 1894.48 1930.1 1944.75

101 1668.21 1750.43 1821.35 1887.88 1925.2 1938.9



96 5.2 Our Studies for Solving CVRP with Uncertain Data

a) tai100a

b) tai150a

Figure 5.4. The surface plots of the costs of the solutions generated for the

instances tai100a and tai150a. These plots show how di�erent solutions are

obtained with di�erent conservativeness values (Γ) and how these solutions

perform on di�erent scenarios (Υ).
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Table 5.2. Results obtained from the experiments on the instances with 150

customers (tai150a, tai150b)

Instance Solution Cost evaluations
Γ Υ=0 Υ=10 Υ=20 Υ=30 Υ=50

Υ=75 Υ=100 Υ=125 Υ=151

0 3057.94 3390.46 3538.96 3615.69 3707.36
3763.75 3797.9 3815.98 3825.48

tai150a 10 3097.5 3277.93 3382.75 3450.47 3542.32
3609.26 3648.49 3669.62 3679.91

20 3118.97 3270.62 3353.47 3411.85 3492.84
3547.98 3584.12 3604.21 3614.06

30 3156.47 3294.29 3371.55 3423.79 3490.68
3543.25 3579.6 3598.69 3608.56

50 3149.19 3298.85 3382.76 3433.91 3502.35
3555.47 3589.55 3607.79 3615.42

75 3129.4 3310.89 3400.62 3453.07 3517.03
3562.12 3587.66 3602.02 3610.41

100 3142.33 3305.57 3386.24 3441.66 3514.01
3564.67 3597.65 3616.71 3627.67

125 3131.15 3304.53 3384.42 3432.99 3495.98
3544.47 3576.53 3593.37 3602.18

151 3171.07 3340.74 3424.33 3470.37 3528.64
3573.75 3601.08 3617.73 3626.56

0 2739.21 3069.54 3198.94 3274.44 3359.1
3418.57 3453.35 3474.16 3484.27

tai150b 10 2766.41 2921.46 2986.57 3028.48 3085.07
3131.84 3161.56 3179.8 3189.79

20 2832.26 2948.69 3000.81 3039.63 3096.09
3141.99 3170.57 3186.99 3195.47

30 2828.24 2931.2 2985.24 3029.07 3091.45
3142.14 3173.95 3193.3 3202.86

50 2778.8 2904.21 2955.55 2992.29 3044.94
3091.15 3120.9 3137.98 3146.97

75 2799.36 2919.01 2973.59 3013.9 3070.32
3118.89 3151.56 3171.03 3180.76

100 2825.5 2925.73 2979.14 3016.48 3072.69
3123.69 3156.0 3175.6 3185.57

125 2792.57 2912.71 2962.05 2998.15 3050.61
3096.77 3127.12 3144.79 3153.86

151 2845.26 2957.83 3021.25 3061.43 3110.56
3148.17 3172.65 3188.03 3196.82
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Table 5.3. Results obtained from the experiments on the instances with 150

customers (tai150c, tai150d)

Instance Solution Cost evaluations
Γ Υ=0 Υ=10 Υ=20 Υ=30 Υ=50

Υ=75 Υ=100 Υ=125 Υ=151

0 2424.0 2710.5 2835.77 2891.73 2948.93
2991.88 3019.11 3035.43 3044.21

tai150c 10 2498.13 2657.34 2751.06 2811.87 2878.65
2925.59 2952.89 2969.05 2976.76

20 2524.18 2671.85 2719.62 2752.32 2799.04
2839.41 2867.92 2885.6 2894.25

30 2484.0 2629.85 2671.19 2703.18 2752.03
2795.3 2824.23 2841.68 2851.8

50 2508.54 2632.85 2695.3 2733.76 2780.41
2818.37 2840.73 2855.34 2862.65

75 2469.62 2577.21 2626.77 2658.43 2703.07
2741.03 2765.74 2780.03 2787.32

100 2459.48 2616.64 2688.32 2730.48 2788.26
2831.81 2858.76 2874.55 2881.33

125 2515.31 2639.38 2691.0 2724.58 2771.67
2809.58 2833.72 2849.56 2856.55

151 2532.29 2657.48 2702.28 2732.72 2778.58
2818.02 2842.06 2858.33 2867.75

0 2662.84 2932.68 3075.43 3143.09 3226.07
3280.73 3311.14 3326.35 3333.13

tai150d 10 2700.91 2884.32 2983.02 3050.67 3133.85
3192.25 3224.2 3242.3 3251.39

20 2750.85 2913.03 2987.75 3043.98 3118.76
3168.32 3196.22 3212.07 3219.87

30 2768.92 2903.33 2971.89 3020.14 3088.88
3143.1 3178.74 3198.66 3207.74

50 2739.32 2889.63 2949.71 2994.59 3054.79
3102.39 3131.79 3148.18 3156.05

75 2809.45 2924.43 2986.61 3024.55 3082.63
3132.18 3163.69 3182.11 3190.63

100 2737.14 2929.63 2997.12 3035.84 3089.46
3132.93 3157.66 3172.01 3179.5

125 2754.36 2915.53 2979.61 3027.07 3089.16
3136.65 3164.26 3179.6 3186.36

151 2776.35 2928.92 2993.73 3033.26 3084.55
3123.54 3148.25 3163.04 3169.71
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In tables 5.1, 5.2, and 5.3 further results can be found in which solution
pools show similar characteristics. The common behavior is that the solution
with Γ = 0 is the one which is the cheapest in the best-case scenario, but is also
the most risky solution in the sense that it is most expensive in the worst-case
scenario. The quickest decrease of this risk happens with Γ values close to (but
larger than) 0. As the Γ value is further increased, this region of quickest-risk-
decrease ends, and the solutions start to behave similar. In general, this shows us
the effect of the travel cost uncertainty on CVRPU. By generating and analyzing
a solution pool for the problem instance at hand, the decision maker can see this
region of quickest-risk-decreasing, see the trade-off between potential cost and
robustness within this region, and then pick the most practical solution.

Because of the heuristic nature of our approach here, one thing we notice is
that, there are some noises in the solution pools. For example, let us say we have
two solutions in a solution pool, namely χ1 and χ2. Let us also say that χ1 was
prepared with conservativeness degree Γ = 10, and that χ2 was prepared with
conservativeness degree Γ = 25. In the ideal case, when tested with Υ = 10,
χ1 would cost less than χ2; and when tested with Υ = 25, χ2 would cost less
than χ1. However, this is not always the case and we can have inconsisten-
cies because our optimization algorithm is heuristic and it can get stuck around
dominated solutions. Such inconsistencies cause noise in the solution pool. For
example, we can observe this noise in the solution pool visualizations in figures
5.4a and 5.4b. In both solution pool visualizations, one can observe that there
is noise in the solutions with the highest Γ configurations (let’s call those solu-
tions the highest-Γ solutions). The highest-Γ solutions are supposed to be the
most conservative solutions, i.e. they should have the lowest costs in their pools
when the highest Υ is considered. However, in both examples, one can observe
that there are solutions which have lower costs than the highest-Γ solutions un-
der the consideration of the highest Υ. This means that, when working with the
highest Γ, the ant colony metaheuristic was stuck on a dominated solution. This
is a problem that we face because we execute the ant colonies independently.
In section 5.2.1.2, we explain an improved version of this approach, where this
problem is addressed.

5.2.1.2 Robust Multiple Ant Colony System for the CVRPU

In section 5.2.1.1, we had pointed out the noises in the solution pools. To have
a protection against these noises, we propose an approach that we call robust
multiple ant colony system (RMACS). The main idea of RMACS is that multiple
ACS processes, instead of a single one, are started, and executed concurrently.
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Each ACS process focuses on a different conservativeness degree. During their
execution, these ACS processes inform each other about their best solutions.
This communication between the processes, allows a colony to become aware if
its best solution is dominated by the another colony’s best solution. In that case,
the dominated colony receives the dominating colony’s best solution, and starts
improving that solution according to its own conservativeness degree. When the
entire execution of RMACS is finished, the final solution of each ACS process
is put into a solution pool, which is the result of the RMACS approach. This
approach has interesting advantages, such as:

• High quality solution pools: Because of the solution sharing mechanism of
RMACS, the ACS processes which would get stuck around a dominated so-
lution can get unstuck by receiving better solutions, and improving them.
In the end, this gives us solution pools which have better qualities.

• Parallelism: Because of the concurrent nature of the RMACS approach,
different ACS processes can be started in different cores of the computer.
A full parallelism can be achieved if the computer has a number of cores
at least equal to the number of ACS processes. This would result in mini-
mization of the interruption caused by one ACS process on another.

Now we explain the technical details about RMACS. The RMACS approach
depends on a set of conservativeness level parameters: SΓ = {Γ1,Γ2, ...}. In
RMACS, |SΓ| number of ACS processes are executed concurrently, each ACS pro-
cess being focused on a different conservativeness degree value within SΓ. Up to
∆ number of generations, these ACS processes work independently, so that they
are given the chance of exploring various regions of the solution space without
getting influenced by each other for a while. Starting with the ∆-th genera-
tion, each ACS process AcsProc with the conservativeness degree ΓAcsProc sends
its best solution into the shared memory, and scans all the other solutions sent
by other ACS processes, periodically with an interval of δ generations. While
scanning all the other solutions in the shared memory, the ACS process AcsProc
evaluates each solution χ by using PERTURBEDCOST(χ,ΓAcsProc). If the evaluation
result suggests that the solution χ is a better solution than the current best so-
lution of AcsProc, an artificial ant within AcsProc is forced to repeat the moves
of the solution χ, therefore, the solution χ is imported.

Experimental Environment. We now present two types of experiments to test
our RMACS approach. The first type of experiment involves the comparison of
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the solution pools generated by the RMACS approach, and by a set of indepen-
dent RACS processes with different conservativeness degree. This first type of
experiments, therefore, is focused on seeing if the solution sharing mechanism
of RMACS is really useful. The second type of experiments is the analysis of
the RMACS solution pools on CVRPU instances generated according to different
policies: an instance where the customer locations are randomly placed, an in-
stance where the customer locations are clustered, and a hybrid instance where
some customer locations are clustered and the others are randomly placed.

Solution pool comparison between RACS and RMACS. We now present our
solution pool comparison studies, which were reported in Toklu et al. [2013b].
In this analysis, we use the Taillard instances, tai100{a,b,c,d} and tai150{a,b,c,d},
converted into CVRPU instances by following the procedure previously men-
tioned in the experimental environment explanation of our original RACS study
in section 5.2.1.1. We have set the RMACS-specific parameters as ∆ = 9000
and δ = 500. For both approaches (the RMACS approach and the approach
of multiple RACS processes running independently), the conservativeness de-
grees that we consider are: SΓ = {0,10, 25,50, 75,100, M} for tai100, and
SΓ = {0,10, 20,30, 50,75, 100,125, 150, M} for tai150, where M ≥ |L|+ |V | − 1
is a number big enough to make all the cost assumptions equal to their highest
values. For both approaches, the execution time limit was set as 420 seconds for
tai100, and 600 seconds for tai150.

Let us now look at the comparison results between RMACS and RACS, shown
in tables 5.4 and 5.5. In these tables, for each instance, the costs of the best
performing solutions according to various scenario assumption parameter values
found by each approach (RMACS and RACS) are reported under the column
group “Best solutions”. With the exception of tai100b, we can observe that the
RMACS approach was able to come up with better solutions. Therefore, we
can conclude that the solution sharing mechanism was useful in increasing the
qualities of the solution pools.

We now present our further experiments on RMACS approach, reported in
Toklu, Gambardella and Montemanni [to appear], over bigger instances. In
more details, these experiments were done over three Homberger instances
(available online at NEO Networking and Emerging Optimization [2012]):
c1_2_1, where the customers are clustered, r1_2_1, where the customers are
randomly placed, and rc1_2_1, where some customers are clustered and the
rest are randomly placed. In these instances, 200 customers are consid-
ered. Like the Taillard instances, these instances which were originally cre-
ated for the deterministic CVRP, were converted into CVRPU instances in our
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Table 5.4. Comparison of the performances of RMACS and RACS over tai100

instances

Best solution
Instance Approach Υ=0 Υ=10 Υ=25 Υ=50 Υ=75

tai100a RMACS 2111.69 2289.01 2379.00 2455.40 2489.98
RACS 2153.36 2292.30 2390.51 2480.97 2512.53

tai100b RMACS 1982.75 2127.34 2217.51 2301.44 2346.44
RACS 1979.76 2081.67 2174.16 2273.68 2324.43

tai100c RMACS 1430.51 1557.58 1617.43 1668.98 1691.29
RACS 1430.51 1567.21 1632.17 1678.19 1700.25

tai100d RMACS 1635.54 1751.05 1837.03 1912.00 1950.40
RACS 1641.08 1747.34 1843.79 1925.99 1968.40

Best solution
Instance Approach Υ=100 Υ=M

tai100a RMACS 2503.67 2504.95
RACS 2527.19 2528.79

tai100b RMACS 2364.31 2365.82
RACS 2346.52 2349.11

tai100c RMACS 1701.50 1702.49
RACS 1709.44 1710.64

tai100d RMACS 1964.51 1965.84
RACS 1983.86 1985.53

experiments. For solving each instance, the execution time limit was set as
1200 seconds. The RMACS was configured as: ∆ = 9000, δ = 500, SΓ =
{0,10, 25,50, 75,100, 150, M} where M ≥ (|L|+ |V |−1) is a number big enough
to make all the cost assumptions equal to their highest values.

The tables 5.6, 5.7, and 5.8 show the experimental results. The illustration
of the solution pool generated for rc1_2_1 can also be seen in figure 5.5. When
we look at the figure, we can say that the observed behaviour in the solution
pool generated by the RMACS approach for the instance rc1_2_1 is consistent
with our previous findings reported in section 5.2.1.1: the solution with the
biggest potential in terms of being low-cost, but also with the biggest risk is the
one with Γ = 0. Close to this solution, there is a region 0 ≤ Γ ≤ 25, where
solutions which have different levels of protections against the uncertainty can
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Table 5.5. Comparison of the performances of RMACS and RACS over tai150

instances

Best solution
Instance Approach Υ=0 Υ=10 Υ=20 Υ=30 Υ=50

tai150a RMACS 3164.09 3309.12 3372.54 3416.03 3477.72
RACS 3164.09 3361.52 3469.17 3538.94 3617.44

tai150b RMACS 2861.56 2988.24 3042.75 3081.17 3137.42
RACS 2861.56 3012.18 3067.24 3105.59 3161.47

tai150c RMACS 2450.88 2647.74 2700.43 2735.82 2785.53
RACS 2535.16 2705.01 2760.79 2795.46 2846.54

tai150d RMACS 2800.31 2952.66 3016.70 3059.61 3115.96
RACS 2790.64 2980.95 3050.67 3104.67 3168.07

Best solution
Instance Approach Υ= 75 Υ=100 Υ=125 Υ=150 Υ=M

tai150a RMACS 3527.92 3560.96 3580.08 3589.48 3590.67
RACS 3675.82 3714.07 3735.12 3744.55 3745.65

tai150b RMACS 3180.28 3210.21 3226.96 3235.23 3236.44
RACS 3204.27 3233.80 3251.54 3260.07 3261.34

tai150c RMACS 2830.46 2859.45 2876.52 2885.80 2886.75
RACS 2892.05 2922.07 2940.33 2950.87 2952.14

tai150d RMACS 3163.34 3191.15 3208.45 3216.26 3217.44
RACS 3216.02 3243.09 3259.39 3266.32 3267.08

be found. Therefore, a compromise solution can be found within this region.
When we get past this region, we reach an area Γ ≥ 25, in which the solutions
are very conservative and behave almost the same. It can be observed from the
values in the tables 5.6 and 5.7 that the solution pools for the instances c1_2_1
and r1_2_1 also behave similarly. In more details, the quick decrease of the
worst-case-scenario costs within the region 0 ≤ Γ ≤ 25 can be observed when
one looks at the solution costs under the scenario assumptions Υ = M for the
solutions with Γ = 0, Γ = 10, and Γ = 25.

Although the RMACS approach was designed to remove the noise problem
introduced in our RACS studies, in the experimental results here, some noises
can still be observed. For example, in table 5.8, the solution with Γ = M per-
forms better than the solution with Γ = 150, under the scenario assumption
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Table 5.6. Results obtained for the instance c1_2_1

Υ=0 Υ=10 Υ=25 Υ=50

Γ=0 2605.96 2866.45 3034.68 3153.61
Γ=10 2681.62 2820.88 2928.86 3019.85
Γ=25 2699.18 2824.15 2914.27 3003.31
Γ=50 2732.36 2848.15 2930.63 2999.28
Γ=75 2734.13 2849.92 2932.41 2999.83
Γ=100 2734.13 2849.92 2932.41 2999.83
Γ=150 2758.34 2871.99 2943.99 3005.08
Γ=M 2734.13 2849.92 2932.41 2999.83

Υ=75 Υ=100 Υ=150 Υ=M

Γ=0 3197.64 3226.57 3259.61 3275.24
Γ=10 3069.5 3101.97 3140.08 3155.45
Γ=25 3052.59 3084.66 3123.87 3139.54
Γ=50 3039.24 3066.04 3098.75 3114.38
Γ=75 3038.34 3064.58 3096.96 3112.59
Γ=100 3038.34 3064.58 3096.96 3112.59
Γ=150 3041.88 3067.79 3099.15 3114.47
Γ=M 3038.34 3064.58 3096.96 3112.59

Υ = 150. In other words, the solution with Γ = M dominates the solution with
Γ = 150. The general explanation for this noise might be that, towards the
end of the execution of the RMACS approach, an ACS process AcsProc1 finds
a solution which dominates the best solution of another ACS process AcsProc2,
but the global execution time limit is reached before the dominating solution of
AcsProc1 is uploaded to the shared memory and received by AcsProc2. How-
ever, the remaining noise is relatively small, which can also be visually analyzed
from the smooth surface plot in figure 5.5. Such noise can easily be removed
by the decision maker, after a final analysis is done on the solution pool and the
dominated solutions are removed.

Note that, here, for the sake of experimenting, we have used a large set
SΓ = {0,10, 25,50, 75,100, 150, M}, which dictates the concurrent execution of
8 ant colonies according to the RMACS approach. However, the region with
differently behaving solutions is actually 0 ≤ Γ ≤ 25. A small subset of SΓ

covers this region. Therefore, while solving CVRPU, in practice, one can ignore
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Table 5.7. Results obtained for the instance r1_2_1

Υ=0 Υ=10 Υ=25 Υ=50

Γ=0 3051.78 3227.33 3374.83 3526.16
Γ=10 3100.14 3198.38 3308.91 3439.13
Γ=25 3099.16 3199.03 3308.5 3438.54
Γ=50 3099.16 3199.03 3308.5 3438.54
Γ=75 3103.04 3201.29 3310.76 3438.67
Γ=100 3106.31 3205.29 3314.76 3441.95
Γ=150 3099.14 3207.5 3316.19 3441.05
Γ=M 3099.49 3208.58 3317.27 3442.13

Υ=75 Υ=100 Υ=150 Υ=M

Γ=0 3630.15 3699.6 3787.16 3826.32
Γ=10 3527.06 3592.27 3676.18 3711.87
Γ=25 3525.68 3589.44 3670.35 3705.07
Γ=50 3525.68 3589.44 3670.35 3705.07
Γ=75 3525.03 3588.31 3670.2 3705.46
Γ=100 3526.48 3586.82 3666.77 3700.49
Γ=150 3525.3 3585.26 3665.06 3698.77
Γ=M 3525.64 3585.2 3664.99 3698.71

the conservativeness degrees outside this region (for which the conservativeness
degree upper bound would change according to the size of the instance, but still
it would be less than |L|/2 most of the time, probably around |L|/4 based on the
experimental results we present here). Ignoring unnecessary conservativeness
degree would result in smaller SΓ sets, less number of concurrent ant colonies,
and, therefore, less processes in the computer and a higher performance.

5.2.2 Capacitated Vehicle Routing Problem with Time Windows

and Uncertain Travel Times

We now present our studies on CVRP with time window constraints under travel
time uncertainty (CVRPTWU), discussed in Toklu et al. [2014]. First, let us
remember that in CVRPTW, for each arc (i, j), we have two types of information:
the travel cost ci j, and the travel time t i j. The objective here is the same with
CVRP: the minimization of total ci j over each traveled arc (i, j). The travel
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Table 5.8. Results obtained for the instance rc1_2_1

Υ=0 Υ=10 Υ=25 Υ=50

Γ=0 2959.8 3174.16 3359.28 3523.84
Γ=10 2995.42 3144.16 3283.99 3422.38
Γ=25 3000.15 3145.25 3277.53 3410.51
Γ=50 3010.08 3155.25 3272.44 3391.08
Γ=75 3012.8 3163.98 3289.29 3409.08
Γ=100 3008.45 3159.64 3289.65 3411.82
Γ=150 3009.94 3154.56 3286.9 3409.16
Γ=M 3007.04 3156.12 3274.97 3389.75

Υ=75 Υ=100 Υ=150 Υ=M

Γ=0 3617.19 3672.79 3734.4 3759.04
Γ=10 3504.58 3554.7 3610.7 3632.0
Γ=25 3492.55 3542.9 3598.97 3620.67
Γ=50 3466.75 3514.89 3568.81 3589.72
Γ=75 3481.8 3528.47 3582.41 3602.34
Γ=100 3482.49 3527.72 3580.69 3600.35
Γ=150 3484.08 3530.92 3585.13 3606.17
Γ=M 3462.04 3506.51 3558.52 3578.99

time data t i j are used to determine if a vehicle is able to satisfy a customer’s
time window constraints (which are expressed as [T B

j ; T E
j ] for customer j also

considering the service time T S
j ).

In CVRPTWU, the uncertainty is on travel times. Like in our CVRPU study, we
put this uncertainty into our model in a compatible way with the previous related
studies in the literature (Lee et al. [2012]; Agra et al. [2013]). Therefore, to
express this uncertainty, we now say that t i j data are intervals: t i j ∈ [t i j; t i j].
We now have to express the time window constraints in such a way that the
uncertain t i j values are handled.

Let us first start with the appearance time. Because the travel times are
uncertain, a vehicle’s appearance to its k-th destination, Av

k, is now scenario-
dependent. However, in all scenarios, the vehicles start from the depot at time
0, therefore, the constraint (5.7) is still valid. Let us now define a vehicle’s
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Figure 5.5. The solution pool generated by the RMACS approach for the

instance rc1_2_1.

appearance time in the best-case scenario as Av
k, and formulate it as follows:

Av
k =max(T B

x[v,k]; Av
k−1+ T S

x[v,k−1]+ t x[v,k−1],x[v,k])

∀v ∈ V ; k ∈ {2, 3, ..., |x[v]|} (5.11)

Now we say, at least in the best-case scenario, we have to make sure that a
vehicle does not appear to a location on its route later than that location’s time
window ending:

Av
k ≤ T E

x[v,k] ∀v ∈ V ; k ∈ {1,2, ..., |x[v]|} (5.12)

Note that (5.11) and (5.12) are the same with the classical CVRP time win-
dow constraints (5.8) and (5.9). In more details, (5.11) and (5.12) are re-
applications of (5.8) and (5.9) on the best-case scenario. Using these constraints
according to the best-case scenario assumptions guarantees the satisfaction of
the time window deadlines in the best-case scenario. However, even if the fea-
sibility of the best-case scenario is guaranteed, there could be (perhaps many)
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other scenarios in which the time window deadlines are violated. To diminish
such scenarios as much as possible, we have to define a function called TIMEWIN-
DOWVIOLATIONPENALTY, which returns a penalty amount when there is a time
window violating scenario. Note that, by using a penalty function, our study dif-
fers from Lee et al. [2012] and Agra et al. [2013], where absolute measures are
taken to make sure that the time windows are always satisfied. Our perspective
here is that when the ACS metaheuristic can not find a solution which satisfies
all the time window constraints considering the given uncertainty set, it should
at least find solutions with less number of violations by minimizing the return
value of the time window violation penalty function.

As a first step towards reaching a complete definition of the function TIMEWIN-
DOWVIOLATIONPENALTY, let us use another function which was proposed first in
Agra et al. [2013], and let us call that function MAXIMUMLATENCY in this study.
The function MAXIMUMLATENCY depends on a conservativeness degree configu-
ration mechanism inspired by Bertsimas and Sim [2003]. Therefore, like the
Bertsimas-Sim approach explained in section 2.2.5, the function MAXIMUMLA-
TENCY depends on a Γ parameter. Given a CVRPTWU solution x , a vehicle v, a
destination k (as in k-th destination on the route x[v], which means x[v, k]);
the function call MAXIMUMLATENCY(x , v, k,Γ) returns the latest appearance time
of a vehicle v to its k-th destination, with the assumption that, on the route
x[v], the travel time requirements of Γ number of arcs are at maximum and the
travel time requirements of the rest of the arcs on the route are at minimum. If
the return value of this function call is greater than the time window ending of
the k-th destination on the route, (i.e. if MAXIMUMLATENCY(x , v, k,Γ) > T E

sol[v,k])
then we can conclude that there is at least one scenario in which there is a time
window violation.

Let us now look at the formulation of the function MAXIMUMLATENCY:
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MAXIMUMLATENCY(x , v, k,Γ) =


















































































0 if k = 1

max
�

T B
x[v,k], MAXIMUMLATENCY(x , v, k− 1, 0)+T S

x[v,k−1]+t x[v,k−1],x[v,k]

�

if 2≤ k ≤ |x[v]| and Γ = 0

max
�

T B
x[v,k],

MAXIMUMLATENCY(x , v, k− 1,Γ− 1) + T S
x[v,k−1]+ t x[v,k−1],x[v,k],

MAXIMUMLATENCY(x , v, k− 1,Γ)+ T S
x[v,k−1]+ t x[v,k−1],x[v,k]

�

if 2≤ k ≤ |x[v]| and 1≤ Γ≤ k− 1

−∞ if 1≤ k− 1≤ |x[v]| and Γ≥ k

One can see that the function MAXIMUMLATENCY is a recursive function: ex-
cluding the special cases, the result of the function for the k-th destination de-
pends on the result of the function for the (k− 1)-th destination.

Here, differently from Agra et al. [2013] where a conservativeness de-
gree mechanism inspired by the Bertsimas-Sim approach is used, we define a
CVRPTWU-specific conservativeness degree configuration mechanism, depen-
dent on a parameter Ψ ∈ [0;1]. According to this mechanism, considering the
k-th destination of vehicle v in solution x (i.e. considering x[v, k]) over the
path leading to that k-th destination, we assume that the travel time require-
ments of dΨ · (k− 1)e number of arcs over that path will be at their maximum,
and the travel time requirements of the rest of the arcs over that path will be at
their minimum. In other words, the parameter Ψ configures our assumption on
the ratio of the arcs over a path which are subject to perturbation towards the
worst-case values in terms of travel time requirements. Therefore, Ψ= 0 means
that we assume all the arcs over a path will have their best-case travel time re-
quirements, and Ψ = 1 means that we assume all the arcs over a path will have
their worst-case travel time requirements. The purpose of this conservativeness
degree mechanism is to allow the decision maker to express her/his pessimism
relative to the length of a route. On a route with 2 arcs, Γ = 2 would mean
full conservatism. But on a route with 4 arcs, Γ = 2 would mean half conser-
vatism. However, when we use the Ψ-based mechanism, half conservatism can
be expressed regardless of the route length, by setting Ψ= 0.5.

Now, by using the Ψ-based conservativeness degree mechanism, we define a



110 5.2 Our Studies for Solving CVRP with Uncertain Data

function, ISLATE, which determines if there is a scenario in which the vehicle v
can miss the time window deadline of its k-th destination.

ISLATE(x , v, k,Ψ) =

(

1 if MAXIMUMLATENCY(x , v, k, dΨ · (k− 1)e)> T E
x[v,k]

0 otherwise

We are now ready to define the function TIMEWINDOWVIOLATIONPENALTY, which
depends on the Ψ conservativeness degree parameter, as:

TIMEWINDOWVIOLATIONPENALTY(x ,Ψ) =

∑

v∈V

|x[v]|−1
∑

k=1

�

Πx[v,k] · ISLATE(x , v, k,Ψ)
�

where Πi is a penalty coefficient to be decided by the decision maker. According
to how important the location i ∈ L is, and according to the attributes of the
specific problem at hand, the decision maker can come up with various criteria
for setting Πi values.

Note that, in our experiments presented in Toklu et al. [2014], we had the
assumption that the uncertainty-caused delays to the final destination (i.e. ar-
rivals to the final destination later than EndT ime) are tolerated, because the
final destination is not a customer, but the depot. Because of this reason, in
the function TIMEWINDOWVIOLATIONPENALTY, the summation which iterates over
k values is going up to |x[v]| − 1. In cases where such delays are not accept-
able from a management point of view (because of working hour regulations
and/or availability of the depot itself), the decision maker can easily rearrange
the formulation by setting the upper bound of the summation to |x[v]|, instead
of |x[v]| − 1.

Finally, by incorporating the time window violation penalty mechanism into
the objective, we are ready to complete the definition of CVRPTWU:

CVRPTWU

(

minimize TRAVELCOST(x) + TIMEWINDOWVIOLATIONPENALTY(x)

subject to (5.1), (5.2), (5.3), (5.4), (5.5), (5.7), (5.11), (5.12)

5.2.2.1 A Robust Multiple Ant Colony System for the CVRPTWU

To solve CVRPTWU, we propose a version of our RMACS approach (which was
originally proposed for our CVRPU studies, explained in section 5.2.1.2). Let
us call the CVRPTWU adaptation of the RMACS approach RMACS-TW. Like
the original RMACS approach, RMACS-TW activates multiple ACS processes,
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each focused on a different conservativeness degree. Again, like in the origi-
nal RMACS approach, in RMACS-TW, the ACS processes exchange information
about their solutions, and an ACS process with a dominated solution imports
a better solution from another ACS process and continues to work on that im-
ported solution. At the end of the execution of RMACS-TW, a solution pool is
generated.

The details of the RMACS-TW approach are as follows. The approach de-
pends on a set of considered conservativeness degrees, SΨ = {Ψ1,Ψ2, ...,Ψ|S

Ψ|}.
When the algorithm is started, |SΨ| number of ACS processes are activated: one
ACS process for each Ψ conservativeness degree value within the set SΨ. Since
the beginning of the execution, until Φ seconds have passed, each ACS pro-
cess works independently, without engaging in any interprocess communication.
Starting with the Φ-th second, at each period of φ seconds, each ACS process
uploads its best solution into the shared memory, and scans the memory to see
if its own best solution is dominated by the best solution of another ACS pro-
cess. For simplicity of expression, let us define: Ç(x ,Ψ) = TRAVELCOST(x) +
TIMEWINDOWVIOLATIONPENALTY(x ,Ψ). While scanning the shared memory, if
an ACS process AcsProc1, with the conservativeness degree ΨAcsProc1 and the
best solution xAcsProc1, finds out that another ACS process AcsProc2 has up-
loaded a solution xAcsProc2 which is better according to the conservativeness
degree ΨAcsProc1 (i.e. if Ç(xAcsProc2,ΨAcsProc1) < Ç(xAcsProc1,ΨAcsProc1)), the pro-
cess AcsProc1 imports the solution xAcsProc2 by forcing one of its ants repeat the
moves stored in xAcsProc2.

Experimental environment and the results. An implementation of RMACS-TW
was done in C, and the set of considered conservativeness degrees was config-
ured as SΨ = {0,0.25, 0.5,1}.

For testing our approach, we have used the CVRPTW instances of Homberger
with 200 customers, with vehicle capacity 200. These instances can be found on-
line at NEO Networking and Emerging Optimization [2012]. Originally, these
instances were created for the deterministic CVRPTW without the considera-
tion of uncertainty on the travel time data. To convert these CVRPTW in-
stances into CVRPTWU instances, the following procedure was followed: for
each arc (i, j) in the instance, t ′i j being the travel time coefficient in the origi-
nal CVRPTW instance, the uncertain travel time data were set as t i j = t ′i j and
t i j = t ′i j ·RND(1, 1.1), where RND(a, b) means a random real number between a
and b. The time window violation penalty factor Πi for each location i was set
as: Πi = (20 · t0,i).
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The results can be seen in table 5.9. The table shows the solution pools for
each instance. Within each solution pool, each solution with a different con-
servativeness degree Ψ ∈ SΨ, and its evaluation result (evaluation result being
Ç(x ,Θ) for solution x , under a scenario assumption Θ) under each scenario
assumption Θ ∈ SΨ is reported. From the results, we can see the following
patterns:

• Solution pools showing a trade-off between robustness and low solution cost:
In some solution pools, we can observe that the conservativeness degree
Ψ has a visible effect on the behaviours of the solutions. With Ψ = 0,
the lowest-cost solution is found, but the return value of the evaluation
function Ç(x ,Ψ) increases quickly under worse scenarios, because of the
time window violation penalties. To decrease the time window violation
possibilities, one has to look at solutions generated with higher Ψ values.
Increasing Ψ, however, also increases the cost. With Ψ = 1, the most ro-
bust solution is generated, suffering none from the time window violation
penalty. In the solution pools generated for the instances c1_210, rc1_210,
r1_2_2, rc1_2_6, this kind of pattern can be seen. The solution pools found
for the instances r1_2_1 and rc1_2_2 also show a very similar pattern, the
difference being that even in the most robust solution with Ψ= 1, the time
window violation penalty is minimized but not gone.

• Solution pools in which there is only one dominating solution: In the solution
pools of r1_2_3 and rc1_2_9, one can see that there is only one solution.
This means that, during the execution of RMACS-TW, a particular solution
was found to be cheapest one and also the most robust one, dominating
all other solutions.

• Solution pools with noises: It can be seen that the solution pools generated
by the RMACS-TW approach has noises in some cases. For example, in the
solution pool of rc1_2_5, the best-performing solution under the scenario
assumption Θ = 0 is not the solution with Ψ = 0, but it is the solution
with Ψ = 0.25. Like our explanation about the noise in our RMACS study
in section 5.2.1.2, a general explanation for this kind of behaviour might
be that, after the last solution sharing, an ACS process finds a dominat-
ing solution, but before uploading that dominating solution to the shared
memory, the global execution time limit is reached. As we have noted in
our previous RMACS study in section 5.2.1.2, this noise does not pose a
problem, as it can be easily nullified when the decision maker makes a final
analysis on the solution pool, and eliminates the dominated solutions.
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Table 5.9. CVRPTWU solution pools obtained over the Homberger instances

Solution Pool
Instance Ψ Θ=0 Θ=0.25 Θ=0.5 Θ=1

r1_2_1 0 5110 19494.35 20142.4 26099.18
0.25 5254 7849.96 10959.84 17071.08
0.5 5441 8219.64 8219.64 11171.77
1 5495 8273.64 8273.64 9746.38

rc1_2_2 0 3772 15635.07 15635.07 15635.07
0.25 4559 4559 9825.95 14576.69
0.5 3792 6275.62 6275.62 6275.62
1 3792 6275.62 6275.62 6275.62

r1_2_3 0 4175 4175 4175 4175
0.25 4175 4175 4175 4175
0.5 4175 4175 4175 4175
1 4175 4175 4175 4175

c1_2_9 0 2711 4522.33 5876.63 5876.63
0.25 2734 2734 2734 2734
0.5 2734 2734 2734 2734
1 2734 2734 2734 2734

rc1_2_7 0 3797 5161.16 5161.16 5161.16
0.25 3810 3810 3810 3810
0.5 3810 3810 3810 3810
1 3810 3810 3810 3810

c1_2_6 0 2633 7175.61 7175.61 8180.72
0.25 2710 2710 3704.32 4709.43
0.5 2711 2711 2711 3716.11
1 2784 3897.46 3897.46 3897.46

c1_2_3 0 2747 2747 2747 2747
0.25 2747 2747 2747 2747
0.5 2747 2747 2747 2747
1 2747 2747 2747 2747

c1_2_1 0 2637 2637 4019.08 4019.08
0.25 2637 2637 4019.08 4019.08
0.5 2643 2643 2643 2643
1 2643 2643 2643 2643

rc1_2_5 0 4200 19002.08 21417.9 25143.77
0.25 4148 4148 4148 5717.38
0.5 4506 4506 4506 4506
1 4514 4514 4514 4514

rc1_2_3 0 3547 3547 3547 3547
0.25 3547 3547 3547 3547
0.5 3547 3547 3547 3547
1 3547 3547 3547 3547
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Table 5.9 continued

Solution Pool
Instance Ψ Θ=0 Θ=0.25 Θ=0.5 Θ=1

c1_2_8 0 2638 5567.98 5567.98 5567.98
0.25 2888 2888 2888 2888
0.5 2888 2888 2888 2888
1 2632 2632 2632 2632

r1_2_6 0 4577 22366.84 22366.84 22366.84
0.25 4708 4708 4708 5983.74
0.5 4708 4708 4708 5983.74
1 4713 4713 4713 4713

r1_2_4 0 3617 3978.65 3978.65 3978.65
0.25 3629 3629 3629 3629
0.5 3629 3629 3629 3629
1 3618 3618 3618 3618

r1_2_2 0 4713 11063.71 17508.34 17508.34
0.25 4723 4723 7351.3 7351.3
0.5 4775 4775 4775 4775
1 4775 4775 4775 4775

r1_2_5 0 4769 15842.03 18544.94 21465.66
0.25 5150 5150 5150 5150
0.5 5150 5150 5150 5150
1 5150 5150 5150 5150

r1_2_7 0 3853 10125.12 11581.65 13599.23
0.25 3971 3971 3971 3971
0.5 3971 3971 3971 3971
1 3971 3971 3971 3971

c1_2_4 0 2754 4139.71 4139.71 4139.71
0.25 2815 2815 2815 2815
0.5 2815 2815 2815 2815
1 2815 2815 2815 2815

rc1_2_9 0 3724 3724 3724 3724
0.25 3724 3724 3724 3724
0.5 3724 3724 3724 3724
1 3724 3724 3724 3724

r1_2_8 0 3350 3350 3350 3350
0.25 3350 3350 3350 3350
0.5 3350 3350 3350 3350
1 3350 3350 3350 3350

rc1_2_6 0 3838 5437.27 9803.87 9803.87
0.25 3847 3847 6316.43 7742.8
0.5 3849 3849 3849 3849
1 3849 3849 3849 3849
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Table 5.9 continued

Solution Pool
Instance Ψ Θ=0 Θ=0.25 Θ=0.5 Θ=1

r1_210 0 3961 3961 3961 3961
0.25 3961 3961 3961 3961
0.5 3961 3961 3961 3961
1 3961 3961 3961 3961

rc1_2_8 0 3866 3866 3866 3866
0.25 3866 3866 3866 3866
0.5 3866 3866 3866 3866
1 3866 3866 3866 3866

c1_2_5 0 2634 3929.72 3929.72 5204.48
0.25 2636 2636 2636 3910.76
0.5 2636 2636 2636 3910.76
1 2645 2645 2645 2645

rc1_210 0 3529 8361.52 9377.92 9377.92
0.25 3619 3619 4950.9 4950.9
0.5 3621 3621 3621 3621
1 3621 3621 3621 3621

c1_210 0 2675 5820.03 5820.03 7138.31
0.25 2770 2770 4097.4 5321.76
0.5 2828 2828 2828 2828
1 2828 2828 2828 2828

c1_2_7 0 2628 30076.99 30076.99 30076.99
0.25 2640 2640 2640 2640
0.5 2640 2640 2640 2640
1 2640 2640 2640 2640

c1_2_2 0 2830 6037.26 7958.18 8666.53
0.25 2945 2945 3604.84 5190.4
0.5 3076 3076 3076 3076
1 2905 2905 2905 2905

rc1_2_1 0 3995 16403.61 17187.83 22312.59
0.25 4265 4958.12 9095.4 11738.39
0.5 4458 5848.23 5848.23 6668.15
1 4390 6082.6 6082.6 6902.53

r1_2_9 0 4453 10911.1 10911.1 10911.1
0.25 4684 4684 4684 4684
0.5 4684 4684 4684 4684
1 4684 4684 4684 4684

rc1_2_4 0 3395 3395 3395 3395
0.25 3395 3395 3395 3395
0.5 3395 3395 3395 3395
1 3395 3395 3395 3395
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5.2.3 General comments on our studies

In our studies explained in sections 5.2.1 and 5.2.2, we have used robust ACS-
based metaheuristic techniques (RACS and RMACS) to generate solution pools
for medium-to-large sized CVRPU and CVRPTWU instances. Inspired by Bertsi-
mas and Sim [2004a], these solution pools contain solutions with various de-
grees of conservativeness. The results we have obtained show that the solution
pools contain useful alternative solutions with various lowest and highest possi-
ble costs, or various levels of immunities against infeasibility caused by uncer-
tainty. We have also seen that our RMACS technique, thanks to its concurrently-
running ant colonies which periodically inform each other of their best solutions,
increases the qualities of the generated solution pools. In general, under the un-
certainty of travel costs or travel times, it can be difficult to tell which routing
scheme is the best solution. With the solution pools generated by our RMACS
method, the decision maker can analyze alternative solutions, and pick the one
which seems the most practical.



Chapter 6

Matheuristic Robust Optimization

Framework

Previously, in section 5.2.1.2, we discussed a concurrent matheuristic robust op-
timization approach called robust multiple ant colony system (RMACS), focused
on the uncertainty-aware vehicle routing problems. In this chapter, we first fo-
cus on the concept of matheuristics and its practicality within the field of robust
optimization in general, and then discuss how the concurrent matheuristic ro-
bust optimization approach can be treated as a general framework, and how it
can be applied on many combinatorial optimization problems.

6.1 Using matheuristics for robust optimization

As previously mentioned in chapter 1, a matheuristic algorithm can be described
as a hybridization between a mathematical programming approach (linear pro-
gramming, integer programming, etc.), and a metaheuristic approach. We now
discuss how this hybridization is especially practical in the case of robust opti-
mization, and therefore also in the case of our framework.

Usually, in robust optimization, a solution is evaluated according to its worst-
case scenario. This means, when calculating a solution’s cost, we consider a
special scenario in which the uncertain coefficients maximize that solution’s cost
(see, for example, Kouvelis and Yu [1997]). Because of this, we usually en-
counter a minimax scheme, which can be expressed in a compact way as follows:

minimize
x ∈ X

�

maximize
c j | j ∈ J

�

∑

j∈J

c j x j

�

�

(6.1)
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that is, we are trying to minimize the cost by looking for a practical solution x
within the solution space X , and we are evaluating the cost of the solution x
under a scenario in which the uncertain cost coefficients c j ∈ J maximize the
expenses of the solution x . In (6.1), the maximization part represents a sub-
problem of finding the worst-case scenario within the main optimization prob-
lem. Similarly, when we consider the uncertainty in the constraint coefficients,
the usual practice within the field of robust optimization is to find the worst-
case scenario in which the uncertain coefficients are configured in such a way
that the constraint is closest to being unsatisfied (or most far away from being
satisfied). In other words, the satisfaction of the constraint is checked under
the most “dangerous” scenario (Ben-Tal and Nemirovski [2000]). Considering
upper bound constraints indexed as i ∈ I , this practice can be expressed in a
compact way as follows:

maximize
ai j | j ∈ J

�

∑

j∈J

ai j x i j

�

≤ bi ∀i ∈ I (6.2)

that is, considering the solution x , and the uncertain coefficients ai j for the
constraint i ∈ I , whether the left-hand side exceeds the upper bound bi or not
is checked under the worst-case scenario in which the left-hand side is at its
highest value. The maximization term within (6.2) represents the subproblem
of finding that worst-case scenario, which looks for the most dangerous values
for ai j. In the rest of this chapter, let us refer to these subproblems demonstrated
in (6.1) and (6.2) as worst-case-finding subproblems. The formulation of worst-
case-finding subproblems can be observed also in the Bertsimas-Sim approach
discussed in section 2.2.5, within the model (2.5), where inner maximization
terms can be seen both in the objective and in the constraints.

In general, metaheuristics are used when it is acceptable to solve a problem
to near-optimality, instead of to exact optimality. However, even when using
metaheuristics and therefore looking for near-optimal solutions, it is usually
desirable to solve the worst-case-finding subproblems to their optimalities, to
make sure that a solution’s worst-case cost and worst-case feasibility are cor-
rectly evaluated. To solve these subproblems into optimality, embedding math-
ematical models into the metaheuristics and solving them by using exact meth-
ods, therefore using matheuristic hybridization techniques, is a practical choice.
Therefore, within our matheuristic framework as well (for which a detailed dis-
cussion takes place in section 6.2), one of the most important steps is to make
the objective function and the constraints uncertainty-aware by embedding such
models of subproblems into the metaheuristic algorithm. Note that, however, ac-
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cording to the types of subproblems obtained, there can be efficient alternative
algorithms, in addition to the classical techniques like the Simplex algorithm, to
solve them into optimality. For example, in the case of our uncertainty-aware
vehicle routing study presented in chapter 5, we solve the subproblem modelled
as (5.10), by using the algorithm 2.

6.2 Description of the matheuristic robust optimization

framework

We now give a general description of our framework, its design principles, and
how to apply it.

In short, the matheuristic robust optimization framework we propose can be
explained as a general guideline for a developer to prepare an uncertainty-aware
heuristic for solving a combinatorial optimization problem and obtain a solution
pool, containing solutions with various conservativeness degrees and costs in the
end. The design principles of this framework are as follows:

Execution time. An optimization problem has to be solved to near-optimality
within reasonable amount of time, without requiring too much computer mem-
ory. Because of this, the framework relies on a metaheuristic algorithm for per-
forming a search within the solution space.

Reliable solution evaluation. Solutions have to be evaluated in a reliable
way, considering the uncertainty. To achieve this, we use robust optimization
techniques to express the uncertainty-aware objective and the constraints. To
evaluate a solution in an accurate, reliable way in its worst-case, we use the
matheuristic techniques discussed in section 6.1: we embed exact solvers into
the metaheuristic algorithm to solve the worst-case-finding subproblems into
their optimalities.

Alternative solutions. The decision maker should be provided with solution
pools, containing alternative solutions with different conservativeness degrees,
so that an analysis on the trade-off between robustness and solution cost can be
made. Such an analysis is helpful for making a practical decision. This principle
is satisfied by executing multiple processes of the metaheuristic algorithm, with
the help of a solution sharing mechanism, like in the RMACS approach discussed
in section 5.2.1.2.
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In section 6.2.1, we continue with a step-by-step explanation on how to apply
the framework in a problem-independent way.

6.2.1 Applying the framework

Let us assume that we want to solve a combinatorial optimization problem. Let
us name the simple, uncertainty-unaware version of this problem as P, and its
uncertainty-aware counterpart as PU . We now explain which steps are required
to apply the framework to solve PU .

6.2.1.1 Step one

The first step to solve the problem PU by using our framework is to select a meta-
heuristic algorithm proposed for solving P. In the literature, various metaheuris-
tic algorithms are proposed for various combinatorial optimization problems of
different natures. Therefore, the selection of metaheuristic in this step depends
heavily on the nature of the problem P. Selecting a metaheuristic algorithm re-
ported to be efficient for solving P will satisfy the design principle of obtaining a
solution within reasonable amount of time without requiring too much memory,
and will positively effect the qualities of solution pools we generate for PU in
the end.

6.2.1.2 Step two

The second step of applying the framework is to select a robust optimization
approach, which were previously mentioned in section 2.2, and then re-express
the objective function evaluator and/or the constraint satisfaction checker of the
metaheuristic algorithm according to the selected robust optimization approach.
At this step, the selection of the robust optimization approach depends on the
type of uncertainty considered on PU . Since, in the end, we want to obtain solu-
tion pools that store different solutions with different conservativeness degrees,
it is important that the selected robust optimization approach can be configured
in terms of conservativeness. In general, if the uncertainty can be considered
in the interval form, the approach of Bertsimas-Sim is usually a good choice,
because it provides the possibility of configuring the conservativeness degree,
and evaluating a solution according to the perspective of Bertsimas-Sim takes
polynomial time in many problems, which means it avoids big losses in terms of
execution speed of the metaheuristic algorithm. After selecting the robust op-
timization approach, the parts of the metaheuristic algorithm which deal with
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uncertain coefficients (the objective function evaluator and/or the constraint
checker) are modified, so that a solution’s quality and feasibility is analyzed
according to the selected robust optimization approach.

Since this step involves re-expressing the objective function and the con-
straint checkers of the metaheuristic to make them uncertainty-aware, this is
where we encounter worst-case-finding subproblems mentioned in section 6.1,
and this is where we make use of the technique of embedding exact algorithms
into the metaheuristic to solve those subproblems. By doing so, we satisfy the
design principle of evaluating a solution correctly within its worst-case scenario.

6.2.1.3 Step three

In the third and final step of applying the framework, our goal is to execute
multiple processes of the modified metaheuristic algorithm, where each process
is configured to have a different conservativeness degree. In the end, all the
solutions produced by these processes form a solution pool: a collection of al-
ternative solutions with different costs and conservativeness degrees. Also, with
the help of a shared memory, these metaheuristic processes exchange informa-
tion from time to time, so that when a metaheuristic process is stuck in a local
minimum, it can import a better solution from another process. This step can be
divided into following substeps:

• A shared memory is implemented. This shared memory can be imple-
mented as a separate program which listens to the running processes of
the metaheuristic optimization implementations. In this shared memory,
there is a memory slot for the best solution known so far for each conser-
vativeness degree. The shared memory has two important interfaces: (i)
when the process of a metaheuristic implementation contacts the shared
memory and sends its best known solution, the shared memory process
will save that best solution in the correct slot of memory; (ii) when the pro-
cess of a metaheuristic implementation demands from the shared memory
to see all the solutions, the shared memory process will send that process
all the solutions kept in its records.

• Metaheuristic algorithms are modified such that they send their best solu-
tions to the shared memory from time to time, and they also import all the
solutions to see if there is a better solution in a different slot of the shared
memory (sent by another running process of the metaheuristic with a dif-
ferent conservativeness degree). When such a better solution is found, the
metaheuristic process imports that solution as its current solution.
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This methodology of handling the uncertainty is summarized in figure 6.1.

6.3 Using di�erent metaheuristics within the framework

From the description made in section 6.2, one can notice that the shared memory
is a component completely independent of the metaheuristic algorithm used: it
stays the same regardless of the choice of the metaheuristic. In addition, many
various metaheuristics can be modified to have communication with the shared
memory without doing fundamental changes in the algorithm. We now discuss
more about using various metaheuristics within the framework.

Ant colony system (ACS). In our studies explained in chapter 5, we had used
ACS. In the original definition of ACS, the best solution found is kept by the
metaheuristic. So, we modify the original definition of ACS by imposing that
this best solution has to be sent to the shared memory from time to time. When
it comes to importing a better solution, as previously mentioned in chapter 5,
we forcefully make an ant repeat the moves of that better solution. When the
solution is imported this way, the best solution of the ant colony and the artificial
pheromones are updated by the ACS, without further modification in the code.

Iterated local search. A simple iterated local search would work around the
concept of a current solution: at each iteration, the algorithm would try to im-
prove the current solution by applying a local search on it. After the local search,
if the solution is improved, the improved solution would be the new current so-
lution. This means, the current solution is the same as the best solution known
so far by the algorithm. Therefore, importing and exporting a solution would be
equivalent to taking a better solution from the shared memory and labeling it
as the new current solution, and sending the current solution from time to time,
respectively.

Simulated annealing. Simulated annealing is an algorithm similar to the iter-
ated local search, except that it has a temperature variable, and according to
the state of this temperature variable, the current solution can be replaced by a
worse solution, because of the fact that accepting worse solutions from time to
time can make the heuristic search escape from a local minimum and can lead
to better results in the long run. Because of this behaviour, the current solution
is not always the best solution known so far, and the best solution known so far
is kept separately. Solution export can be handled simply by sending that best



123 6.3 Using di�erent metaheuristics within the framework

Figure 6.1. The summary of the methodology proposed.



124 6.4 Using the framework on various problems

solution from time to time to the shared memory. One technique for solution
importing could be to take a better solution from the shared memory and label
it both as the new current solution and as the new best solution. For deciding the
policy about the temperature variable during the exporting of a better solution
is a research question: one can find an appropriate policy on this after running
some experiments.

Tabu search. An important metaheuristic algorithm within the literature is tabu
search (Glover and Laguna [1997]). Like iterated local search and simulated an-
nealing, tabu search has the concept of “current solution”. This current solution
is to be iteratively improved by using local search techniques. The unique aspect
of tabu search is that it involves memory structures (“tabu list”) which remember
the characteristics of the solutions previously visited and labeled as unpromising
local minimum and/or infeasible. Those characteristics kept in the memory are
declared as “tabu”, and the algorithm avoids exploring new solutions showing
those characteristics. The tabu search algorithm has been used for important
combinatorial optimization problems, including vehicle routing problem (Gen-
dreau et al. [1994]; Barbarosoğlu and Özgür [1999]), scheduling (Xhafa et al.
[2009]), etc. Being another metaheuristic using the concept of current solution,
tabu search could also be used as a component of our framework. However,
further experiments are needed to find the best policy for the solution sharing
mechanism about the tabu list.

Population-based metaheuristic algorithms. Genetic algorithm, evolution
strategies are examples to population-based algorithms: they update a “popu-
lation” (a collection of solutions) instead of a single “current solution”. In the
case of a population-based algorithm, importing and exporting could be imple-
mented getting a better solution from the shared memory and writing it over the
worst solution in the population, and sending the best solution in the population
to the shared memory, respectively.

6.4 Using the framework on various problems

Now, let us discuss the generality of our proposed framework over various com-
binatorial optimization problems. In chapter 5, we had considered capacitated
vehicle routing problem, as it is a well-known optimization problem, frequently
encountered and studied both in academia and industry. However, the same
framework can be used for many other popular combinatorial optimization prob-
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lems, in which uncertainty is an important factor. Below, we discuss some of
these problems which we have not covered in our studies, but which we think
as possible target problems for our framework.

Orienteering problem. The orienteering problem is another transportation-
related combinatorial optimization problem, for which a survey can be found in
Vansteenwegen et al. [2011]. According to a very basic definition of the orien-
teering problem, we have a depot, a vehicle, and customers at various locations.
Visiting each customer means profit, the amount of the profit depending on the
particular customer. Given that a global deadline is set, and the time available
until this global deadline is not enough to visit all the customers, our purpose
is to generate a route for our vehicle for visiting a subset of these customers,
such that the profit is maximized. An uncertainty-aware version of the basic
orienteering problem is discussed in Campbell et al. [2011], where the travel
and service times are subject to uncertainty. In their study of uncertainty-aware
orienteering problem, the authors consider that, if the company commits to serv-
ing a customer but the assigned vehicle can not reach that customer before the
deadline (because the travel/service times take longer than anticipated), the
profit of the company suffers a penalty. The authors use the variable neigh-
bourhood search metaheuristic (a method initially proposed in Mladenović and
Hansen [1997]) for finding heuristic solutions for this problem. A robust op-
timization variation of the orienteering problem (where the travel and service
times are subject to uncertainty, and their probability distribution information
are not known) could be considered, in which higher conservativeness degrees
would trigger pessimistic assumptions about the travel/service times, and would
lead to tours that avoid dangerous commitments. Our matheuristic robust opti-
mization framework can be adapted for the robust optimization variation of the
orienteering problem, in which multiple processes of variable neighbourhood
search are executed concurrently, each process being focused on a different con-
servativeness degree.

Home healthcare service optimization problem. Increasing the expectancy
of life within the society is a very important topic. For this purpose, there has
been a growing interest since the last decade on the home healthcare service
optimization problem. This problem is encountered by health institutions, and
it involves the assigning of the nurses to patients, scheduling the treatments on
the patients, and routing of the nurses so that they use efficient paths and reach
their destinations quickly. These patients to be visited could be people who are
discharged from hospital but still need final treatments for their full recovery, el-
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derly people who are in need of care without coming to the hospital, etc. It has
been stated in Nickel et al. [2009] that this problem is NP-Hard, therefore usage
of metaheuristics is required for medium-to-large sized instances. In Nguyen and
Montemanni [to appear], the authors mention the challenges on this problem
brought by the uncertainty. Indeed, availabilities of the nurses, and travel and
service times are all data which can be perturbed significantly because of un-
certainty. A metaheuristic algorithm which takes the uncertainty into account,
and which can be configured in terms of conservativeness degree, could be im-
plemented and run in parallel with the support of solution sharing mechanism.
In the case of the travel time/cost uncertainty consideration, the Bertsimas-Sim-
inspired formulations we have used in chapter 5 could be adapted.

Scheduling problems. Scheduling problems are encountered in various fields,
and they are affected by various uncertainties. The energy management problem
mentioned in section 4.2 involves the scheduling of the maintenance operations
and the productions of the power plants in such a way that multiple customer
demand scenarios are satisfied. A variant of this energy management problem,
in which the customer demand scenarios are labeled as optimistic, pessimistic,
extremely-pessimistic etc., could be considered. This labeling would enable
us to have a conservativeness degree configuration, and therefore our frame-
work could be applied to obtain solution pools. Also, as mentioned previously,
a very important subproblem within home healthcare optimization problem is
the scheduling of the visits of the nurses to patients. This scheduling problem is
affected by the uncertainty of the availability of the nurses, and the conservative-
ness degree is configured according to how pessimistic we are when we make
our assumptions on the number of missing nurses. Considering this conserva-
tiveness degree configuration, nurse scheduling is another problem which can be
studied by using our framework. Finally, another important scheduling problem
is the project scheduling with resource constraints (see Hartmann and Briskorn
[2010] for a survey). Shortly, in this problem, the purpose is to schedule ac-
tivities of a project in such a way that the project finishes as early as possible.
It is also common in this problem to have constraints imposing specifing time
windows for beginnings or endings of some activities. Studies on handling the
uncertainty in activity durations within this problem have been reported in the
literature (see Herroelen and Leus [2005] for a survey; also see Artigues et al.
[2013] for a recent study). A matheuristic approach developed according to our
framework could result in an interesting alternative methodology for handling
this problem.



Chapter 7

Conclusions

Uncertainty is a very important factor in optimization problems, and ignoring
the uncertainty could result in solutions which turn out to be far from being
optimal in reality. During this PhD research, our goal was to develop heuris-
tic methodologies for robust optimization problems for solving large problems
subject to uncertainty.

For achieving the goal of developing heuristic methodologies for robust opti-
mization problems, we first explored the field of robust optimization which has
given us interesting results. In more details, our studies on aggregate blend-
ing problem has resulted in a simple yet practical linear-programming-based
approach, in which the uncertainty is handled, and the degree of conservative-
ness is configurable; and our studies on minimum power multicasting problem
has resulted in a heuristic technique which can find reliable solutions power
requirement data subject to stochasticity. In addition to these contributions,
we obtained further interesting results in the field of matheuristics: our stud-
ies on large-scale energy management problem has shown the effectiveness
of matheuristic techniques for handling large robust optimization problems;
and our studies for solving the minimum power multicasting problem by us-
ing shared incumbent environment has shown the effectiveness of solution shar-
ing mechanism, which is also used in our final matheuristic robust optimization
framework. Besides being stepping stones towards our final robust optimization
framework, these studies we have done resulted in contributions into the fields
of robust optimization and matheuristics on their own.

After our previous stepping-stone studies, we focused on combining the ro-
bust optimization techniques with matheuristics. Within this perspective, our
first study was a robust ant colony system (RACS), for solving a vehicle rout-
ing problem with uncertain travel costs. In our experiments, RACS was seen
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to be able to provide solution pools in which different solutions with different
costs and robustness levels are kept, so that the decision maker can see and an-
alyze the trade-off between the cost and robustness, and then make a practical
decision. Therefore, the price of robustness addressed previously by the ellip-
soid approach and the Bertsimas-Sim approach was put into a metaheuristic
environment, bringing the advantage of handling medium-to-large sized vehicle
routing problems with uncertainty. Then, to increase the qualities of the solution
pools generated by RACS, we introduced a matheuristic approach called robust
multiple ant colony system (RMACS), in which multiple processes of RACS run
concurrently with different configurations of conservativeness degrees, and ex-
change their solutions from time to time, so that when a RACS process is stuck at
a local minimum, it becomes aware and imports a better solution from another
RACS process. In our experiments, we have shown that the solution sharing
mechanism we introduced for RMACS indeed increases the qualities of the solu-
tion pools, compared to the results obtained by RACS.

Finally, we can argue that the matheuristic approach we used for solving
vehicle routing problems with uncertain data is actually a problem-independent
robust optimization framework for handling uncertainty and solving medium-to-
large sized problems while avoiding the big memory and/or execution time re-
quirements of the pure mathematical programming based approaches. To elab-
orate more on the generality of the framework, a very important component
within our approach, the solution sharing mechanism, does not depend on any
attribute of the problem being solved. The other components of the framework,
the metaheuristic algorithm and the robust optimization approach, are more
problem-dependent, but the decision maker/developer can make use of the ex-
isting work available in the literature for having these components prepared. In
short, the steps to be taken to apply the framework on a robust optimization
problem can be described as: (i) select a metaheuristic algorithm suitable for
the uncertainty-unaware version of the problem at hand; (ii) modify the objec-
tive function evaluator and the constraint checker of the selected metaheuristic
by using a robust optimization approach, so that the metaheuristic algorithm
becomes uncertainty-aware; (iii) implement a shared memory and a solution
exchange mechanism, so that multiple instances of the modified metaheuristic
will run concurrently and notify each other of their own best solutions, and get
each other unstuck from local minima. Although we considered the vehicle rout-
ing problems under uncertainty in our studies, the generality of our framework
makes it possible to solve many combinatorial optimization problems under un-
certainty. Especially, if there is a well-known metaheuristic algorithm proposed
in the literature for efficiently solving the uncertainty-unaware version of a prob-
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lem to near-optimality, it can be very practical for the decision maker/developer
to adopt our framework, and prepare a matheuristic solver for uncertainty-aware
version of that problem. By using our framework, the possibilities of future
research include solving uncertainty-aware counterparts of various scheduling
problems within the fields of home healthcare and project management, and
further transportation problems (orienteering problems, etc.).
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Appendix A

Large-Scale Energy Management

Problem: Technical Details

In section 4.2, we discussed our matheuristic MATHDEC approach for the large-
scale energy management problem (LSEMP). Here we present technical details
of the mathematical models we used within our approach. These formulations
are previously presented in the online addendum (Anghinolfi et al. [2011a])
of the study Anghinolfi et al. [2012]. We also list them below for providing a
complete description of the MATHDEC approach.

A.1 Details of the MIP Outage Scheduling submodule

The MIP module defines and produces a schedule of outages for T2 plants, using
values passed by the HOSG or by the LS. These values specify an upper and a
lower bound for the week when the decoupling of each plant can be scheduled.
The schedule is feasible with respect to scheduling constraints ([CT13]-[CT21]).
Constraints on power production are not taken into account in this procedure.

The original objective function is not taken into account in this phase, so,
MIP objective corresponds to a constraint feasibility problem.

Details of the model follow.

Sets and indices

• i ∈ I ¬ {0, . . . , I − 1} is the index of type 2 power plants

• k ∈ K ¬ {−1, 0, . . . , K − 1} is the index of cycles, k = −1 represents the
campaign in progress at the beginning of the time horizon, before the first
outage
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• t ∈ T ¬ {0, . . . , T − 1} is the index of steps

• h ∈W¬ {0, . . . , H} is the index of weeks. If an outage is scheduled in week
H it means that it is not going to be executed in the planning horizon.
W f ⊆W is a set of weeks where scheduling constraints (A.16) hold

• Wh is the set of all timesteps t contained in week h

• CT f is the set of outages indexed by scheduling constraint f , with f ∈ F ¬
{14, . . . , 21}.

Data preparation

• the length of a week LHh =
∑

t∈Wh
LTt is calculated as the sum of the lengths

LTt of the timesteps in that week

• the maximum cumulative fuel consumption up to week h is the sum on
all of the week of the maximum power output multiplied by the week
durations: Pmax

ih ¬
∑h

z=0 Pmax
iz · DHz

• the refueling ratio Rr
ik =

Q ik−1
Q ik

is calculated using the refueling coefficients
Q ik specified in the datasets

• N L
ik is the first possible week h where plant i can start outage of cycle k.

It is a lower bound defined as N L
ik =max(T o

ik, Lb
ik), where T o

ik is specified in
the datasets by [CT13], and Lb

ik is a lower bound given in input to the MIP
by the HOSG or by the LS (see respectively sections ?? and ?? ).

• N U
ik is the last possible week h for plant i to start outage of cycle k.

It is an upper bound defined as N U
ik =min(T a

ik, U b
ik) , where T a

ik is specified
in the datasets by [CT13] and U b

ik is an upper bound given in input to the
MIP by the HOSG or by the LS (see respectively sections ?? and ?? )

Constants

• LHh is the length of a week

• P
max
ih is the maximum cumulative fuel consumption up to week h

• N L
ik is the first possible week h where plant i can start outage of cycle k

• N U
ik is the last possible week h where plant i can start outage of cycle k
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• LO
ik is the length of outage k for plant i

• Rmin
ik and Rmax

ik are respectively the minimum and the maximum reload for
plant i in cycle k

• Smax
ik and Amax

ik are the maximum bounds on stock of fuel respectively during
production campaign and at the time of outage of cycle k

• Bik is a threshold on stock of fuel for plant i in cycle k. Under the threshold
a power profile is imposed. The constant is also used in constraints (A.4)

• Rr
ik is a refueling ratio

• A f is a set of plants. It is indicated as A f (h) in case it depends on week h

• Se f is a spacing between outages for set f

• I f and F f are the initial and final week of set f where constraints (A.10)
hold

• STik f is the number of weeks after the start of outage k of plant i in set f
where the use of a certain kind of resource is used, STik f ∈

�

0, LO
ik

�

• TUik f is the time of use, in weeks, of a certain resource. It applies to plant
i of set f in cycle k

• E f h is the maximum number of outages of set f that can be executed in
parallel in week h

• Omax
f is a bound on maximum offline power capacity for plants in set f

• M is a big-M , a constant bigger than any other constants in the model.

Decision Variables

• di,k,h ∈ B is 1 if plant i begins the k-th outage in week h, defined ∀i, k, h :
N L

ik ≤ h≤ N U
ik . It is the decoupling date.

• xB
ik ∈ R+ is the remaining stock of fuel in plant i at the end of cycle k− 1,

that is to say right before cycle k

• xA
ik ∈ R+ is the initial stock of fuel in plant i at the beginning of cycle k,

that is to say right after cycle k− 1

• rik ∈ R+ is the reload of plant i in cycle k.
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Mixed integer program

Rmin
ik ·

�

1− dikH
�

≤ rik ≤ Rmax
ik ·

�

1− dikH
�

∀i, k (A.1)

xA
i,−1 = X 0

i ∀i (A.2)

xB
ik ≥ xA

i,k−1−
H−1
∑

h=0

dikh ·Pmax
ih +

H−1−LO
ik

∑

h=0

di,k−1,h ·Pmax
i,h+LO

i,k−1
− dikH ·M + di,k−1,H ·M ∀i, k

(A.3)

xA
ik = Rr

ik · (x
B
ik − Bi,k−1) + rik + Bi,k−1 ∀i, k (A.4)

xB
ik ≤ Amax

i,k ∀i, k (A.5)

xA
ik ≤ Smax

i,k ∀i, k (A.6)
H
∑

h=0

dikh = 1 ∀i, k (A.7)

K−1
∑

k=0

dikh ≤ 1 ∀i, h (A.8)

dikh+
min(H−1,h+LO

ik+Se f )
∑

h′=h

di′k′h′ ≤ 1 ∀ f , i, i′, k, h : f ∈ CT14 ∧ i, i′ ∈ A f ∧ i 6= i′

(A.9)

dikh+
min(H−1,h+LO

ik+Se f −1,F f )
∑

h′=h

K−1
∑

k′=0

di′k′h′ ≤ 1















∀ f , i, i′, k, h : f ∈ CT15 ∧ i, i′ ∈ A f

∧ i 6= i′

∧h=max(0, I f − LO
ik + 1), . . . ,

. . . ,min(F f , H − 1)
(A.10)

dikh+
min(H−1,h+Se f )

∑

h=h′

K−1
∑

k′=0

di′k′h′ ≤ 1 ∀ f , i, i′, h, k : f ∈ CT16 ∧ i, i′ ∈ A f ∧ i 6= i′

(A.11)

dikh+
K−1
∑

k′=0

min(H−1,h+LO
ik+Se f −1)

∑

h′=max(h,h+LO
ik−Se f +1)

di′k′h′ ≤ 1 ∀ f , i, i′, k, h : f ∈ CT17 ∧ i, i′ ∈ A f ∧ i 6= i′

(A.12)

dikh+
K−1
∑

k′=0

min(H−1,h+LO
ik+Se f −1)

∑

h′=max(h,h+LO
ik−Se f +1)

di′k′h′ ≤ 1 ∀ f , i, i′, k, h : f ∈ CT18 ∧ i, i′ ∈ A f ∧ i 6= i′

(A.13)
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∑

i∈A f

K−1
∑

k=0

min(h−STik f ,TUik f )
∑

e=0

dik,h−STik f −e ≤Q f ∀ f , h : f ∈ CT19 (A.14)

∑

i∈A f (h)

K−1
∑

k=0

min(h,H−1)
∑

h′=max(0,h−LO
ik+1)

dikh′ ≤ E f h ∀ f , h : f ∈ CT20 (A.15)

∑

i∈C f

K−1
∑

k=0

h
∑

h′=max(0,h−LO
ik+1)

dikh′ · Pmax
i t ≤ Omax

f ∀ f , h, t : f ∈ CT21 ∧ h ∈Wt ∧ t ∈Wh

(A.16)

Constraints (A.1) correspond to [CT7] and imposes bounds on reload per-
formed during cycle k of plant i. Constraints (A.2) correspond to [CT8] and
defines the initial fuel stock of plant i.

Constraints (A.3) model the variation of fuel stock during a production cam-
paign [CT9]. They work by imposing a lower level for stock at the end of cycle
k − 1, that is, before refueling at cycle k, on the basis of the decoupling deci-
sions. As shown in figure A.1 the constraints say that, if cycle k and k − 1 are
executed, then the fuel stock before refueling k has to be greater than the fuel
stock after refueling k − 1 minus the maximum fuel consumption during cycle
k−1. If cycle k is not executed but k−1 is, the constraints are dominated by the
non negativity constraint for xB

ik. With the typical input, constraints (A.3) also
impose that if cycle k−1 is not executed then di,k−1,H = 1 and therefore also k is
not executed, in order to satisfy the bound xB

ik ≤ Amax
ik . Together with the lower

and upper bound on stocks before (A.5) and after (A.6) refueling[CT11], the
constraints are also used to favour the correct sequencing for outages as speci-
fied by [CT13] and the fact that if cycle k− 1 is not executed then also k is not
executed.

Constraints (A.4) are the fuel stock variation during an outage described by
[CT10].

Constraints (A.7) require that each outage must be done within its allowed
weeks, thus imposing [CT13] while (A.8) ensure that for each plant i, in each
week h no more than one decoupling is performed. If an outage is not planned
in the scheduling horizon than it is planned in week H.

Constraints (A.9) corresponds to [CT14]: they state that the outages of set
Am have to be spaced by at least Sem weeks. If Sem is negative it represents the
maximum authorized overlapping period. As shown in figure A.2, if plant i goes
offline in week h, than no other plant i′ from the same set can go offline for Sem

weeks after plant i has finished its outage.
Constraints (A.10) specify the minimum spacing between outages of set Am
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during a specific period
�

Im, Fm
�

. They correspond to [CT15]. The way they
work is illustrated in figure A.3: if a plant i goes offline in a week h such that its
outage enters the period

�

Im, Fm
�

, then no other plant i′ can start the outage for
Sem after the end of the outage of plant i.

Constraints (A.11) impose a minimum spacing between decoupling dates of
all plants in set Am. They correspond to [CT16]. As shown in figure A.4, if plant
i decouples in week h, then any other plant i′ in Am cannot decouple before
h+ Sem.

Constraints (A.12), corresponding to [CT17] specify a minimum spacing be-
tween dates of coupling. The way the constraints work is depicted in figure A.5:
if a plant i couples in week h then no other plant i′ from the same set Am can
couple before Sem weeks.

Constraints (A.13) specify a minimum spacing between coupling and decou-
pling dates [CT18]. As shown in figure A.6, if a plant i decouples in week h,
then any other plant i′ in the same set Am has to decouple Sem weeks before i
couples (week h+ LO

ik) or Sem after.

Constraints (A.14) are about resources [CT19]. Consider any week h: then
lesser then Qm

Figure A.1. Contraints (A.3): linking fuel stock and outage scheduling
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Figure A.2. Constraints (A.9): minimum spacing/maximum overlapping be-

tween outages

A.2 Details of the Weekly Production Planner module

A schedule d obtained by HOSG or by LS only satisfies the feasibility of out-
age scheduling conditions but completely disregards demand and costs. The
step performed by WPP aims at determining a rough approximation of the plant
production, refueling and consequent costs due to a fixed outage schedule. In
particular, WPP solves a linear programming model, which explicitly considers
all the scenarios but takes planning decisions still on a weekly base, and deter-
mines a correspondent feasible refueling.

In the linear programming model adopted in WPP some simplifications are
introduced in order to reduce the problem dimension. In particular, similarly
to the MIP model used in HOGS, only two stock level variables are considered
for each cycle; in addition, all T1 plants are assumed as aggregated in a sin-
gle “macro” plant, whose production power cost is computed as average of the
costs of those T1 plants with lower cost that would be able to satisfy the average
weekly demand with their upper bound production. Note that this cost estima-
tion is more realistic than an overall average as it is assumed that "cheaper" T1
plants should be used first to satisfy the demand.

Then, in WPP all the technical constraints from [CT1] to [CT12] are in-
cluded at least in an approximated way, with the exception of the imposition of
power [CT6]profile that are still disregarded. In particular, this is straightfor-
wardly done for [CT1] to [CT5], being fixed the outage schedule, and [CT7]
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Figure A.3. Constraints (A.10): minimum spacing/maximum overlapping be-

tween outages during a speci�c period
�

Im, Fm
�

and [CT8]. Conditions [CT12] on maximum allowed modulation are imposed
in an approximated way by estimating for each production campaign (fixed in
input by d) the time interval (weeks) during which the T2 plants production can
be performed at the upper bound level as well as the week after which in a pro-
duction campaign T2 plants production should be zero due to zero stock level.
Constraints on modulation and power output for T2 plants are then imposed
accordingly.

Details about the model follow.

Input The WPP is fed in input the following data

• the decoupling weeks calculated by MIP, see the appendix section A.1, in
form of binary variable dikh

• C j ts, the proportional production cost for plant j in scenario s in timestep
t

• Dts, the demand in each timestep and in each scenario

Sets and indices

• j ∈ J ¬ {0, . . . , J − 1} is the index of type 1 power plants

• s ∈ S ¬ {0, . . . , S− 1} is the index of scenarios
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Figure A.4. Constraints (A.11): minimum spacing between decoupling dates

The other indices are the same specified for the MIP model, see the appendix
section A.1

Data preparation

• the demand is aggregated on weeks: Dhs ¬
∑

t∈Wh
Dts, where Dts is the

demand for timestep t in scenario s

• the average proportional production cost for plant j in scenario s during
week h is C jhs and is calculated as the sum of the proportional production
costs in the timesteps of the week: C jhs =

1
|Wh|

∑

t∈Wh
C j ts

• The weeks of decoupling W D
ik are simply calculated from dikh according to

algorithm 3.
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Figure A.5. Constraints (A.12): minimum spacing between coupling dates

Algorithm 3 Outage week calculation

1: for all i ∈ I do
2: k← 0
3: for all h ∈H do
4: if ( dikh > 0 ) then
5: W D

ik ← h
6: k← k+ 1
7: end if
8: end for
9: end for

• Pmin
jhs ¬

∑

t∈Wh
Pmin

j ts is the minimum power output of plant j during week h
in scenario s

• Pmax
jhs ¬

∑

t∈Wh
Pmax

j ts is the maximum power output of plant j during week h
in scenario s

• P1min
hs ¬

∑

j∈J

∑

t∈Wh
Pmin

jhs is the minimum power output for the “macro”
plant

• P1max
hs ¬

∑

j∈J

∑

t∈Wh
Pmax

jhs is the maximum power output for the “macro”
plant
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Figure A.6. Constraints (A.13): minimum spacing between coupling and de-

coupling dates

• The cost of the “macro” T1 plant is calculated according to the following
procedure:

1. p̃ jhs, the power output of each type 1 plant j in scenario s in week
h is initialized to the minimum output Pmin

jhs and, for each scenario,
for each week, type 1 plants are sorted in increasing order of cost of
production C jsh

2. in order to satisfy the demand using only T1 plants, for all weeks,
for all scenarios, p̃ jhs = Pmax

jhs for the next plant with the cheapest cost
C jhs. This step is iterated until the demand is completely satisfied.
Note that with the analysed datasets it is always possible to satisfy the
demand using only T1 plants. Of course, if any week h and scenario s
exist, such that the total power output exceeds the demand, then the
power of last added plant jl is reduced.

3. the equivalent cost of production C1
hs is calculated according to the

following definition:

C1
hs ¬

∑

j∈J C jhs · p̃ jhs

LHh
(A.17)

• Pmax
ih ¬

∑

t∈Wh
Pmax

i t is the maximum power output for type 2 plant i
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• constraints [CT12] limit the maximum modulation when the fuel stock is
above a threshold Bik. To avoid the use of an excessive number of binary
variables, the following simplified strategy has been adopted:

1. the stock of fuel, in the first week of each cycle of each plant, is ini-
tialized at the minimum refuel plus the maximum modulation. Under
these conditions, with the hypothesis of keeping the power output at
the upper bound, it is easy to calculate the week when the fuel stock
of current plant goes under the threshold BOik. That week is called
Nmin

ik . It is, in the worst case, the week up to which it is certainly
possible to keep production at the maximum level.

2. The fuel stock at the first week of the cycle of each plant is initialized
as
xB

ik =min
�

Amax
ik + Rmax

ik , Smax
ik

�

+Mmax
ik and the power output is kept at

the maximum allowed. Nmax
ik is the week when the fuel stock goes to

zero.

Constants

• LHh is the duration of week h

• C1
hs is the proportional equivalent cost of production for “macro” plant T1

during weeh h in scenario s

• CiH is the proportional cost of last refuel

• Cik is the proportional cost of fuel during cycle k

• Dhs is the aggregated demand on week h in scenario s

• P1min
hs is the minimum power output for the “macro” plant

• P1max
hs is the maximum power output for the “macro” plant

• W D
ik , the decoupling week for plant i in cycle k

• LO
ik is the length of outage k for plant i

• Rmin
ik and Rmax

ik are respectively the minimum and maximum reload for plant
i in cycle k

• X 0
i is the initial fuel stock of plant i
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• k∗i is the last scheduled cycle for plant i

• Rr
ik is the refueling coefficient

• Smax
ik and Amax

ik are the maximum bounds on stock of fuel respectively during
production campaign and at the time of outage of cycle k

• Pmax
ih , the maximum power output of plant i during week h

• Mmax
ik is the maximum modulation of plant i during cycle k

Decision Variables

• p1
hs is the power output of “macro” type 1 plant in week h in scenario s

• p2
ihs is the power output of type 2 power plant i in week h in scenario s

• xB
ik ∈ R+ is the remaining stock of fuel in plant i at the end of cycle k− 1,

that is to say right before cycle k

• xA
ik ∈ R+ is the initial stock of fuel in plant i at the beginning of cycle k,

that is to say right after cycle k− 1

• rik ∈ R+ is the refueling of plant i in cycle k

• x f
is is the final fuel stock in plant i in scenario s

Linear program

min
1

|S|

∑

s∈S

∑

h∈H

 

p1
hs · L

H
h · C

1
hs −

∑

i∈I

CiH · x
f
is

!

+
∑

i∈I

∑

k∈K

Cik · rik (A.18)

subject to:

p1
hs +

∑

i∈I

p2
ihs = Dhs ∀h, s (A.19)

P1min
hs ≤ p1

hs ≤ P1max
hs ∀h, s (A.20)

p2
ihs = 0 ∀i, k, h : h ∈

�

W D
ik , W D

ik + LO
ik

�

(A.21)

p2
ihs ≤ Pmax

ih ∀i, k, h : h /∈
�

W D
ik , W D

ik + LO
ik

�

(A.22)

Rmin
ik ≤ rik ≤ Rmax

ik ∀i, k : W D
ik 6=−1 (A.23)

xA
i,−1 = X 0

i ∀i (A.24)
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x f
i = xB

i,k∗i
∀i (A.25)

xB
iks = xA

i,k−1,s −
W D

ik
∑

h=W D
i,k−1+LO

i,k−1

p2
ihs · L

H
h ∀i, k, s (A.26)

xA
iks = Rr

ik ·
�

xB
iks − Bi,k−1

�

+ rik + Bik ∀i, k, s (A.27)

xB
iks ≤ Amax

ik ∀i, k, s (A.28)

xA
iks ≤ Smax

ik ∀i, k, s (A.29)
Nmin

ik
∑

h=W D
ik

�

Pmax
ih − p2

ihs · L
H
h

�

≤ Mmax
ik ∀i, k, s (A.30)

p2
ihs = 0 ∀i, k, h, s : Nmax

ik ≤ h≤W D
ik + LO

ik (A.31)

Constraints (A.19) couple load and production [CT1]. Constraints (A.20) bound
the production of macro plant [CT2]. Constraints (A.21) and (A.22) bound
power output of T2 plants when the power profile is not imposed, as required
by [CT3], [CT4] and [CT5]. Constraints (A.23) are bounds on reload [CT7].
Constraints (A.24) set the initial fuel stock [CT8], while (A.25) sets the final
fuel stock. Constraints (A.26) models the fuel consumption due to production
[CT9]. Constraints (A.27) is the fuel stock variation during an outage [CT10].
Constraints (A.28) and (A.29) bound the fuel stock [CT11]. Constraints (A.30)
and (A.31) approximate the constraints on maximum modulation [CT12]. The
bounds Nmin

ik and Nmax
ik are respectively the last week where the production can

certainly be kept at the upper level and the first week when the production must
be set to zero. Their calculation is explained above in section A.2. Note that
in the intermediate weeks h ∈ (Nmin

ik , Nmax
ik ) the power output is quite free as it

is bounded only by the maximum and minium level but neither the maximum
modulation constraints [CT12] nor the power profile are applied [CT6].

Output The output of WPP are refueling levels rik and also a set of reference
levels modih for T2 plants modulation in each week. These levels are obtained
in a post processing phase according to the following definition:

modiks =min













∑

h∈[W D
ik ,W D

ik+LO
ik]

Pmax
ih − p2

ikh






· LHh , Mmax

i,k






(A.32)
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A.3 Details of the Timestep Production Planner module

The purpose of TSPP is to completely determine a detailed production plan for
T1 and T2 plants, with reference to an input schedule for outages. TSPP con-
siders as input a given outage schedule d and takes advantage of the WPP opti-
mization using the refueling r and the levels of modulation as reference. TSPP is
an iterative procedure based on a linear programming model which decomposes
the overall problem in the sequential optimization of one scenario at a time.
Therefore, all the schedule, refueling and modulation data are used as a way for
coordinating as much as possible the planning over the set of scenarios.

Note that considering the above input and the modulation level as fixed,
for each plant and scenario the stock levels in timesteps are directly computed.
Therefore, no stock level variables are used in the LP model adopted in TSPP.
[CT6] are modelled as upper and lower bound on P2ish variables that are forced
to follow the imposed decreasing power profile. However, before starting the
iterative scenario optimization a refueling feasibility check procedure (which
basically verifies [CT7] and [CT11]) is used in order to verify at timestep level
the correctness of the input r with the given outage schedule and modulation
references. In case of infeasibility such procedure appropriately reduces the re-
fueling values. The linear model used in the TSPP iterations basically includes
the [CT1]–[CT5] constraints as all the other constraints should be satisfied by
the previous HOSG, LS and WPP phases or by the refueling feasibility procedure.
TSPP then determines for each single scenario the power production for T1 and
T2 plants. In the TSPP model, deviational variables are introduced to allow vari-
ations (specifically, over or under achievements) with respect to the reference
modulation levels. Therefore, the LP optimization objective is the minimization
of the T1 plant production cost referred to a single scenario with the addition
of a penalization for positive deviations. If in the solution for a scenario at least
one deviational variable assumes positive value then this means that for such a
scenario the modulation reference must be updated and the optimization for this
scenario is re-executed. At the end of an iteration (i.e., after solving the LP for
all the scenarios) if any modulation reference is changed, then the refueling fea-
sibility is checked again and in case refueling levels are revised a new iteration
is started.

Note that, as the violation of stock level bounds before refueling is the main
source of infeasibility for the imposed refueling level, a reduction of refueling is
generally expected to overcome the problem. In addition, if in a feasible outage
schedule the production campaigns have a not too short duration (as it should
be in the real application context), the minimum refueling level should allow
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determining an overall feasible power production plan. Hence, in the same
operating conditions the iterative procedure executed in TSPP is expected to
converge to a feasible overall solution. The experiments support this thesis.

Procedure Outline Algorithm 4 presents an outline of the entire block.

Algorithm 4 Timestep Production Planner

1: correct stock
2: for all scenarios s do
3: repeat
4: repeat
5: populate and solve LP
6: for all i, k do
7: if ( ∆+ik > 0 ) then
8: modik←modik +∆

+
ik

9: else if ( ∆−ik > 0 ) then
10: modik←modik −∆−ik
11: end if
12: end for
13: until ∆+ik = 0 ∧ ∆−ik = 0
14: until no stock corrections are necessary
15: end for

The correction of the stock is executed at the beginning as an initialization
step, and then is called again at the end of each loop. The procedure receives in
input the outage dates, the modulation (the first time it is given exactly the levels
calculated by WPP) and the refuelings. Its behaviour is outlined in procedure 5,
which calls procedures 6 and 7 to verify - and if necessary to repair - the value
of fuel stock respectively before and after refueling.
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Algorithm 5 Fuel Stock Correction

1: modified← false
2: for all i ∈ I do
3: restart← false
4: for all s ∈ S do
5: x ← X 0

i
6: t ← 0
7: for all k ∈K do
8: Mik←min

�

modiks, Mmax
ik

�

9: if ( x > Bik ) then
10: while t < endik ∧ x i ts > Bik do
11: x ← x − Pmax

ik · LTt
12: t ← t + 1
13: end while
14: x ← x +Mik

15: end if
16: while t < endik do
17: p← prof(x i ts) · Pmax

ik
18: if ( x ≤ p · LTt ) then
19: p← 0
20: end if
21: x ← x − p · LTt
22: t ← t + 1
23: end while
24: if ( k < K ∧W D

ik < H ) then
25: { modified, restart }← repairBefore(. . . )
26: x ← Rr

ik ·
�

x − Bik
�

+ rik + Bik

27: t ← endik

28: {modified, restart }← repairAfter(. . . )
29: end if
30: end for
31: end for
32: end for
33: return modified
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Algorithm 6 Repair Stock Before Refueling

1: if x > Amax
ik then

2: repeat
3: if ( ri,k−1 > Rmin

i,k−1 ) then

4: ri,k−1←min
�

ri,k−1−
�

x − Amax
i,k−1

�

, Rmin
i,k−1

�

5: else
6: k← k− 1
7: end if
8: until k <= 0
9: modified← true

10: restart← true
11: end if
12: return {modified, restart}

Algorithm 7 Repair Stock After Refueling

1: if ( restart = false ∧ x > Smax
ik ) then

2: if ( k > 0∧ ri,k−1 > Rmin
i,k−1 ) then

3: ri,k−1← ri,k−1−τ
�

x − Smax
ik

�

4: end if
5: if ( rik > Rmin

ik ) then
6: rik← rik −τ

�

x − Smax
ik

�

7: end if
8: if ( k > 0∧ ri,k−1 < Rmin

i,k−1 ) then
9: ri,k−1← Rmin

i,k−1
10: end if
11: rik←max

�

Rmin
ik , rik

�

12: modified← true
13: restart← true
14: end if
15: return {modified, restart}

The parameter τ ∈ (0, 1] used in algorithm 7, has been set to 1
10

in our
experiments.

Sets and indices

• s ∈ S is the current scenario being optimized.
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• TO
ik is the set of timesteps in the outage of cycle k of plant i

• TP
ik is the set of timesteps in the production campaign of cycle k of plant i

The sets and indices not defined here have already been defined in the previous
sections.

Constants

• C j ts is the proportional production cost for plant j in time step t in scenario
s

• LTt is he length of timestep t

• M is a big-M , a constant greater than any other constant in the model

• Dts is the demand in timestep t in scenario s

• Pmin
j ts and Pmax

j ts are the bound on production of T1 plant j in timestep t in
scenario sc

• Pmax
ik is the maximum power output of T2 plant i in cycle k

• x i ts is the fuel stock of plant i in timestep t in current scenario

• prof (x) is a scale factor that, multiplied by the maximum power output,
allows to define a power profile. It is assumed that when the stock is small
enough then the profile is zero: prof (x) = 0 ∀x ≤ εx

Decision Variables

• p1s
j t ∈ R+, the production of type 1 power plant j in timestep t in scenario

s

• p2s
i t ∈ R+, the production of type 2 power plant i in timestep t in scenario

s

• ∆+ik ∈ R+, the deviational variable for positive violation of the reference
modulation for plant i in scenario k

• ∆−ik ∈ R+, the deviational variable for negative violation of the reference
modulation for plant i in scenario k
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Linear program

min
1

S

∑

j

∑

t

h

C j ts · LTt · p
1s
j t

i

+M ·
∑

i

∑

k

�

∆+ik +∆
−
ik

�

(A.33)

subject to:

∑

j∈J

p1s
j t +

∑

i∈I

p2s
i t = Dts ∀t (A.34)

Pmin
j ts ≤ p1s

j t ≤ Pmax
j ts ∀t, j (A.35)

p2s
i t = 0 ∀i, k, t : t ∈ TO

ik (A.36)

p2s
i t ≤ Pmax

i t ∀t, i, k : t ∈ TP
ik (A.37)

∑

t∈TP
ik

p2s
i t · L

T
t +∆

+
ik −∆

−
ik =

∑

t∈TP
ik

Pmax
ik · LTt −modmax

ik ∀i, k (A.38)

∆+ ≤max
�

M max
ik −modmax

ik , 0
�

∀i, k (A.39)

∆− ≤ M max
ik ∀i, k (A.40)

p2s
i t = prof

�

x i ts
�

· Pmax
ik ∀i, k, t : t ∈ TP

ik ∧ x i t < Bik (A.41)

The optimization objective (A.33) is the minimization of the T1 plants produc-
tion cost referred to the current scenario sc being optimized, plus a penalization
for reference modulation violations.
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