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Introduction

Motivation

Accurate predictions of future macroeconomic magnitudes are crucial for

many economic actors such as central banks, governments, firms and so forth.

They often have to take important decisions with regard to such forecasts.

At the same time, precise predictions are difficult to obtain because of the

complexity of the mechanisms that govern macroeconomic data. Among the

macroeconomic variables, the unemployment rate is of particular importance.

It reflects the performance of an economy. In this thesis, we will implement

econometric models with the aim of improving short-term predictions of the

unemployment rate in the US.

In macroeconometrics, we can distinguish between structural and non-

structural models (Diebold, 1998). Structural models describe the data gen-

erating process (DGP) with the help of macroeconomic theory and are use-

ful to understand the economic system and to implement policy scenarios.

Dynamic stochastic general equilibrium, or DSGE, models constitute for in-

stance a large class of contemporary structural models (see Del Negro and

Schorfheide, 2013). Nonstructural models, on the other hand, depict the de-

pendencies present in the DGP with little inputs from macroeconomic theory.

Such models are less adequate for policy analysis but are well known to have a

better predictive ability than structural models (Del Negro and Schorfheide,

2013, p. 61). The long history of nonstructural modeling is clearly exposed

in Diebold (1998).
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To achieve the objective mentioned previously, we will propose a non-

structural model of the US unemployment rate. In this thesis, in addition

to simple autoregressions (ARs), we will consider a class of nonlinear autore-

gressive models – the smooth transition autoregressions (STARs) – that are

able to smoothly switch between regimes. Within this family of nonlinear

models, we will focus in particular on the logistic STAR (LSTAR) model.

It has been shown by van Dijk et al. (2002) and Deschamps (2008) that

the LSTAR model is able to reproduce the nonlinearities in the US unem-

ployment process. The dependent variable in our models will be a logistic

transformation of the monthly US unemployment rate. This enables us to

account for the fact that the US unemployment rate is a bounded variable.

The problems caused by using the untransformed variable will be described

in section 1.1.

Numerous studies (Rothman, 1998; Montgomery et al., 1998; Koop and

Potter, 1999; Clements and Smith, 2000; van Dijk et al., 2002; Deschamps,

2008) compare the predictive performance of linear and nonlinear time series

models for the US unemployment rate. Although nonlinearity is generally

favored in these contributions, linear models still appear to be good competi-

tors. Therefore, we suspect that linear and nonlinear models approximate

the process generating the US unemployment rate in a complementary way.

In order to verify this presumption, we will investigate in this thesis the

predictive performance of averages of linear and nonlinear models. None of

the above-mentioned studies consider model averaging except Montgomery

et al. (1998) and Koop and Potter (1999). But, the approach of the first

contribution is clearly different from ours and the forecasting experiment of

the second is very limited.

As explained in Geweke and Whiteman (2006), the Bayesian approach is

well suited for prediction. The final output in Bayesian forecasting, the pre-

dictive density, is valid in small samples and able to coherently incorporate

various sources of uncertainty such as uncertainty about future outcomes,

about parameters and about models. Furthermore, the use of Markov chain
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Monte Carlo (MCMC) methods for posterior simulation enables robust es-

timation of the LSTAR model (Deschamps, 2008). In this thesis, we will

thus opt for a Bayesian approach to estimate our models and to generate

predictions.

In order to combine the predictive densities produced by our linear and

nonlinear models, we will use the formal Bayesian model averaging (BMA)

method. Nevertheless, this technique presumes a complete model space.

Since this perpective is not necessarily reasonable, a heuristic model aver-

aging method that does not make such an assumption will also be imple-

mented. This alternative method, called optimal pooling (OP), was intro-

duced recently by Geweke and Amisano (2011, 2012). Besides evaluating the

predictive performance of these two methods, it will also be interesting to

analyze the sequences of (time-varying) weights they generate.

Organization

This thesis consists of two parts. Part I is concerned with the Bayesian

estimation through MCMC methods of AR and LSTAR models of the trans-

formed US unemployment rate. This part contains chapters 1, 2 and 3. In

chapter 1, we start by introducing the US unemployment data. We explain

how they are produced, present the transformation we apply to them and

describe their particular features. Then, we present and justify our modeling

strategy and derive the likelihood functions of the AR and LSTAR models.

Finally, the foundations of the Bayesian approach are discussed in compari-

son with the frequentist approach and some Bayesian issues are introduced.

Note that Monte Carlo integration is introduced as a tool enabling to solve

one of these issues.

In chapter 2, we present the Gibbs sampler and the Metropolis-Hastings

algorithm. Then, we consider posterior simulators for the AR and LSTAR

models that are based on these MCMC sampling schemes. In this chapter,

two complementary model selection criteria are also discussed: the Bayesian
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information criterion and the marginal likelihood. For the latter, we provide

a detailed exposition of the bridge sampling estimator and its numerical

standard error. Lastly, we explain the notion of Bayes factor and display the

Jeffreys scale.

In chapter 3, we begin by conducting a specification search on the whole

data set for the AR and LSTAR models. This search is completed by an

investigation of the prior sensitivity of marginal likelihoods. Next, we report

MCMC estimates and diagnostics for the best specification in each model

class. From the estimation results of the best LSTAR model, we examine the

probability of an unit root in each unemployment regime as well as the ability

of the estimated transition function to identify those regimes. We conclude

the chapter by comparing our results with those of Deschamps (2008).

Part II is concerned with the predictive performance of averages of AR,

LSTAR and random walk (RW) models for the transformed US unemploy-

ment rate. This part consists of chapters 4 and 5. In chapter 4, we describe

the BMA and OP methods. For each of them, we also provide an illustra-

tion with simulated data, a discussion of method’s properties and a review

of the literature. The log scoring rule to assess predictive densities is also

introduced in this chapter because it helps the reader to clearly understand

the OP method.

In chapter 5, we conduct a pseudo out-of-sample forecasting competition.

We first explain how to simulate predictive densities and mixtures of predic-

tive densities. Then, we choose the exact composition of the model averages

with specific procedures based on the evolution of posterior model probabil-

ities over time. After having carefully described the forecasting procedure,

we study the evolution over time of the weights generated by the BMA and

OP methods. We next compare the predictive performance of our models

and model averages by means of the Diebold-Mariano test, the efficiency test

of West and McCracken and the log score approach. Note that the statisti-

cal tests are implemented with two different point predictions and that the

evolution over time of cumulative log predictive Bayes factors is also con-
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sidered in the log score approach. Finally, we address the issue of model

misspecification with the probability integral transformation.

Two appendices can be found at the end of this thesis. Their purpose is

to complement the analysis of the main text. In appendix A, we give some

theorems and their proofs. In appendix B, we provide some empirical results

concerning the RW model.
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Part I

Formulating and Estimating

Models of US Unemployment





Chapter 1

Data, Models and Methods

“Nevertheless Bayes’ theorem has come

back from the cemetery to which it has

been consigned, and is today an object of

research and application among a growing

body of statisticians.”

Cornfield (1967, p. 41)

We begin this thesis with a description of the data. Section 1.1 provides

a lot of information about the US unemployment rate and also shows how

we can transform it in order to facilitate the forthcoming empirical analyses.

On the basis of data properties and literature, some econometric models are

proposed in section 1.2. Finally, section 1.3 gives a comparative introduction

to two competing statistical approaches.

1.1 The US Unemployment Data

Unemployment is a fundamental economic problem that concerns all eco-

nomic actors. Unemployment figures generally receive a wide media cover-

age. However, the nature of this phenomenon is still not fully understood by

economists today. In this thesis, our goal will be to provide statistical insights
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about the US unemployment rate in order to improve the understanding of

this phenomenon.

Each month, the US Census Bureau collects data on the labor market

with the current population survey (CPS). These data are then analyzed

and published by the US Bureau of Labor Statistics. The CPS sample is

made of approximately 60000 households (about 110000 individuals) and

provides a reliable estimate of monthly unemployment as argued by the US

Bureau of Labor Statistics (2009, p. 3). In the CPS, individuals are catego-

rized as employed, unemployed or not in the labor force. Those classified as

unemployed are jobless persons available for work that are looking for a job.

Those waiting to be recalled to a job from which they have been laid off also

belong to this category. The sum of the employed and unemployed forms the

labor force and the third category is for persons that are not in this sum.

From the CPS, the US Bureau of Labor Statistics (2013, ch. 1) computes,

among others, the unemployment rate which is defined as the proportion of

unemployed in the labor force. This statistic does not consider the persons

that are not in the labor force.

The data used in this thesis are seasonally adjusted monthly unemploy-

ment rates of the US for civilians of 20 years and over. The series goes from

1:1948 to 3 :2011 (759 observations) and is available on the Bureau of La-

bor Statistics’ website: http://www.bls.gov. It is measured in percentage

points and denoted by ut. By using a seasonal adjustment, it will be easier to

identify patterns in the data. For instance, a regime-switching model for the

seasonally adjusted data will not switch between regimes because of seasonal

fluctuations but rather when the economic conditions are changing.

Being a proportion, the unemployment rate is bounded between 0 and 1.

As noted by Koop and Potter (1999, p. 300), working with such a variable

is problematic. The support of predictive densities may not be restricted to

the [0, 1] interval.1 Moreover, Deschamps (2008, p. 436) points out that for

1In Bayesian time series analysis, a predictive density is defined as the density of future
outcomes of a time series given its past realizations.
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Figure 1.1: Untransformed and transformed US unemployment series

models estimated from ut the distribution of residuals is strongly leptokurtic

(i.e. heavy-tailed). These difficulties can fortunately be overcome by using

a contemporary transformation of ut. A candidate transformation is the

logarithmic transformation, ln(0.01ut). However, the inverse transformation

allows 0.01ut to be greater than 1. As mentioned by Cox and Hinkley (1974,

p. 6) “[...] even though this limiting behavior may be far from the region

directly covered by the data, it will often be wise to use a family of models

consistent with the limiting behavior [...]”. Wallis (1987) proposes to use

another transformation that is appropriate for the unemployment rate: the
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logistic transformation. We follow this recommendation and use a logistic

transformation of the unemployment rate as our dependent variable:

yt = ln

(
0.01ut

1− 0.01ut

)
. (1.1)

The transformed series is unbounded and the inverse transformation will give

us predictions between 0 and 1. Figure 1.1 presents the series ut and yt.

We can observe in figure 1.1 that the US unemployment rate is character-

ized by fast increases during economic contractions and by slower decreases

during economic expansions. Rothman (1998, p. 164), among others, pointed

out that such asymmetric behavior is a nonlinear phenomenon which may

not be accurately represented by a linear time series model. Figure 1.2 shows
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the sample autocorrelation function (ACF) of yt.
2 We see that the sample

autocorrelations decrease slowly indicating a highly persistent process. We

can rely on economic theory to explain the cyclical asymmetries and the

persistence of the US unemployment rate. For that purpose, we begin by

presenting the determinants of unemployment.

In an ideal competitive labor market, unemployment is not an issue. The

clearing mechanisms will keep the market at equilibrium where there is no

involuntary unemployment. We have to deviate from the classical model to

obtain an explanation about this phenomenon. Romer (2006, ch. 9) presents

three sets of theories that allow to depart from the ideal model of the labor

market. The first set of theories contains the efficiency-wage models. In

these models, it is beneficial for firms to pay higher wages because it makes

workers more loyal and productive even in situation of imperfect monitor-

ing. Unemployment is then due to above-equilibrium wages. The second

set of theories concerns the contracting models. These models argue that

negociated agreements between workers and firms prevent wage adjustment

and imply unemployment. The last set of theories focuses on search models.

A key element of these models is that workers and jobs are heterogeneous.

Given this, a complex process takes place to match workers and jobs. Un-

employment is then the result of this costly and time-consuming process.

All these theories can be used to explain the persistence of the US unem-

ployment rate. An explanation for the cyclical asymmetries is provided by the

search models. Indeed, Mortensen and Pissarides (1994) developed a model

where the asymmetric behaviors of job creation and job destruction lead

to cyclical asymmetries in unemployment. These economic theories allow a

better understanding of the causes and properties of unemployment. In this

thesis, we will rather use a time series approach to study this phenomenon

because time series models are well known to perform well in forecasting

exercises. Our modeling strategy will be presented in the next section.

2Being very similar, the sample ACF of ut is not presented.
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1.2 Modeling US Unemployment

Let a stochastic process be a time-indexed sequence of random variables.

The US unemployment data described in section 1.1 can be considered as a

realization of an unknown stochastic process. We call it the data generating

process (DGP). Since the DGP is extremely complex, we will use simplified

stochastic processes to approximate it. These representations of the DGP

are time series models.

An important notion is that of stationarity. It occurs when a stochastic

process is “[...] in a particular state of statistical equilibrium.” (Box and

Jenkins, 1976, p. 26). More formally, the process for yt is called covariance-

stationary if and only if (Hamilton, 1994, p. 45):

E(yt) = µ for all t

Cov(yt, yt−j) = γj for all t, j.

For the sake of simplicity, time series models are often assumed to be

linear. The pth-order autoregression (AR) is a linear model that is consistent

with the sample ACF of yt in figure 1.2.3 It is given by:

yt = φ0 + φ1yt−1 + φ2yt−2 + . . .+ φpyt−p + εt (1.2)

where the εt are independent and identically distributed (i.i.d.) N(0, σ2). It

can be rewritten as:

φ(L)yt = φ0 + εt

where φ(L) = 1−φ1L−. . .−φpLp is a polynomial in L, the lag operator. The

AR(p) is stationary when all the roots of φ(L) = 0 are outside the complex

unit circle. Assuming that the autoregression coefficients are known, we can

3We also consulted the sample partial ACF of yt and it seems that moving average
errors do not need to be added to the AR(p).
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find the mean of a stationary AR(p) as follows:

E(yt) = φ0 + φ1E(yt−1) + . . .+ φpE(yt−p)

µ = φ0 + φ1µ+ . . .+ φpµ

µ = φ0(1− φ1 − . . .− φp)−1.

Further results for the AR process are given in Box and Jenkins (1976) or

Hamilton (1994).

The likelihood function is a fundamental concept in statistical inference

which has a key role in both the Bayesian and frequentist approaches.4 Let

y = (y1, . . . , yT )′ be a sample of data modeled by a time series model and θ

a vector containing the unknown parameters of the model. The likelihood

function p(y|θ) is the joint density of y given θ evaluated at the observed

sample and treated as a function of θ. The importance of this notion comes

from the likelihood principle. It states that the likelihood function contains

all the data-based evidence about θ (Box and Jenkins, 1976, pp. 208-209).

We now construct the likelihood function of the AR(p). The vector θ

corresponds to (φ′, σ2)′ where the vector φ contains the autoregression coef-

ficients (intercept included). These unknown parameters are random since

we follow a Bayesian approach. While conditioning on yc = (y1−p, . . . , y0)
′,5

we decompose the likelihood as follows:

p(y|yc, φ, σ2) =
T∏
t=1

p(yt|y1−p, . . . , yt−1, φ, σ2)

=
T∏
t=1

p(yt|yt−p, . . . , yt−1, φ, σ2).

The distribution of yt|yt−p, . . . , yt−1, φ, σ2 is normal with mean and variance

4These approaches will be presented in section 1.3.
5For simplicity, we condition on some initial observations to form a conditional like-

lihood function. An overview of the different ways to treat initial observations in time
series models can be found in Bauwens et al. (1999, pp. 134-135).
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given by φ0 +
∑p

j=1 φjyt−j and σ2, respectively. Letting the conditioning on

yc as implicit, we find that the likelihood of the AR(p) is:

p(y|φ, σ2) =
1

(2π)
T
2 σT

exp

− 1

2σ2

T∑
t=1

(
yt − φ0 −

p∑
j=1

φjyt−j

)2
 . (1.3)

This linear model is straightforward to understand and to implement.

However, the cyclical asymmetries of the US unemployment suggest nonlin-

earity (see section 1.1). Thus, in this thesis, the AR model will be considered

as a benchmark.

Time series models can deviate from the linearity hypothesis in many

ways. The nonlinear models relevant for studying the US unemployment

rate are those that can switch between regimes. Some nonlinear regime-

switching models will be introduced as special cases of the following general

model:

yt = φ10 +

p∑
j=1

φ1jyt−j +G(st;ϑ)

(
φ20 +

r∑
j=1

φ2jyt−j

)
+ εt (1.4)

where standard assumptions are made for the errors. In (1.4), the function

G(•) manages the transition between two regimes and is called the transi-

tion function. This function depends on the observable variable st and is

parameterized by the elements of the vector ϑ. According to the forms of

G(•) and st, we are faced with different models. If the transition function

is equal to I{st>c}, an indicator function having the value 1 when the event

in brackets occurs and 0 otherwise, we obtain the threshold autoregression

(TAR) devised by Tong (1978). In the TAR model, st is called the thresh-

old variable and c the threshold parameter. By setting st = yt−δ where δ

is a delay parameter, we get the self-exciting TAR (SETAR) model. The

drawbacks of the TAR model are conceptual and practical. As indicated

by Potter (1999, p. 514), the abrupt transition between the two regimes

is not realistic and the step transition function makes the estimation more
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difficult.6 We can overcome these problems by using a continuous transi-

tion function bounded between 0 and 1 that switches smoothly between the

two regimes. In this case, the model is a smooth transition autoregression

(STAR). Different STAR models are considered in the literature. Teräsvirta

(1994) proposes the logistic STAR (LSTAR) which is based on the logistic

transition function:

G(st; γ, c) =
1

1 + exp[−γ2(st − c)]
.

This function contains the parameters γ and c. As explained in van Dijk

et al. (2002, p. 3), γ governs the smoothness of the transition between the

two regimes and c is a threshold between them because G(c; γ, c) = 0.5.

Moreover, for large values of γ, the logistic transition function is close to

I{st>c}, the transition function of the TAR model. The logistic transition

function is plotted in panel A of figure 1.3 for various values of γ. Teräsvirta

(1994) also proposes the exponential STAR (ESTAR) which relies on the

exponential transition function:

G(st; γ, c) = 1− exp[−γ2(st − c)2].

Here, γ has the same interpretation as in the logistic transition function, while

c is the location of the inner regime because G(c; γ, c) = 0. However, the

ESTAR model does not nest a TAR model when γ is large. The exponential

transition function is plotted in panel B of figure 1.3 for various values of γ.

The ESTAR is commonly used to model real exchange rates (see among

others Taylor et al., 2001 and Sarantis, 1999) whereas the LSTAR is mostly

used for economic variables closely related to the business cycle as unem-

ployment (see for example van Dijk et al., 2002 and Deschamps, 2008). Past

studies thus point out that the LSTAR model is more appropriate for our

data than the ESTAR model.

6Bayesian estimations of SETAR models can be found in Geweke and Terui (1993) and
Chen and Lee (1995). For the frequentist alternative, see Hansen (1997).
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Figure 1.3: The logistic and exponential transition functions

The LSTAR model is also a valuable alternative to nonlinear regime-

switching models where st is unobservable. Indeed, Deschamps (2008) finds

good results in favor of the LSTAR when he compares it to the Markov

switching autoregression (MSAR) in a forecasting experiment on US unem-

ployment data.7

Among the nonlinear regime-switching models, the LSTAR appears to

be a good choice for modeling the transformed US unemployment rate. The

LSTAR model we consider in this thesis is written as follows:

yt = φ10 +

p∑
j=1

φ1jyt−j +G(st; γ, c)

(
φ20 +

p∑
j=1

φ2jyt−j

)
+ εt (1.5)

G(st; γ, c) =
1

1 + exp[−γ2(st − c)]
(1.6)

where the εt are i.i.d. N(0, σ2) and where the autoregressive order is assumed

to be the same in both regimes in order to simplify the analysis. The two

regimes of this model, occuring when G(st; γ, c) is close to 0 or to 1, can

7The MSAR model results from (1.4) when the transition function is equal to st and
is governed by a hidden Markov chain with states 0 and 1 (van Dijk et al., 2002, p. 27).
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naturally be linked with economic contraction and expansion. The specific

form of the transition variable st has to be determined. Deschamps (2008)

used the Bayes factors to choose between definitions of st. We retain his final

choice and specify our transition variable as follows: st = ut−1 − ut−13.

The likelihood of the LSTAR is constructed in the same manner as that

of the AR. It is given by:

p(y|φ, σ2, γ, c) =
1

(2π)
T
2 σT

exp

{
− 1

2σ2

T∑
t=1

[
yt − φ10

−
p∑
j=1

φ1jyt−j −G(st; γ, c)

(
φ20 +

p∑
j=1

φ2jyt−j

)]2
where this time the vector φ = (φ10, φ11, . . . , φ1p, φ20, φ21, . . . , φ2p)

′ contains

the autoregression coefficients (intercepts included) of the LSTAR.

1.3 The Bayesian and Frequentist Paradigms

Two complementary approaches coexist in econometrics – the Bayesian and

frequentist paradigms. A fundamental difference between these two ap-

proaches lies in their interpretations of probability.8 In frequentist theories,

a probability is viewed as the relative frequency of an event when an experi-

ment is repeated an infinite number of times (e.g. a coin tossing experiment).

On the other hand, Bayesian theories consider that a probability expresses

the degree of belief an individual has in the realization of an event. For

example, an economist could assess that it is unlikely that her country will

enter into recession next year. More details on the objective and subjective

interpretations of probability can be found in Leamer (1978, ch. 2).

These views on probability have an incidence on how inference is con-

8Note that in both approaches the mathematical definition of a probability function
is the same. It is a set function, written Pr(•), which satisfies some axioms (see Leamer,
1978, p. 23).

19



ducted in each approach. In frequentist theories, the unknown parameter

vector θ is considered as fixed and an estimator θ̂ is built on the basis of the

sample y in order to learn about θ. The estimator θ̂ is a random vector whose

distribution is obtained through repeated sampling and called the sampling

distribution. The quality of θ̂ is investigated by looking at the properties of

its sampling distribution. In the frequentist approach, the point of view is

ex ante; we stand before the drawing of the sample. As we will see in what

follows, the point of view in the Bayesian approach is ex post; inference is

performed conditional on the sample.

As explained by Lindley (1975, pp. 106-107), the underlying logic in

Bayesian theories is that unknown quantities are regarded as random vari-

ables. In this logic, probabilities are interpreted as being subjective degrees

of belief. As the elements of θ are unknown, they are thus random variables

in the Bayesian approach. Before the sample is observed, we give to θ a prior

density, p(θ). Depending on the needs of the analysis, the prior density can

be more or less informative, i.e. more or less peaked. After the sample is

observed, we can build a posterior density p(θ|y) for θ. This density merges

prior and data information.

The economist previously mentioned thinks a priori that her country is

unlikely to enter recession next year. But, she just reads a new report indicat-

ing that the main economic indicators are weakening. Given this information,

she thinks a posteriori that a recession has one chance out of two to occur

next year. This simple example illustrates the Bayesian updating process,

that is the revision of a prior belief on the basis of data in order to form a

posterior belief. The Bayes’ rule, well presented in Cornfield (1967), is the

formalization of this process. It is given by:

p(θ|y) =
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

(1.7)

where the denominator must be different from zero and where p(y|θ) is the

likelihood function introduced in section 1.2. Since the denominator in (1.7)
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does not depend on θ, we can write:

p(θ|y) ∝ p(y|θ)p(θ).

Therefore, it suffices to multiply p(y|θ) by p(θ) and to remove the factors not

depending on θ to find the kernel of p(θ|y).9 Although being mathematically

trivial, the Bayes’ rule had a long and tumultuous history since its first

occurrences in the 18th century. A detailed, but nontechnical, presentation

of this story is provided by McGrayne (2011).

In the practice of Bayesian econometrics, we often encounter the three

following problems with regard to equation (1.7). First, in many cases we can

not sample directly from p(θ|y) because of its nonstandard form. Simulation

methods that solve this problem will be described in sections 2.1 and 2.2.

Second, the denominator in (1.7), the marginal likelihood, can generally not

be obtained analytically.10 A simulation-based method that is efficient for

estimating this number will be given in section 2.3. Third, analytical results

for posterior features such as the mean or variance of a particular parameter

in θ are frequently unavailable. However, they can be easily estimated by

(Markov chain) Monte Carlo integration (see e.g. Koop, 2003 or Carlin and

Louis, 2009, ch. 3) as will be explained below.

In empirical applications, the posterior features of interest can generally

be obtained from:

E[f(θ)|y] =

∫
f(θ)p(θ|y)dθ (1.8)

where f(θ) is a given function of θ. Consider a possibly correlated sample

θ(1), . . . , θ(D) from p(θ|y). An estimator of (1.8) is given by the sample mean:

f̄D =
1

D

D∑
d=1

f(θ(d)). (1.9)

9The notion of kernel of a density is presented in definition 1 of appendix A.
10In the Bayesian approach, the marginal likelihood plays a key role in model comparison

(see section 2.3) and model averaging (see section 4.1).
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Under weak conditions, f̄D converges to E[f(θ)|y] as D tends to infinity.

Therefore, by drawing sufficiently from p(θ|y) and by averaging the draws

as in (1.9), we can obtain an accurate estimate of E[f(θ)|y]. Note that if

the draws come from a Markov chain Monte Carlo algorithm, we will usually

discard some initial replications before computing (1.9) in order to remove

the effect of starting values.
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Chapter 2

Posterior Simulators and

Model Selection Criteria

“[...] Themis, the Greek goddess of justice

is usually represented as carrying a pair of

scales, these being for weights of evidence

on the two sides of an argument.”

Good (1985, p. 249)

This chapter focuses on two theoretical issues. The first is the presenta-

tion of posterior simulators for the AR and LSTAR models in sections 2.1 and

2.2. These simulation methods will initially be described in general terms

before being applied to the models. The second issue is the introduction of

two complementary model selection criteria in section 2.3. While allowing

model comparison, one of these criteria, the marginal likelihood, also plays

a key role in Bayesian model averaging as will be seen in section 4.1.

2.1 The Gibbs Sampler

Suppose we have a model with parameters contained in the vector θ. In order

to do posterior inference, we often have to draw from the posterior density

p(θ|y). However, depending on the form of p(θ|y), it might not be possible
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to perform direct draws. In this case, another strategy is required, such as

Gibbs sampling.

Belonging to the family of Markov chain Monte Carlo (MCMC) algo-

rithms, the Gibbs sampler is a posterior simulator fully described in many

textbooks, e.g. Koop (2003, ch. 4) or Carlin and Louis (2009, ch. 3). We

begin by partitioning θ in blocks, θ = (θ1, . . . , θb)
′. The Gibbs sampler will

then iterate on the full conditional posteriors as follows:

1. Set arbitrary starting values for θ
(0)
2 , . . . , θ

(0)
b .

2. For d = 1, . . . , D, repeat these steps:

Step 1: Draw θ
(d)
1 from p(θ1|y, θ(d−1)2 , θ

(d−1)
3 , . . . , θ

(d−1)
b ).

Step 2: Draw θ
(d)
2 from p(θ2|y, θ(d)1 , θ

(d−1)
3 , . . . , θ

(d−1)
b ).

...

Step b: Draw θ
(d)
b from p(θb|y, θ(d)1 , θ

(d)
2 , . . . , θ

(d)
b−1).

Under weak conditions, this algorithm converges to a sequence of draws from

the posterior, θ(d) for d = d0 + 1, . . . , D. Of course, the first d0 replications

are discarded to cancel the effect of starting values.

In matrix notation, the AR model of equation (1.2) becomes y = Xφ+ ε,

where the tth row of the T × (p + 1) matrix X is (1, yt−1, . . . , yt−p). For

this model, the Gibbs sampler iterates on the full conditional posteriors of

φ = (φ0, φ1, . . . , φp)
′ and σ2. By assuming an independent normal-inverted

gamma prior:

φ ∼ N(φa, Va) (2.1)

σ2 ∼ IG(a, b) (2.2)

we can derive full conditional posteriors which are also multivariate normal
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and inverted gamma (for the proof, see theorem 1 in appendix A):

p(φ|y, σ2) ∝ exp

[
−1

2
(φ− φ?)′V −1? (φ− φ?)

]
(2.3)

p(σ2|y, φ) ∝ 1

(σ2)a?+1
exp

(
− b?
σ2

)
(2.4)

where

φ? = V?

(
X ′y

σ2
+ V −1a φa

)
(2.5)

V? =

(
X ′X

σ2
+ V −1a

)−1
(2.6)

a? = a+
T

2
(2.7)

b? = b+
(y −Xφ)′(y −Xφ)

2
. (2.8)

In this thesis, the prior hyperparameters of the AR model take the following

values: φa = (0, . . . , 0)′, Va = Ip+1 and a = b = 10−6. We chose a relatively

noninformative prior in order for data information to be predominant.

2.2 A Metropolis-within-Gibbs Algorithm

Depending on the model and the prior, it may happen that some full con-

ditional posteriors do not have a suitable form for drawing. In such case,

the Gibbs sampler can be supplemented by Metropolis-Hastings algorithms

in order to simulate these awkward conditionals. The Metropolis-Hastings

algorithm also belongs to the MCMC family and is fully described in Koop

(2003, ch. 5) or Carlin and Louis (2009, ch. 3). For the general exercise

which is to simulate a posterior, it works as follows:

1. Set an arbitrary starting value θ(0).
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2. For d = 1, . . . , D, repeat these steps:

Step 1: Draw a candidate θc from a candidate generating density

q(θc|θ(d−1)).

Step 2: Compute the acceptance probability:

α(θc, θ(d−1)) = min

[
1,
q(θ(d−1)|θc)
q(θc|θ(d−1))

p(θc|y)

p(θ(d−1)|y)

]
.

Step 3: Set θ(d) = θc with probability α(θc, θ(d−1)) and θ(d) = θ(d−1)

with probability 1− α(θc, θ(d−1)).

Similarly to the Gibbs sampler, this algorithm converges under weak condi-

tions to a sequence of draws from the posterior, θ(d) for d = d0 + 1, . . . , D.

Here again, the first d0 draws are discarded.

For the LSTAR model of equations (1.5)-(1.6), Deschamps (2008, pp.

437-440) developed a posterior simulator that draws sequentially from the

full conditional posteriors of φ = (φ10, φ11, . . . , φ1p, φ20, φ21, . . . , φ2p)
′, σ2 and

ϑ = (γ, c)′, using the most recently drawn conditioning values. When ϑ is

known, the LSTAR can be reduced to the linear model y = Xφ + ε. X is

now a T × (2p+ 2) matrix whose row t is written:

(1, yt−1, . . . , yt−p, Gt, Gtyt−1, . . . , Gtyt−p)

where Gt ≡ G(st; γ, c). By assuming the independent priors of (2.1)-(2.2), we

thus obtain the same results as in (2.3)-(2.8) for p(φ|y, σ2, ϑ) and p(σ2|y, φ, ϑ).

Two independent normal priors N(γa, σ
2
γ) and N(ca, σ

2
c ) are postulated

for γ and c. Nevertheless, this causes ϑ to have a nonstandard full conditional
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posterior whose kernel is given by:

k?(ϑ) = exp

{
−(γ − γa)2

2σ2
γ

− (c− ca)2

2σ2
c

− 1

2σ2

T∑
t=1

[
yt − φ10

−
p∑
j=1

φ1jyt−j −G(st; γ, c)

(
φ20 +

p∑
j=1

φ2jyt−j

)]2 .

Deschamps (2008) proposes to simulate ϑ with a Metropolis-Hastings inde-

pendence chain.1 He suggests using a multivariate Student candidate gen-

erating density with parameters that come from the following linearization.

The first-order Taylor expansion of (1.5)-(1.6) around (γ?, c?) is found and

then the terms not depending on γ and c are placed on the left-hand side:

y?t = γx?1t + cx?2t + υt (2.9)

where the υt are i.i.d. N(0, σ2) for t = 1, . . . , T and where:

y?t = yt − φ10 −
p∑
j=1

φ1jyt−j −

(
φ20 +

p∑
j=1

φ2jyt−j

)

×

(
G(st; γ

?, c?)− ∂Gt

∂γ

∣∣∣∣
γ?,c?

γ? − ∂Gt

∂c

∣∣∣∣
γ?,c?

c?

)

x?1t =

(
φ20 +

p∑
j=1

φ2jyt−j

)
∂Gt

∂γ

∣∣∣∣
γ?,c?

x?2t =

(
φ20 +

p∑
j=1

φ2jyt−j

)
∂Gt

∂c

∣∣∣∣
γ?,c?

.

1In the previous general presentation, this would have meant that q(θc|θ(d−1)) = q(θc).
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Given the likelihood of (2.9) and the prior of ϑ, the following Bayesian update

equations can be derived:

ϑ? = S

X ′?y?
σ2

+

(
σ2
γ 0

0 σ2
c

)−1(
γa

ca

) (2.10)

S =

X ′?X?

σ2
+

(
σ2
γ 0

0 σ2
c

)−1−1 (2.11)

where the T×2 matrix X? has row t equal to (x?1t, x
?
2t) and y? = (y?1, . . . , y

?
T )′.

We can find an approximate solution for ϑ? = (γ?, c?)′ by iterating on (2.10)

and (2.11) using prior expectations as a starting point. The kernel of the

candidate generating density is multivariate Student with ν degrees of free-

dom:

k(ϑc) =

[
1 +

(ϑc − ϑ?)′S−1(ϑc − ϑ?)
ν

]− ν+2
2

. (2.12)

A candidate ϑc drawn from (2.12) is accepted with probability:

α(ϑc, ϑ(d−1)) = min

[
1,
k(ϑ(d−1))

k(ϑc)

k?(ϑc)

k?(ϑ(d−1))

]
.

If it is not accepted, we retain the most recently drawn vector ϑ(d−1). Finally,

we can choose experimentally the number ν of degrees of freedom in (2.12)

in order to have a good acceptance rate. Choosing ν = 3 works well in our

computations.

Here, the prior hyperparameters on φ and σ2 take the same values as

in the AR.2 This choice allows us to easily compare the two models. The

prior hyperparameters in the transition function are γa = 3, ca = 0 and

σ2
γ = σ2

c = 0.1 a choice similar to that in Deschamps (2008). This allows the

simulator to converge and is noninformative enough as will be seen later.

2Of course, the length of φa and the order of Va are now equal to 2p+ 2.
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2.3 Two Complementary Criteria

In chapter 3, we will determine the values of the autoregressive order p that

yield the best model specifications. To perform this task, two complementary

model selection criteria will be used. In this section, we will present them for

a given model with likelihood p(y|θ), prior p(θ) and posterior p(θ|y) where

the parameter vector θ is of length q.

The Bayesian information criterion (BIC), introduced by Schwarz (1978),

can be written:

BIC(θ̂) = 2 ln p(y|θ̂)− q lnT (2.13)

where θ̂ is the posterior mean of θ. The first term in (2.13) represents the

goodness-of-fit and the second penalizes model complexity. Therefore, the

decision rule is to choose the model with the highest BIC. This criterion

has the advantage of neglecting the prior.3 However, the size of differences

between BIC values remains difficult to interpret.

The second criterion is the marginal likelihood:

p(y) =

∫
p(y|θ)p(θ)dθ. (2.14)

Contrary to the BIC, (2.14) is sensitive to the prior. But, as will be seen later,

it allows us to calculate the Bayes factors which can clearly be interpreted.

Moreover, the marginal likelihood is also useful for computing the weights

used in the Bayesian model averaging (see section 4.1). In many cases, the

integral in (2.14) cannot be solved analytically and a simulation method

is required to estimate p(y). A numerically efficient method is the bridge

sampling of Meng and Wong (1996) well described in Frühwirth-Schnatter

(2004). It comes from the following identity:

1 =

∫
p(θ|y)β(θ)g(θ)dθ∫
β(θ)g(θ)p(θ|y)dθ

3In large samples the prior is dominated by the likelihood so that θ̂ (and thus the BIC)
is nearly unaffected by the prior.
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which, using Bayes’ rule, can be written as:

p(y) =

∫
[p(y|θ)p(θ)β(θ)]g(θ)dθ∫

[β(θ)g(θ)]p(θ|y)dθ
=
Eg[p(y|θ)p(θ)β(θ)]

Eθ|y[β(θ)g(θ)]
(2.15)

where Eh[f(θ)] is the expectation of f(θ) with respect to the density h(θ),

β(θ) is a bridge function and g(θ) is an importance density that provides a

simple approximation of p(θ|y). For the AR and LSTAR models, we follow

Deschamps (2008, p. 440) and define g(θ) as the prior with moments given

by the empirical moments of the posterior. Concerning the choice of β(θ), it

can lead to different estimators of (2.15). For instance, with β(θ) = 1/g(θ),

we obtain the importance sampling estimator:

p̂IS(y) =
1

N

N∑
n=1

p(y|θ(n))p(θ(n))
g(θ(n))

(2.16)

using i.i.d. draws θ(n), n = 1, . . . , N from the importance density. Neverthe-

less, an optimal choice for the bridge function is available. It was proposed

by Meng and Wong (1996) and takes the following form:

β(θ) =
1

Ng(θ) +Mp(y|θ)p(θ)/p(y)
. (2.17)

The corresponding estimator is called the bridge sampling estimator p̂BS(y).

As (2.17) contains p(y), it has to be computed iteratively as follows:

p̂BS,t(y) =

1

N

N∑
n=1

p(y|θ(n))p(θ(n))
Ng(θ(n)) +Mp(y|θ(n))p(θ(n))/p̂BS,t−1(y)

1

M

M∑
m=1

g(θ(m))

Ng(θ(m)) +Mp(y|θ(m))p(θ(m))/p̂BS,t−1(y)

(2.18)

where θ(m), m = 1, . . . ,M are MCMC draws from the posterior and θ(n),

n = 1, . . . , N are i.i.d. draws from the importance density. We may use (2.16)

to obtain a starting value. Convergence of (2.18) is very fast in practice.
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Table 2.1: The Jeffreys scale to interpret BFs

− log10(BFkl) Evidence against Mk

> 0.5 substantial
> 1 strong
> 2 decisive

The numerical efficiency of the bridge sampling estimator can be as-

sessed with the numerical standard error (NSE). Frühwirth-Schnatter (2004)

presents a method to compute it based on the relative mean squared error:

RE2[p̂(y)] =
E[p̂(y)− p(y)]2

p(y)2

where the uncertainty in p̂(y) comes from the random sequences θ(1), . . . , θ(N)

and θ(1), . . . , θ(M). From this, she derives an approximate relative mean

squared error for the bridge sampling estimator:

R̂E
2
[p̂BS(y)] =

1

N

Vg [p(θ|y)/h1(θ)]

E2
g [p(θ|y)/h1(θ)]

+
ρh2(0)

M

Vθ|y [h2(θ)]

E2
θ|y [h2(θ)]

(2.19)

where h1(θ) = N
N+M

g(θ) + M
N+M

p(θ|y), h2(θ) = g(θ)/h1(θ), ρh2(0) is the

normalized spectral density of the process h2(θ
(m)) at the frequency 0 and

Vh[f(θ)] is the variance of f(θ) with respect to the density h(θ). Knowing

that:

E[ln p̂(y)− ln p(y)]2 ≈ RE2[p̂(y)]

we only need to take the square root of (2.19) to get the NSE of ln p̂BS(y).

To compare two models, we can use their posterior odds, i.e. the ratio of

their posterior model probabilities:

p(Mk|y)

p(Ml|y)
=
p(y|Mk)

p(y|Ml)

p(Mk)

p(Ml)
. (2.20)

In (2.20), the ratio of marginal likelihoods, BFkl = p(y|Mk)/p(y|Ml), is called
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the Bayes factor (BF). When p(Mk) = p(Ml) is assumed, the posterior odds

are equal to this ratio. A review on BFs can be found in Kass and Raftery

(1995) and may be supplemented by Kass (1993). For a pair of models, the

BF assesses the evidence provided by the data in favor or against one of the

models. To interpret the strength of the evidence, we can use the Jeffreys

scale (Jeffreys, 1961, app. B) presented in table 2.1.
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Chapter 3

An Application to US

Unemployment

“An algorithm must be seen to be be-

lieved, and the best way to learn what an

algorithm is all about is to try it.”

Knuth (1968, p. 4)

In this chapter, we will put the posterior simulators and model selection

criteria developed in chapter 2 into practice in order to estimate our models

and to conduct specification searches. More precisely, we will begin in section

3.1 by looking at the entire data set to determine the best specifications for

the AR and LSTAR models. It will be interesting to see if the data favor

linearity or nonlinearity. Then, in section 3.2 we will present the MCMC

estimates of the AR and LSTAR specifications that were found to be the

best in section 3.1. Some MCMC diagnostics will also be provided to attest

that our algorithms work well.
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3.1 Model Selection on the Whole Data Set

We will now conduct a specification search for the AR and LSTAR models.

In each of them, the dependent variable is defined by equation (1.1) and goes

from 2:1949 to 3 :2011 (746 observations). We begin by estimating the mod-

els for p = 1, . . . , 8 with the posterior simulators described in sections 2.1 and

2.2. Then, for each model specification, we compute the BIC and estimate

the log marginal likelihood by bridge sampling. Tables 3.1 and 3.2 present

the results. The NSE of ln p̂BS(y) is also reported.1 Regarding the AR(p)

model, the best specification corresponds to p = 6 where the two criteria are

the highest. On the Jeffreys scale exhibited in table 2.1, the BFs comparing

the AR specifications to the AR(6) provide substantial evidence against the

AR(4)2 and at least a strong evidence against the other specifications. Given

that the evidence against the AR(4) is only substantial, this specification

can also be retained. About the LSTAR(p) model, the preferred specifica-

tion is given by p = 4. The BF comparing the LSTAR(3) to the LSTAR(4)

gives only substantial evidence against the LSTAR(3). Therefore, we will

also retain this specification. When looking for the best specification in both

models, the BIC leads us to select the AR(6) and the log marginal likelihood

brings us to the LSTAR(4). So the complementary criteria provide contra-

dictory results when we try to choose between linearity and nonlinearity on

the whole data set. Note that we also tried a random walk (RW) model.

However, as evidenced in appendix B, it does not perform well compared to

the AR and LSTAR models. The BIC and the log marginal likelihood of the

RW model are only equal to 2528.7161 and 1251.8091 respectively.

Some will perhaps say that our log marginal likelihoods are subjective

because they depend on the prior. We argue that this is not true for the

following reasons. First, for each of our models the log marginal likelihoods

1In order to validate the method, we took for each model specification the standard
deviation of repeated estimations of the log marginal likelihood. The results obtained were
always close to the NSE values.

2Indeed, −(1279.1486− 1281.1934)/ ln(10) = 0.8880 is between 0.5 and 1.
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Table 3.1: The two criteria for the AR(p)

p BIC ln p̂BS(y) NSE

1 2518.3297 1241.0324 0.0005
2 2523.5730 1243.4992 0.0005
3 2575.4753 1269.2870 0.0006
4 2595.2363 1279.1486 0.0007
5 2591.2703 1277.1870 0.0008
6 2599.3862 1281.1934 0.0008
7 2593.4511 1278.2312 0.0008
8 2590.9926 1276.9725 0.0009

yield almost the same ranking as the BIC which neglects the prior. Second,

the doubts about prior sensitivity in the LSTAR are removed by a sensitivity

analysis. Indeed, we multiplied by 5 the prior variances of γ and c and

computed again the log marginal likelihoods. The results, presented in table

3.3, show that the ranking is approximately the same as for the LSTAR

with σ2
γ = σ2

c = 0.1 and that the slightly lower values do not change the

contradictory results found when comparing both models. With these two

arguments, we can conclude that our log marginal likelihoods reflect data

information and are not biased by subjective information. In the next section,

we will focus on the estimation of those AR and LSTAR models that were

Table 3.2: The two criteria for the LSTAR(p)

p BIC ln p̂BS(y) NSE

1 2566.5165 1266.2816 0.0047
2 2575.7273 1271.9310 0.0071
3 2595.4520 1282.7061 0.0072
4 2597.5203 1284.8690 0.0077
5 2584.6487 1279.3009 0.0085
6 2577.6175 1276.7763 0.0092
7 2572.7844 1274.6847 0.0098
8 2576.5560 1276.4542 0.0068
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Table 3.3: Log marginal likelihoods of the LSTAR(p) when σ2
γ = σ2

c = 0.5

p ln p̂BS(y) NSE

1 1265.8159 0.0056
2 1271.2455 0.0086
3 1281.9794 0.0084
4 1284.0464 0.0096
5 1278.5441 0.0104
6 1276.0559 0.0110
7 1274.3493 0.0110
8 1276.2199 0.0079

found to be the best in the present section.

3.2 MCMC Estimation and Diagnostics

MCMC estimates of the AR(6) and LSTAR(4) will now be reported. They

will be accompanied by MCMC diagnostics to assess numerical accuracy and

convergence. The estimations are carried out exactly as in section 3.1. For

each model, 12500 posterior replications are generated and 2500 are immedi-

ately discarded to remove the effect of starting values. Posterior results are

displayed in tables 3.4 and 3.6 where θα is the estimated posterior quantile

at probability α and θ̂ is the estimated posterior mean.3 As proposed in

Geweke (1992), the NSE of the mean is
√
ρθ(0)/10000 where ρθ(0) is the

spectral density at zero of the sequence formed by the parameter replica-

tions. It thus takes the autocorrelation of the chain into account. Despite

slightly higher values for γ and c, the NSE values remain low in both tables.

Therefore, the estimated posterior means exhibit good numerical accuracy.

From Geweke (1992), the relative numerical efficiency (RNE) is the squared

ratio of a naive NSE ignoring autocorrelation of the chain to the NSE using

spectral density which was introduced earlier. When the RNE is near one,

3In this section, we use θ to represent a parameter of the models of interest.
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Table 3.4: Posterior results for the AR(6)

θ θ0.025 θ0.5 θ0.975 θ̂ NSE RNE CD

φ0 -0.0854 -0.0571 -0.0279 -0.0569 0.0001 1.0075 -1.7486
φ1 0.9370 1.0102 1.0827 1.0101 0.0003 1.1893 -0.6522
φ2 0.0886 0.1923 0.2942 0.1923 0.0006 0.8319 0.7516
φ3 -0.1713 -0.0677 0.0338 -0.0680 0.0005 1.2190 -1.0409
φ4 -0.1970 -0.0952 0.0065 -0.0950 0.0005 1.0676 0.8909
φ5 -0.0177 0.0810 0.1831 0.0815 0.0006 0.7683 -1.1157
φ6 -0.2120 -0.1396 -0.0696 -0.1401 0.0004 0.9606 0.9282
σ2 × 1000 1.5283 1.6899 1.8709 1.6933 0.0008 1.0939 0.2167

Table 3.5: Estimated posterior correlation matrix of the AR(6)

φ0 φ1 φ2 φ3 φ4 φ5 φ6 σ2

φ0 1.00 0.12 -0.01 -0.04 -0.04 -0.01 0.15 -0.02
φ1 1.00 -0.72 -0.16 0.05 0.08 0.07 -0.02
φ2 1.00 -0.39 -0.14 -0.01 0.07 0.00
φ3 1.00 -0.39 -0.14 0.03 0.02
φ4 1.00 -0.41 -0.13 0.00
φ5 1.00 -0.71 -0.01
φ6 1.00 -0.01
σ2 1.00

the autocorrelation is negligible as it is indeed the case in table 3.4. The RNE

values of table 3.6 show a little more autocorrelation for some parameters.

Nevertheless, it remains acceptable. We arrive at the same conclusions by

observing the ACFs of posterior replications of the AR(6) (figure 3.1) and of

the LSTAR(4) (figure 3.2). The convergence of MCMC algorithms must also

be assessed. To this end, Geweke (1992) proposed a convergence diagnostic

(CD) that compares the means computed with the first and the last part of
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the sequence of replications. It is given by:

CD =
θ̂A − θ̂B√

d−1A ρAθ (0) + d−1B ρBθ (0)

and follows asymptotically a N(0, 1). The replications of the first 10% and

the last 50% of the chain are contained in sets A and B respectively. The

cardinals of A and B are respectively denoted by dA and dB. The following

decision rule can be used for this diagnostic. When the CD value is less

than about 1.96 in absolute value for each parameter in the model, we can

conclude that the MCMC algorithm converges. For the AR(6), the CD values

indicate convergence. For the LSTAR(4), the CD value of γ is slightly lower

than -1.96 whereas the other CD values are all between -1.96 and 1.96. Thus,

convergence seems also to be reached.

Tables 3.5 and 3.7 report the estimated posterior correlation matrices of

Table 3.6: Posterior results for the LSTAR(4)

θ θ0.025 θ0.5 θ0.975 θ̂ NSE RNE CD

φ10 -0.0884 -0.0498 -0.0097 -0.0497 0.0002 0.9003 -0.0182
φ11 0.7313 0.8442 0.9494 0.8427 0.0009 0.3863 -1.1856
φ12 0.0715 0.2033 0.3383 0.2034 0.0007 0.8317 1.3591
φ13 -0.1881 -0.0557 0.0763 -0.0554 0.0006 1.0882 -1.1360
φ14 -0.1095 -0.0050 0.1041 -0.0043 0.0006 0.7391 0.9072
φ20 -0.1309 -0.0551 0.0189 -0.0552 0.0005 0.6930 0.3168
φ21 0.0454 0.2106 0.3881 0.2123 0.0013 0.4465 0.9007
φ22 -0.2407 -0.0080 0.2209 -0.0079 0.0012 0.9179 -0.6985
φ23 -0.2176 0.0021 0.2241 0.0022 0.0011 1.0547 0.1203
φ24 -0.3935 -0.2306 -0.0721 -0.2312 0.0008 1.0003 -0.4114
σ2 × 1000 1.4728 1.6295 1.8044 1.6318 0.0008 1.2068 0.9037
γ 2.4032 2.9395 3.5547 2.9541 0.0047 0.3979 -2.3386
c -0.0615 0.1741 0.3936 0.1713 0.0030 0.1607 -1.0435

The acceptance rate of the Metropolis-Hastings independence chain used to
simulate γ and c is 0.7465.
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the AR(6) and LSTAR(4) models, respectively. The correlations displayed

in these matrices are rather low, indicating that the models do not seem

to be over-parameterized. These correlations also suggest that the blocking

schemes of the MCMC algorithms of both models are appropriate.

In figures 3.3 and 3.4, we plot posterior densities of interest using the

kernel method. For the AR(6), the posterior of the sum of autoregression

coefficients indicates that the probability of an unit root is zero but that the

process is very persistent. For the LSTAR(4), by comparing the posteriors

of the sums of autoregression coefficients in both regimes, we observe that

one of the regimes is more persistent than the other. We will see below that

this regime corresponds to slow decreases in unemployment.

Figure 3.5 presents the estimated transition function Ĝt ≡ G(st; γ̂, ĉ) in

several ways. In the top panel, there is a plot of all the pairs (st, Ĝt) that

can be obtained with the whole data set. It reveals the logistic form of the

transition function as well as the smoothness and localisation of the transition

between the two regimes. In the middle panel, Ĝt is plotted along with the

(transformed) US unemployment series. First, we can observe that Ĝt reacts

a little too late to turning points in yt. Second, the two unemployment

regimes are clearly identified by the estimated transition function. Indeed,

Ĝt = 1 corresponds most of the time to a sharp increase in unemployment

and Ĝt = 0 to a slower decrease.4 The ability of the LSTAR to identify

unemployment regimes increases our expectations about its predictive power.

In the bottom panel, Ĝt is accompanied by, in shaded areas, the US recession

periods dated by the National Bureau of Economic Research. We observe

that Ĝt goes to 1 at the beginning of recessions and remains at 1 for some

time after the end of recessions.

Our application is close to that performed by Deschamps (2008, sec. 4

and 6). However, he uses a shorter sample than us: He does not consider the

data prior to 1960 since they can imply the existence of a third regime and

4The identification remains however less obvious at the beginning of the series where
the two asymmetric regimes of the US unemployment are not well defined.
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around zero (AR(6) model)
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Figure 3.5: The estimated transition function of the LSTAR(4)
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his sample ends in 2004. Furthermore, although we chose the same prior dis-

tributions as his for the AR and LSTAR models, the parameters of our prior

distributions are slightly different.5 Another difference is that Deschamps

(2008) focuses mainly on the comparison of the regime-switching behaviors

of the LSTAR and MSAR models. In our study, the MSAR model is not

considered and we rather investigate whether the US unemployment DGP

is nonlinear or not. Regarding results, the AR and LSTAR selected by De-

schamps (2008) are more parsimonious than those of the present application.

It is also interesting to point out that he finds very strong evidence against

linearity with the help of BFs. In our application, the evidence provided by

BFs against linearity is more moderate. We even obtain evidence against

nonlinearity with the BIC. Note that Deschamps (2008) does not use this

criterion, although it is complementary to BFs as explained in section 2.3.

In conclusion, as we faced model uncertainty on the whole data set, we

recommend future research on similar samples to investigate model averaging

methods. Moreover, it would be worth to develop a posterior simulator for

the LSTAR model that slightly improves the mixing for the parameters of

the transition function.

5Indeed, we selected a variance of 1 rather than 0.01 for the intercept in the AR model,
different variances and covariances for the elements of φ in the LSTAR model and a lower
value for σ2

c .
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Chapter 4

Model Averaging Methods

“[...] the Chimaera, who was not a hu-

man being, but a goddess, for she had

the head of a lion and the tail of a ser-

pent, while her body was that of a goat,

and she breathed forth flames of fire; but

Bellerophon slew her, for he was guided

by signs from heaven.”

The Iliad

Homer, translated by S. Butler

As stated by Cornfield (1967, p. 34): “A set of observations may be log-

ically consistent with several different hypotheses, even though some of the

hypotheses are inherently less plausible than others and even if the observa-

tions are more reasonably accounted for by some hypotheses than by others.”

In such a case, we are confronted with model uncertainty. This phenomenon

occurred for instance in section 3.1 where we were not able to discriminate

between linear and nonlinear models for the whole data set. Situations in

which there is model uncertainty should be treated with care. Indeed, by not

considering the ambiguity about models, i.e. by ignoring the somewhat less

plausible models, we could be led to underestimate the uncertainty related

to quantities of interest (Leamer, 1978, ch. 4; Raftery et al., 1997, among
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others). A solution to this problem is provided by model averaging methods.

The formal method to account for model uncertainty is Bayesian model

averaging (BMA). This technique will be presented in section 4.1. Although

this may be unrealistic, BMA assumes a complete model space. Therefore,

we will also consider a heuristic model averaging method, named optimal

pooling (OP), that does not suppose that the model space is complete. In

section 4.2, we introduce the log scoring rule, a key criterion for the OP

method. In section 4.3, we describe this method.

4.1 Bayesian Model Averaging

We will start with a bit of history. An early occurrence of BMA can be found

in Roberts (1965) where a third party synthesizes expert opinions with the

help of BMA. Afterward, Leamer (1978, ch. 4) presented the method as

the way to consider formally model uncertainty. Nevertheless, interest for

BMA came only later because the method requires a computational power

not available at that time. It is only in the 1990s that BMA became prac-

tical. The seminal paper of Hoeting et al. (1999) provides a review of the

computational advances made during this decade. Subsequently, BMA began

to be used in many different disciplines such as meteorology (e.g. Sloughter

et al., 2007), astrophysics (Parkinson and Liddle, 2013), macroeconomics

(Fernández et al., 2001, among others) and so on.

As can be seen in Koop (2003, ch. 11) or Carlin and Louis (2009, ch.

2), BMA operates as follows. Let M be a discrete random variable taking

its values in M = {M1, . . . ,MK}, the model space under study.1 Consider

that ∆ is a quantity of interest having a common meaning in all models and

denote the vector of data (y1, . . . , yT )′ by y1:T . Using the laws of probability,

1In section 1.3, we saw that Bayesian theories treat the parameter vector θ as random
because it is unknown. The same principle applies to the DGP: Since it is unknown, a
probability distribution is assigned over the set of possible models.
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we can formulate the posterior density of ∆ as follows:

p(∆|y1:T ) =
K∑
k=1

p(∆|y1:T ,Mk)p(Mk|y1:T ). (4.1)

The general BMA equation given in (4.1) is a finite mixture whose compo-

nents are the posteriors of ∆ under the different models in M and whose

weights are the posterior model probabilities (PMPs). In the more specific

context of one-step ahead prediction, we replace ∆ by the quantity to be

forecasted yT+1 in (4.1) so as to obtain the predictive density of BMA:

p(yT+1|y1:T ) =
K∑
k=1

p(yT+1|y1:T ,Mk)p(Mk|y1:T ) (4.2)

where p(yT+1|y1:T ,Mk) is the predictive density of model Mk. With the help

of Bayes’ rule, the kth PMP can be written as:

p(Mk|y1:T ) =
p(y1:T |Mk)p(Mk)∑K
l=1 p(y1:T |Ml)p(Ml)

where p(y1:T |Mk) is the marginal likelihood of model Mk and p(Mk) its prior

probability. By setting equal prior weights to the models (p(Mk) = 1/K for

all k), the formula simplifies to:

p(Mk|y1:T ) =
p(y1:T |Mk)∑K
l=1 p(y1:T |Ml)

. (4.3)

This means that we only need to know the marginal likelihoods of the models

in M to compute their PMPs. As discussed in section 2.3, the marginal

likelihoods can be efficiently estimated by the bridge sampling method.

We now consider an illustration of the mechanisms of BMA. A given

economic time series is driven by the following DGP: yt
i.i.d.∼ N(0.29, 3.86).

An economist postulates the models M1: yt
i.i.d.∼ N(0.2, 3.4) and M2: yt

i.i.d.∼
N(0.4, 5) for this time series. The top panel of figure 4.1 presents the predic-
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Figure 4.1: Predictive densities of the BMA illustration
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tive densities of the DGP, M1 and M2. The economist holds a sample of 100

realizations of the series and wants to predict the next outcome with the help

of BMA. First, she computes p(M1|y1:100) and p(M2|y1:100) assuming equal

prior model probabilities and obtains 0.63 and 0.37, respectively. Then, she

derives the one-step ahead predictive density of BMA drawn in the middle

panel of figure 4.1. We see that BMA provides a better approximation of

the DGP density than M1 and M2. Wishing to observe the large sample

behavior of BMA, the economist collects 4900 additional realizations of the

series. When she computes p(M1|y1:5000) and p(M2|y1:5000), she gets 1 and 0,

respectively. This means that the one-step ahead predictive density of BMA

is the same as the density of M1 as can be seen in the bottom panel of figure

4.1. This phenomenon occurs despite the fact that M1 is not the DGP.2

The BMA method has several interesting properties. The Kullback-

Leibler information criterion (KLIC) measuring the distance from (4.1) to

p(∆|y1:T ,Mk) is given by:3

KL[p(∆|y1:T ), p(∆|y1:T ,Mk)] = E[ln p(∆|y1:T )− ln p(∆|y1:T ,Mk)]

where the expectation is with respect to (4.1). Since the KLIC is nonnegative,

we have:

E[ln p(∆|y1:T )] ≥ E[ln p(∆|y1:T ,Mk)].

Raftery et al. (1997, p. 180) interpret this result by saying that on average

BMA yields better predictive performance with regard to a log scoring rule

than any model in M. Furthermore, BMA is also optimal for forecasting

with regard to an expected squared error loss when the set of models is

exhaustive (Min and Zellner, 1993).4 Another interesting property of BMA

2We inform the reader who wants to reproduce this example that the PMPs computed
with 100 realizations can change considerably from one simulation of the series to another,
while the large sample PMPs will always be 1 and 0.

3A general definition and some features of the KLIC can be found in Geweke (2005, p.
92).

4Note that the out-of-sample predictive performance of BMA has also been empirically
demonstrated, for instance by Fernández et al. (2001) in cross-country growth regression
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is that prior information on the relative correctness of the models in M can

easily be incorporated in the analysis through the prior distribution of M .

As previously illustrated and as noticed by Diebold (1991), BMA at-

tributes in large samples unit weight to a single model inM and zero weights

to the others. This means that BMA considers that the DGP belongs toM
(Geweke and Amisano, 2011, 2012) or in the terminology of Bernardo and

Smith (1994) that it is M-closed. When indeed the DGP belongs to M,

BMA will consistently give it unit weight in large samples. However, such

situation is rare in economics and occurs mainly in simulation studies where

the DGP is chosen by the researcher. Most of the time in the real world, the

DGP is not among the models considered by the researcher. In this context,

BMA will give in large samples unit weight to the model with the smallest

KLIC distance from the DGP (Geweke and Amisano, 2011). Except if this

model is a very good approximation of the DGP, this amounts to saying that

BMA treats a false model as being true.

Let us now examine the implications of theM-closed assumption of BMA

on its forecasting performance. If the DGP belongs toM or if a model inM
is close to the DGP, the forecasting performance of BMA will be excellent

given a large sample. If the DGP is neither in M nor closely approximated

by a model in M, the forecasting performance of BMA will be probably

better with a moderate sample possibly allowing some false models to be

combined than with a large sample where all weight is attributed to a false

model. Indeed, it is well known since Bates and Granger (1969) that model

averaging can improve predictive accuracy because the individual models,

although misspecified, can independently capture different aspects of the

underlying DGP.

In summary, the predictive performance of BMA is difficult to predict in

advance as it depends on a wide variety of criteria (sample size, models under

study, nature of the DGP and so on) and on their interactions. An empirical

or Hoeting et al. (1999) in medical experiments.
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investigation is often necessary to determine the value of BMA in a particu-

lar context. In chapter 5, we will thus implement a BMA of some carefully

selected specifications of the AR and LSTAR models to see whether it fore-

casts more accurately the US unemployment rate than individual models or

other model averaging methods.

4.2 The Log Scoring Rule for Bayesian Pre-

dictions

As explained by Gneiting and Raftery (2007), a scoring rule is a numeri-

cal score computed from the predictive density provided by a given model

for a future outcome and the realization of this outcome.5 It assesses the

goodness of the predictive density and allows to compare it with those pro-

vided by another models for the same outcome. Assume that the researcher

reports a predictive density p?(yt|y1:t−1,Mk) such as to maximize expected

score where expectation is taken with respect to her subjective predictive den-

sity p(yt|y1:t−1,Mk). Although this is desirable from a scientific viewpoint,

the researcher is not forced to report her personal prediction. A scoring rule

encouraging the researcher to be honest is one for which expected score is

maximized when the researcher reports her personal prediction. Such scor-

ing rule is said to be proper. Furthermore, when the score obtained relies on

p?(yt|y1:t−1,Mk) solely through its value at the realization of yt, the scoring

rule is termed local (Bernardo, 1979).

The log scoring rule, introduced by Good (1952), is the log predictive

density of a future outcome evaluated at this outcome. It is thus a log

predictive likelihood.6 This rule gives high score to a predictive density when

the realized outcome is located in an area of high predictive density and low

5Note that in the Bayesian approach, a scoring rule can also be viewed as an utility
function (see Bernardo and Smith, 1994).

6For more details on the notions of predictive density and likelihood, see Geweke (2005,
pp. 66-67).
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score when it is located in an area of low predictive density (Diks et al., 2011,

p. 217). Note also that the log scoring rule has the appealing feature of being

the only proper local scoring rule as demonstrated by Bernardo (1979) for

the continuous case. Geweke and Amisano (2010) suggest to cumulate the

log scores obtained by model Mk over a given sample yt1:t2 = (yt1 , . . . , yt2)
′:

LS(yt1:t2 ,Mk) =

t2∑
t=t1

ln p(yt|y1:t−1,Mk) (4.4)

where y1:t1−1 is a training sample allowing predictive likelihoods to be in-

sensitive to the initial prior density p(θk|Mk) for the parameter vector θk of

model Mk. We can compare the predictive performance over yt1:t2 of two

competing models as follows:

LS(yt1:t2 ,Mk)− LS(yt1:t2 ,Ml) =

t2∑
t=t1

ln

[
p(yt|y1:t−1,Mk)

p(yt|y1:t−1,Ml)

]
(4.5)

where p(yt|y1:t−1,Mk)/p(yt|y1:t−1,Ml) is the t-time predictive Bayes factor.

In (4.5), the evidence in favor of Mk against Ml is cumulated along the given

time period.

As pointed out by Geweke and Amisano (2011, 2012), the criterion in

(4.4) is equal to the log marginal likelihood ln p(yt1:t2|y1:t1−1,Mk).
7 It follows

that the log score difference in (4.5) is equal to the log Bayes factor:

ln

[
p(yt1:t2|y1:t1−1,Mk)

p(yt1:t2|y1:t1−1,Ml)

]
whose interpretation is given in section 2.3. These last results highlight the

relationship between model adequacy and out-of-sample predictive perfor-

mance in the Bayesian approach (Geweke, 2005, p. 67, see also Kass and

Raftery, 1995, p. 777).

To compute LS(yt1:t2 ,Mk), we have to evaluate some predictive likeli-

7Here, p(θk|y1:t1−1,Mk) is considered as the prior.
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hoods. In some cases, the analytical form of p(yt|y1:t−1,Mk) is available as

for instance for the RW model described in theorem 2 of appendix A. But

in general, the predictive likelihoods must be evaluated numerically. Fortu-

nately, this is an easy task: The t-time predictive likelihood of model Mk

can be rewritten as E[f(θk)|y1:t−1,Mk] where f(θk) = p(yt|y1:t−1, θk,Mk) and

estimated by (Markov chain) Monte Carlo integration as explained in sec-

tion 1.3. The specific form of f(θk) for the AR and LSTAR models will be

provided in section 5.1. Note that computing LS(yt1:t2 ,Mk) in this way may

be time-consuming since the posterior simulator must be run (t2 − t1 + 1)

times. An alternative would be to write:

LS(yt1:t2 ,Mk) = ln p(y1:t2|Mk)− ln p(y1:t1−1|Mk)

and to estimate each term using the bridge sampling method presented in

section 2.3.

4.3 Optimal Pooling

In part I, we presented and estimated linear and nonlinear models of a logis-

tic transformation of the US unemployment rate. We saw that these models

are able to capture some features of the US unemployment rate. Never-

theless, they remain intrinsically false since the underlying DGP is likely to

be extremely complex. In this context, the M-closed framework of BMA

described in section 4.1 is not realistic and BMA can only be relevant for

prediction when we condition on a moderate sample. Therefore, it can be in-

teresting to consider a model averaging framework where the unknown DGP

is not assumed to belong to the set of models M = {M1, . . . ,MK} under

investigation. Using the terminology of Bernardo and Smith (1994), such

framework is said to be M-open.

A predictive density p(yT+1|y1:T ,Mk) is supposed to be provided by each

model inM. These predictive densities can be combined by means of a finite
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mixture density:8

pwT (yT+1|y1:T ) =
K∑
k=1

wT,kp(yT+1|y1:T ,Mk) (4.6)

where the weight vector wT = (wT,1, . . . , wT,K)′ only depends on data up to

time T and fulfills the conditions
∑K

k=1wT,k = 1 and wT,1, . . . , wT,K ≥ 0 so

that (4.6) is a valid density.9 Equation (4.6) is a general device for model

averaging. Setting wT,k = 1/K for all k, gives us the equally-weighted model

averaging (EWMA) method. By defining wT,k = p(Mk|y1:T ) for all k, we

obtain the formal, butM-closed, BMA method presented in section 4.1. We

will now introduce the weight definition that leads to the heuristic M-open

OP method.

The principles of the OP method were first presented by Hall and Mitchell

(2007). But the full theoretical analysis was derived by Geweke and Amisano

(2011, 2012). In this method, we find the optimal weight vector w?T by solving

the following problem:

max
wT

T∑
t=t0+1

ln

[
K∑
k=1

wT,kp(yt|y1:t−1,Mk)

]

subject to
K∑
k=1

wT,k = 1 and wT,1, . . . , wT,K ≥ 0

(4.7)

where the objective function cumulates the log scores of the mixture over

yt0+1:T given the training sample y1:t0 . In (4.7), the optimal weights are

thus selected such as to maximize the past predictive performance of the

mixture.10 The first step to solve this problem is to evaluate all predictive

likelihoods as explained in section 4.2. Then, w?T can be obtained by using

8Although it is not considered here, it is also possible to aggregate predictive densities
through logarithmic combination as for example in Kascha and Ravazzolo (2010).

9Indeed,
∑K

k=1 wT,k = 1 ⇔
∫∞
−∞ pwT

(yT+1|y1:T )dyT+1 = 1 and weight nonnegativity
ensures that (4.6) is nonnegative for all yT+1.

10As explained in Hall and Mitchell (2007), the optimal weights can also be viewed as
those minimizing the KLIC distance from the DGP to (4.6).
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Figure 4.2: Predictive densities of the OP illustration

an appropriate numerical optimization method.

Let us return to the illustration of section 4.1. The economist now wants

to use an OP of M1 and M2 to predict y101 given y1:100 and y5001 given y1:5000.

The optimal weight vectors w?100 and w?5000 that she obtains are equal to

(0.61, 0.39)′ and (0.70, 0.30)′ respectively. We remark that, unlike BMA, OP

does not give a weight of one to M1 in the large sample case. The one-step

ahead predictive densities of OP are presented in figure 4.2. We observe that

OP yields in both panels a better approximation of the DGP density than

M1 and M2 in the top panel of figure 4.1.11

The asymptotic behavior of w?T was carefully studied by Geweke and

Amisano (2011). In the rare cases where the DGP belongs to M, the OP

weight of the DGP will consistently converge to one as T increases. In the

more common situation where the DGP is not in M, several misspecified

models will receive a positive OP weight in large samples. This phenomenon

was previously illustrated. Therefore, the OP method can be useful for pre-

diction with large as well as small samples when all models are false, unlike

11The reader wishing to reproduce this example should note that w?
100 can vary substan-

tially from one simulation of the series to another, while w?
5000 remains around (0.70, 0.30)′.
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BMA.

Some interesting applications of the OP method are already available in

the literature. Hall and Mitchell (2007) use this method to combine density

forecasts for UK inflation. Geweke and Amisano (2011) or more recently

Durham and Geweke (2014) implement the OP method with many models

for Standard & Poor’s 500 log returns. Furthermore, Geweke and Amisano

(2012) also apply the method to multivariate macroeconometric models of

US data. While Chua et al. (2013) combine short-term interest rate models

with the OP method, their focus is rather on BMA. Nevertheless, none of

these studies have used this combination tool to analyze and predict the US

unemployment rate as will be done in chapter 5.
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Chapter 5

Evaluating Forecasts of US

Unemployment

“[...] The past, the future, dwelling there,

like space, inseparable together.”

Kosmos

Poem of Walt Whitman

In this chapter, a forecasting competition will be held between linear

and nonlinear models for the transformed monthly US unemployment rate

and averages of these models obtained with the methods of chapter 4. This

competition will be based on pseudo out-of-sample forecasting (Stock and

Watson, 2009, pp. 103-104). This means that we will act as if we were fore-

casting in real-time. For each month t of the forecasting period, predictions

will be made using data up to t − 1 to estimate the individual models and

to compute the model average weights. However, unlike in a true real-time

situation, we will be able at each month t to directly evaluate our forecasts

with the realization of the series.

Pseudo out-of-sample forecasting competitions are helpful for improving

the modeling of the process under investigation (Rothman, 1998). Such ex-

ercises have already been performed with linear and nonlinear models for
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the US unemployment rate in Rothman (1998), Montgomery et al. (1998),

Koop and Potter (1999), Clements and Smith (2000), van Dijk et al. (2002)

and Deschamps (2008). Among these contributions, those of Montgomery

et al. (1998) and Koop and Potter (1999) are the only ones that consider

model averaging. However, their approaches differ considerably from ours.

Montgomery et al. (1998) combine point forecasts from a TAR model and

from a consensus of experts whereas we will combine predictive densities of

RW, AR and LSTAR models. Moreover, the weights of Montgomery et al.

(1998) are not recomputed in real-time. Koop and Potter (1999) implement

a BMA of AR and TAR models, but only on a very short forecasting period.

The plan of this chapter is as follows. Section 5.1 will provide some the-

ory about simulation in Bayesian forecasting. In section 5.2, we will explain

how the individual models entering the model averages are selected and will

describe all aspects of the forecasting experiment. In section 5.3, we will com-

pare the real-time weights of BMA and OP over the forecasting period. In

section 5.4, the forecasting performance of our models will be assessed with

the help of statistical tests and log scores. Finally, in section 5.5, this as-

sessment will be complemented by analyses based on the probability integral

transformation.

5.1 Simulating Predictive Densities

For the RW model, the analytical form of the one-step ahead predictive

density is provided in a conjugate framework by theorem 2 of appendix A.

However, in more complex situations the predictive density can generally not

be obtained analytically and must be simulated by the researcher.

The techniques used to simulate p(yT+1|y1:T ,Mk) from the AR or LSTAR

model and to simulate (4.6) will now be developed. We begin by explaining

the method used for individual models and then the one used for the mix-

ture of predictive densities. In general terms, the one-step ahead predictive
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density of an AR or LSTAR model is written as follows:1

p(yT+1|y1:T ,Mk) =

∫
p(yT+1|y1:T , θk,Mk)p(θk|y1:T ,Mk)dθk (5.1)

where p(yT+1|y1:T , θk,Mk) is normal for both models. The mean of p(yT+1|
y1:T , θk,Mk) is given by φ0 +

∑p
j=1 φjyT+1−j for the AR(p) and by:

φ10 +

p∑
j=1

φ1jyT+1−j +G(sT+1; γ, c)

(
φ20 +

p∑
j=1

φ2jyT+1−j

)

for the LSTAR(p). The variance is σ2 for both models. Koop (2003, p. 73)

presents the strategy that allows us to draw from (5.1). For each posterior

replication θ
(d)
k , we take a draw y

(d)
T+1 from p(yT+1|y1:T , θ(d)k ,Mk). Then, the

draws y
(d)
T+1, d = d0 + 1, . . . , D form a sample from the predictive density in

(5.1).2

The finite mixture of one-step ahead predictive densities given in (4.6)

can be simulated with the following algorithm:

1. Compute the weight vector wT whose elements sum to one and are

nonnegative using a given method.

2. If it is not a byproduct of weight computation, generate θ
(d)
k , d =

d0+1, . . . , D from p(θk|y1:T ,Mk) for the K models under consideration.

3. Construct the cumulative weights Pk =
∑k

l=1wT,l for k = 1, . . . , K.

4. For d = d0 + 1, . . . , D, repeat these steps:

Step 1: Draw u from the uniform distribution U(0, 1).

1These models were presented in section 1.2.
2The first d0 posterior draws constitute the burn-in sample.
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Step 2: Select model Mk where:

k =



1 if u ≤ P1

2 if P1 < u ≤ P2

...
...

K if PK−1 < u.

Step 3: Obtain a draw y
(d)
T+1 from the predictive density of the selected

model by drawing from p(yT+1|y1:T , θ(d)k ,Mk).

The resulting draws y
(d)
T+1, d = d0 +1, . . . , D are a sample from (4.6). This al-

gorithm can be used for the predictive densities of BMA, OP and EWMA, as

well as for those of other model averaging methods that also enter the general

framework described in (4.6). Of course, this algorithm can be computation-

ally demanding when repeated over the forecasting period. To implement

it in the forecasting experiment of this chapter, we had to parallelize the

computations on a cluster of computers.

5.2 Setting Up the Experiment

Individual models in competition are AR, LSTAR and RW models for the

logistic transformation of the monthly US unemployment rate. We use the

prior specifications and posterior simulators presented in chapter 2 for the

AR and LSTAR models. Furthermore, we use the results of theorem 2 in

appendix A and prior choices made in appendix B for the RW model. For

the sake of clarity, our prior choices are summarized in table 5.1. Note that

a sensitivity analysis was performed for γ and c using the whole data set in

section 3.1.

Specific procedures enable us to determine the composition of the different

model averages in competition. For BMA, we discard the RW model and

compute the PMPs of the AR(p) and LSTAR(p), p = 1, . . . , 8, over time using
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Table 5.1: Prior choices

σ2 φ γ c

RW IG(10−6, 10−6)

AR IG(10−6, 10−6) N(0, I)

LSTAR IG(10−6, 10−6) N(0, I) N(3, 0.1) N(0, 0.1)

expanding estimation windows.3 The first window contains the observations

from the beginning of the data set until 12 :1979. Then, 12 observations are

added to the next window, 12 more to the third and so on. The results are

presented in figure 5.1. Note that the PMPs are calculated with equation

(4.3) where the marginal likelihoods are obtained with the bridge sampling

method developed in section 2.3 and that we only compute the PMPs once

a year for computational convenience. Figure 5.1 can be interpreted in two

ways. First, at each point in time the models with the highest PMPs are the

ones that should be used to forecast future observations. Second, this figure

gives us at each point in time the weighting scheme used by equation (4.2)

to generate a predictive density at one-month horizon. As the time period

on the x-axis corresponds to the forecasting period where one-month ahead

predictions will be performed, we can select the models that emerge in figure

5.1 for BMA and drop out those whose PMPs are near zero. Consequently,

we only retain the AR(4), AR(6), LSTAR(4) and LSTAR(3) because the first

two dominate until the late 1990s and then the last two dominate at the end

of the forecasting period. We let M1 be the set containing these models.

Being conceptually different from BMA (see chapter 4), the OP method

requires another model selection procedure. As pointed out by Geweke and

Amisano (2011, 2012), even weaker models can be useful in the averages gen-

erated by this method. We thus retain models of each kind (AR, LSTAR and

RW) for these averages. Inside each model class, we select the best specifi-

3In section 5.3, we will provide evidence that the RW model can initially be discarded
when we select the BMA composition.
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Figure 5.1: Evolution of PMPs over time for the AR(p) and LSTAR(p),
p = 1, . . . , 8

cations with the evolution of Bayes factors over what will be the forecasting

period. In figure 5.2, we use the same marginal likelihoods than those used in

the model selection for BMA in order to compute the PMPs for the AR(p),

p = 1 . . . , 8, in the top panel and for the LSTAR(p), p = 1 . . . , 8, in the

bottom panel. We observe that no other models than the AR(4) and AR(6)

emerge in the top panel and that no other models than the LSTAR(4) and

LSTAR(3) emerge in the bottom panel. Consequently, we retain the models

in M2 =M1 ∪ {RW} for the OP method.

To sum up, we average models inM1 with the BMA method and those in

M2 with the OP method. Furthermore, we also combine models inM1 with

the EWMA method. Sophisticated model averaging methods such as BMA

and OP should at least provide better forecasting performance than EWMA.
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Figure 5.2: Evolution of PMPs over time for the AR(p), p = 1, . . . , 8, in the
top panel and for the LSTAR(p), p = 1, . . . , 8, in the bottom panel
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In other words, EWMA is a benchmark for other model averaging methods.

In the forecasting experiment of this chapter, besides model averages, we will

also present results for individual models in M2.

Our forecasting procedure is now detailed. We use 360 expanding win-

dows to estimate the individual models and to compute the weights assigned

to them by the model averaging methods. The first window starts at the

beginning of the data set and goes until 12 :1979. Then, we always add one

month to the preceding window to obtain the next window.4 The BMA

weights, i.e. the PMPs, are computed as previously in this section except

that they are now monthly updated and the OP weights are obtained from

each window by solving problem (4.7) where t0 corresponds to 9 :1965. The

dynamic behavior of these weights will be analyzed in section 5.3. For each

window, the out-of-sample predictive densities of our models and model av-

erages are simulated at one-month horizon with the techniques described in

section 5.1. The first densities are thus simulated in 1 :1980 and the last

in 12 :2009. The choice of one-month horizon is motivated by the remark

of Deschamps (2008, p. 456). He indicates that the use of greater hori-

zons provides marginal additional value when we forecast the monthly US

unemployment rate. Finally, note that this forecasting procedure is very

computationally demanding.

For the US unemployment rate, the literature does not provide recom-

mendations concerning the choice between expanding or rolling estimation

windows.5 As we chose expanding windows, the log scores cumulated over the

forecasting period computed in section 5.4 will be equal to log marginal like-

lihoods given that the smallest estimation window is considered as a training

sample. However, expanding windows do not protect us against the adverse

effects of structural changes, unlike rolling ones. Our model averages should

nevertheless present robustness with regard to such changes.

4All windows start in 2 : 1949.
5In the rolling scheme, distant observations are discarded as new ones become available

so that the window size is always the same (West and McCracken, 1998, p. 819).
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Figure 5.3 shows interquantile ranges of the one-month ahead out-of-

sample predictive densities of BMA. We can see that the transformed un-

employment rate yt is most of the time in the 0.35-0.65 range. Moreover,

when yt increases (or decreases) linearly the predictive densities are more

concentrated around the true values. We do not present the same plots

for individual models and other model averaging methods because they are

similar and do not provide additional information.

5.3 Real-Time Weights of Model Averaging

Methods

It is instructive to compare the weights generated by the BMA and OP

methods. In figure 5.4, these weights are plotted over the forecasting period.

All details concerning their computation were provided in section 5.2. Before

studying them, we must highlight that the weights of both methods are

computed for the same set of models (M2) so that we can compare them

and that they are updated in real-time, i.e. each time a new observation is

available.

The models emerging in the top panel are those inM1. This means that

the BMA method puts negligible weight on the RW model. Furthermore,

this method does not select a single model since no PMP converges to one.

In the bottom panel, the models that emerge are the AR(6) and LSTAR(4).

The OP weights of the AR(4) and RW models are always equal to zero.

Except in the early 1980s, the OP weights of the LSTAR(3) model are also

always equal to zero. It is noteworthy that the OP method is more selective

than the BMA method. Only a single AR model and a single LSTAR model

receive positive OP weights throughout the forecasting period. We also note

that the OP weights of the LSTAR(4) model start to grow more early than

its PMPs.

Although the two panels of figure 5.4 show some differences, a common
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pattern can clearly be identified. We observe that the weights of the linear

models that emerged in these panels are larger than those of the nonlinear

ones until the late 1990s, while it is the opposite situation in the remain-

ing part of the forecasting period. In other words, linearity is favored over

nonlinearity when the estimation windows end before the late 1990s and non-

linearity is favored over linearity when they end after the late 1990s. This

common pattern is surprising because the weights of both methods have

different interpretations and properties (see chapter 4). Finally, this pattern

could suggest that nonlinearities in the US unemployment process only occur

temporarily.

5.4 Forecast Comparison

We will now compare the predictive performance of the models in M3 =

M2∪{BMA,OP,EWMA} with the Diebold-Mariano test, the efficiency test

of West and McCracken and the log score approach. In this section, the

index t = 1, . . . , 360 represents the forecasting period which, as mentioned

earlier, goes from 1:1980 to 12 :2009. Over this period, we can construct

point predictions ỹt,k with the samples drawn from the predictive densities

of each model. To choose optimal point predictions, we define a loss function

L(yt − ỹt,k), which evaluates the prediction error yt − ỹt,k, and minimize

expected loss with respect to ỹt,k. When the loss is quadratic L(yt − ỹt,k) =

(yt− ỹt,k)2, the optimal point prediction is the predictive mean ȳt,k and when

the loss is linear L(yt − ỹt,k) = |yt − ỹt,k|, the optimal point prediction is the

predictive median ymedt,k . Both results are proved in theorem 3 of appendix A.

In the statistical tests of this section, we will use these two point predictions

and their associated loss functions in order to show the robustness of the

outcomes.

Table 5.2 presents the mean squared prediction error (MSPE), defined as
1

360

∑360
t=1(yt− ȳt,k)2, and the mean absolute prediction error (MAPE), defined

as 1
360

∑360
t=1 |yt−ymedt,k |, for each model. Both measures of predictive accuracy
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Table 5.2: Measures of predictive accuracy

MSPE × 100 MAPE

BMA 0.081616 0.022216
OP 0.082526 0.022268
EWMA 0.082587 0.022403
LSTAR(4) 0.083266 0.022513
LSTAR(3) 0.084826 0.022725
AR(4) 0.084995 0.022730
AR(6) 0.085021 0.022778
RW 0.095979 0.022747

provide approximately the same ranking. The model averaging methods

are the most accurate and the LSTAR models are more precise than the

linear ones. Among the model averaging methods, BMA provides the best

performance. The statistical significance of the differences between MSPEs

or MAPEs has to be investigated. Following the approach of Diebold and

Mariano (1995), we test for all pairs of models H0 : E(dt,k,l) = 0 where dt,k,l =

L(yt− ỹt,k)−L(yt− ỹt,l) is the loss differential.6 The implementation of this

test is done in two steps. We first regress dt,k,l on a constant φk,l. Then, the

nullity of φk,l is tested with a two-sided t-test using a heteroscedasticity and

autocorrelation consistent (HAC) variance estimate. The p-values resulting

from this test are shown in tables 5.3 and 5.4. The loss function L(yt − ỹt,k)
is equal to (yt − ȳt,k)2 in the first table and to |yt − ymedt,k | in the second. We

observe that, whatever the loss structure, the gains in accuracy of the BMA

method over the AR models are significant at about the 5% level. We also

see that under quadratic loss the model averaging methods and the AR(4)

model are significantly more precise at roughly the 5% level than the RW

model. However, no model significantly improves over the RW model under

linear loss. The Diebold-Mariano test does not provide further discrimination

between our models, suggesting a lack of power as already mentioned by

6Note that testing H0 : E(dt,k,l) = 0 is equivalent to the test of equal predictive
accuracy H0 : E[L(yt − ỹt,k)] = E[L(yt − ỹt,l)] between two competing models.
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Table 5.5: Efficiency test p-values

Using pred. means Using pred. medians

BMA 0.016072 0.010171
OP 0.012757 0.008844
EWMA 0.004977 0.002310
LSTAR(4) 0.001683 0.001124
LSTAR(3) 0.000102 0.000080
AR(6) 0.000099 0.000046
AR(4) 0.000066 0.000031
RW 0.000000 0.000000

Deschamps (2008, p. 456) in a similar context.

A second test procedure, proposed by West and McCracken (1998), will

now be conducted. We begin by estimating the model:

yt = φ0 + φ1ỹt,1 + . . .+ φ8ỹt,8 + εt (5.2)

where the point predictions ỹt,1, . . . , ỹt,8 are provided by the models in M3.

Then, F -tests of yt = ỹt,k+εt against the unrestricted model are performed for

k = 1, ..., 8 using a HAC covariance matrix estimate. A model that passes the

test is called efficient relative to the others. Table 5.5 displays the p-values of

this test. To produce the first column of the table, we used predictive means

as regressors in model (5.2). For the second column, we used predictive

medians. In the first column, only the BMA and OP methods pass the test

at the 1% level. In the second column, only the BMA p-value is larger than

1% although the OP p-value is close to this level.

The significance level should, according to Leamer (1978, ch. 4), be a

decreasing function of sample size. As the sample used for the Diebold-

Mariano and efficiency tests is large, a level of 1% rather than 5% can be

appropriate for both tests. In this case, the results of the Diebold-Mariano

test are not significant, reinforcing the suggestion that this test lacks power.
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Table 5.6: Log scores over the forecasting period

Log score

LSTAR(4) 713.2529
OP 711.8163
BMA 711.0672
EWMA 710.1152
LSTAR(3) 710.1128
AR(6) 708.4054
AR(4) 706.0151
RW 684.1699

However, with regard to the efficiency test, the BMA and OP methods show

predictive superiority.

The predictive performance of our models can also be compared using the

log score approach described in section 4.2. First, we evaluate the predictive

likelihoods corresponding to the predictive densities produced by the indi-

vidual models over the forecasting period. Then, the predictive likelihoods

of each model averaging method are formed by averaging with appropriate

weights over the predictive likelihoods of individual models. Of course, each

model averaging method considers a specific set of models as explained in

section 5.2. Lastly, we compute (4.4) over the forecasting period for each

model in M3. Table 5.6 reports the numerical magnitudes obtained with

this approach. Remarkably, the LSTAR(4) model provides the highest log

score. The rest of the ranking is roughly similar to what we obtained in table

5.2. Note that the log score reached by the OP method is slightly superior

to that of the BMA method. This is not surprising since the OP weights are

chosen such as to maximize the past log score of the mixture as shown in

problem (4.7).

Assuming that the smallest estimation window is a training sample, we

can use the log scores of table 5.6 to form BFs which can be interpreted

with the help of the Jeffreys scale presented in table 2.1. By comparing the
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LSTAR(4) with other models, we obtain substantial evidence against OP and

BMA, strong evidence against EWMA and LSTAR(3) and decisive evidence

against the remaining models. Later in this section, we will seek to identify

the observations that provide such an advantage to the LSTAR(4) model in

terms of log score. Among the model averaging methods, the only BF that

deserves to be mentioned is the one comparing OP and EWMA. It gives

substantial evidence against EWMA. It is also noteworthy that the evidence

for the OP or BMA method against the AR(6) model is strong, while it is

decisive against the AR(4) model. This tends to demonstrate the predictive

superiority of the OP and BMA methods over the AR models. Indeed, we

already obtained similar results with the Diebold-Mariano test, although they

were less conclusive with regard to the OP method. Finally, the evidence

against the RW model is always decisive, even when it is compared with the

AR(4) model.

We will now look at the evolution of cumulative log predictive BFs over

the forecasting period for some model pairs in order to evaluate the support

provided by individual observations to the considered models. This inves-

tigation technique has already been implemented by Geweke and Amisano

(2010), Deschamps (2012) and Durham and Geweke (2014) in financial econo-

metrics. The cumulative log predictive BFs we consider are in favor of the

following models: LSTAR(4), OP and BMA. The comparison is always made

with respect to the AR(6) model. We chose this reference model since it is

the best linear model in table 5.6. For these model pairs, we compute (4.5)

over expanding samples always starting at the beginning of the forecasting

period. These calculations are presented in the top panel of figure 5.5. In

the bottom panel of this figure, we plot the corresponding observations of

the transformed US unemployment rate. By comparing the two panels, we

can examine the contribution of individual observations to the accumulation

of evidence in favor of the different models.

Let us describe figure 5.5. In the early 1980s, as unemployment is rising

sharply, we observe a strong decrease of the evidence for the LSTAR(4) model
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relative to other models and a moderate decrease of the evidence for the OP

method relative to BMA or AR(6). These decreases allow BMA and AR(6)

to be the prevailing models during at least two decades. Nevertheless, we

see that in 1995 all models finally performed equivalently on the first half of

the forecasting period, although the AR(6) still keeps a small advantage. In

1996, a break occurs and the cumulative log predictive BFs start to behave

differently. The volatile decrease of unemployment that occurs from 1996 to

2000 contributes to seriously reduce the evidence for the AR(6) model relative

to other models. This leads the LSTAR(4) to become the prevailing model

and the model averaging methods to present better forecasting performance

than the AR(6) model. After 2000, the evidence for the LSTAR(4) model

or for the model averaging methods against the AR(6) model continues to

increase until the end of the forecasting period.

Throughout this section, we saw that the BMA and OP methods are

valuable tools to predict the US unemployment rate in the short-term. Al-

though they are outperformed by the LSTAR(4) model in the log score ap-

proach (table 5.6), these methods provide superior predictive performance

with regard to the statistical tests. Moreover, they provide results that are

somewhat better than those of their naive benchmark, the EWMA method.

On the other hand, discriminating between them is a difficult task; the sta-

tistical tests slightly favor the BMA method, while the log scores of table

5.6 marginally favor the OP method. In this section, we also saw that the

AR and RW models provide poor predictive performance. Nevertheless, the

cumulative log predictive BFs reveal that the AR formulation is sometimes

very attractive. Indeed, for some observations in the early 1980s the AR(6)

model strongly outperforms the LSTAR(4) model.

5.5 The Probability Integral Transformation

In this section, we will use the probability integral transformation (PIT) ad-

vocated by Rosenblatt (1952) to investigate whether the predictive densities
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generated by our models depart too much from those of the DGP. This ap-

proach to evaluate density forecasts was proposed by Diebold et al. (1998)

and extended by Berkowitz (2001). It is argued in Clements and Smith

(2000) that this technique may be relevant to discriminate between linear

and nonlinear models. We think that it could also be interesting to apply

it to mixtures of predictive densities arising from linear and nonlinear mod-

els. For a given model (which can be a model average), let us consider the

sequence of normalized PITs:

zt = Φ−1
[∫ yt

−∞
p(x|y1:t−1,Mk)dx

]
(5.3)

that can be formed over the forecasting period where Φ(•) is the standard

normal distribution function. If the predictive densities generated by Mk

coincide with those of the DGP, then the zt are i.i.d. N(0, 1) ex ante. On the

basis of the normalized PITs evaluated at the realized yt, statistical tests can

be implemented in order to detect deviations from the independent standard

normal. Such deviations suggest that the model is misspecified (Deschamps,

2012, p. 3043).

Given that we hold samples from the predictive densities of our models,

we can easily compute their normalized PITs using Monte Carlo integration

as is described in Deschamps (2008, p. 455). Of course, this procedure is

not necessary in the case of the RW model since the analytical form of its

predictive density is available (see theorem 2 in appendix A).

For each model in M3, we evaluate the behavior of the sequence of nor-

malized PITs computed over the forecasting period with the battery of tests

proposed by Deschamps (2012, p. 3044). To assess independence, we per-

form a F -test of the nullity of the coefficients (intercept excluded) in the

regression of zt on a constant and on zt−1, . . . , zt−12 as well as in the regres-

sion of z2t on a constant and on z2t−1, . . . , z
2
t−12. The first test is labeled as the

AR test and the second as the autoregressive conditional heteroscedasticity

(ARCH) test. To assess normality, we implement the Bera-Jarque (BJ) test
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Table 5.7: p-values of PIT diagnostics

AR ARCH BJ LR

BMA 0.0026 0.3734 0.0131 0.0000
OP 0.0048 0.4985 0.0066 0.0000
EWMA 0.0023 0.3661 0.0189 0.0000
LSTAR(4) 0.0047 0.3228 0.0311 0.0000
LSTAR(3) 0.0005 0.1238 0.0201 0.0000
AR(6) 0.0062 0.4517 0.0083 0.0000
AR(4) 0.0008 0.0631 0.0186 0.0000
RW 0.0000 0.0000 0.0000 0.0000

as well as a likelihood ratio (LR) test of the N(0, 1) null hypothesis against a

normal alternative with unconstrained moments. The p-values obtained from

these diagnostics are reported in table 5.7. The AR test provides evidence of

autocorrelation in the zt of each model. This test seems nevertheless to be

somewhat severe because when we consider the sample ACFs of normalized

PITs presented in figure 5.6, we only observe significant autocorrelation in

the case of the RW model. However, the AR test is obviously a more formal

and powerful procedure. Regarding the ARCH test, there only is evidence of

conditional heteroscedasticity for the RW model. Concerning the BJ test, it

rejects normality at the 1% level for the OP, AR(6) and RW models. Clear

evidence of misspecification is provided by the LR test; its null hypothesis is

strongly rejected for all models. In order to know whether the problem comes

from the mean or the variance, we carry out for every model a separate LR

test on each moment (considering the other parameter as unknown). The p-

values of these tests are reported in table 5.8. Furthermore, we also compute

the sample mean and variance of the zt of each model. We obtain values

between 0.04 and 0.13 for the sample means and between 0.39 and 0.42 for

the sample variances. These figures enable us to understand that, for each

model, the misspecification revealed by the initial LR test is mainly due to

the variance of the zt. This suggests that the predictive densities generated
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Table 5.8: p-values of LR tests on individual moments

Zero mean Unit var.

BMA 0.0107 0.0000
OP 0.0016 0.0000
EWMA 0.0024 0.0000
LSTAR(4) 0.0001 0.0000
LSTAR(3) 0.0003 0.0000
AR(6) 0.0119 0.0000
AR(4) 0.0355 0.0000
RW 0.2305 0.0000

by our models are generally too dispersed. This issue could be overcome in

further research by making more informative prior choices or by using rolling

rather than expanding estimation windows.

To conclude, the PIT technique was not particularly helpful for discrimi-

nating between our models. However, it suggested us new ways of investiga-

tion to improve the predictive densities generated by our models.
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Conclusion

Results

The main empirical results obtained in part I are the following. The specifi-

cation search conducted in section 3.1 led us to select the AR(6) as the best

AR model for the transformed US unemployment series and the LSTAR(4)

as the best LSTAR model for the same series. However, it was difficult to

discriminate between the two best models with the help of the BIC and the

marginal likelihood because the former encouraged the use of the AR(6) while

the latter favored the LSTAR(4). We interpreted these contradictory results

as evidence of model uncertainty on the whole data set. In section 3.2, we

presented the estimation results for the AR(6) and LSTAR(4) models. The

MCMC diagnostics showed that our posterior simulators are reliable. Never-

theless, we noted that the mixing for the parameters of the transition function

in the LSTAR model could be slightly improved. Finally, we observed in this

section that a well-chosen LSTAR model is able to successfully identify the

two asymmetric regimes of the US unemployment rate.

In part II, we presented the BMA and OP methods and used them to

combine predictive densities of linear and nonlinear models. The exact com-

position of these model averages was determined through specific procedures

in section 5.2. We retained the AR(4), AR(6), LSTAR(3) and LSTAR(4)

models for the BMA method and the same models together with a RW

model for the OP method. The principal findings of part II relate to the

model average weights and the predictive performance of the models and
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model averages in competition. Regarding the real-time weights produced

by the BMA and OP methods, we pointed out in section 5.3 that they exhib-

ited a similar pattern. The AR models with nonzero weights received more

weights than the LSTAR models on roughly the first half of the forecast-

ing period, while the contrary occurred on the second half of the forecasting

period. This outcome was surprising since both model averaging methods

are fundamentally different as explained in chapter 4. Another interesting

outcome was that the OP method attributed nonzero weights to a smaller

number of models than the BMA method.

Concerning the evaluation of predictive performance, the statistical tests

used in section 5.4 indicated that the BMA and OP methods performed

better than the other models considered. Note that this evidence was mainly

provided by the efficiency test. On the other hand, we saw in the same

section that these methods were outperformed by the LSTAR(4) model when

predictive performance was assessed with the log scoring rule. It is also

noteworthy that it was difficult to discriminate between the BMA and OP

methods and that these sophisticated methods were more accurate than the

naive EWMA benchmark. In this section, we also investigated the support

provided by individual observations to the different models with the evolution

over time of cumulative log predictive BFs and observed that the AR model

was highly attractive at the beginning of the forecasting period. Lastly, the

PIT framework implemented in section 5.5 turned out not to be very useful

for comparing the predictive performance of our models. Instead, it enabled

us to identify how we could improve the predictive densities produced by our

models in further research.

In the Introduction, we suggested that linear and nonlinear models could

describe the US unemployment process in a complementary fashion. The

behavior of the BMA and OP weights as well as that of the cumulative log

predictive BFs seemed to support this presumption. Moreover, the good

predictive performance exhibited by our sophisticated averages of linear and

nonlinear models also argued in favor of this assertion. Regarding the BMA
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method, we explained in section 4.1 that it is difficult to know a priori whether

it will perform well in a particular context or not. Therefore, it was instruc-

tive to see in chapter 5 that a BMA of AR and LSTAR models is able

to improve short-term predictions of the US unemployment rate. The OP

method was indeed a close competitor, however it does not provide a formal

treatment of model uncertainty, unlike BMA.

Further Research

Suggestions for further research that we are going to make here can be clas-

sified into two groups. The purpose of the first group of suggestions is to

overcome some issues encountered in this thesis, while that of the second is

to expand the scope of our research.

The propositions in the first group are the following. As the large-scale

forecasting experiment conducted in chapter 5 was very time-consuming,

we performed parallel computations on multiple central processing units

(CPUs). Another way to sharply speed up computations would be to carry

out estimation of the AR and LSTAR models with the sequential posterior

simulator recently developed by Durham and Geweke (2013) within a graph-

ics processing unit (GPU) environment. This algorithm is especially devised

for GPU massive parallelization and can provide predictive and marginal

likelihoods as well as PITs as byproducts. Another issue was revealed by the

PIT framework in section 5.5. The PIT diagnostics suggested that our mod-

els produced predictive densities that are often too uncertain. We mentioned

in this section that this phenomenon may come from the use of expanding

rather than rolling estimation windows. It could be interesting in further re-

search to determine which kind of estimation window is the most appropriate

for predicting the US unemployment rate.

The second group consists of the following suggestions. Golan and Perloff

(2004) propose a nonlinear nonparametric method that predicts remarkably

well the US unemployment rate. Comparing the predictive performance of
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our averages of linear and nonlinear parametric models with that of their

nonparametric approach might be an exercise for future research. In this

thesis, we focused on the statistical performance of forecasting models for the

US unemployment rate. Nevertheless, evaluating the economic performance

of these models as for instance in Hoogerheide et al. (2010) would also be an

avenue for further research. Finally, the OP method could be extended to

other scoring rules than the logarithmic one. Some candidate scoring rules

are proposed in Gneiting and Raftery (2007) or Diks et al. (2011).
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Appendix A

Some Theorems

Some theorems are presented in this appendix in order to complete the anal-

ysis of the main text. As unknown quantities are random variables in the

Bayesian paradigm, we will use many probability distributions in these theo-

rems. A summary of important probability distributions and their properties

can usually be found in the main Bayesian textbooks (See e.g. Koop, 2003

or Carlin and Louis, 2009). To save on notation, we will in general focus on

the kernels of densities instead of their full formulae. Bauwens et al. (1999,

pp. 43-44) define the notion of kernel as follows:

Definition 1. The kernel of a density p(x) is a function k(x) such that:

p(x) =
k(x)∫
k(x)dx

.

To simplify, we can write p(x) ∝ k(x). Note that a kernel is not unique.

If we multiply k(x) by a constant, definition 1 remains satisfied. However, it

is conventional to remove all the factors that do not depend on x in order to

form the kernel of a density.

Theorem 1 presents the analytical results that allow to implement a Gibbs

sampler for the AR model.

Theorem 1. Consider the AR model of order p of equation (1.2) in matrix

notation y = Xφ+ ε where y = (y1, . . . , yT )′, φ = (φ0, φ1, . . . , φp)
′ and where
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the row t of the T × (p+ 1) matrix X is (1, yt−1, . . . , yt−p). If a multivariate

normal prior with mean vector φa and covariance matrix Va is assumed for

φ:

p(φ) ∝ exp

[
−1

2
(φ− φa)′V −1a (φ− φa)

]
(A.1)

and an independent inverted gamma prior with hyperparameters a and b is

assumed for σ2:

p(σ2) ∝ 1

(σ2)a+1
exp

(
− b

σ2

)
(A.2)

then the full conditional posteriors of φ and σ2 are respectively multivariate

normal and inverted gamma:

p(φ|y, σ2) ∝ exp

[
−1

2
(φ− φ?)′V −1? (φ− φ?)

]
p(σ2|y, φ) ∝ 1

(σ2)a?+1
exp

(
− b?
σ2

)
where φ? = V?(X

′y/σ2 +V −1a φa), V? = (X ′X/σ2 +V −1a )−1, a? = a+T/2 and

b? = b+ (y −Xφ)′(y −Xφ)/2.

Proof. The likelihood of the AR model of order p that was defined in equation

(1.3) can also be written as:

p(y|φ, σ2) =
1

(2π)
T
2 σT

exp

[
− 1

2σ2
(y −Xφ)′(y −Xφ)

]
. (A.3)

We obtain the kernel of the posterior by multiplying (A.3), (A.1) and (A.2)

and by considering only the factors that depend on φ or σ2:

p(φ, σ2|y) ∝ 1

σT (σ2)a+1
exp

[
− 1

2σ2
(y −Xφ)′(y −Xφ)

−1

2
(φ− φa)′V −1a (φ− φa)−

b

σ2

]
.

Define φ? ≡ V?(X
′y/σ2 + V −1a φa) and V? ≡ (X ′X/σ2 + V −1a )−1. Since
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p(φ|y, σ2) ∝ p(φ, σ2|y), we have:

p(φ|y, σ2) ∝ exp

[
− 1

2σ2
(y −Xφ)′(y −Xφ)− 1

2
(φ− φa)′V −1a (φ− φa)

]
∝ exp

[
−1

2

(
y′y

σ2
− 2φ′X ′y

σ2
+
φ′X ′Xφ

σ2

+ φ′V −1a φ− 2φ′V −1a φa + φ′aV
−1
a φa

)]
∝ exp

[
−1

2

(
φ′
[
X ′X

σ2
+ V −1a

]
φ− 2φ′V −1? V?

[
X ′y

σ2
+ V −1a φa

])]
∝ exp

[
−1

2
(φ′V −1? φ− 2φ′V −1? φ? + φ′?V

−1
? φ? − φ′?V −1? φ?)

]
∝ exp

[
−1

2
(φ− φ?)′V −1? (φ− φ?)

]
.

Let a? ≡ a+T/2 and b? ≡ b+(y−Xφ)′(y−Xφ)/2. As p(σ2|y, φ) ∝ p(φ, σ2|y),

we see that:

p(σ2|y, φ) ∝ 1

σT (σ2)a+1
exp

[
− 1

2σ2
(y −Xφ)′(y −Xφ)− b

σ2

]
∝ 1

(σ2)T/2+a+1
exp

[
− 1

σ2

(
b+

(y −Xφ)′(y −Xφ)

2

)]
∝ 1

(σ2)a?+1
exp

(
− b?
σ2

)
.

Theorem 2 presents the main analytical results for the RW model.

Theorem 2. Consider the RW model yt = yt−1 + εt where the εt are i.i.d.

N(0, σ2). If the prior of σ2 is inverted gamma as in (A.2), then the marginal

likelihood is multivariate Student with 2a degrees of freedom, mean vector

µ = (y0, . . . , yT−1)
′ and scale matrix (b/a)IT :

p(y) ∝
[
1 +

(y − µ)′[(b/a)IT ]−1(y − µ)

2a

]− 2a+T
2

(A.4)
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where y = (y1, . . . , yT )′. The posterior of σ2 is inverted gamma:

p(σ2|y) ∝ 1

(σ2)a?+1
exp

(
− b?
σ2

)
(A.5)

where a? = a + T/2 and b? = b + (y − µ)′(y − µ)/2. The one-step ahead

predictive density is univariate Student with 2a? degrees of freedom, mean yT

and scale b?/a?:

p(yT+1|y) ∝
[
1 +

1

2a?

(yT+1 − yT )2

b?/a?

]− 2a?+1
2

.

Proof. We implicitly condition on y0 to form the likelihood function as:

p(y|σ2) =
1

(2π)
T
2 σT

exp

[
− 1

2σ2
(y − µ)′(y − µ)

]
. (A.6)

Define a? ≡ a+ T/2 and b? ≡ b+ (y − µ)′(y − µ)/2. With the help of (A.2)

and (A.6), we can formulate the marginal likelihood as follows:

p(y) =

∫ ∞
0

p(y|σ2)p(σ2)dσ2

=
ba

(2π)
T
2 Γ(a)

∫ ∞
0

1

(σ2)T/2+a+1
exp

[
−b+ (y − µ)′(y − µ)/2

σ2

]
dσ2

=
Γ(a?)b

a

(2π)
T
2 Γ(a)ba??

where Γ(•) is the gamma function. The last step comes from the fact that

the inverted gamma density integrates to one. Some manipulations have still

to be done:

p(y) ∝ ba+T/2

b
a+T/2
?

b−T/2

∝
(
b?
b

)− 2a+T
2
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∝
[
1 +

(y − µ)′[(b/a)IT ]−1(y − µ)

2a

]− 2a+T
2

.

The posterior is proportional to likelihood times prior:

p(σ2|y) ∝ p(y|σ2)p(σ2)

∝ 1

(σ2)T/2+a+1
exp

[
−b+ (y − µ)′(y − µ)/2

σ2

]
∝ 1

(σ2)a?+1
exp

(
− b?
σ2

)
.

Finally, the predictive density can be written as follows:

p(yT+1|y) =

∫ ∞
0

p(yT+1|y, σ2)p(σ2|y)dσ2

=
ba??√

2πΓ(a?)

∫ ∞
0

1

(σ2)1/2+a?+1
exp

[
−b? + (yT+1 − yT )2/2

σ2

]
dσ2

=
Γ(1/2 + a?)b

a?
?√

2πΓ(a?)[b? + (yT+1 − yT )2/2]1/2+a?

since the inverted gamma is a valid density. Then, we perform the following

steps:

p(yT+1|y) ∝ b
1/2+a?
?

[b? + (yT+1 − yT )2/2]1/2+a?
b−1/2?

∝
[
b? + (yT+1 − yT )2/2

b?

]− 2a?+1
2

∝
[
1 +

1

2a?

(yT+1 − yT )2

b?/a?

]− 2a?+1
2

.

Various point predictions can be obtained from a predictive density. De-

pending on the form of the loss function, theorem 3 shows which point pre-

diction should be used to predict a future outcome. Note that this theorem

can be viewed as a particular case of proposition 5.2 in Bernardo and Smith
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(1994, pp. 257-258).

Theorem 3. Let p(yT+1|y) be a predictive density for the future outcome yT+1

given the sample y = (y1, . . . , yT )′ and let L(yT+1, ỹT+1) be the loss associ-

ated with the point prediction ỹT+1. If the loss is quadratic L(yT+1, ỹT+1) =

(yT+1− ỹT+1)
2, then the optimal point prediction, i.e. the one that minimizes

expected loss where the expectation is with respect to p(yT+1|y), is the pre-

dictive mean. If the loss is linear L(yT+1, ỹT+1) = |yT+1 − ỹT+1|, then the

optimal point prediction is the predictive median.

Proof. We start with the quadratic loss. The optimal point prediction can

be found by solving:

min
ỹT+1

∫ ∞
−∞

(yT+1 − ỹT+1)
2p(yT+1|y)dyT+1. (A.7)

The objective function in (A.7) can be rewritten as follows:

E[(yT+1 − ỹT+1)
2|y] = E(y2T+1|y)− 2ỹT+1E(yT+1|y) + ỹ2T+1.

The first-order condition is then given by:

−2E(yT+1|y) + 2ỹT+1 = 0.

Therefore, we find ỹT+1 = E(yT+1|y) which is a minimum since the second

derivative of the objective function is equal to 2. In the case of the linear

loss, the problem to be solved is given by:

min
ỹT+1

∫ ∞
−∞
|yT+1 − ỹT+1|p(yT+1|y)dyT+1. (A.8)

The objective function in (A.8) is equal to:∫ ỹT+1

−∞
(ỹT+1 − yT+1)p(yT+1|y)dyT+1 +

∫ ∞
ỹT+1

(yT+1 − ỹT+1)p(yT+1|y)dyT+1.

Using the Leibniz’s formula (see Sydsæter et al., 2005, sec. 4.2), we obtain
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the following first-order condition:∫ ỹT+1

−∞
p(yT+1|y)dyT+1 −

∫ ∞
ỹT+1

p(yT+1|y)dyT+1 = 0

and find that: ∫ ỹT+1

−∞
p(yT+1|y)dyT+1 = 1/2.

Moreover, as the second derivative of the objective function is equal to

2p(ỹT+1|y), the predictive median is indeed a minimum.
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Appendix B

Some Empirical Results

Bayesian Estimation of the RW Model

The RW model yt = yt−1+εt where the εt are i.i.d. N(0, σ2) is a nonstationary

time series model that contains only one parameter. The main analytical

results concerning this simple model are derived in theorem 2 of appendix

A. We will now use some of these results to estimate the RW model and to

compare it to the AR and LSTAR models. As usual, the dependent variable

corresponds to transformation (1.1) and goes from 2:1949 to 3 :2011 (746

observations). The prior of σ2 is assumed to be inverted gamma as in theorem

2 and the prior hyperparameters a and b are both set to 10−6.1 Figure B.1

presents the posterior density of σ2 which is also inverted gamma as shown

in equation (A.5). The posterior mean is equal to 0.001962, a slightly higher

magnitude than those obtained for the AR(6) and LSTAR(4) in section 3.2.

We will now compute the BIC and the log marginal likelihood for the RW

model. The BIC of formula (2.13) is evaluated at posterior mean and gives

a value of 2528.7161. This result is lower than almost all the BIC values

obtained in tables 3.1 and 3.2 for the AR and LSTAR models. The log of the

marginal likelihood given by (A.4) is equal to 1251.8091. The BFs comparing

1We use here the same sample as in chapter 3. The prior choices for σ2 are also the
same. This allows us to compare the RW model to the AR and LSTAR models.
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Figure B.1: The posterior for the innovation variance of the RW model

the RW model to the AR and LSTAR specifications of tables 3.1 and 3.2 give

nearly always a decisive evidence against the RW model.
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List of Acronyms

ACF autocorrelation function

AR autoregression

ARCH autoregressive conditional heteroscedasticity

BF Bayes factor

BIC Bayesian information criterion

BJ Bera-Jarque

BMA Bayesian model averaging

CD convergence diagnostic

CPS current population survey

CPU central processing unit

DGP data generating process

DSGE dynamic stochastic general equilibrium

ESTAR exponential smooth transition autoregression

EWMA equally-weighted model averaging

GPU graphics processing unit

HAC heteroscedasticity and autocorrelation consistent

i.i.d. independent and identically distributed

KLIC Kullback-Leibler information criterion

LR likelihood ratio

LSTAR logistic smooth transition autoregression

MAPE mean absolute prediction error

MCMC Markov chain Monte Carlo

MSAR Markov switching autoregression
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MSPE mean squared prediction error

NSE numerical standard error

OP optimal pooling

PIT probability integral transformation

PMP posterior model probability

RNE relative numerical efficiency

RW random walk

SETAR self-exciting threshold autoregression

STAR smooth transition autoregression

TAR threshold autoregression

UK United Kingdom

US United States
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Computational Details

In this thesis, all the computations and graphs were performed with the R

statistical language and environment (R Core Team, 2013). Some packages

were helpful in this research. The package coda was used to carry out MCMC

diagnostics. The package Rsolnp was very convenient for computing the OP

weights. The package ggplot2 helped us with its graphical power. The

package multicore allowed us to run parallel computations on several CPUs

and the package sandwich enabled us to estimate robust covariance matrices.

Finally, many computations became feasible within a reasonable time thanks

to the high performance cluster of the University of Fribourg (Switzerland).
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