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Giants on the landscape: modelling the abundance of megaherbivorous dinosaurs
of the Morrison Formation (Late Jurassic, western USA)
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The ecosystem impact of megaherbivorous dinosaurs of the Morrison Formation would have depended on their abundance
(number of animals per unit of habitat area) on the landscape. We constrain Morrison megaherbivore abundance by
modelling dinosaur abundance in terms of carrying capacity (K), average body mass (ABM) and animal’s energy needs. Two
kinds of model are presented: ‘demand-side’ models that estimate K in terms of the aggregate energy demand of the dinosaur
community, and ‘supply-side’ models that estimate K in terms of retrodicted primary productivity. Baseline values of
K, ABM and energy needs for the models are further derived from comparisons with modern large herbivores, and from the
composition of the megaherbivore fauna from a particular stratigraphic interval of the Morrison, but in all models a broad
range of fractions and multiples of these baseline parameters are considered. ‘Best-guess’ estimates of Morrison
megaherbivore abundance suggest an upper limit of a few hundred animals across all taxa and size classes per square
kilometre, and up to a few tens of individuals of large subadults and adults.

Keywords: Morrison Formation; terrestrial paleoecology; herbivorous dinosaurs

Introduction: really big herbivores

Cenograms have become a standard tool in mammalian

paleoecology (Legendre 1986, 1989; Gingerich 1989;

Ducrocq et al. 1994; Gunnell and Bartels 1994; Maas and

Kraus 1994; Montuire 1995, 1998, 1999; Morgan et al.

1995; Gibernau and Montuire 1996; Gunnell 1997;

Montuire and Desclaux 1997; Dashzeveg et al. 1998;

Wilf et al. 1998; Croft 2001; Montuire and Marcolini 2002;

Storer 2003; Palombo et al. 2005; Tsubamoto et al. 2005;

Geraads 2006; Gómez Cano et al. 2006; Palombo and

Giovinazzo 2006; Costeur and Legendre 2008), albeit with

some reservations expressed (Rodrı́guez 1999). Graphs

that plot the natural logarithm of body mass (in grams) of

each species of non-volant, non-predatory mammal in a

fauna against the decreasing rank order of each species’

body mass in the fauna (Figure 1) are thought to reflect the

structure of the vegetation and climate, but what interests

us here is what cenograms show about the structure of

large-herbivore faunas. Figure 1 plots cenograms of the

biggest [body mass ¼ 8000 g (natural log ca. 9) or larger]

herbivores in a selection of Cenozoic large-mammal (and

bird) faunas and two dinosaur faunas. Marsupials and

dromornithid birds comprise the large herbivores in the two

Australian faunas (Murray and Vickers-Rich 2004). The

Argentinian fauna not only includes edentates, litopterns

and notoungulates, but also large rodents, a horse, a

peccary, camelids, deer and a gomphothere. The remaining

large-mammal faunas mostly are Plio-Pleistocene assem-

blages characterised by proboscideans, rhinos, horses,

hippos, cervids and bovids. The two dinosaur faunas come

from particular stratigraphic levels in the Late Cretaceous

Dinosaur Park Formation (Currie and Russell 2005) and

the Late Jurassic Morrison Formation (Foster 2003, 2007),

selected to make them as comparable to the paleomammal

faunas as possible by minimising time averaging.

Several interesting observations can be made. The

biggest members of the Australian faunas were small

compared with other big herbivores, perhaps reflecting the

small land area and/or harsh conditions of Australia

(Farlow et al. 1995; Burness et al. 2001; Murray and

Vickers-Rich 2004). There is a broad overlap in the sizes

of the larger members of most of the remaining

mammalian faunas and the Dinosaur Park assemblage

(although comparison is complicated by the different ways

in which body masses were estimated, with dental

measurements usually used for Eurasian mammals, and

postcranial dimensions or scale models used for other

groups). Some of the Pleistocene mammalian herbivores

seem to have been substantially bigger animals than the

hadrosaurs, ceratopsians and ankylosaurs of the Dinosaur

Park Formation (cf. Christiansen 2004).

But one assemblage stands out as being especially

characterised by giants. The trend defined by the nine largest

plant-eating dinosaur species (in this conservative tabulation

of valid species and their estimated body masses) from Zone
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5 of the Morrison Formation (updated from Foster 2007)

shows no overlap with the other faunas. Most of these

dinosaurs were sauropods, and their sizes are comparable to

those seen in other sauropod faunas (cf. Paul 1998;

Henderson 1999; Seebacher 2001; Aberhan et al. 2002;

Mazzetta et al. 2004; Carpenter 2006; Foster 2007; Lovelace

et al. 2007; Gunga et al. 2008; Sander and Clauss 2008;

Royo-Torres et al. 2009; Taylor 2009; Klein et al. in press).

Body mass is related to numerous aspects of organism

physiology and ecology (Peters 1983), including the

abundance of animals in ecological communities

(Damuth 1987, 1993, 2007; White et al. 2007), and

animal abundances will in turn affect their contribution to

ecosystem processes. The giantism of sauropods and other

Morrison herbivores, by affecting their abundance on

the landscape, would thus presumably have influenced the

extent to which they affected the physical structure of the

ecosystem (Dodson et al. 1980), their cropping impact on

the vegetation and the amount of meat and other organic

matter they provided to carnivorous dinosaurs, scavengers

and (ultimately) decomposer organisms. So, if we could

constrain how common the herbivorous giants were, we

could better reconstruct the nature of interactions between

the dinosaurs and their environment. This paper, by

modelling the interaction of physiological and ecological

parameters we consider most likely to have affected the

maximum abundance of Morrison plant-eating dinosaurs,

attempts to set reasonable limits on how common these

giants could have been.

Some proportion of the secondary productivity of

Morrison megaherbivores was undoubtedly consumed by

carnivores (cf. Farlow 2007; Hummel and Clauss 2008;

Russell 2009; Sampson 2009), as live kills, carrion or more

likely both. Young and (rarely) even adult individuals of

modern megaherbivores sometimes fall victim to preda-

tion (Joubert 2006; Plotz and Linklater 2009; Power and

Compion 2009). Given the small size of sauropod

hatchlings (Chiappe and Dingus 2001), young sauropods

may have been much more vulnerable to predation than

elephant or rhinoceros calves (cf. Wilson et al. 2010).

Figure 1. Comparative cenograms of paleofaunas of ‘large’ (estimated body mass ¼ 8000 g or more) herbivorous mammals, birds and
dinosaurs. As the mammal body sizes are conventional allometric estimates based on skeletal or dental parameters, the body masses of the
larger taxa may be somewhat off (?too large). The Morrison dinosaur body-size estimates are based on the version of an allometric
equation relating body mass to propodial circumferences presented by Packard et al. (2009); estimating dinosaur masses this way
probably minimises differences in mass estimates between the Morrison dinosaurs and the megamammals. Data from Croft (2001 and
personal communication); Montuire and Desclaux (1997), Montuire and Marcolini (2002), and Montuire personal communication;
Morgan et al. (1995); P. Murray personal communication; Currie and Russell (2005); Palombo et al. (2005), Palombo and Giovinazzo
(2006), and Palombo personal communication; Tsubamoto et al. (2005); Geraads (2006) and personal communication.

J.O. Farlow et al.404
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Given the large size of several Morrison theropod species,

growing Morrison sauropods may have been in danger of

attack until they were elephant sized or larger, although it

seems likely that the biggest individuals would have been

nearly invulnerable. Consequently, we do not rule out the

possibility that predation may have played a greater role in

limiting the size of Morrison megaherbivore populations

than those of mammalian megaherbivores. However, in

our models, we are interested in constraining estimates of

the upper limits of Morrison herbivorous dinosaur

population sizes, which would have been set by the

abundance and productivity of the vegetation that

supported them (cf. Pettorelli et al. 2009). We will

therefore model Morrison megaherbivore abundance on

the assumption that it was limited by trophic resources,

and not by other ecological factors such as predation.

At present, there are no data on the population density

or biomass of Morrison large herbivorous dinosaurs, but we

will predict values from models based on judicious (we

hope) comparisons with the ecology and physiology of

extant vertebrate plant eaters. We will then use the results of

our models to consider the role of sauropods in Morrison

ecosystem processes. Finally, we will discuss the kinds of

data that might potentially allow further constraints on

estimates of large-dinosaur population sizes.

The Morrison paleoenvironment

A number of authors have attempted to characterise the

physical and floristic environment in which Morrison

dinosaurs lived (e.g., Dodson et al. 1980; Russell 1989,

2009; Bakker 1996; Ayer 1999; Dunagan 2000; Engel-

mann et al. 2004; Turner and Peterson 2004; Foster and

Lucas 2006; Foster 2007; Hotton and Baghai-Riding

2010). Evidence from ancient soils (Retallack 1997), plant

fossils (Parrish et al. 2004) and invertebrate trace fossils

(Hasiotis 2004) indicates that, for the most part, the

climate of the Western Interior of the USA during

deposition of the Morrison Formation was rather dry, at

least seasonally. Temperatures were quite warm, and

annual rainfall was low enough for conditions to be

described as semi-arid, at least in places (Moore and Ross

1996). The dryness was likely ameliorated to some extent

by groundwater reaching the Morrison plains from

mountainous areas to the west (Turner and Peterson

2004), and fossils of aquatic animals were abundant

enough that there was probably some surface water year

round, at least in the larger watercourses, and particularly

in more northerly Morrison regions (e.g. parts of

Wyoming) – although it is worth noting that many of

the aquatic animals of the Morrison were forms that were

probably tolerant of drought conditions.

Although several taxa of Morrison plant megafossils

and palynomorphs have been described, uncertainty

remains about the relative abundance of different kinds

of plants in the vegetation. One interpretation is that trees

and tall shrubs mainly grew along rivers, and that for the

most part the vegetation away from watercourses was of

low stature, and herbaceous rather than woody (Parrish

et al. 2004; Rees et al. 2004; Turner and Peterson 2004;

Carpenter 2006; Foster 2007). The landscape would have

looked something like a modern savanna, albeit with ferns

likely replacing grasses as the dominant ground cover

(Figure 2). If this reconstruction of the vegetation is

correct, on a regional scale, the bulk of plant biomass and

net primary productivity (NPP) would likely be con-

tributed by ferns and cycadophytes. However, palynolo-

gical evidence (Hotton and Baghai-Riding 2010) suggests

that conifers may have been dominant components of the

vegetation even away from the wetter places, in which case

the regional vegetation may have been more parkland like

than savanna like, and conifers may have been significant

contributors to community primary productivity.

In their evaluation of modern counterparts of potential

sauropod food plants, Hummel et al. (2008) found

horsetails to be particularly good sources of metabolisable

energy per unit dry mass, ferns to be of variable quality

across species, ginkgo and some conifers to be comparable

in quality to modern temperate browse plants and

podocarp conifers and cycads to be of poor quality (also

see Gee in press; Sander et al. 2010). The food quality

Figure 2. Reconstruction of a Morrison landscape. A single Apatosaurus encounters a pair of Stegosaurus in a woody habitat, perhaps
near a watercourse. A herd of Diplodocus is seen in the distance, and a group of small, carnivorous Ornitholestes move across the
foreground. Morrison Mural, c. 2007 Carnegie Museum of Natural History. Digital illustrations by Walters and Kissinger.
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of cycadophytes is unknown, and that of Morrison ferns is

hard to predict, given the wide range of metabolisable

energy yields of modern ferns, but to the extent that these

plants dominated vegetation biomass on the landscape

they may perforce have comprised the bulk of food

consumed by the Morrison large herbivore community.

Although warmer Late Jurassic climates than those of

today (possibly related to higher Jurassic atmospheric CO2

concentrations) may have stimulated plant productivity

(Beerling and Woodward 2001), the dry Morrison climate

may have limited the amount of available fodder during

the dry season. This may have forced large herbivores to

live at low population densities (particularly if they were

endotherms; see below), and to move widely across the

landscape to find forage (Engelmann et al. 2004).

Herbivorous dinosaurs of the Morrison Formation

Uncertainty remains about how many valid species of each

genus of Morrison dinosaur there are, and about which of

these dinosaurs coexisted over the several million years of

Morrison time, and the Morrison dinosaurs that lived at

any one time may not all have lived in the same places.

Even so, it is clear that a half dozen or more species of

really big plant eaters coexisted at any given place and

time (Dodson et al. 1980).

The sample from Dinosaur National Monument and

vicinity (Fiorillo 1994; Foster 2007) nicely illustrates this

point. These are animals that lived in the same area at the

same time. There is at least one species each of

Camarasaurus, Apatosaurus, Barosaurus, Diplodocus

and possibly Haplocanthosaurus, all at well over

5000 kg adult size, and Stegosaurus, at about 5000 kg,

plus smaller but still sizeable plant eaters like the black

rhino (Diceros bicornis)-sized Camptosaurus and the

wapiti (Cervus elaphus)-sized Dryosaurus (Foster 2007).

Furthermore, this basic kind of herbivore community

maintained itself over most or all of the time that the

Morrison Formation was being deposited, a duration of at

least 4–6 million years (Foster 2003, 2007).

Herbivorous dinosaur metabolic requirements

The food requirements of dinosaurs would have depended

largely on their body masses and rates of metabolism.

Dinosaurian metabolic physiology has been a controver-

sial topic (Russell 1965; Ostrom 1970; Bakker 1971, 1972;

Spotila et al. 1973; Thomas and Olson 1980; Weaver

1983; Farlow 1990; Paladino et al. 1990; Paul 1991, 1994,

1998, 2001; Barrick and Showers 1994, 1995, 1999;

Farlow et al. 1995; Ruben 1995; Barrick et al. 1996; Ruben

et al. 1996; Reid 1997; Horner et al. 1999, 2000; O’Connor

and Dodson 1999; Seebacher et al. 1999; Fricke and

Rogers 2000; Seymour and Lillywhite 2000; Burness et al.

2001; Jones and Ruben 2001; Schweitzer and Marshall

2001; McNab 2002, 2009b; Showers et al. 2002;

Seebacher 2003; Chinsamy and Hillenius 2004; Hillenius

and Ruben 2004a; Padian and Horner 2004; Seymour et al.

2004; Chinsamy-Turan 2005; Amiot et al. 2006; Gillooly

et al. 2006; Grellet-Tinner 2006; Sander and Andrassy

2006; Lehman 2007; Erickson et al. 2009a, 2009b; Perry

et al. 2009; Pontzer et al. 2009; Klein et al. in press). The

degree to which dinosaurs elevated metabolic rates above

expectations for extant non-avian reptiles is related to the

broader question of how and why endotherms evolve from

ectotherms (McNab 1983; Hillenius 1992, 1994; Block

et al. 1993; Farmer 2000, 2001, 2002; Dickson and

Graham 2004; Frappell and Butler 2004; Grigg et al. 2004;

Hillenius and Ruben 2004b; Kemp 2004; Pörtner 2004;

Seymour 2004; Blob 2006; Geiser 2008; Clarke and

Pörtner 2010). A definitive assessment of herbivorous

dinosaur metabolic rates is beyond the scope of this paper,

but we can bracket metabolic expectations for these

animals by expectations for extant non-avian reptiles, on

the one hand, and birds and mammals on the otherhand.

But here, too, there is controversy that must be

acknowledged. An important school of ecological thought

argues that a single comprehensive theory based on first

principles of physics and chemistry can explain a wide

range of physiological and ecological scaling relationships

(West et al. 1997; Ernest et al. 2003; Brown et al. 2004;

Savage et al. 2004; Economo et al. 2005). Among the

results of this programme of research is an explanation for

the widely accepted idea that the metabolism of all

organisms should scale to the 3/4 power of body mass, in

terms of the fractal geometry of organismal internal

branching networks (e.g. circulatory and respiratory

systems). However, although empirical analyses of

metabolic scaling in vertebrates tend to show metabolic

scaling exponents near 3/4, they generally do not support

the conclusion that there is a common exponent relating

metabolism to body mass (White and Seymour 2003,

2004, 2005; McKechnie and Wolf 2004; Glazier 2005,

2010; Clarke 2006; White et al. 2006, 2007; Downs et al.

2008; Makarieva et al. 2008; McNab 2008, 2009a; Sieg

et al. 2009). In birds and mammals basal metabolic rate

(BMR) or standard metabolic rate (SMR) as convention-

ally analysed scales to body mass to somewhere between

0.64 and 0.75 power, while the metabolic exponent for

reptiles is greater, about 0.76–0.80 or even higher; the

difference is observed whether non-phylogenetic or

phylogenetically corrected analyses are employed. Other

complications arise from the animal size range used in

determining the value of the metabolic exponent; the

exponent may be larger for bigger than smaller

endotherms (Glazier 2005, 2010). This may in part be

due to the fact that the largest terrestrial endotherms are

herbivorous mammals, the metabolism of whose endo-

symbiontic micro-organisms is added that of their

mammalian hosts in most measurements of the latters’

J.O. Farlow et al.406
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BMRs (White and Seymour 2003; Clauss et al. 2007a,

2007b, 2008). Further complicating interpretations of the

mass-scaling of BMR in birds, at least, is the fact that

BMR shows short-term, reversible adjustments related to

seasonal conditions, and that in some species scaling of

BMR to body mass has a lower slope for captive-reared

than wild birds (McKechnie et al. 2006; McKechnie

2008). Flighted birds typically have a higher BMR than do

flightless birds of the same body mass, and the largest birds

are flightless (McNab 2009a). Such complications aside,

differences between endotherms and non-avian reptiles are

also seen in the scaling of field metabolic rate (FMR: Nagy

2005) or food consumption rates (Farlow 1976, 1990;

Peters 1983; Nagy 2001) against body mass.

In birds and mammals, metabolic rate is affected mainly

by body mass, but body temperature, activity levels, diet,

reproductive output, phylogeny, climate and habitat have

second-order influences on metabolism that interact in a

complex manner (see above references and Williams et al.

1993; Lovegrove 2000, 2004; Tieleman and Williams

2000; McNab 2002, 2003, 2006, 2007, 2008; Anderson and

Jetz 2005; Muñoz-Garcia and Williams 2005; Withers et al.

2006; White et al. 2007; Wiersma et al. 2007; Clarke and

Rothery 2008). Mammalian consumers of low-quality food

(e.g. arthropods, due to their indigestible chitinous

exoskeletons) have lower BMRs than consumers of

high-quality food (vertebrates, nuts and grass), and eaters

of fruit and leaves have intermediate metabolic levels

(McNab 2007, 2008). Diet also affects BMR in birds, with

relatively high BMRs in eaters of nectar, pollen, nuts and

aquatic vegetation, intermediate level BMRs in eaters of

grass, insects and vertebrates and the relatively lowest

BMRs in species that feed mainly on fruit (McNab 2009a).

Sedentary animals living in warm climates, and/or dry

situations with variable precipitation, have lower metabolic

rates than species living in cooler, and/or more mesic and

predictable situations (Lovegrove 2000; Anderson and Jetz

2005; White et al. 2007; Wiersma et al. 2007; McNab 2008,

2009a), although migratory birds and large, mobile

mammals may escape such depressing impacts on

metabolism by their ability to cut out for more suitable

areas on the landscape (Lovegrove 2000; McNab 2008).

Evaluating how these variables likely impacted dinosaur

SMRs is difficult, but it seems plausible that dinosaurian

herbivores would have had lower rates of metabolism

(controlling for body mass) than large theropods. The heat

(and perhaps dryness) of the Morrison environment may

have had a depressing impact on dinosaurian metabolism

(and may also have affected their diel patterns of activity

and habitat utilisation [as with modern desert elephants:

Kinahan et al. 2007; Leggett 2009]).

Living and fossil herbivorous xenarthrans (glypto-

donts, tree sloths and ground sloths) of a particular body

size generally have a smaller aggregate dental occlusion

surface area than do other herbivorous mammals of

comparable body size (Vizcaı́no et al. 2006). Extant

xenarthrans likewise have lower BMRs than most other

mammals (McNab 1985). Mylodontid ground sloths have

especially low tooth surface occlusion surface areas for

their body size. These observations suggest that most

extinct xenarthrans, and mylodontids in particular,

employed less thorough oral grinding of fodder, requiring

longer fermentation time in the gut, or lower food

requirements than expected for other mammals of the

same body mass, or both (Vizcaı́no et al. 2006).

Paleontologists (e.g. Christiansen 1999) have generally

thought that sauropods were capable of eschewing chewing

because they hypothesised that sauropods had a bird-like

gizzard in which plant materials would be ground (cf.Reilly

et al. 2001; Battley and Piersma 2005). This hypothesis was

based on the occasional discovery of large stones

(gastroliths) in the gut region of sauropod skeletons.

However, the aggregate mass of stomach stones in

sauropods, compared to the body mass of the sauropods,

appears to have been far less in sauropods than in birds,

which suggests that sauropods were not employing stomach

stones in a gizzard (Wings and Sander 2007) – unlike some

smaller herbivorous dinosaurs (Cerda 2008 and references

therein). Perhaps sauropod gizzards could comminute

fodder without the need for gastroliths, which may act

mainly to enhance the gizzard’s action (Reilly et al. 2001;

Schwenk and Rubega 2005). But if sauropods did not grind

food in either their mouths or guts, or did so only moderately

well, fodder would have arrived in the stomach in large bits.

Wings and Sander (2007), Sander and Clauss (2008), and

Franz et al. (2009) suggested that sauropods may have

compensated for their inability to grind food to small pieces

by subjecting it to very long retention times in the gut.

If so, this raises the possibility that a significantly

slower rate of fodder fermentation due to large fodder

particle size may have been a bottleneck that reduced the

rate at which sauropods were able to extract ME from their

food – it might have taken considerably longer than the

72 h of the experiments of Hummel et al. (2008) for

sauropods to get the same amount of metabolisable energy

from a given amount of plant material (cf. Bjorndal et al.

1990; Bjorndal 1997; Moore 1999; Ellis et al. 2005;

Hatt et al. 2005; Clauss et al. 2009; Fritz et al. 2009). If so,

this may have had a depressing effect on sauropod

metabolic levels (Clauss et al. 2009) – perhaps even more

than inferred for most ground sloths (Vizcaı́no et al. 2006).

As if the complications involved in assessing

dinosaurian metabolism already discussed were not

daunting enough, there are further analytical consider-

ations that are equally problematic. To begin with,

equations relating metabolic rate to body mass in extant

animals (e.g. Nagy 2001, 2005) are based on animals

considerably smaller than Morrison large herbivores, and

so the problem of extrapolating well beyond the data range

used to create the equations (cf. Franz et al. 2009)

Historical Biology 407
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is unavoidable. Furthermore, recent analyses indicate that

conventional allometric analyses of the kind used to

estimate body masses of dinosaurs from osteological

measurements (Packard et al. 2009), and to scale

metabolic rate to body mass (Packard and Birchard

2008; Packard and Boardman 2009) result in inaccurate

estimates for large animals.

All of these complications mean that presently

available allometric equations for predicting dinosaurian

metabolic rates from estimated body masses are to varying

degrees suspect. We will attempt to get around these

theoretical problems by a modelling approach in which

body masses and metabolic rates are allowed to vary over

wide enough ranges to accommodate all the uncertainties

involved in particular values of either kind of parameter.

We will attempt to bracket the metabolic requirements

of large herbivorous dinosaurs by extrapolating expec-

tations for dinosaur-sized, non-dinosaurian reptiles at the

lower end, and dinosaur-sized mammals at the upper end.

Metabolic requirements will be expressed in terms of the

daily metabolisable energy requirement and the daily

FMR.

Modelling the abundance of dinosaurs on the landscape

We will present three kinds of model. First, we will

constrain a likely range of population densities of a

hypothetical large sauropod species, based on ranges of

metabolic requirement, average body mass (ABM) and

potential carrying capacity of the Morrison environment,

the last extrapolated from values known to be possible for

extant megaherbivores. We will then extend this kind of

model to the entire megaherbivore fauna for a particular

interval of Morrison time. Finally, we will model

dinosaur abundance on the basis of published ‘retro-

dicted’ values of terrestrial NPP for the Late Jurassic of

the Morrison region. As our goal is to estimate the

maximum likely population densities of Morrison

megaherbivores, baseline values of parameters used in

our models will generally reflect values of parameters

(e.g. body mass and habitat carrying capacity) that allow

for the most generous estimates of population sizes.

We will present models that reflect the entire range of

plausible values of the relevant parameters, and also

‘best-guess’ models that reflect a narrower range of

parameter values.

In the course of our calculations, we will have to

consider animal metabolic requirements and ecosystem

productivity, in terms of energy required or provided per

day or year. A slight complication here is that the number of

days in a year was greater, and the number of hours per day

fewer, during the Late Jurassic than at present (Rosenberg

1997). The difference is minor, however (ca. 370–380 days

per year, and ca. 23 h/day for the Jurassic; Rosenberg

1997), and this will be ignored in our models.

Key to parameter acronyms

As we will use several acronyms for parameters throughout

this paper, brief summary definitions are presented here for

easy reference. Definitions, and explanations of parameter

units, are given in the appropriate places in the text.

Abbreviations: ABM, average body mass; BMR, basal

metabolic rate; D, population density (number of animals

per unit area of the landscape); DME, daily metabolisable

energy requirement of a single animal; FMR, field

metabolic rate; ¼ FEE (field energy expenditure); K,

environmental carrying capacity; ME, daily population

metabolisable energy requirement; msMER, daily mass-

specific metabolisable energy requirement; NPP, net

primary productivity; SMR, standard metabolic rate

‘Demand-side’ model of the abundance of a single
sauropod species

We start by comparing the potential abundance of a single

sauropod species with that of the largest extant

mammalian herbivore, the African elephant (Table 1).

The basic equation in our model is

D ¼ K=DME;

Table 1. Aggregate metabolisable energy (ME) requirement
[kJ/(km2 £ day)] of a hypothetical African elephant population.

Age class
%

of population

Estimated
body mass

(kg)a

Juveniles (0–5 years) 31 793
Immatures (5–10 years) 20 1784
Subadults (10–15 years) 11 2616
Young adults (15–20 years) 8 3029

Adults (20 þ years) 29.5 3544
ABM across the entire population ¼ 2178 kg
Average per animal DME requirement across the entire
population ¼ 175,350 kJ/(animal £ day)
Population densityb ¼ 3.85 animals/km2; population density of
young adults þ adults ¼ (37.5/99.5) £ 3.85 animals/km2 ¼ 1.45
animals/km2

Aggregate population ME requirement ¼ (175,350 kJ/[animal £
day]) £ (3.85 animals/km2) ¼ 675,000 kJ/(km2 £ day)

Notes: Population structure based on Leuthold (1976) for Tsavo East, after Owen-
Smith (1988), for a population thought to have been stable during the specified time
interval (1962–1966). The msMER of all individuals, regardless of age, is
assumed to be 550 kJ/(kg body mass0.75 day) (Hummel et al. 2008), which probably
underestimates the msMER requirements for younger animals.
a Following Leuthold (1976), we used age-class: body length relationships for a
breeding herd from Croze (1972: table 1) to estimate the body length for the
midpoint of each age-class as a proportion of the body length of a female of
maximum size: juvenile body length ¼ 0.583 that of a female of maximum size;
immature body length ¼ 0.764; subadult ¼ 0.868, young adult ¼ 0.9115,
adult ¼ 0.9605 and female of maximum size ¼ 1.000. The body mass of each
size class was assumed to be proportional to the cube of its body length. Maximum
adult female body mass was assumed to be 4000 kg (Owen-Smith 1988 table I.1).
b We used population density for a particularly large elephant population
(Murchison Falls Park South, long grass habitat (Laws et al. 1975: table 4.3; cf.
Chamaillé-Jammes et al. 2009). Biomass was 8601 kg/km2, with a unit animal body
mass of 2234 kg (close to that of our hypothetical population).
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D ¼ population density (number of animals/km2) on the

landscape. This is what we want to obtain from the model.

K ¼ the environmental carrying capacity, in terms of

how much total ME (in kJ) each unit area of landscape can

provide per day. The calculations are presented in Table 1,

which estimates how much ME would be needed by an

unusually large African elephant population. The reason

for using this number is that we know that, under

favourable conditions, a landscape (or at least certain

habitats on a landscape) can support a population at least

that large, and so K can be at least as much as needed to

support an elephant population of that size. With a total

population density of 3.85 animals/km2, and the large

individuals (young adults þ adults) comprising 1.45

animals/km2, the population ME requirement of our very

large elephant population, and thus our basic estimate of

K, is 675,000 kJ/(km2 day). In our model of a sauropod

population, we will allow K to vary between 1/10 and

twice this value.

DME is the daily metabolisable energy requirement of

a single animal. DME is calculated as

{kJ metabolisable energy requirement=½ðunit body mass

ðkgÞ0:75Þ £ day�} £ ½average body mass ðkgÞ0:75=animal�:

Two parameters vary in this calculation: (1) the mass-

specific daily kJ metabolisable energy requirement

(msMER), which we will allow to vary between 55 and

550 kJ/(unit body mass0.75 £ day) (Hummel et al. 2008)

and (2) the average animal body mass (ABM) in kg, which

is raised to the 0.75 power for the calculation, and which

will vary as described below.

What population density of sauropods would a

specified value of K support? We must take into account

the fact that sauropods were oviparous rather than

viviparous animals, and so young individuals may have

comprised a much larger proportion of the population than

in elephants (Janis and Carrano 1992; Paul 1994; Sander

et al. 2008; Erickson et al. 2009a). Foster (2005) tabulated

the relative abundance of juveniles (specimens with linear

dimensions of bones ,50% of average asymptotic adult

size) of Morrison sauropod genera. Juveniles constitute

about 17% of Morrison sauropod specimens for the

formation as a whole, and can comprise 39% of sauropod

specimens at those quarries where juvenile specimens

occur. However, these proportions likely undercount the

proportion of very young sauropods, whose bones would

have been less likely to survive taphonomic filters than

those of older individuals (Engelmann and Fiorillo 2000).

On the other hand, we must not overestimate the

abundance of young sauropods. If immature sauropods

segregated from their elders on the basis of size/age

(Myers and Fiorillo 2009; cf. Varricchio et al. 2008),

size/frequency distributions derived from sauropod

bonebeds or tracksites that sampled younger animals

might overestimate the proportion of young individuals in

the population at any given time.

We will model our sauropod population size-class

structure after that of the ostrich (Struthio camelus), so

selected because it is the largest extant oviparous

endotherm (Table 2). Interestingly, however, the relative

abundance of ‘older’ individuals (adults þ young adults;

36%) in the ostrich model of the population differs little

from that of the hypothetical elephant population. The

‘younger’ segment of the population (chicks þ

juveniles þ immatures) comprises 64% of the population

(in a cassowary population, the proportion of young birds

[chicks þ subadults] is somewhat less than that assumed

here; Moore 2007). We will allow the proportions of

‘younger’ vs. ‘older’ individuals in the population to vary,

but will keep the abundance of chicks, juveniles and

immatures constant with respect to each other within

the ‘younger’ segment, and the abundance of young adults

and adults will remain constant with respect to each other

in the ‘older’ segment of the population. The ‘younger’

segment of the population will vary between 25 and

90% of the entire population, and the ‘older’ segment

in consequence will vary between 10 and 75% of

the population (Table 3). Thus, the proportion of the

total population composed of chicks will range

([0.25 2 0.90] £ 0.7662) ¼ 0.19155 – 0.68958, and so

on for the rest of the population.

Erickson et al. (2009a) reconstructed the population

life table for a mass assemblage of the ornithischian

dinosaur Psittacosaurus lujiatunensis from the Early

Cretaceous Yixian Formation of China. On the basis of

osteohistology and skeletochronology, these dinosaurs

were thought to have reached sexual maturity sometime

during the ninth year of life. Animals that were 8 years old

and older comprised 15% of individual dinosaurs in the

sample, which value is bracketed by the range of values for

the ‘older’ segment of our hypothetical sauropod

population. Erickson et al. (2009a) concluded that the

life history survivorship pattern of Psittacosaurus was

probably typical for dinosaurs.

The ABM of dinosaurs in each size/age class in our

model is calculated assuming geometric similarity

throughout ontogeny (Table 2). The asymptotic average

adult body mass is assumed to be 30,000 kg, which would

make this a fairly large sauropod (cf. Seebacher 2001;

Gunga et al. 2008; Packard et al. 2009; Taylor 2009). ABM

for the entire population is calculated by multiplying the

ABM of each size class by the proportional abundance of

that size class according to the schedule in Table 3, and

then adding the prorated body masses, so calculated, of all

the size classes (Table 4). ABM thus varies between 2512

and 16,140 kg. We bracket these values by allowing ABM

to vary between 2500 and 20,000 kg. The value of ABM is

then used to calculate DME.
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Abundance of the Morrison megaherbivore fauna: FMR

‘demand-side’ model

Table 5 summarises the taxonomic composition and

specimen count of herbivorous dinosaurs from a relatively

narrow stratigraphic interval (Zone 5) relatively high in the

Morrison Formation (Foster 2007). Estimates of the

average adult biomass of each taxon are presented. Two

assumptions are made here: (1) that the specimens on

which mass estimates were based are typical for that taxon

and (2) that the average adult biomass approximates the

asymptotic adult body mass for each taxon, neither of

which is likely to be completely true. We first calculate the

average asymptotic body mass across all taxa of the

megaherbivore fauna by multiplying the number of

individuals in each taxon (Table 5) by the average

asymptotic body mass of that taxon, and dividing the sum

of these multiples by the total number (148) of dinosaur

specimens. Two such calculations are done, one using

body masses based on conventional allometric projections

from osteological measurements (Anderson et al. 1985),

and the second using the equation of Packard et al. (2009):

these yield average asymptotic body masses across the

megaherbivore fauna of 13,700 and 9110 kg, respectively.

Table 6 estimates the proportion each taxon of

herbivore contributes to overall community biomass on

the assumption that the ratio of ABM to asymptotic adult

body mass is the same as in our hypothetical sauropod

population (0.268: Table 2). Multiplying ABM by the

count of specimens of each taxon estimates the proportion

of community biomass that each taxon comprised.

Table 2. Population density (D, number of animals per km2) of a hypothetical sauropod population.

Age classa % of population Estimated total length (m)b Estimated body mass (kg)b

Chicks 48.7 (95/195) 2.5 59
Juveniles 9.7 (19/195) 5 470
Immatures 5.1 (10/195) 10 3700
Young adults 18.5 (36/195) 15 13,000
Adults 17.9 (35/195) 20 30,000
ABM across the entire population ¼ 8049 kg
Assume that population ME requirement is same as for hypothetical elephant population (Table 1): 675,000 kJ/(km2 £ day)
Scenario 1: Animal msMER ¼ 550kJ/(kg body mass0.75 £ day)
Average per animal DME requirement across the entire population ¼ 467,375 kJ/(animal £ day)
D ¼ (675,000 kJ/[km2 £ day]) £ (1 animal £ day/467,375 kJ) ¼ 1.44 animals/km2; D of young adults þ adults ¼ (71/195) £ (1.44
animals/km2) ¼ 0.526 animals/km2

Scenario 2: Animal msMER ¼ 55 kJ/(kg body mass0.75 £ day)
Average per animal DME requirement across the entire population ¼ 46,738 kJ/(animal £ day)
D ¼ (675,000 kJ/[km2 £ day]) £ (1 animal £ day/46,738 kJ) ¼ 14.4 animals/km2; D of young adults þ adults ¼ (71/195) £ (14.4
animals/km2) ¼ 5.24 animals/km2

Notes: Population structure loosely based on Bertram (1992) for ostriches. The metabolic-mass-scaled metabolic energy requirement (msMER) of individuals of all sizes in the
population is assumed to be the same in each of two metabolic scenarios, which probably underestimates the metabolisable energy requirements for smaller/younger animals.
a Bertram (1992) divided his ostrich population into adults (71% of birds), immatures (two-year-olds; 10%) and juveniles (one-year-olds; 19%). He made no count of birds
younger than that, but thought that the survival rate of chicks to the age of one year was likely to be 10–15%, based on other ostrich populations (p. 89). We assumed that,
relative to a one-year-old juvenile count of 19 out of 100 birds in the one-year and older segment of the population, there would be an initial hatchling count of 190 birds, and that
the average number of such chicks over the time interval between hatching and an age of one year would be half that, or 95 birds. In translating from ostriches to a hypothetical
sauropod population, then, we based relative proportions of the age classes on a count of 195 animals. We further split Bertram’s count of adults into roughly equal numbers of
young adults and adults. Obviously the ages associated with these age classes would span a much greater time interval than for ostriches. We presume that sexual maturity would
be reached sometime in the young adult size class.
b We assumed that total length of large adults was 20 m, with a body mass of 30,000 kg. Hatchling total length was assumed to be 0.3 m (Chiappe and Dingus 2001). We assumed
that midpoint of total length of sauropods during the chick interval (however long that was) was 2.5 m. Juveniles were assigned a length of 5 m, immatures 10 m and young adults
15 m. Body proportions were assumed to be geometrically symmetrical across all size classes. Thus, the body mass of chicks was calculated as (2.5/20)3 £ 30,000 kg ¼ 59 kg.

Table 3. Range of values of the proportional abundance of different size/age classes of a hypothetical sauropod population in our model
of sauropod population density.

Segment of
population Size class

Segment
proportion

Size-class
proportion within

segment of
population

Minimum proportional
abundance of size class
within entire population

Maximum proportional
abundance of size class within

entire population

‘Younger’ Chicks 0.25 0.90 0.7662 0.19155 0.68958
Juveniles 0.1532 0.03830 0.13788
Immatures 0.0807 0.02017 0.07263

‘Older’ Young Adults 0.75 0.10 0.5070 0.38025 0.05070
Adults 0.4930 0.36975 0.04930
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Table 4. Proportional contribution of each size class to ABM in a hypothetical sauropod population, reflecting the extremes of the
proportional abundance of each size class (Table 3).

Size class ABM (kg)
Proportional
abundance Proportional contribution to ABM (kg)

Chicks 59 0.19155 11.3015 –
59 0.68958 – 40.68522

Juveniles 470 0.03830 18.001 –
470 0.13788 – 64.8036

Immatures 3700 0.02017 74.629 –
3700 0.07263 – 268.731

Young adults 13,000 0.38025 4943.25 –
13,000 0.05070 – 659.1

Adults 30,000 0.36975 11,092.5 –
30,000 0.04930 – 1479.0

ABM (kg) 16,140 2512

Table 5. Composition of the herbivorous dinosaur fauna from Zone 5 of the Morrison Formation across all localities (updated from
Foster 2007), with emphasis on the megaherbivore (estimated adult body mass . / ¼ 1000 kg) taxa.

Taxon
Number of
specimens

Estimated adult
body mass (kg)c

Biomass [(Number of specimens £
average adult mass) £ 103] (kg)

Sauropodsa

Apatosaurus (possibly three species) 31 26,200 812
14,200 440

Camarasaurus (possibly three species) 47 12,600 592
9970 469

Diplodocus longus/carnegii 36 10,800 389
7430 267

Barosaurus lentus 8 10,800 86.4
7120 57.0

?Haplocanthosaurus 3 9000 27.0
6420 19.3

Stegosaurs

Stegosaurus armatusb 23 5280 121
4170 95.9

Megaherbivore total count of specimens
and average asymptotic body mass

148 Mean Adult 13,700
Body Mass 9110

Ankylosaurs

Mymoorapelta maysi and
indeterminate ankylosaurs

2 450

Ornithopods
Camptosaurus (two species) 15 830
Dryosaurus altus 8 160
Othnielosaurus consors 6 35
Total number of dinosaur specimens 179

Notes: Mass estimates modified from Foster (2007), based on propodial midshaft circumferences. For animals weighing 1000 kg or more, two mass estimates were made: one
using the conventional allometric equations (Anderson et al. 1985), and the second using the revised equation of Packard et al. (2009). From these two mass estimates for each
taxon, an average adult body mass across all the megaherbivore taxa is calculated. Specimen counts and one estimate of body mass are also reported for each category of smaller
herbivorous dinosaurs. No correction was made for possible size-related taphonomic biases in dinosaur specimen preservation [see Foster (2007) for an approach that attempts
such corrections].
a The large sauropod Brachiosaurus occurs in the Morrison Formation in Zones 2–4 (Foster 2007). It has been provisionally reported from the Stovall Quarry 1 in Oklahoma, a
quarry that is in Zone 5, based on a single metacarpal (Bonnan and Wedel 2004), but will not be considered further in the present paper.
b We follow Maidment et al. (2007) in provisionally assigning Stegosaurus stenops to S. armatus
c For sauropods, both of the mass estimates made from humeral and femoral midshaft circumferences were reduced by 10%. Wedel (2005) suggested that such a reduction should
be applied to mass estimates based on volumes of scale models of sauropods because of skeletal pneumaticity, but stated that such a correction was not needed for mass estimates
made from allometric equations scaling body mass to skeletal dimensions. Since we want to err on the side of overestimating rather than underestimating dinosaur population
density estimates, we reduced our allometric mass estimates even though we recognise that this is probably overkill.
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The sauropods plus Stegosaurus constitute nearly all of the

community biomass. This tabulation makes no attempt to

correct for the possibility that Morrison megaherbivores

are over represented relative to smaller herbivorous

dinosaurs due to taphonomic biases associated with very

large size (cf. Coe et al. 1987; Russell 1989; Foster 2007).

Such a correction would only slightly reduce the relative

contribution of the megaherbivores to overall herbivorous

dinosaur community biomass, and would not affect the

rank-order contribution to biomass of the megaherbivores

(Foster 2001). In our further calculations, we will only

consider the sauropods plus Stegosaurus.

To account for departures from our assumptions, and

as in our model for a single sauropod species, we will let

ABM vary on either side around the value used for

calculations in Table 6 to reflect uncertainty about the

proportion of young and older individuals in the dinosaur

populations. To simplify calculations, however, we will

assume that the age-class structure is the same for all

dinosaur species (cf. Erickson et al. 2009a). In our model

of a hypothetical sauropod population, the ratio of

ABM/asymptotic adult body mass ranged 2500/30,000–

20,000/30,000 or 0.0833–0.667. We will use the same

limits to bracket the ABM/adult body mass ratio of the

entire megaherbivore community.

We can compare the community metabolism of the

Morrison megaherbivore community with that of a modern

African ungulate community (Table 7). Again, we

deliberately select a modern community characterised by

a particularly high biomass (associated with a very large

population density of hippos). This time we characterise

community metabolism (and therefore K) in terms of

the FMR. With a community population density

of 44.64 animals/km2 and a community biomass of

28,038 kg/km2, the overall community FMR is about

3,580,000 kJ/(km2 £ day). This is probably an over-

estimate, because hippos have a relatively low metabolic

rate (Schwarm et al. 2006). In our full range of models, we

will allow K to vary from 1/10 to twice this value.

What community abundance of Morrison megaher-

bivores would be supported by a comparable community

FMR? Three scenarios will be considered (Table 8): (1)

dinosaur daily metabolic needs correspond to extra-

polated daily FMRs of mammals; (2) dinosaur daily

Table 6. Proportional composition of community biomass of the herbivorous dinosaur fauna from Zone 5 of the Morrison Formation
across all localities.

Taxon
Number of
specimens

Estimated adult
body mass (kg)

ABM (adult body
mass £ 0.268)

Biomass (number of
specimens £ ABM)

£ 103 (kg) % of total

Sauropods
Apatosaurus (possibly three species) 31 26,200 7020 218 39.8

14,200 3810 118 32.3
Camarasaurus (possibly three species) 47 12,600 3380 159 29.0

9970 2670 126 34.4
Diplodocus longus/carnegii 36 10,800 2890 104 19.0

7430 1990 71.7 19.6
Barosaurus lentus 8 10,800 2890 23.2 4.23

7120 1910 15.3 4.18
?Haplocanthosaurus 3 9000 2410 7.24 1.32

6420 1720 5.17 1.41
Stegosaurs
Stegosaurus armatus 23 5280 1420 32.5 5.94

4170 1120 25.7 7.04
Ankylosaurs

Mymoorapelta maysi and
indeterminate ankylosaurs

2 450 121 0.241 0.0441
0.0660

Ornithopods

Camptosaurus (two species) 15 830 222 3.34 0.609
0.913

Dryosaurus altus 8 160 42.9 0.343 0.0627
0.0939

Othnielosaurus consors 6 35 9.38 0.0563 0.0103
0.0154

Totals 179 548
365
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metabolic needs equal the daily msMERs of endotherms

(as in our single sauropod species model); (3) dinosaur

daily metabolic needs correspond to extrapolated daily

FMRs for varanid lizards. Each of these estimates will

take the place of DME used in our model of a sauropod

population.

Abundance of the Morrison megaherbivore fauna:

‘supply-side’ retrodicted NPP model

Beerling and Woodward (2001) published model predic-

tions of terrestrial NPP for several intervals of the geologic

past. For the Late Jurassic of the Morrison region, their

model retrodicted NPP values of 2–10 tonnes organic

Table 7. Estimated community metabolism of an African large-mammal community characterised by a particularly large biomass
[riverine habitat, Murchison Falls Park, South; data from Laws et al. (1975: table 4.3)].

Metabolism

Species
ABM
(kg)

Population density
(km22)

Biomass
(kg/km2)

Individual animal
(kJ/day) £ 103

Population
(kJ/[km2 £ day]) £ 103

Loxodonta africana 2234 2.00 4468 179 357
220 441

Hippopotamus amphibius 1000 19.00 19,000 97.8 1858
122 2320

Syncerus caffer 395 7.80 3081 48.7 380
61.8 482

Kobus kob 65 7.80 507 12.6 98.2
16.4 128

Kobus lechwe 160 3.40 544 24.7 84.1
31.8 108

Alcelaphus buselaphus 136 2.40 326 21.9 52.6
28.3 67.8

Potamochoerus aethiopicus 50 2.24 112 10.3 23.2
13.6 30.4

Totals 44.64 28,038 2853
3580

Notes: Two estimates of metabolism are presented for each species: (1) First line: metabolisable energy requirement, calculated as in Table 1; (2) Second line: FMR (kJ/day)
estimated as 4.82 £ body mass (g)0.734 (Nagy 2005).

Table 8. Estimated Morrison large herbivorous dinosaur metabolism.

FMRa ¼ 4.82 £
mass (g)0.734

(mammals)

msMER
550 kJ/(mass

[kg]0.75 £ day);
(endotherms)

FMR ¼ 3.950 £ mass
(g)0.603 2 70

(varanid lizards)

Taxon
Number of
specimens

ABM
(kg)

Individual
(£103)

Population
(£103)

Individual
(£103)

Population
(£103)

Individual
(£103)

Population
(£103)

Apatosaurus 31 7020 511 15,800 422 13,100 53.0 1640
3810 326 10,100 267 8270 36.6 1140

Camarasaurus 47 3380 299 14,000 244 11,500 34.1 1600
2670 251 11,800 204 9600 29.6 1390

Diplodocus 36 2890 266 9590 217 7800 31.0 1120
1990 202 7290 164 5900 24.8 891

Barosaurus 8 2890 266 2130 217 1730 31.0 248
1910 196 1570 159 1270 24.1 193

?Haplocanthosaurus 3 2410 233 699 189 568 27.8 83.4
1720 182 546 147 441 22.7 68.0

Stegosaurus 23 1420 158 3640 127 2930 20.2 464
1120 133 3050 106 2450 17.5 402

Totals 45,900 37,600 5160
34,400 27,900 4080

Notes: FMR ¼ field metabolic rate; equations from Nagy (2005) for mammals, and Packard and Boardman (2009; modified from Nagy et al. 1999) for varanid lizards;
msMER ¼ metabolisable energy requirement ([550 kJ/unit body mass0.75] £ body mass [kg]0.75); equation from Hummel et al. (2008). Totals may not correspond exactly to
sums of columns due to rounding.
a The equation for mammals is used, rather than that for birds, because larger animals were used in creating the mammalian equation.
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carbon fixed per hectare per year. Assuming that NPP in

terms of organic carbon fixed is about half of NPP in terms

of plant dry matter (Huston and Wolverton 2009: Fig. 10),

this becomes an NPP of 400,000–2,000,000 kg of plant

dry matter/(km2 £ year).

The experiments of Hummel et al. (2008) indicated

that modern plants similar to those generally available to

sauropods should yield 6000–10,000 kJ metabolisable

energy/kg dry mass (but recall our earlier uncertainty

about how quickly this energy would be made available in

the absence of mastication or gut grinding). Therefore, the

potential K of the Morrison environment can be estimated

by combining these sets of numbers, such that K in terms

of ME potentially provided to big herbivores by NPP

would range 6,580,000–54,800,000 kJ/(km2 £ day).

It is unrealistic to assume that the large herbivorous

dinosaurs of the Morrison paleocommunity were able to

consume all of the potential NPP. Some unknown but likely

large fraction would likely have been consumed by other

herbivores (presumably insects in particular; cf. Hasiotis

2004; Poinar and Poinar 2008; Sampson 2009), and some

fraction would likely have been either unavailable or

unpalatable to herbivores. Consequently, we will present

scenarios in which the range ofK values actually consumed

by Morrison large herbivorous dinosaurs is 0.1, 0.5 and 0.9

times the potential values.

McNab (2009b) modelled dinosaur energetics using an

equation relating field energy expenditure (FEE ¼ FMR)

to body mass in six species of large varanid: FEE

(kJ/day) ¼ 1.07 mass (g)0.735 [extrapolating from his

equation to a 7000-kg animal yields an estimate about

twice that based on the equation of Packard et al. (2009)].

McNab suggested that dinosaur FEEs approximated those

Figure 3. ‘Demand-side’ model of population density (number

of animals/km2) of a hypothetical sauropod species as a function

of environmental carrying capacity K (in terms of kilojoules of

metabolisable energy provided by the environment per square

kilometre per day) and DME (daily per animal ME requirement).

DME is the multiple of the ABM of animals in the population,
and the msMER of individual animals. K is expressed as
multiples (0.1–2.0) of the ME requirement of a large modern
population of African elephants (Table 1): 675,000 kJ/(km2 day).
ABM ranges 2500–20,000 kg, depending on the size-class
structure of the population (Tables 3 and 4); msMER ranges
55–550 kJ/(kg body mass0.75 £ day). (a) The complete model;
labelled contours indicate lines of equal values of animal density
across the curved interaction surface created by DME and K.
(b) Bivariate plot of density as a function of ABM with msMER
set at 55 kJ/(kg body mass0.75 £ day), and three values of K: 0.1,
1.0 and 2.0 £ 675,000 kJ/(km2 day). (c) Bivariate plot of density
as a function of ABM with msMER set at 550 kJ/(kg body
mass0.75 £ day), and three values of K: 0.1, 1.0 and
2.0 £ 675,000 kJ/(km2 day). Population density is directly
proportional to K, and inversely proportional to msMER and
ABM. The highest population densities (up to about 80
animals/km2) are associated with (unrealistically?) high values
of K (levels sufficient to sustain twice the daily population ME
requirement of a very large modern elephant population), very
low msMER (equivalent to that of extant reptiles), and a
population dominated by very young individuals.
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of varanids, and would have been ,22% those of

mammals of comparable size.

In our present set of models, we will, as before, set

upper values of msMER of herbivorous dinosaurs at

550 kJ/(unit body mass0.75 £ day), and lower values of

msMER at 22% of that value, or 121 kJ/(unit body

mass0.75 £ day). ABM will again range 759–9140 kg. As

DME ¼ msMER £ ABM, the total range of DME in this

set of models will be 17,500–514,000 kJ/(animal £ day).

D will then be calculated as K/DME.

Results

‘Demand-side’ model of the abundance of a single
sauropod species

Figure 3 shows calculated values of D across the full range

of our estimates of K, ABM and DME. Table 2 calculates

D of sauropods in a narrower part of that range, on the

assumption that the age-class structure corresponds to that

of ostriches, and that K is 675,000 kJ/(km2 day), under two

scenarios: one in which each animal’s msMER is

comparable to that of an endotherm and the second in

which each animal’s msMER is 1/10 that of an endotherm.

Under the first scenario, with endothermic sauropods

with high rates of metabolism, we obtain a D of 1.44

animals/km2; of these, 0.526 animals/km2 would be large

individuals (young adults þ adults). The overall sauropod

population density would be less than half that of the

elephants. In the second scenario, with sauropods having

metabolic rates comparable to those of ectotherms,

population densities would be 10 times those of

endothermic sauropods, and 3.5–4 times those of the

hypothetical elephant population. Substantially lower

estimates for D (much less than one animal/km2) are

obtained if we assume K values 1/10 those calculated for

the very large modern elephant population, coupled with

msMER expectations for an endotherm, even if we assume

that the population is largely composed of very young

individuals. Substantially higher values of D (as much as

80 animals/km2) are associated with K values greater than

those associated with the very large modern elephant

population, msMER expectations for an ectotherm, and a

population dominated by very young animals (Figure 3).

Note, however, that a population dominated by small

juveniles also means that the number of mature animals

per unit area of landscape would be correspondingly low.

Abundance of the Morrison megaherbivore fauna: FMR
‘demand-side’ model

Tables 8 and 9 present calculations of total megaherbivore

community metabolism for the three scenarios using our

baseline ratio of ABM/asymptotic adult body mass, with

two sets of values of the adult body mass of each taxon

(Table 5). In all three scenarios, Apatosaurus, Diplodocus

and Camarasaurus together dominate community metab-

olism. The mammal FMR model predicts slightly larger

individual animal metabolic rates than does the endotherm

msMER model; because we want to bracket ranges of

values in our predictions of dinosaur population densities,

from here only the estimates based on FMRs of mammals

and varanids will be reported.

Figure 4 shows the full range of estimated Morrison

megaherbivore population densities predicted in our

model. To reiterate, the baseline value of K (Table 7) is

3,580,000 kJ/(km2 £ day) and K varies between 358,000

and 7,160,000 kJ/(km2 £ day). There are two baseline

values of ABM, (0.268 £ 9110 kg), or 2441 kg, and

(0.268 £ 13,700 kg), or 3670 kg (Tables 5 and 6), and

ABM varies from (0.0833 £ 9110 kg), or 759 kg, to

(0.667 £ 13,700 kg), or 9140 kg. For any given ABM,

the FMR (kJ/day) for an animal of that average mass will

range between [3.950 £ body mass (g)0.603 2 70] and

[4.82 £ body mass (g)0.734].

Tables 10 and 11 present calculations of abundance for

individual taxa for two sets of scenarios with specified

values of K and ABM, and of a particular FMR vs. body

mass equation. In a scenario in which K takes the baseline

value of 3,580,000, ABM is a specified proportion (0.268,

as in our model of a single sauropod species – Table 2) of

asymptotic body mass, and the dinosaurs have the FMRs

of mammals (Table 10), the total abundance of dinosaurian

megaherbivores is 11–15 animals/km2, about 1/3–1/4 that

of the African large herbivore community; 4 – 6

animals/km2 are large individuals (Table 10). The

dinosaurian megaherbivore biomass is up to half again

that of the African large herbivores. In the varanid FMR

scenario (Table 11), there are an incredible 100 þ

animals/km2, of which about 40 animals/km2 are

large individuals. The biomass is an astonishing

Table 9. Proportion of Morrison large-herbivore community
metabolism contributed by each taxon (taxon population
metabolism/total large-herbivore community metabolism).

Taxon
Mammal

FMR model
Endotherm

msMER model

Varanid
FMR
model

Apatosaurus 0.344 0.348 0.318
0.294 0.296 0.279

Camarasaurus 0.305 0.306 0.310
0.343 0.344 0.341

Diplodocus 0.209 0.207 0.217
0.212 0.211 0.218

Barosaurus 0.0464 0.0460 0.0481
0.0456 0.0455 0.0473

?Haplocanthosaurus 0.0152 0.0151 0.0162
0.0159 0.0158 0.0167

Stegosaurus 0.0793 0.0779 0.0899
0.0887 0.0878 0.0985
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300,000 þ kg/km2 [cf. Coe et al. (1979) for a comparison

of the biomass of Aldabra tortoises with that of African

ungulates]. Even higher (unrealistically so?) animal

densities are predicted if K values are greater than the

baseline 3,580,000 value, in combination with dinosaur

FMRs like those of varanids, and very high proportions of

juveniles in the populations (Figure 4).

Abundance of the Morrison megaherbivore fauna:
‘supply-side’ retrodicted NPP model

The number of megaherbivorous dinosaurs calculated to

occupy each square kilometre of landscape in this ‘supply-

side’ model (Figures 5 and 6) shows overlap with

estimates from our earlier ‘demand-side’ model (Figure 4)

at lower values of potential K, and of the proportion of that

potential K actually available to the dinosaurs. The higher

values of K, and of the proportion of K actually available to

dinosaurs, imply the most fantastic dinosaur community

abundances yet, with hundreds or (with low msMERs and

a high proportion of juveniles in the fauna) even thousands

of animals/km2 of landscape. Such numbers are hard to

credit.

Discussion

Sources of uncertainty in our models

Estimates of Morrison megaherbivore abundance in our

models span a huge range, reflecting lack of firm

knowledge about most of the relevant features of

Figure 4. ‘Demand-side’ model of total population density
(number of animals/km2) across species of Morrison
megaherbivorous dinosaurs as a function of environmental
carrying capacity K (in terms of kilojoules of energy provided per

square kilometre per day) and daily per animal metabolic need. K
is expressed as multiples (0.1–2.0) of the total FMR of a very large
modern African large herbivore community (Table 7). This
baseline value of K (Table 7) is 3,580,000 kJ/(km2 day) and K
varies between 358,000 and 7,160,000 kJ/(km2 day). There are
two baseline values of ABM, 2441 kg, and 3670 kg (Tables 5
and 6), and ABM varies from 759 to 9140 kg, reflecting different
estimates of the proportion of very young vs. older animals in the
dinosaur community. For any given ABM, the FMR (kJ/day)
for an animal of that average mass will range between
[varanid equation: 3.950 £ body mass (g)0.603 2 70], and
[mammal equation: 4.82 £ body mass (g)0.734]. (a) The
complete model; labelled contours indicate lines of equal values
of density across the curved interaction surface created by ABM,
FMR and K. (b) Bivariate plot of density as a function of ABM,
with FMR following the varanid equation of Packard and
Boardman (2009): FMR (kJ/day) ¼ 3.950 £ Mass (g)0.603 2 70,
and three values of K: 0.1, 1.0 and 2.0 £ 3,580,000 kJ/(km2 day).
(c) Bivariate plot of D as a function of ABM, with FMR following
the mammal equation of Packard and Boardman (2009):
(kJ/day) ¼ 4.82 £ Mass (g)0.734, and three values of K: 0.1, 1.0
and 2.0 £ 3,580,000 kJ/(km2 day). As in the model for a single
sauropod species (Figure 3), astonishingly (unrealistically?) high
community population densities are associated with very high
values ofK, FMRs extrapolated from modern varanid lizards and a
very high proportion of juveniles in the dinosaur populations.

R

J.O. Farlow et al.416

D
ow

nl
oa

de
d 

by
 [

D
r 

D
an

ie
l M

ar
ty

] 
at

 0
0:

13
 0

9 
O

ct
ob

er
 2

01
2 



dinosaurian natural history. However, some of the relevant

parameters are better constrained than others. Estimates of

adult (asymptotic?) body mass in each taxon are probably

less speculative than any other parameter (but keep in

mind that we chose deliberately slightly to underestimate

the body masses of sauropods; Table 5, comment C).

Estimates of the proportion of immature animals in

dinosaur populations are more speculative, but recent

studies (summarised in Erickson et al. 2009a) suggest that

immatures may consistently have comprised 70% or more

of the population, which means that the average-sized

dinosaur in a population may have been considerably

Table 10. Estimated population density of Morrison large herbivores based on a total large-herbivore community metabolism equal to
the total FMR of the African large-herbivore community (Table 7).

Average animal
body mass (kg)

Individual animal
metabolism

(FMR: kJ/day)
£ 105

Taxon metabolism/
community metabolism

Estimated population
density

(animals/km2)

Taxon All sizes Large
Biomass
(kg/km2)

Apatosaurus 7020 5.11 0.344 2.41 0.88 16,918
3810 3.26 0.294 3.23 1.18 12,301

Camarasaurus 3380 2.99 0.305 3.65 1.33 12,343
2670 2.51 0.343 4.89 1.78 13,062

Diplodocus 2890 2.66 0.209 2.81 1.02 8129
1990 2.02 0.212 3.76 1.37 7477

Barosaurus 2890 2.66 0.0464 0.62 0.23 1805
1910 1.96 0.0456 0.83 0.30 1591

?Haplocanthosaurus 2410 2.33 0.0152 0.23 0.085 563
1720 1.82 0.0159 0.31 0.11 538

Stegosaurus 1420 1.58 0.0793 1.80 0.65 2551
1120 1.33 0.0887 2.39 0.87 2674

Totals 11.52 4.19 42,309
15.41 5.61 37,643

Notes: Population density is calculated as (taxon metabolism/total large-herbivore community metabolism) £ (3.58 £ 106 kJ/[km2 £ day]) £ ([1 animal £ day]/individual
animal metabolism (kJ). Individual animal metabolism is assumed to be that extrapolated for the FMR of a mammal (Table 8). All sizes ¼ entire population; Large ¼ large
individuals only. ‘Large’ animal population density ¼ total population density £ 0.364, the proportion of ‘large’ (young adult þ adult) individuals in the hypothetical sauropod
population (Table 2). Biomass ¼ population density (all sizes) £ ABM. Totals may not correspond to exact sums of columns due to rounding.

Table 11. Estimated population density of Morrison large herbivores based on a total large-herbivore community metabolism equal to
the total FMR of the African large-herbivore community (Table 7).

Average animal
body mass (kg)

Individual animal
metabolism

(FMR: kJ/day) £ 103
Taxon metabolism/

community metabolism

Estimated popu-
lation density
(animals/km2)

Taxon All sizes Large
Biomass
(kg/km2)

Apatosaurus 7020 53.0 0.318 21.48 7.82 150,790
3810 36.6 0.279 27.29 9.93 103,976

Camarasaurus 3380 34.1 0.310 32.55 11.85 110,004
2670 29.6 0.341 41.24 15.01 110,118

Diplodocus 2890 31.0 0.217 25.06 9.12 72,423
1990 24.8 0.218 31.47 11.45 62,624

Barosaurus 2890 31.0 0.0481 5.55 2.02 16,053
1910 24.1 0.0473 7.03 2.56 13,420

?Haplocanthosaurus 2410 27.8 0.0162 2.09 0.76 5028
1720 22.7 0.0167 2.63 0.96 4530

Stegosaurus 1420 20.2 0.0899 15.93 5.80 22,625
1120 17.5 0.0985 20.15 7.33 22,568

Totals 102.66 37.37 376,923
129.81 47.24 317,236

Notes: Population density is calculated as (taxon metabolism/total large-herbivore community metabolism) £ (3.58 £ 106 kJ/[km2 £ day]) £ ([1 animal £ day]/individual
animal metabolism (kJ). Individual animal metabolism is assumed to be that extrapolated for the FMR of a varanid lizard (Table 8). All sizes ¼ entire population; Large ¼ large
individuals only. ‘Large’ animal population density ¼ total population density £ 0.364, the proportion of ‘large’ (young adult þ adult) individuals in the hypothetical sauropod
population (Table 2). Biomass ¼ population density (all sizes) £ ABM. Totals may not correspond to exact sums of columns due to rounding.
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smaller than the average-sized fossil specimen. Most of

the immatures presumably ‘disappeared down the gullets’

(Farlow and Holtz 2002: 255) of various-sized carnivorous

dinosaurs and other predators, particularly if post-hatching

parental care was limited (Isles 2009), and so were lost to

the fossil record.

Even the much-debated topic of dinosaurian metabolic

physiology is arguably approaching consensus; dinosaur-

ian metabolic rates are almost certainly constrained at the

low end by extrapolations from varanid lizards (McNab

2009b), and at the high end by the lower range of values

for modern endotherms, such as marsupials (Erickson et al.

2009a, 2009b). As described above, examination of the

factors that impact metabolic rates in extant mammals and

birds suggest that the sauropods and stegosaurs of the

Morrison Formation may have had particularly low

metabolic rates for large dinosaurs.

Probably the least certain parameter in our models is K,

the carrying capacity for megaherbivores of the Morrison

environment. We presented two kinds of estimates of K.

Our ‘demand-side’ estimates used as their starting points

abundances of single species of megaherbivores (African

elephants) or entire large-mammal communities known to

occur in the modern world. As levels of productivity

sufficient to meet the metabolic requirements of these

animals obviously can occur, we used those values as the

bases for estimating K of the Morrison environment.

Keep in mind, that in our demand-side models,

predictions were made on the basis of unusually high

(local?) biomasses of modern large mammals, whether of

an elephant population or an entire large-herbivore

community. Furthermore, in the case of the African

large-mammal community, the estimated community

FMR is probably too large, given that community biomass

is dominated by a species that has a relatively low

metabolic rate.

Higher carbon dioxide levels in the Jurassic atmos-

phere than at present might have stimulated primary

productivity (cf. Beerling and Woodward 2001), resulting

in larger dinosaur populations than one would otherwise

expect. This may have been counteracted, however, by the

dryness of the Morrison environment (at least in

comparison with the modern African habitats used as the

bases for our demand-side models), and the possible low

biomass of vegetation on the dry uplands distal to

watercourses (cf. Owen-Smith 1988; Olff et al. 2002;

Kerkhoff and Enquist 2006). Consequently, we think that

our demand-side scenarios have predicted the likely high

ends of Morrison dinosaur abundances on the landscape

for any given metabolic regime of the dinosaurs.

Our supply-side models estimated K from the

paleoclimatic and paleovegetation models of Beerling

and Woodward (2001), which retrodicted Late Jurassic

NPP values for the area of Morrison deposition,

from which we estimated potential K to range

Figure 5. ‘Supply-side’ model of total population density
(number of animals/km2) across species of Morrison
megaherbivorous dinosaurs as a function of environmental
carrying capacity K (kilojoules of energy provided per square
kilometre per day) and daily per animal DME. K is expressed in
terms of retrodicted NPP of the Morrison region during the Late
Jurassic (Beerling and Woodward 2001) potentially available to
herbivores, and ranges 6,580,000–54,800,000 kJ/(km2 day).
DME is the multiple of the ABM of animals in the
megaherbivore community, and the msMER of individual
animals. ABM ranges 759 – 9140 kg, reflecting different
estimates of the proportion of very young and older individuals
in the dinosaur community; msMER ranges 121–550 kJ/(kg
body mass0.75 £ day). As DME ¼ msMER £ ABM, the total
range of DME will be 17,500–514,000 kJ/(animal £ day). (a)
The proportion of K actually available to large
herbivores ¼ 0.1 £ the potential values. (b) Proportion of K
actually available to large herbivores ¼ 0.5 £ potential values.
(c) Proportion of K actually available to large
herbivores ¼ 0.9 £ potential values. Labelled contours indicate
lines of equal values of density across the curved interaction
surface created by DME and K.
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6,580,000–54,800,000 kJ/(km2 £ day). Assuming that

these values are accurate, an overall average for the

Morrison would have been some intermediate value. Even

more uncertain than these NPP values of potential K are

what proportion of that productivity was actually

consumed by Morrison megaherbivores. In modern

terrestrial ecosystems, large herbivores crop anywhere

from 10 to 80% of available above-ground NPP

(Milchunas and Lauenroth 1993), which provides

considerable latitude for modelling.

Figure 6. Alternate bivariate versions of the ‘supply-side’ model of megaherbivore community population density as a function of
ABM, given specified values of carrying capacity K, and the msMER of individual animals, extracted from the more inclusive models
shown in Figure 5. In each panel, the value of K and msMER is set at specified values. The value of msMER is set at either 121 or
550 kJ/(kg body mass0.75 £ day). The value of K in each panel is a multiple of either the lowest or highest value of potential K in Figure 5
(6,580,000 or 54,800,000 kJ/[km2 £ day]), and 0.1, 0.5 or 0.9 times that value, the latter reflecting different assumptions about the
proportion of potential K actually available to and consumed by large herbivores. ABM ranges 759–9140 kg. (a) K ¼ 0.1 £ 6,580,000.
(b) K ¼ 0.5 £ 6,580,000. (c) K ¼ 0.5 £ 54,800,000. (d) K ¼ 0.9 £ 54,800,000. As in previous models, extremely high values of density
are associated with high values of K, low values of msMER and high proportions of very young individuals in the dinosaur community, but
the largest values in this set of models seem even more unrealistic than the largest values in our demand-based models.

Historical Biology 419

D
ow

nl
oa

de
d 

by
 [

D
r 

D
an

ie
l M

ar
ty

] 
at

 0
0:

13
 0

9 
O

ct
ob

er
 2

01
2 



Abundance of the Morrison megaherbivore fauna:

‘best-guess models’

Since our demand-side and supply-side models present

such a wide range of megaherbivore densities, it seems

appropriate to present a narrower range of possibilities that

reflect what seem the most likely ranges of values of the

relevant parameters.

If we generalise the size/age class structure reported by

Erickson et al. (2009a) for Psittacosaurus to dinosaurs

more generally, and assume as a first approximation

geometric similarity among the members of different size

classes within a species, the ratio of the body mass of an

average-sized individual to that of large adults will be

about 0.124. We will assume that this ratio applies for all

of the Morrison megaherbivores (Table 5). Then, the ABM

for an individual megaherbivore across all taxa will be the

sum of (number of specimens of each taxon) £ [adult body

mass (using the lower body mass value in Table

5)] £ 0.124, divided by the total number of specimens

(148) across all taxa. This gives a megaherbivore

community ABM of 1130 kg. We will assume this value

in both of our best-guess models.

In both models, we will assume that msMER

ranged from 50 to 80% (cf. McNab 2002, 2009b; Erickson

et al. 2009a, 2009b) of the values for an endotherm used by

Hummel et al. (2008): (0.5 to 0.8) £ 550 kJ/(kg body

mass0.75 £ day), or 275–440 kJ/(kg body mass0.75 £ day).

Because K is the least constrained parameter in our

models, in the demand-side model we will let it

span the entire range of values previously used in

our ‘unconstrained’ (Figure 4) model: 358,000 –

7,160,000 kJ/km2 £ day).

With ABM fixed at 1130 kg, D is now calculated as

K/(11300.75 kg £ msMER). Using the specified values of

msMER and K, D ranges from 4 to 134 animals/km2

(Figure 7(a)), with K having a greater impact on the value

of D than msMER. With 15% of the animals being

sexually mature adults (cf. Erickson et al. 2009a), the D of

such adults will range 0.6–20 individuals/km2. The range

of densities calculated by this demand-side model includes

the values for both endothermic and ectothermic dinosaurs

in our baseline demand-side model (Tables 10 and 11).

In our supply-side NPP model, the highest values of

potential K, and of the proportion of K consumed by

dinosaurs, resulted in values of D so high as to be

unbelievable (Figures 5 and 6). We suspect that

intermediate values are more plausible. For example, if

average potential K had been in the middle of the two

extreme values, or 30,700,000 kJ/(km2 day), if half of that

had actually been available to dinosaurs, and the ABM of a

Morrison megaherbivorous dinosaur across all size classes

and species had been 2440 kg (Tables 10 and 11: divide

total community biomass by total community population

density using the lower set of values of body mass), the

total community population densities of dinosaurs of all

ages would have been somewhere between 80 and 365

animals/km2, depending on whether their msMERs were

mammal-like or varanid-like. The larger individuals more

likely to be preserved as fossils would have been fewer

than that; if the ratio of large individuals were the same

(0.364) as used in the calculations for Tables 10 and 11,

these would have an abundance of 29 to 133 animals/km2.

Although these numbers are a few times higher than the

comparable estimates based on the demand-side models

(Tables 10 and 11), they are close to being in the same

ballpark.

For our best-guess supply-side model, however, we

will constrain NPP in yet another way. The same

paleoproductivity models used to retrodict Late Jurassic

NPP estimate modern NPP in eastern Africa at 6–16

tonnes of organic carbon per hectare-year (Beerling and

Figure 7. ‘Best-guess’ models of total population density
(number of animals/km2) across species of Morrison
megaherbivorous dinosaurs as a function of environmental
carrying capacity K (in terms of kilojoules of energy provided per
square kilometre per day) and daily per animal metabolic need
(ABM £ msMER). ABM is set at 1130 kg, and msMER ranges
(0.5–0.8) £ 550 kJ/(kg body mass0.75 £ day). Labelled contours
indicate lines of equal values of density across the curved
interaction surface created by msMER and K. (a) Demand-side
model: K ranges 358,000–7,160,000 kJ/(km2 £ day). (b) Supply-
side model: K ranges 329,000–11,000,000 kJ/(km2 £ day).
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Woodward (2001: figures 4.22, 4.23). Using the same

conversions as in our Morrison supply-side model, this

translates into a potential K of 32,900,000–87,700,000

kJ/(km2 £ day). The aggregate ME requirement of the

high-biomass African large-herbivore community

(Table 7) is 2,850,000 kJ/(km2 day), which is 2–9% of

the estimated regional NPP.

On this basis, we will allow the proportion of NPP

consumed by Morrison megaherbivores to range 5–20%

(thus ranging from a bit more to twice the percentages in

the African large-herbivore community) of the potential

NPP, which ranged 6,580,000–54,800,000 kJ/(km2 £ day)

in the less constrained supply-side NPP model presented

earlier (Figure 5). Thus, in our best-guess supply-side

model K will range from (smallest NPP estimate £

smallest percentage consumed) to (largest NPP estimate £

largest percentage consumed), or about 329,000 –

11,000,000 kJ/(km2 £ day). As in our best-case demand-

side Morrison community model, we will set ABM at

1130 kg, and allow msMER to range 275–440 kJ/(kg body

mass0.75 £ day). D in this best-case supply-side model

ranges about 4–200 dinosaurs/km2 (Figure 7(b)). If we

further assume that the K actually consumed by dinosaurs,

averaged across the entire Morrison ecosystem, was the

midpoint of the range of values in our best-case model,

about 5,640,000 kJ/(km2 £ day), then D would range

65–105 dinosaurs of all size/age classes/km2, and about

10–16 adult animals.

Our best-guess models (Figure 7), and our baseline

calculations (Tables 2, 10 and 11) put Morrison dinosaur

population densities at up to a few hundred animals per

square kilometre, and large adults at up to several tens of

individuals. The largest estimated population sizes reflect

the lowest estimates of animal metabolic rates, and the

most generous estimates of energy availability to

the herbivorous dinosaur community. Recall again that

the baseline values of modern large-mammal (whether

elephants alone or entire large-herbivore communities)

population energy needs (Tables 1 and 7) upon which our

models are based were deliberately chosen to be high-end

values, reflecting particularly large populations of the

modern animals. Our body mass estimates of sauropods

were also chosen to be slight underestimates. Conse-

quently, to the extent that our estimates of Morrison

dinosaur abundance are off, we suspect that they are more

likely to be too high than too low. With that in mind, we

suspect that the abundance of Morrison adult and subadult

dinosaurs – those individuals on taphonomic grounds

most likely to have left preservable skeletons – to have

lived on the landscape at an average abundance of a few

individuals (Table 10: mammal FMR model), or a few tens

of individuals (Table 11: varanid FMR model), per square

kilometre. By analogy with modern elephants (Roux and

Bernard 2007; Chamaillé-Jammes et al. 2009; Ngene et al.

2009), Morrison megaherbivore population densities may

have been largest, whether permanently or seasonally,

near sources of drinking water and higher vegetation

concentrations, than on drier parts of the landscape.

Morrison sauropods as keystone species and ecosystem
engineers

Sauropods are the biggest continental herbivores that ever

lived, and their huge size undoubtedly made them have a

significant impact on their habitat (as with modern

mammalian megaherbivores: cf. Skarpe et al. 2004; Owen-

Smith 2006; Guldemond and van Aarde 2008; Cowling

et al. 2009; Goheen et al. 2009; Luske et al. 2009; Mapaure

and Moe 2009). The simple act of walking would have

compacted or disrupted soil and disturbed the herb and

shrub strata of the vegetation (Butler 1995), as well as any

cryptobiotic soil textures that might have developed on

Morrison dryland soils, and the large footprints of

sauropods probably created microhabitats for small

organisms different from those in undisrupted soils (cf.

Jones et al. 1997).

Cropping activities would likewise have severely

affected or even destroyed individual plants – possibly

even entire patches of food plants. Sauropod faeces would

have been concentrations of plant debris, particularly if

sauropod digestion of fibrous plant tissues was relatively

inefficient (cf. Olivier et al. 2009). Consequently,

sauropod scats were likely an attractive food source for

arthropods, and presumably rapidly colonised by fungi

and other decomposers. Similarly, sauropod carcasses

would have been trophic bonanzas for scavengers and

decomposers (particularly in catastrophic die-offs during

droughts), mass concentrations of energy and nutrients

(Farlow 2007) that comprised ‘cadaver decomposition

islands’ (Russell 2009:185), much as whale carcasses

provide similar concentrations for the modern deep-sea

benthos (cf. Sampson 2009 and references therein).

Consequently, accumulations of sauropod scats, and

sauropod carcasses, presumably comprised local micro-

habitats on the landscape that hosted small-scale

decomposer-based communities of high biomass, and

possibly species richness.

Given their likely dominance of Morrison herbivore

community biomass, sauropods must have been on the

menu of carnivorous dinosaurs, whether killed or

scavenged (Foster 2003, 2007; Farlow 2007). The amount

of sauropod secondary productivity that fed theropods

would have depended on sauropod abundance, the

productivity/biomass ratio of sauropod populations

[which was likely higher than expectations for mega-

mammals due to sauropod oviparity (Paul 1994; Hummel

and Clauss 2008)], and the age/size class in which

sauropod productivity was concentrated. If the greatest

proportion of sauropod productivity was in eggs and the

smallest size classes, it would have been available to a host
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of large and small theropods, as well as crocodylomorphs

(Foster 2003). To the extent that sauropod productivity

was concentrated in large individuals, much of it may have

been available to consumers only as carrion.

Our models suggest that if dinosaurian metabolic

physiology was close to that of extant endotherms, then for

any given level of K the number of individual dinosaurs

per unit area on the landscape is likely to have been less

than in modern large-mammal (megaherbivore plus typical

ungulate) communities (compare Tables 7 and 10).

Dinosaur biomass, on the other hand, would likely have

been greater than that of large herbivorous mammals. If

dinosaur populations were numerically dominated by

younger individuals (Janis and Carrano 1992; Paul 1994;

Erickson et al. 2009a), large adult dinosaurs would

have been relatively uncommon, and unless the amount

of K available to herbivorous dinosaurs was substan-

tially greater than in modern terrestrial ecosystems,

large adult dinosaurs would have been scarce in absolute

terms (number of animals per unit area of landscape)

as well.

If sauropods lived in herds segregated on the basis of

size or age (Myers and Fiorillo 2009), the numbers of large

individuals of any particular species at any moment may

have been dramatically clumped: huge concentrations of

biomass in small areas, with much of the landscape either

devoid of that species, or only occupied by smaller,

younger individuals. Disruptive sauropod effects on

ecosystem processes – physical alteration of the habitat,

cropping of plants – would likely have been disproportio-

nately exerted by large individuals, and have constituted

roving hot spots of intense impact, separated by (long?)

intervals of time with little or no presence of that species at

any given location, especially if sauropods were herding

animals, and particularly if sauropods had high metabolic

rates.

In contrast, if sauropods were solitary animals, the

biggest animals would generally have been separated by

large distances, and so their impact would have been less

clumped at any given time, but possibly still less diffuse

than that exerted by modern large herbivorous mammals.

This more diffuse impact could have been accentuated to

the extent that the metabolic needs of adult sauropods were

less than expected for typical large mammalian herbivores.

As seen in our models, lower msMERs translate into a

larger number of animals for a given level of K. This in

turn would indicate a greater absolute number of large

adults whose carcasses would have a reasonable chance of

being preserved as fossils.

Proxies for Morrison megaherbivore abundance?

Is it possible, even in principle, to test predictions of our

models about the abundance of herbivorous dinosaurs

on the Morrison landscape? We can no longer census

live dinosaurs, but we could potentially compare the

abundance of fossils of Morrison sauropods and stegosaurs

with those of large mammalian herbivores in Cenozoic

paleofaunas. In modern large herbivorous mammals,

population density is negatively correlated with body size

(Damuth 1993), a trend that likely also applied to extinct

mammals. It might therefore be possible to take advantage

of this relationship to compare the relative abundance of

fossil specimens of Morrison sauropods and stegosaurs

with those of mammalian megaherbivores in Cenozoic

faunas.

Due allowance would have to be made for differences

between the Morrison Formation and Cenozoic formations

in outcrop area and thickness and collecting effort (see

White et al. (1998) for quantification of the number of

dinosaur specimens per area of outcrop searched for the

Hell Creek Formation). Ideally the Morrison Formation

would be compared with a stratigraphic unit(s) that was

similar in tectonic setting, inferred sedimentation rate and

reconstructed paleoclimatic regime, and that like the

Morrison Formation preserved a diverse megaherbivore

fauna; faunas from the Siwalik Group of Pakistan might be

candidates (Morgan et al. 1995).

If, after taking into account the confounding variables,

the prorated number of large (adult and subadult)

individuals of Morrison megaherbivores (and sauropods

in particular), summed across taxa (because some

megaherbivore taxa seem to have been much less common

than others), was considerably less (in terms of number of

articulated specimens, minimum number of individuals,

number of identifiable specimens or other parameters;

cf. Badgley 1986) than that of the typically smaller

megaherbivores in the Cenozoic unit(s), as would be

expected from the population density: body mass

relationships described by Damuth (1993), this would be

consistent with the idea that large sauropods and

stegosaurs were indeed rather rare on the Morrison

landscape (skeletal outcome 1). On the other hand, if

specimens of large dinosaurian plant eaters turned out to

be about as common, or even more common, than

specimens of mammalian megaherbivores, this would be

difficult to explain except in terms of higher population

densities of megaherbivorous dinosaurs than expected for

(hypothetical) equally gigantic herbivorous mammals

(skeletal outcome 2).

Another possible proxy for the abundance of

dinosaurian vis-à-vis mammalian megaherbivores could

be the occurrence of trackways and tracksites, and this

might be even more informative about the role of Morrison

megaherbivores in ecosystem processes than the alterna-

tive skeletal outcomes. If the total number of individuals of

large (adult and subadult) sauropods and stegosaurs per

unit area on the Morrison landscape had been very low, we

would expect that at any given time there would have been

few such giants to leave footprints. If we compared the
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Morrison Formation with a Cenozoic formation(s) that

was comparable in tectonic, sedimentary and paleoenvir-

onmental setting, we might then expect: (1) that the

number of individual large dinosaur trackways, at

tracksites of a particular size, would be much less than

the number of trackways per tracksite size of the generally

smaller mammalian megaherbivores in the matched

Cenozoic formation(s); (2) the number of tracksites

containing trackways of large sauropods and stegosaurs, as

a function of outcrop area and/or thickness, to be relatively

fewer than the similarly prorated number of Cenozoic

tracksites containing trackways of mammalian megaher-

bivores or (3) both. In contrast, if large individuals of

sauropods and stegosaurs had been much more common

than expectations based on megamammals, we would

expect the prorated number of trackways at tracksites,

tracksites in stratigraphic units, or both, to be about as

abundant as, or even more abundant, than those of very

large mammalian herbivores.

If trackways of Morrison large herbivorous dinosaurs

turned out to be relatively less common at tracksites of

specified size than trackways of Cenozoic mammalian

megaherbivores, and the number of tracksites containing

large individuals of Morrison megaherbivore species

relative to outcrop extent likewise turned out to be less

than for the matched Cenozoic formation(s), this would

suggest that large individuals of Morrison megaherbivores

had been very rare on the landscape. Unless their

populations had been regulated by predation (reflecting

the presumed higher proportion of smaller individuals in

dinosaur than megamammal populations?) or some other

ecological factor substantially below the productive

carrying capacity of the Morrison environment, this

would suggest that Morrison megaherbivores had

relatively high metabolic rates. The ecosystem impact of

megaherbivores across Morrison habitats could have been

heavy, but would have been somewhat diffuse. This

scenario would be consistent with skeletal outcome 1,

described above.

In contrast, if the relative abundance of trackways of

Morrison large dinosaurs at tracksites of given sizes turned

out to be greater than for mammalian megaherbivores, but

the prorated number of tracksites containing trackways of

Morrison large herbivores relatively less than for Cenozoic

megaherbivores, this would suggest that herbivorous

dinosaur distributions on the landscape were strongly

clumped. Although this scenario might be consistent with

the hypothesis that Morrison megaherbivores had low

metabolic rates, but also showed strong preferences for the

habitats in which trackways were likely to be preserved, it

seems very unlikely that all species of Morrison

megaherbivores would have preferred the same habitats

(cf. Dodson et al. 1980; Bakker 1996). This scenario would

instead, like that described in the preceding paragraph,

seem more consistent with skeletal outcome 1, and with

the hypothesis that Morrison megaherbivores had high

metabolic rates, but with the proviso that Morrison

megaherbivores lived in herds (cf. Isles 2009). If so, their

ecosystem impact across the Morrison landscape could

have been as great as in the preceding scenario, but would

correspond to the roving hot-spot situation described

above.

Still another interesting potential scenario would be for

the prorated number of trackways of Morrison large

herbivores at tracksites, and the prorated number of

tracksites containing trackways in the Morrison For-

mation, to turn out to be relatively larger than for Cenozoic

mammalian megaherbivores. This scenario, like skeletal

outcome 2, would suggest that large individuals of

Morrison megaherbivores had been relatively common on

the landscape, and that their metabolic rates were rather

low. The total ecosystem impact of megaherbivores across

Morrison habitats could have been just as heavy as in the

two preceding scenarios, but would have been much more

diffuse than in the preceding two scenarios.

Conclusions

Retrodicting the number of megaherbivorous dinosaurs

that one could have encountered per unit area on the

Morrison landscape at any given time is an example of

attempting to solve an equation with too many unknowns.

We have nonetheless tried to constrain estimates using

what seem like plausible ranges of values of the relevant

parameters. When in doubt, we have chosen parameter

values that would cause us to err on the side of

overestimating dinosaur abundances. Perhaps most

importantly in this context, our models assume that

herbivorous dinosaur population densities were limited by

trophic resources, rather than predation or other ecological

factors that could have prevented herbivorous dinosaur

populations from attaining the sizes otherwise permitted

by food availability. We therefore offer our model

predictions as estimates of maximum plausible dinosaur

abundances.

With that in mind, we suggest that the maximum

average standing population density of Morrison mega-

herbivorous dinosaurs, summed across species, would

have been on the order of a few tens of individuals of all

sizes/ages, and a few adult and subadult individuals of

large size (the animals whose skeletons would have the

best chance of passing through taphonomic filters to be

preserved as fossils), per square kilometre, if the DMEs of

dinosaurs approached or equalled those expected for

mammals of comparable size. If dinosaurian metabolis-

able energy requirements had been closer to expectations

for gigantic varanid lizards, the upper limit of dinosaur

population sizes could have been higher: a few hundred

individuals of all sizes, and a few tens of individuals of

large size, per square kilometre.
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The ecosystem impact of Morrison megaherbivores

would have depended on where within (or below?) these

ranges of values the true values of community population

density actually lay, and the extent to which dinosaur

populations were evenly dispersed or clumped on the

landscape. Although there may never be a way of

determining what the absolute values of dinosaur

population density actually were, we have proposed

taphonomic and ichnological tests by which the relative

abundance of Morrison megaherbivorous dinosaurs and

Cenozoic mammalian megaherbivores might possibly be

compared.
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González A, Mampel L, Alcalá L. 2009. High European sauropod
dinosaur diversity during Jurassic-Cretaceous transition in Riodeva
(Teruel, Spain). Palaeontology. 52:1009–1027.

Ruben J. 1995. The evolution of endothermy in mammals and birds: from
physiology to fossils. Annu Rev Physiol. 57:69–95.

Ruben JA, Hillenius WJ, Geist NR, Leitch A, Jones TD, Currie PJ, Horner
JR, Espe G. 1996. The metabolic status of some Late Cretaceous
dinosaurs. Science. 272:1204–1207.

Russell DA. 1989. An odyssey in time: the dinosaurs of North America.
Toronto: University of Toronto Press and National Museum of
Natural Sciences, Canada.

Russell DA. 2009. Islands in the cosmos: the evolution of life on land.
Bloomington (IN): Indiana University Press.

Russell LS. 1965. Body temperature of dinosaurs and its relation to their
extinction. J Paleontol. 39:497–501.

Sampson SD. 2009. Dinosaur odyssey: fossil threads in the web of life.
Berkeley (CA): University of California Press.

Sander PM, Andrassy P. 2006. Lines of arrested growth and long bone
histology in Pleistocene large mammals from Germany: what do
they tell us about dinosaur physiology? Palaeontographica
A. 277:143–159.

Sander PM, Clauss M. 2008. Sauropod gigantism. Science. 322:200–201.
Sander PM, Gee CT, Hummel J, Clauss M. 2010. Mesozoic plants and

dinosaur herbivory. In: Gee CT, editor. Plants in deep Mesozoic
time: morphological innovations, phylogeny, ecosystems. Bloo-
mington (IN): Indiana University Press. p. 330–359.

Sander PM, Peitz C, Jackson FD, Chiappe LM. 2008. Upper Cretaceous
titanosaur nesting sites and their implications for sauropod dinosaur
reproductive biology. Palaeontographica A. 284:69–107.

Savage VM, Gillooly JF, Brown JH, West GB, Charnov EL. 2004. Effects
of body size and temperature on population growth. Am Nat.
163:429–653.

Schwarm A, Ortmann S, Hofer H, Streich WJ, Flach EJ, Kühne R,
Hummel J, Castell JC, Clauss M. 2006. Digestion studies in captive
Hippopotamidae: a group of large ungulates with an unusually low
metabolic rate. J Anim Physiol Anim Nutr. 90:300–308.

Schweitzer MH, Marshall CL. 2001. A molecular model for the evolution
of endothermy in the dinosaur-bird lineage. J Exp Zool (Molecular
Development and Evolution). 291:317–338.

Schwenk K, Rubega M. 2005. Diversity of vertebrate feeding systems. In:
Starck JM, Wang T, editors. Physiological and ecological
adaptations to feeding in vertebrates. Enfield (NH): Science
Publishers. p. 1–41.

Seebacher F. 2001. A new method to calculate allometric length-mass
relationships of dinosaurs. J Vertebr Paleontol. 21:51–60.

Seebacher F. 2003. Dinosaur body temperatures: the occurrence of
endothermy and ectothermy. Paleobiology. 29:105–122.

Seebacher F, Grigg GC, Beard LA. 1999. Crocodiles as dinosaurs:
behavioural thermoregulation in very large ectotherms leads to high
and stable body temperatures. J Exp Biol. 102:77–86.

Seymour RS. 2004. Reply to Hillenius and Ruben. Physiol Biochem Zool.
77:1073–1075.

Seymour RS, Bennett-Stamper CL, Johnston SD, Carrier DR, Grigg GC.
2004. Evidence for endothermic ancestors of crocodiles at the stem
of archosaur evolution. Physiol Biochem Zool. 77:1051–1067.

Seymour RS, Lillywhite HB. 2000. Hearts, neck posture and
metabolic intensity of sauropod dinosaurs. Proc R Soc Lond B.
267:1883–1887.

Showers WJ, Barrick R, Genna B. 2002. A new pyrolysis technique
provides direct evidence that some dinosaurs were warm-blooded.
Anal Chem. 74:143A–150A.

Sieg AE, O’Connor MP, McNair JN, Grant BW, Agosta SJ, Dunham AE.
2009. Mammalian metabolic allometry: do intraspecific variation,
phylogeny, and regression models matter? Am Nat. 174:720–733.

Skarpe C, Aarrestad PA, Andreassen HP, Dhillion SS, Dimakatso T, du
Toit JT, Duncan JH, Hytteborn H, Makhabu S, Mari M, et al. 2004.
The return of the giants: ecological effects of an increasing elephant
population. Ambio. 33:276–282.

Spotila JR, Lommen PW, Bakken GS, Gates DM. 1973. A mathematical
model for body temperatures of large reptiles: implications for
dinosaur ecology. Am Nat. 107:391–404.

Storer JE. 2003. Environments of Pleistocene Beringia: analysis of faunal
composition using cenograms. Deinsea. 9:405–414.

Taylor MP. 2009. A re-evaluation of Brachiosaurus altithorax Riggs
1903 (Dinosauria, Sauropoda) and its generic separation from
Giraffatitan brancai (Janensch 1914). J Vertebr Paleontol.
29:787–806.

Thomas RDK, Olson EC, editors. 1980. A cold look at the warm-blooded
dinosaurs. Boulder (CO): Westview Press.

Tieleman BI, Williams JB. 2000. The adjustment of avian metabolic rates
and water fluxes to desert environments. Physiol Comp Zool.
73:461–479.

J.O. Farlow et al.428

D
ow

nl
oa

de
d 

by
 [

D
r 

D
an

ie
l M

ar
ty

] 
at

 0
0:

13
 0

9 
O

ct
ob

er
 2

01
2 



Tsubamoto T, Egi N, Takai M, Sein C, Maung M. 2005. Middle Eocene
ungulate mammals from Myanmar: a review with description of new
specimens. Acta Palaeontologica Polonica. 50:117–138.

Turner CE, Peterson F. 2004. Reconstruction of the Upper Jurassic
Morrison Formation extinct ecosystem–a synthesis. Sediment Geol.
167:309–355.

Varricchio DJ, Sereno PC, Xijin Z, Tan L, Wilson JA, Lyon GH. 2008.
Mud-trapped herd captures evidence of distinctive dinosaur sociality.
Acta Palaeontologica Polonica. 53:567–578.

Vizcaı́no SG, Bargo MS, Cassini GH. 2006. Dental occlusal surface area
in relation to body mass, food habits and other biological features in
fossil xenarthrans. Ameghiniana. 43:11–26.

Weaver JC. 1983. The improbable endotherm: the energetics of the
sauropod dinosaur Brachiosaurus. Paleobiology. 9:173–182.

Wedel MJ. 2005. Postcranial skeletal pneumaticity in sauropods and its
implications for mass estimates. In: Curry Rogers KA, Wilson JA,
editors. The sauropods: evolution and paleobiology. Berkeley (CA):
University of California Press. p. 201–228.

West GB, Brown JH, Enquist BJ. 1997. A general model for the origin of
allometric scaling laws in biology. Science. 276:122–126.

White CR, Blackburn TM, Martin GR, Butler PJ. 2007. Basal metabolic
rate of birds is associated with habitat temperature and precipitation,
not primary productivity. Proc R Soc B. 274:287–293.

White CR, Cassey P, Blackburn TM. 2007. Allometric exponents do not
support a universal metabolic allometry. Ecology. 88:315–323.

White CR, Phillips NF, Seymour RS. 2006. The scaling and temperature
dependence of vertebrate metabolism. Biol Lett. 2:125–127.

White CR, Seymour RS. 2003. Mammalian basal metabolic rate is
proportional to body mass3/4. Proc Natl Acad Sci USA.
100:4046–4049.

White CR, Seymour RS. 2004. Does basal metabolic rate contain a useful
signal? Mammalian BMR allometry and correlations with a selection

of physiological, ecological, and life-history variables. Physiol
Biochem Zool. 77:929–941.

White CR, Seymour RS. 2005. Allometric scaling of mammalian
metabolism. J Exp Biol. 208:1611–1619.

White EP, Morgan Ernest SK, Kerkoff AJ, Enquist BJ. 2007.
Relationship between body size and abundance in ecology. Trends
Ecol Evol. 22:323–330.

White PD, Fastovsky DE, Sheehan PM. 1998. Taphonomy and suggested
structure of the dinosaurian assemblage of the Hell Creek Formation
(Maastrichtian), eastern Montana and western North Dakota. Palaios.
13:41–51.
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