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• We find that many links in networks are actually redundant for synchronization.
• The homogeneous networks have more redundant links than the heterogeneous networks.
• The synchronization backbone is the minimal network to preserve synchronizability.
• The results are confirmed by the Kuramoto model.

Synchronization is an important dynamical process on complex networks with wide ap-
plications. In this paper, we design a greedy link removal algorithm and find that many
links in networks are actually redundant for synchronization, i.e. the synchronizability of
the network is hardly affected if these links are removed. Our analysis shows that homo-
geneous networks generally havemore redundant links than heterogeneous networks.We
denote the reduced network with the minimum number of links to preserve synchroniz-
ability (eigenratio of the Laplacian matrix) of the original network as the synchronization
backbone. Simulating the Kuramotomodel, we confirm that the network synchronizability
is effectively preserved in the backbone. Moreover, the topological properties of the origi-
nal network and backbone are compared in detail.

1. Introduction

Understanding the relation between network structure and dynamical processes is one of the most significant topics in
network researches [1]. Synchronization is a typical collective process in many different fields including biology, physics,
engineering, and even sociology. It is known that synchronization is rooted in human life from themetabolic processes in our
cells to the highest cognitive taskswe perform as a group of individuals. Since the small-world and scale-free networkswere
proposed, the synchronization on complexnetworks has been intensively investigated [2–7].Manyof these studies are based
on the analysis ofMaster Stability Functionwhich allows us to use the eigenratio R = λ2/λN of the Laplacianmatrix to repre-
sent the synchronizability of a network [8,9]. The larger the eigenratio is, the stronger the synchronizability of the network is.
In the literature, many works focus on investigating how the network structure affects the synchronizability [10–14].

Since the network synchronizability can be significantly influenced by network structure, researchers proposedmanymeth-
ods to modify the topology of networks to enhance the synchronizability. For instance, Refs. [15,16] improve the synchro-
nizability by adding, removing and rewiring links in networks. The synchronizability is also enhanced bymanipulating links
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based on evolutionary optimization algorithms [17–19]. Additionally, the synchronizability can be improved by properly
assigning link directions [9,20]. Weighting links is another way to improve the network synchronizability [3,21,22]. For in-
stance, researchers design some strategies to make the strength of nodes homogeneous and reduce the feedback loop [2].
Through these link weighting methods, it is finally found that the directed spanning tree for any connected initial network
configuration can achieve the strongest synchronizability (i.e., λ2 = λN = 1 and R = 1) [23,24]. In Ref. [25], it is further
demonstrated that spanning trees are not the only optimal networks for synchronization. Very recently, it is revealed that
the transition from disorder state to synchronization can be the first order if the natural frequency of the oscillators are
positively correlated with node degree [26].
Instead of improving the network synchronizability, we focus in this paper on investigating the redundant links for syn-

chronization. The network synchronizability will stay almost unchanged if these links are removed. In order to accurately
identify and remove the redundant links, we design a greedy algorithm based on the eigenvector of the Laplacian matrix.
We validate the algorithm by directly comparing the simulation of the Kuramoto model on the original network and the
reduced network [27]. With this algorithm, we find that the homogeneous networks generally have more redundant links
than the heterogeneous networks do.
The above phenomenon indicates that there is a backbone structure for the network synchronization. Generally, a back-

bone should preserve the topological properties or the function of the original networks. For example, the degree distribu-
tion [28], betweenness [29] and transportation ability [30] and even the ability for information filtering [31] can be preserved
in network backbones. More recently, a network backbone detection method based on link salience is proposed [32]. In this
paper, we remove the redundant links until the synchronizability is reduced to 95% of the original one. The obtained net-
work is considered as the synchronization backbone. The topological properties of the original network and backbone are
compared in detail. Finally, we remark that this work is also meaningful from a practical point of view. Since the backbone
has almost the same synchronizability of the original network but has 30% fewer links, the construction cost of real systems
can be considerably reduced by excluding the links outside the backbone structure.

2. Redundant links for synchronizability in complex networks

In a dynamical network, each node represents an oscillator and the edges represent the couplings between the nodes.
For a network of N linearly coupled identical oscillators, the dynamical equation of each oscillator can be written as

ẋi = F(xi) − σ

N∑

j=1
GijH(xj), i = 1, 2, . . . ,N. (1)

where x is the phase of each oscillator, F(x) accounts for the internal dynamics of each node,H(x) is a coupling function, and
σ is the coupling strength. The previous works based on the analysis of Master Stability Function show that the network
synchronizability can be measured by eigenratio R = λ2/λN where λ2 and λN are respectively the smallest nonzero and
largest eigenvalues of the Laplacian matrix [8].
By defining the eigenvector corresponding to the largest eigenvalue as vN , we can get the following formula

λN =
∑

i∼j

(vN(i) − vN(j))2, (2)

subject to
∑

i vN(i)2 = 1 [33]. This suggests that λN will stay unchanged if we remove the edge (i, j) which minimizes
|vN(i)−vN(j)| [15]. Actually, the same ideas work for the smallest nonzero eigenvalue λ2 and associated eigenvector v2. The
analysis indicates that not every link contributes to the network synchronizability.We call these links as the redundant links
for synchronization. In the next section, wewill design algorithms to identify and delete the redundant links from networks.

3. The greedy algorithms to remove redundant links

We first denote the synchronizability of the original network as R(0). After removing l links, the synchronizability of the
reduced network is denoted as R(l). Naturally, the most straightforward way to design the greedy algorithm is to remove the
link which minimizes

�R = |R(l) − R(l−1)|. (3)

In practice, we calculate�R of each remaining link (by assuming this link is removed) and select the link with lowest�R to
be actually removed from the network.With thismethod, one can effectively preserve the R value evenwhen a considerable
number of links are cut from the network. For convenience, this method is called Greedy Algorithm based on R (for short
GAR).
We test the above algorithm in two kinds of modeled networks: (i) the Watts–Strogatz network (WS network) [34]:

the model starts from a completely regular network with identical degree. Each link will be rewired with two randomly
selected nodes with probability q ∈ (0, 1). (ii) the Barabasi–Albert network (BA network) [35]: starting from m all to all
connected nodes, at each time step a new node is added with m links. These m links connect to old nodes with probability
pi = ki/

∑
j kj, where ki is the degree of the node i. Besides this standard BA model, we will consider later a variant of it
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Fig. 1. (Color online) The dependence of λ2, λN and eigenratio R on the removed links in (a)–(c) WS network [N = 100, k = 6, p = 0.1] and (d)–(f) BA
network [N = 100, k = 6], respectively. The results are averaged over 100 independent realizations.

where pi = (ki + B)/
∑

j(kj + B) [22]. This modified model allows a selection of the exponent of the power-law scaling

in the degree distribution p(k) ∼ k−γ , with γ = 3 + B/m in the thermodynamic limit. The results of GAR on the WS and
BA models are reported in Fig. 1(c) and (f). One can see that R can stay almost unchanged even when 50% of the links are
removed from theWS network and 30% links are removed from the BA network. On the other hand, R changes dramatically
when links are removed randomly.
In fact, simply preserving R value is not enough to keep the synchronization unchanged [36,37]. According to the analysis

in Section 2, the network synchronizability is determined by bothλN andλ2. It is also shown in Fig. 1 thatλN decreases as fast
as the random link removal if GAR is applied. In order to achieve a better preservation of the synchronizability, we propose

an improved greedy algorithmwhich takes both λ2 and λN into account. In each step, we calculate the value of |λ(l)
2 −λ

(l−1)
2 |

and |λ(l)
N − λ

(l−1)
N | of each testing link and select the link with the minimal

�D = |λ(l)
2 − λ

(l−1)
2 |

λ
(l−1)
2

+ |λ(l)
N − λ

(l−1)
N |

λ
(l−1)
N

(4)

to be really removed from the network. This method is called the Greedy Algorithm based on D (for short GAD). The results
of GAD are presented in Fig. 1 as well. Even though R of the GAD decays faster than that of GAR, both λ2 and λN are better
preserved in GAD.
We remove links by GAD until R(l) is lower than 95% of R(0) and the obtained network is denoted as the synchronization

backbone. Since we remove links one by one, it is necessary to check whether the results strongly depend on the order
of link removal. After getting the synchronization backbone, we keep record of all the removed links. Then we start from
the original network again and remove these links in random order. It can be seen clearly from Fig. 2 that the order of link
removal does not significantly influence the R value (the error bars are relatively small). This result confirms that all these
links are indeed redundant for the network synchronizability.
In Fig. 2, it is also easy to notice that the number of removable links (redundant links) is different in two networkmodels.

It is interesting to investigate how the network topology affects the removable links. Firstly, we study the relation between
the average degree of the network and ratio of removable links. As shown in Fig. 3, the ratio of removable links increaseswith
the average degree in both networkmodels and stay stable when 〈k〉 is large. The ratio of removable links in theWS network
reaches the stable state earlier than that in the BA network. Moreover, the ratio of removable links is generally higher in the
WS network. We further study the rewiring parameter p in the WS network and the exponent adjusting parameter B in the
modified BA model. Interestingly, the fraction of removable links first increases then decreases with p. It indicates that the
small-world network only needs a small number of essential links to keep its synchronizability. However, the removable
links become significantly fewer when the WS model degenerates to the regular network (p = 0) and the random network
(p = 1). In the modified BA model, we observe that the fraction of removable links keeps increasing with B. In this network
model, the heterogeneity of the degree distribution can be adjusted by B. A larger B corresponds to a network with more
homogeneous degree distribution. The results indicate that the networkwith heterogeneous degree distribution needsmore
links to keep its synchronizability.
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Fig. 2. (Color online) Removing the redundant links based on randomized order in (a)–(c) WS network and (d)–(f) BA network. The network parameters
are the same as those in Fig. 1. The results are averaged over 100 independent realizations.

Fig. 3. (Color online) The dependence of the redundant link rate on average degree in (a) WS network [N = 100, p = 0.1] and (b) BA network [N = 100].
(c) is the relation between the redundant link rate and the rewiring probability p inWS network [N = 100, k = 6]. (d) is the relation between the redundant
link rate and the parameter B in the variant of the BA model [N = 100, k = 6]. The results are averaged over 10 independent realizations.

Next, we investigate the structural features of the obtained synchronization backbone. We compare the original net-
works and the backbones in five structure indices including the maximum degree kmax, degree heterogeneity H , clustering
coefficient 〈C〉 [34], assortativity r [38] and average shortest path length 〈d〉 [34]. The results of the above structure indices
are reported in Table 1. Different from the random link removal, kmax is well preserved in the backbone structure. This is
because kmax is closely related to λN , and λN needs to be kept almost unchanged in the backbone. Since these large degree
nodes are preserved while the links between the small degree nodes are removed, the assortativity r in the backbone is
slightly increased. Moreover, the clustering coefficient of the backbone is significantly smaller than that from the random
link removal. This indicates that the redundant links are mainly located in the local region. Since many links are removed,
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Table 1
The topology properties (the total number of links E, themaximum degree kmax, the degree heterogeneityH , the clustering coefficient 〈C〉, the assortativity
r and the average shortest path length 〈d〉) in different networks. All networks are with N = 100 and the results are averaged over 100 independent
realizations.

Method E kmax H 〈C〉 r 〈d〉 Net.

Original 300 8.17 1.016 0.448 −0.023 3.636
Backbone 175.16 8.15 1.184 0.078 −0.039 4.139 WS
Random 175.16 6.41 1.128 0.245 −0.029 5.317

Original 291 30.04 1.670 0.149 −0.152 2.593
Backbone 237.53 30.04 1.721 0.098 −0.188 2.759 BA
Random 237.53 25.00 1.703 0.114 −0.149 2.871

Original 300 11.15 1.080 0.051 −0.071 2.729
Backbone 246.46 11.12 1.097 0.017 −0.134 2.959 ER
Random 246.46 9.81 1.116 0.042 −0.058 3.037

the average shortest path length is inevitably increased. However, one can see that the average shortest path length of the
backbone is closer to that of the original network. This is because the average shortest path length is one of the most impor-
tant network properties to determine the synchronizability [2]. In order to preserve the synchronizability, it is necessary for
the backbone to keep the shortest path length close to that of the original network.

4. The Kuramoto model

For the purpose of comparing the actually synchronization process on the original network and the backbone, we study
the Kuramoto model in both networks. The Kuramoto model is a classical model to investigate the phase synchronization
phenomenon [27]. The coupled Kuramoto model in the network can be written as [9]

θ̇i = ωi + K/k̄
N∑

j

aij sin(θj − θi), i = 1, 2, . . . ,N, (5)

where θi and ωi are the phase and natural frequency of the oscillator i, respectively. K is the coupling strength and k̄ is the
average degree of the network.
The collective dynamics of the whole population at step t is measured by the macroscopic complex order parameter,

r(t)eiφ(t) = 1

N

N∑

j=1
eiθj(t), (6)

where r(t) � 1 and r(t) � 0 describe the limits in which all oscillators are either phase locked or moving incoherently,
respectively. Here, we denote r as the value of r(t)when t is infinitely large (i.e. when r(t) reaches stable state).
We first use GAD to remove l links from the WS and BA networks until R(l) decreases to 95% of R(0) (the synchronization

backbone). We then use GAR and the random method to remove the same number of links from the same original WS and
BA networks. In Fig. 4(a) and (b), we investigate the behavior of r vs K on the WS, BA and their reduced networks after link
removal. From Fig. 1(c) and (f), we can see that R(l)

GAR is closer to R
(0) than R(l)

GAD when the same number of links are removed.
However, when simulating the Kuramoto model, we find that the curves of r in GAD overlap better to the r curve of the
original network than that of GAR. This result implies that a good algorithm should preserve both λN and λ2 (not just the
eigenratio). To further confirm the results, we plot the difference of Kuramoto’s r between the reduced networks and the
original network (�r = r (l)−r (0) where r (l) and r (0) are the order parameters of the reduced networks and original network,
respectively). As one can see in Fig. 4(c) and (d), the reduced network from GAD indeed has the smallest difference to the
original network.

5. Conclusion

Synchronization on complex networks has been intensively studied in the past decade. So far, much effort has been
devoted to enhance network synchronizability. Different from previous works, we focus in this paper on identifying the
redundant links for synchronization in complex networks, i.e., the synchronizability will be preserved if these links are
removed. We design a greedy algorithm to remove the redundant links and obtain the backbone for synchronization. The
result is confirmed by the numerical simulation of the Kuramoto model.
In reality, a network may have more than one function. For example, the distributed power generation systems have

to synchronize the injected current into the utility network with the grid voltage. Meanwhile, it should be robust to some
unexpected power station failures ormalicious attacks. Removing the redundant connections for network synchronizability
may significantly change the network robustness. Therefore, how to identify the redundant links for multiple network
functions is still an open issue which calls for future investigation.
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Fig. 4. (Color online)Dynamic behavior of theKuramotomodel in the obtainednetwork fromdifferent link removalmethods in (a)WSand (b) BAnetworks.
The difference between r in the obtained networks and original network. The original networks are (a) WS networks and (b) BA networks, respectively.
The network parameters are the same as in Fig. 1. The results are averaged over 50 independent realizations.
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