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We develop a simple predictive model of the osmotic pressure P and linear shear elastic modulus G 0
p of

uniform disordered emulsions that includes energetic contributions from entropy and interfacial

deformation. This model yields a smooth crossover between an entropically dominated G 0
p � kBT/a

3

for droplet volume fractions f below a jamming threshold for spheres, fc, and an interfacially dominated

G 0
p � s/a for f above fc, where a and s are the undeformed radius and interfacial tension, respectively,

of a droplet and T is the temperature. We show that this model reduces to the known f-dependent

jamming behavior G 0
p(f) � (s/a)f(f � fc) as T / 0 for f > fc of disordered uniform emulsions, and it

also produces the known divergence for disordered hard spheres G 0
p(f) � (kBT/a

3)f/(fc � f) for f < fc

when s / N. We compare predictions of this model to data for disordered uniform microscale

emulsion droplets, corrected for electrostatic repulsions. The smooth crossover captures the observed

trends in G 0
p and P below fc better than existing analytic models of disordered emulsions, which do not

make predictions below fc. Moreover, the model predicts that entropic contributions to the shear

modulus can become more significant for nanoemulsions as compared to microscale emulsions.

Introduction

Emulsions are among the most versatile and interesting
colloidal systems in the realm of dispersed so matter.1–3 A
strong and rapid osmotic compression of a dilute, mono-
disperse, uniform emulsion, initially composed of repulsive
spherical droplets, yields a disordered jammed colloidal system
of deformed droplets.4,5 Because the droplets have the capacity
to deform and change shape when concentrated, yet the droplet
volume is conserved, uniform emulsions are a model system
that has provided an excellent starting point for understanding
the behavior of disordered so colloidal glasses that are
comprised of compressible building blocks, such as microgel
particles, that do not strictly conserve volume when jammed.

Measurements of the mechanical shear moduli of disor-
dered polydisperse emulsions at high concentrations6 have
been followed by systematic studies of microscale5,7,8 and
nanoscale9,10 uniform, fractionated, disordered, oil-in-water
emulsions as a function of droplet radius a and volume fraction
f. Aer making minor corrections for electrostatic Debye-
screened repulsions between the droplets, these measurements

have clearly linked the dramatic onset of shear elasticity and
rise in osmotic pressure to random close packing (RCP) of
spheres, fRCP z 0.64, which over time has been re-dened in
terms of the more general language of jamming;11 maximal
random jamming (MRJ) of disordered monodisperse spheres
has been shown in simulations to also occur at fMRJ z 0.64.12,13

Regardless of the choice of terminology, there is a critical
volume fraction fc z 0.64, associated with random jamming or
close packing of uniform spheres, above which microscale and
larger emulsions are typically observed to have osmotic pres-
sures and elastic shear moduli that are readily measurable. It
has long been known that non-spherical objects tend to jam and
pack at higher critical volume fractions than those associated
with spheres. For instance, the classic Kelvin structure of
maximally close-packed truncated octahedra, which is a model
for “dry” foams and highly compressed emulsions, has a higher
packing volume fraction than hexagonally close-packed
spheres. More recently, the change in fc as a function of aspect
ratio has been measured for disordered, jammed ellipsoids,14

again revealing that deformation from a sphere into an ellipsoid
increases the volume fraction associated with random
jamming.

The measured plateau elastic shear modulus G 0
p(f) and

osmotic pressure P(f) of uniform microscale emulsions have
provided a foundation for developing models, involving both
analytic and numerical approaches, that have largely explained
the observed trends at high f when droplet deformation
becomes signicant.5,12 In addition to identifying so spots and
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non-affine motion of droplet centers in disordered emulsions
that are sheared, Lacasse et al.5,12 established a f-dependent
effective spring constant based on Surface Evolver15 calculations
of droplets having different numbers of contacts. These simu-
lations closely matched the experimental results, which could
be captured by simple scaling formulae: G 0

p(f) � (s/a)f(f – fc)
and P(f) � (s/a)f2(f – fc), where s/a represents the Laplace
pressure scale and s is the oil–water interfacial tension of the
droplets.5,8,16 By contrast to G 0

p(f), which follows the above
scaling trend for f$ 0.8 into the limit of a compressed biliquid
foam, P(f) rises above the near-fc prediction and diverges as f
approaches unity.5

Later jamming simulations, which rely upon similar
computational methods,13,17,18 have established a f-dependent
average droplet coordination number near and above fc,
motivating recent confocal microscopy measurements.19 By
combining the simulated f-dependent coordination number17

with the f-dependent effective spring constant12 in a more
satisfying and self-consistent microscopic description, new
analytical formulae have been recently developed for G 0

p(f) and
also the yield shear stress sy(f).20 The new scaling expression for
the shear modulus, G 0

p � (s/a)[f8/3(f – fc)
0.82 + f5/3(f – fc)

1.82]
also matches the same measurements and simulations of
the elastic moduli of jammed, elastic, disordered spheres.5,12,20

As we have previously shown,20 for f # 0.8, this more
complex, yet microscopically accurate, expression for the
plateau modulus agrees with the simpler original scaling form
G 0
p(f) � (s/a)f(f – fc) to within about 10% over fc# f# 0.8, the

entire range of expected validity when the degree of droplet
compression is relatively small. So, in cases where analytical
simplicity is desired and convenient, the original scaling form
for G 0

p(f) can still be used without introducing substantial
errors.

By contrast, for charge-stabilized nanoemulsions, electro-
static repulsions between the droplets, even when Debye-
screened,1,2 play a major role in the rheology and osmotic
equation of state. For instance, the elastic onset of nano-
emulsions having a < 100 nm has been shown to occur at
volume fractions near or below f z 0.3,10 far below fMRJ. In
fact, because the electrostatic contributions are so strong,
macroscopic rheology measurements of the f-dependent
plateau elastic shear modulus G 0

p(f) of uniform nano-
emulsions can actually be used to measure the Debye-
screened potential of interaction U(h), where h is the average
closest distance between the interfaces of nearest neighboring
droplets, yielding the Debye screening length lD and the
surface potential j0.10 This approach has been applied in
reverse to explain G 0

p(f) of nanoemulsions and also microscale
emulsions when the parameters of the Debye-screened
potential are known or can be obtained by tting.21 This
overall approach of accounting for both droplet deformation
and electrostatic repulsions has provided satisfying ts of the
rheology of charge-stabilized nanoemulsions over a very wide
range of f.

Here, for colloidal emulsions, to model P(f) and G 0
p(f)

of disordered uniform droplets over a range of f that
extends below and above fc, we consider both the

entropic16,22 and interfacial deformation contributions of
droplets to the free energy; we neglect electrostatic inter-
actions. Since colloidal droplets diffusively translate in
three dimensions at a temperature T, the entropic contri-
butions to the free energy F and to P and G 0

p dominate
below fc, whereas interfacial contributions dominate above
it. Such a combined model must effectively capture the
entropic P and G 0

p of glassy hard spheres for f below fc in
the limit as s / N. A large entropic osmotic pressure Phs

exists for hard spheres near but below fc; as f approaches
fc, this Phs(f) and G 0

p(f) diverge in a known manner for
disordered systems.23 Thus far, there is no analytical model
that captures the crossover behavior for disordered emul-
sions both above and below fc.

We hypothesize that disordered emulsion droplets at higher
osmotic pressures, near the random jamming limit, deform
slightly and become non-spherical, as they locally interact and
collide, when thermally excited, with nearest neighboring
droplets. This time- and ensemble-averaged droplet deforma-
tion at local contact points, which is a result of a free energy
minimization approach, effectively shis the divergence point
of the entropic term in the free energy. Slight volume-preserving
droplet deformations, which increase a droplet's surface area at
a cost dictated by the surface tension, create more accessible
translational microstates in which a droplet can move before
encountering nearest-neighboring droplets. In this simple
model, we neglect hydrodynamic interactions and gravitational
buoyancy effects, and thus restrict our attention to P and G 0

p of
dense systems of colloidal droplets. Moreover, we assume that
the droplet surfaces are uncharged (i.e. j0 ¼ 0) or, if they are
charged, that the Debye screening length lD is extremely small
(i.e. lD / 0), so that electrostatic contributions to the free
energy can be neglected.

The resulting simple model of concentrated disordered
uniform emulsions near the jamming point is based on an
assumption of quasi-equilibrium thermodynamics, including
so interfacial deformations arising from the disordered
structure and the known scaling for the translational free
energy of hard spheres in a free energy. By quasi-equilibrium,
we mean that the ensemble of most probable, disordered,
jammed droplet congurations effectively create average
droplet interactions that can be treated by a simple equilibrium
free energy minimization approach, even as we recognize that
the particular disordered jammed structure is formally an out-
of-equilibrium state. By writing a free energy, we implicitly
assume that the average droplet structure and dynamics do not
signicantly evolve over experimental time scales used to probe
the emulsion's P and G 0

p,16 as has been explored more recently
for other systems such as disks.24 By minimizing a time- and
ensemble-averaged local free energy per droplet, we derive
analytical formulae for P(f) and G 0

p(f) that show a smooth
crossover from the glassy entropic scale having energy density
kBT/a

3 to the Laplace scale having energy density s/a. We show
that the resulting model captures measurements of the moduli
and osmotic pressure both above and below fc, in crossover
region from the disordered glassy regime to the disordered
jamming regime.
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Model

It is well known that certain hard, three-dimensional, facetted
shapes can be packed in ordered lattices to ll space completely;
fc for such systems is unity. Hard spheres that are hexagonally
close-packed (HCP) into an ordered array have a lower fc ¼ fHCP

z 0.74. Moreover, hard spheres that are randomly jammed (or
randomly close packed) into a disordered structure, have an
even smaller critical volume fraction at fc ¼ fMRJ ¼ fRCP z
0.64. If one takes a randomly jammed structure of spheres and
then deforms each sphere slightly without changing its internal
volume just at the points where it makes contact with neigh-
boring spheres, one could create tiny facet-like regions, having
locally smaller curvatures, on each sphere just where it previ-
ously made contact with its nearest neighboring spheres. Such
slight deformations would necessarily cause an upward shi in
fc to a new, larger, effective critical jamming volume fraction
f

0
c > fc of the system of near-spherical particles. A deformation

volume fraction, fd, can be associated with this shi in the
jamming point: fd ¼ f

0
c � fc. Likewise, such slight deforma-

tions would increase the surface area of each particle, so the
average surface area of the near-spherical particles would be
larger than for completely spherical particles.

For such a disordered system of hard, near-spherical parti-
cles, created in the manner described above, the entropic
osmotic equation of state P(f) would diverge at the higher
f

0
c, and not at fc. Thus, based on scaling results known for both

for ordered and disordered systems of spheres, we infer that the
effective free volume available per particle for translational
motion would be proportional to f

0
c � f ¼ fc + fd � f. The

entropic translational free energy per near-spherical hard
particle would be Fent/N � �kBT ln(f 0

c � f) � �kBT ln(fc + fd � f),
where N is the number of droplets, and the osmotic pressure of
the system of near-spherical hard particles would behave
according to P(f) � kBTf

2/[a3(fc + fd � f)]. In free volume
models of dense, hard objects, a perturbative shear deformation
alters the positional congurations of the particles slightly and
effectively reduces the translational free volume fraction by a
term proportional to ag2, where g is the shear strain and a is a
dimensionless parameter, so Fent/N� �kBT ln(fc + fd � f � ag2).
A linear term in g would be inappropriate, because the free
energy must not depend on the particular direction chosen for
the shear excitation; using ag2 ensures that the free energy
reduces to a harmonic function at small g. The plateau elastic
shear modulus G 0

p is then calculated by taking a second
derivative of Fent/N with respect to strain and evaluating in the
zero strain limit, yielding G 0

p � kBTf/[a
3(fc + fd � f)].

A concentrated system of disordered droplets, which are
nearly-spherical but slightly deformed, has f-dependent
distributions of the number of nearest neighboring droplets
and of the local deformations (i.e. “facets” near contact points)
where a given droplet interacts strongly with its neighbors. For
f > fc, the static interfacial interaction at a given contact
between droplets can be anharmonic and even depend on the
coordiation number (i.e. the number of other contacts with
neighboring droplets).5,12 To simplify, in the limit of weak

droplet deformations, we assume that all of these effects can be
adequately represented by a time- and ensemble-averaged local
deformation distance per droplet, Dr, which lies along a direc-
tion normal to the lower curvature regions where nearest
neighboring droplet interfaces most closely approach (i.e.
normal to atter “facets”) and which is much smaller than the
original undeformed droplet radius, a. For small Dr, we assume
that fd is linearly proportional to Dr, so that the gain in
accessible translational microstates permitted by the slight
deformation is effectively only normal to a local facet. Because
the structure of the emulsion is disordered, in the limit of very
large numbers of droplets and facets, there is a uniform
distribution of these normal directions over the unit sphere. In
a perfect crystal of droplets, one would not necessarily expect a
linear relationship fd � Dr, so the contact disorder, which leads
to this uniform distribution of normal directions at the contact
points, as well as the soness that is inherent in the randomly
jammed conguration that is less efficiently packed, in the
disordered emulsion are important. Simultaneously, we assume
that the time- and ensemble-average surface area per deformed
droplet, Adrop/N, can be represented by an expansion in powers
of fd � Dr as Adrop/N ¼ 4pa2(1 + xfd

2 + .), where x is a
dimensionless geometrical parameter averaged over the entire
disordered system and includes a range of differently sized
facets and different coordination numbers of the distribution of
all droplets. For a volume-preserving deformation of a spherical
droplet, we assume that the leading-order surviving term for the
increase in surface area per droplet conned is quadratic in the
compressional volume change (i.e. in fd and therefore also Dr).
Consequently, ignoring the original surface area of the
deformed droplets, which is a constant that can be neglected,
the interfacial free energy per droplet associated with weak
droplet deformation in the disordered emulsion, on average, is
simply Fint/N ¼ 4psa2xfd

2.
We propose that the osmotic pressure and linear shear

modulus of a collection of disordered uniform droplets near fc

that are entropically excited can be obtained by minimizing the
total free energy per droplet, F/N ¼ Fint/N + Fent/N, with respect
to the degree of droplet deformation, as captured by fd.
Although energy minimization is an equilibrium approach, we
apply it to the disordered system of droplets, recognizing that
the particular congurational state is disordered and not strictly
in equilibrium. In doing so, we implicitly assume that, despite
the vast number of different possible out-of-equilibrium
congurations of disordered droplets, the average over the most
common congurations in a disordered emulsion (i.e. corre-
sponding to maximal random jamming) can be expressed using
a simple free energy per droplet. We dene V to be the total
volume of the emulsion and Vdrop ¼ 4pa3/3 to be the volume of a
droplet. N droplets occupy a system volume V at a temperature
T. We dene the average free volume of accessible translational
microstates of the center of mass of a droplet to be Vf. The
number of accessible statesU of the system is approximately the
Nth power of the ratio of the free volume per droplet to the
volume of the unit cell enclosing a droplet, Vuc:U � (Vf/Vuc)

N. To
estimate the entropic contribution, we consider deformed
droplets to effectively pack at f 0

c but to exhibit entropic scaling
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characteristic of hard spheres. At a high density the center of
each droplet can only move in a free volume within a cage of
neighboring spheres that is proportional to the product of the
volume per sphere with the cube of the volume fraction differ-
ence away from jamming:23 Vf � Vuc(f

0
c � f).3 According to

Boltzmann's law, the translational entropy in three dimensions
is then: S ¼ kB ln U ¼ kBln(f

0
c � f)3N ¼ 3NkB ln(f 0

c � f). The
entropic contribution to the free energy is Fent/N ¼ �TS/N, so
the total free energy per droplet is:

F/N ¼ 4psa2xfd
2 � 3kBT ln(fc + fd � f). (1)

The increase in effective area per droplet �fd
2 in the rst term

represents an average over a complex distribution of interfacial
areas of deformation that depends on the average number and
proximity of nearest neighbors as well as the specic nature of
the deformations of droplets in the disordered emulsion.
Because of this “so deformation” assumption, we would
expect any consequent relationships to be valid near and above
fc (i.e. in the approximate range 0.55# f# 0.80), yet well below
unity where the osmotic pressure of an emulsion diverges.

In summary, neglecting electrostatic repulsions, the free
energy for droplets near close packing contains two contribu-
tions: an energy associated with the translational motion of the
droplets in a restricted cage made up of neighboring droplets
and an energy associated with the deformation of the droplets
themselves. The free volume available for translational motion
near jamming is affected by the degree of droplet deformation,
which effectively shis the jamming point away from that of
perfect spheres, and yet work must be done to overcome inter-
facial tension in order for the deformation to occur, in a self-
consistent manner. Droplets that nearly touch may deform a
slight amount on average near their contact points to make
more microstates for translation accessible at the expense of
creating a slightly higher surface area, as illustrated for a single
contact between two droplets in Fig. 1(a) and (b). This tradeoff
can be formally expressed by minimizing the total free energy,
the sum of entropic and interfacial terms, with respect to the
degree of droplet deformation. Incorporating both interfacial
and entropic energetic contributions (yet neglecting the
constant undeformed droplet area), yields the free energy per
droplet as a function of droplet volume fraction and shear strain
amplitude:

F(f,g)/N ¼ 4pa2sxf2
d � 3kBT ln(fc + fd � f � ag2). (2)

In principle, this simple model could be rened using more
sophisticated microscopic expressions for the free energy, but
such expressions would not necessarily result in a much more
accurate connection between the entropic and interfacial scales
of energy density than eqn (2), which is more convenient
analytically. We emphasize that the model that we have devel-
oped implicitly assumes that droplets are already trapped in
cages of neighboring droplets formed at f below fc. We make
no attempt to describe the caging mechanism related to the

origin of the entropic elasticity that emerges as a consequence
of the glass transition some percentile below fc.25

We link the translational free volume to the droplet defor-
mation by minimizing the free energy with respect to fd, so that
the droplets deform a small amount in order to increase the
number of translational accessible microstates:

vF

vfd

����
fd¼f*

d

¼ 0; (3)

which determines f*
d in terms of f, fc, and g: This equation

effectively expresses the balance of the translational entropic
pressure of deformed droplets with the increased interfacial
pressure due to their average deformation. Applying the mini-
mization condition to eqn (2), we nd:

8px
s

a
f*
d � 3kBT

a3

"
1

fc þ f*
d � f � ag2

#
¼ 0: (4)

Solving for f*
d using the quadratic equation, one nds the

positive, physical root:

f*
d ¼ 1

2

��
f � �

fc � ag2
�� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½f � ðfc � ag2Þ�2 þ fT

2

q 	
; (5)

where we dene fT:

Fig. 1 Schematic diagram of entropic deformation of a contact
between two oil droplets in a continuous aqueous liquid at a positive
non-zero temperature. (a) Packed droplets that touch cannot trans-
late; for hard spheres, the osmotic pressure and shear moduli diverge
at the jamming point, given by the volume fraction fcz 0.64. (b) Slight
deformations of the droplets in the vicinity of contacts create addi-
tional accessible translational microstates for neighboring droplets;
this is entropically favorable.
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3kBT

a3

��

2px

s

a

�
; (6)

as the square of a dimensionless volume fraction representing
the ratio of the entropic energy density scale �kBT/a

3 to an
interfacial energy density scale �s/a. The minimized f*

d in eqn
(5) can be substituted back into the free energy in eqn (2) to
obtain an explicit dependence of the quasi-equilibrium
minimal free energy on f and g.

To obtain the osmotic pressure P and plateau shear
modulus G 0

p, we simply calculate appropriate thermodynamic
derivatives of this free energy subject to the minimization
condition. In a quiescent state without any applied shear
strain, we set g ¼ 0, take the thermodynamic derivative of
the free energy density with respect to f and calculate
P ¼ [f2/(NVdrop)]vF/vf:

PðfÞ ¼ 3kBT

Vdrop



f2

fc þ f*
d � f

�
; (7)

noting that in the total derivative of F with respect to f, when
subject to the condition of energy minimization in eqn (3), only
the partial derivative that is explicitly with respect to f survives.
Using the minimization condition in eqn (4), we next convert
eqn (7) from the entropic scale to the interfacial energy scale.
Substituting for f*

d from eqn (5) in the absence of shear when
g ¼ 0, we alternatively determine P in terms of the Laplace
pressure scale and fT:

PðfÞ ¼ 3x
s

a
f2



ðf � fcÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf � fcÞ2 þ fT

2

q �
; (8)

which reduces to P � (s/a)f2(f � fc) as T approaches zero
Kelvin, i.e. as fT approaches 0. Eqn (8) is valid for disordered
so spheres for f near but below fc and also above fc in the
weak deformation jamming regime but not in the limit of
signicant droplet deformation for f $ 0.80. The osmotic
compressional modulus KP can be calculated by taking an
appropriate thermodynamic derivative of P(f) with respect to
f,16 again subject to the energy minimization condition. The
resulting formula for the osmotic compressional modulus rises
more abruptly near fc than the osmotic pressure.

Next, using the free energy at the minimization condition,
we calculate the plateau shear modulus

G0
p ¼ ½f=ðNVdropÞ�v2F=vg2

���
fd¼f*

d
; g¼0

retaining all terms aer

differentiating, before evaluating at g ¼ 0. The result is:

G0
pðfÞ ¼ 6akBT

Vdrop

"
f

fc þ f*
d � f

#
(9)

¼ 6ax
s

a
f



ðf � fcÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf � fcÞ2 þ fT

2

q �
: (10)

When entropy becomes unimportant (i.e. as T/ 0 and fT/ 0),
weak deformation of disordered droplets dominates for f$ fc,
so eqn (10) reduces to G 0

p ¼ 12ax(s/a)f(f � fc). This result
essentially matches the scaling expression G 0

p � (s/a)f(f � fc)
that has been used to t both experimental data5 and simula-
tion results12 well for fc z 0.64 < f < 0.80.

In addition to the T / 0 jamming limit of the model's
predictions for P and G 0

p, evaluated above, there is another
interesting limiting case: the dense limit of disordered
hard spheres for s / N when f < fc.2,22,26 In this limit,
the minimum deformation parameter for f < fc vanishes:
f*
d z [(f � fc) + |f � fc|]/2/ 0. Consequently, the hard-sphere

osmotic pressure reduces to Phs(f) ¼ 3kBTf
2/[Vdrop(fc � f)] for

f # fc. Likewise, the shear modulus reduces to the known
prediction for hard spheres: G 0hs

p (f) ¼ 6akBTf/[Vdrop(fc � f)].
The proportionality of Phs and G 0hs

p to kBT/a
3 and their diver-

gence with (fc � f)�1 are consistent with simulations for dense
hard sphere systems.2,23 The simplication of eqn (8) and (10) to
the known jamming limit for emulsions and also to the
known divergence behavior of hard spheres also conrms that
Fint � fd

2 is appropriate for describing the average interfacial
work done against interfacial tension in disordered emulsions.

Results and discussion

As a test of the model, in Fig. 2, using eqn (10), we t
measurements of the scaled G 0

p(feff)/(s/a) for a fractionated
microscale silicone oil-in-water emulsion having a ¼ 0.53 mm,
where the electrostatic repulsion has largely been taken into
account through the effective volume fraction feff. For this
emulsion, which is stabilized by anionic surfactant sodium
dodecyl sulfate (SDS), the interfacial tension is s ¼ 9.8 dyn
cm�1. The temperature is T ¼ 298 K. The shear strain amplitude
is g z 0.01, corresponding to the upper limit of the linear
regime, yet still maximizing the torque on the rheometer, which
is important as measured values of G 0

p decrease many orders of

Fig. 2 Measured plateau elastic shear modulus G 0
p divided by the

Laplace pressure scale s/a as a function of effective volume fraction
feff for a uniform silicone oil-in-water emulsion having average radius
a ¼ 0.53 mm and oil–water interfacial tension s ¼ 9.8 dyn cm�1. Solid
line is a fit to the measurement using eqn (10), yielding fit parameter
values of fc ¼ 0.625 � 0.005, x ¼ 0.14 � 0.06, and a ¼ 0.74 � 0.32. The
model captures the smooth crossover near fc between the entropic
and Laplace scales of energy density inherent in the measured shear
modulus. Data shown are from ref. 5 (used with permission). Inset: the
deformation volume fraction f*

d resulting from free energy minimi-
zation using eqn (5) and (6) and the fit parameter values above.

5

ht
tp

://
do

c.
re

ro
.c

h



magnitude. We allow three parameters to vary in the t: a, x,
and fc, and the t is weighted so that points below fc

approaching the entropic scale are important. The parameters
determined from the ts are: fc ¼ 0.625 � 0.005, x ¼ 0.14 �
0.06, and a ¼ 0.74 � 0.32. The t value of fc is very close to
fMRJ z 0.64 and represents good agreement, given the uncer-
tainties in the experimental measurements of the reported
values of f and the subsequent correction of this f for the
Debye-screened repulsion to obtain feff. The dimensionless
interfacial-entropic coupling parameter x and the shear-
coupling parameter a have values near but below unity. These
parameters depend on microscopic features related to the
average geometry of a droplet encaged by its neighbors in the
disordered emulsion, and an exact theoretical determination of
the values of these parameters are not known. The t captures
the smooth crossover between the entropic energy density scale
and the interfacial scale. There is a slight systematic deviation
of the data from the t near fc, and this deviation could arise
from a number of sources: inadequate corrections of the elec-
trostatic interactions inherent in feff, not explicitly including
f-dependent coordination numbers and spring constants in the
model, and residual droplet polydispersity (which in the
experimental emulsion is between about 10–15%), which will
tend to smear the entropic and Laplace pressure scales and
thereby affect the transition region near fc. In the inset of Fig. 2,
we also calculate the deformation volume fraction f*

d, corre-
sponding to the minimal free energy, using values of the t
parameters in eqn (5) and (6). For any given f, whether above or
below the jamming limit, the sum given by fc + f*

d is always
greater than f. Moreover, f*

d(f) increases signicantly in the
vicinity of f ¼ fc, where the disordered droplets begin to jam
and deform, on average. The model captures these effects using
system-averaged parameters and free energy minimization,
even as shear excitations can cause non-affine positional
congurational displacements of individual droplets because of
the disorder.

Using the parameters obtained from the t of G 0
p(f) at a ¼

0.53 mm, which reects measured shear moduli over a large
dynamic range for a real, uniform, disordered, oil-in-water
emulsion, we predict the crossover in the elastic moduli using
eqn (10) for droplet radii a ¼ 5 nm, 50 nm, 500 nm, and 5 mm,
where s ¼ 10 dyn cm�1 and T ¼ 300 K, as shown in Fig. 3. For 5
mm and larger droplets, beyond the colloidal scale, the entropic
energy density is so far below the Laplace scale that it would be
very difficult to detect and hence can be neglected in most
practical situations. While difficult to measure, entropic
contributions to the plateau shear modulus of microscale
droplets having a ¼ 500 nm are detectable, yet even in this
range, the plateau modulus is measured at an intermediate
frequency, and does not necessary reect a zero-frequency
modulus. For larger nanoemulsions having a ¼ 50 nm, the
entropic energy density is still substantially below the Laplace
scale, but for smaller nanoemulsions having a ¼ 5 nm, the
entropic contribution becomes quite important and can
signicantly modify the overall magnitude and shape of G 0

p(f)
(see inset of Fig. 3). For real oil-in-water nanoemulsions stabi-
lized using SDS, the screened charge repulsions are known to

have a much larger effect than for microscale emulsions, and
their moduli can be explained by models that incorporate only
interfacial deformations and screened charge.10,21 However, the
predictions we have made herein might be useful for non-ionic
nanoemulsions in which screened charge repulsions are
absent. Recent simulations of so disordered spheres17 appear
to give a crossover very similar to the analytic eqn (10), which
predicts scaling and crossover aspects between the entropic and
the interfacial energy densities in concentrated disordered
emulsion systems.

The measured osmotic equation of state P(feff)/(s/a) of a
similar uniform disordered microscale oil-in-water emulsion
having average a ¼ 0.48 mm and stabilized using SDS at the
same conditions is shown in Fig. 4. Because it is difficult to
measure very low osmotic pressures of these emulsions directly,
there is signicant scatter in the data near and below fc. Using
eqn (8), we t the measured P(feff), allowing x and fc to vary as
parameters, and we obtain x ¼ 0.16 � 0.06 and fc ¼ 0.62 � 0.01.
Within the uncertainties, these values of t parameters
obtained from P(feff) overlap well with the t parameters
obtained from the measured G 0

p(feff). For reference, in the inset
of Fig. 4, we show predictions of the osmotic pressure in the
crossover region for macroscale, microscale, and nanoscale
emulsions. Again, for macroscale droplets beyond the colloidal
scale, the entropic contribution to the osmotic pressure can be
neglected. For microscale droplets, the entropic contribution is
difficult to detect using conventional means, but begins to
become discernable. Because (kBT/a

3)/(s/a) � a�2, which is
apparent for both P and G 0

p when f is well below fc, for
nanoscale droplets, the entropic contribution becomes much
more signicant; thus, nanoemulsions appear to offer the
greatest opportunity for measuring the crossover regime above
and below fc.

Fig. 3 Predictions of the smoothly varying crossover regime of the
elastic shear modulusG 0

p for droplet volume fractions f just above and
below the jamming point fcz 0.64 for soft deformable near-spherical
emulsion droplets for T ¼ 298 K and s ¼ 9.8 dyn cm�1, according to
eqn (10): lines (from top to bottom) radii a ¼ 5 nm, 50 nm, 500 nm, and
5 mm. Values of x and a from the fit in Fig. 2 are used. Inset: linear-linear
format showing a prediction that very fine nanoemulsions could
significantly deviate from f(f � fc) behavior near the jamming point.
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Conclusion

For concentrated, disordered, uniform, colloidal emulsions, we
have used relatively simple thermodynamic arguments based
on energy minimization to derive analytic predictions for the
smooth crossover of the osmotic pressure and plateau shear
modulus of colloidal emulsions from the entropic to the Lap-
lace energy density scales as f is increased. The assumption of
“so” deformations of the droplets in the disordered system, in
combination with the effective shi in the jamming point
accommodated by the deformation, provides a simple yet
adequate coupling between the two terms in the free energy,
that, when minimized, yields scaling forms for G 0

p(f) and P(f)
that are consistent with experimental measurements both
above fc in the jamming regime and below fc in the entropic
glassy regime. Other choices of the assumed scaling of the
interfacial and entropic terms with fd prior to minimization
would yield other forms of the smooth crossover, but not
necessarily provide the known limiting cases for hard spheres
and jammed deformable emulsions. This energy minimization
approach, modeling ensemble behavior in a disordered system,
predicts the observed G 0

p(f) for uniform microscale emulsions
near fc, thus going beyond pure mechanical analysis that
considers only droplet deformation.27 Although the model
describes the measurements reasonably well over an extended
range, a theoretical calculation of the coupling parameters x

and a in a disordered emulsion system would be useful in order
to compare with values obtained from the ts of experimental
data. Obviously, the model that we have presented for disor-
dered droplets is not intended to capture or describe strong
aging or shear-induced ordering effects, which can be present
aer subjecting emulsions to a large amplitude pre-shear.28

The simple model that we have developed is most directly
applicable to non-ionic, quiescent, disordered , colloidal
emulsions, in which electrostatic repulsions can be neglected.
However, when lD � a, we have shown that making minor
corrections to f through feff is sufficient to provide a good
comparison for charge-stabilized microscale emulsions. In the
future, we anticipate that a more comprehensive model of the
osmotic equation of state and linear shear rheology of uniform
disordered charge-stabilized colloidal emulsions, ranging from
the nanoscale to the microscale, can be developed by including
a third term in the free energy, which is properly linked to fd

through Debye screened electrostatic interactions, and by
minimizing this total combined entropic + electrostatic + so
interfacial jamming free energy. Furthermore, by including the
more accurate microscopic picture, the predictions of P(f) and
G 0
p(f) for disordered colloidal emulsions can be rened, and

predictions of the yield shear stress sy(f) could also be
obtained.20 Exploring the implications of this model in relation
to aging and dynamical heterogeneity effects,25 large-amplitude
pre-shearing conditions,28 frequency-dependent and strain-rate
dependent rheology,29 attractive interactions,30 and poly-
dispersity in the distribution of droplet radii remains on the
frontier.

Differences in the local average pair interactions between
disordered dispersions of other colloidal objects could create
signicant differences in their shear rheology and osmotic
equation of state in the crossover regime, as compared to
emulsions. Droplets in emulsions are just one type of so
object, but they offer the advantage of having a very well dened
droplet volume, because they are incompressible, yet still the
possibility of so behavior and effective shiing of the jamming
point through deformation. Other so colloidal systems, such
as dispersions of solid spheres stabilized by polymers3,31–34 and
star polymers,35–37 can exhibit different crossover behavior
because the local interactions are not the same as between
emulsion droplets, and also because these objects are
compressible or have compressible shells, making a strict
denition of the particle volume fraction difficult. In the future,
it will be interesting to compare and contrast the crossover
behavior of a wide variety of disordered so colloidal systems.
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