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Magneto-optic spectroscopy with linearly polarized modulated light: Theory and experiment
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We investigate the polarization modulation between two linear orthogonal states of the laser beam that
synchronously pumps time-dependent atomic alignment in caesium atoms exposed to a static magnetic field.
Because of the atomic alignment symmetry two independent groups of resonances can be distinguished in the
transmitted light: when modulation frequency matches either the Larmor frequency or its second harmonics, ωL

and 2ωL, respectively. We report on our experiments, and discuss a model that perfectly reproduces the observed
spectra. We have observed that the amplitudes and linewidths of resonances at ωL and 2ωL show magnetic-field
direction dependence. This peculiar behavior makes our approach interesting for future application to atomic
magnetometry, in view of a dead-zone free high-sensitivity magnetometer.
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I. INTRODUCTION

Magneto-optical resonances are observed in an atomic
ensemble of spin polarized atoms in the presence of an
external magnetic field, B. The Larmor precession induced
by B modifies the absorption and dispersion properties of the
atomic ensemble, and the magneto-optical resonances can be
recorded probing the properties (intensity or polarization) of
the transmitted light beam. A comprehensive review of the
magneto-optical resonances has been done in Ref. [1]. The
combination of simultaneous pumping and probing can be
exploited in a wide range of applications such as metrology
and quantum information. In particular it has been used to
measure magnetic fields since the 1960s [2]. During the 1990s,
thanks to the development of compact and reliable diode
lasers, atomic magnetometry had a renewed interest. Replacing
spectral lamps with lasers allowed studying new approaches
based on the modulation of light parameters that was in the past
limited to amplitude modulation [3]. Relevant contributions
in frequency- and amplitude-modulation spectroscopy comes
from different groups [4–7]. In recent years atomic magne-
tometers [8] have become valuable tools not only in general
physics [9], but also in exotic applications like detection of
magnetic particles [10], and ultra-low-field NMR [11,12], etc.

Among the various configurations to excite magneto-
optical resonances in atoms or molecules based optical
pumping with resonant light [1], we focus our attention on
resonant polarization modulation technique which was poorly
studied in the past.

In Ref. [13], it is shown that modulating the light
polarization between linear and circular polarization states
simultaneously excites at the same frequency alignment and
orientation atomic moments, and it allows the elimination of
both the dead-zone and heading errors. This approach however
suffers of sensitivity losses for given directions of B.
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Last year polarization modulation between two right- and
left-circular polarizations has been largely studied: a simplified
theoretical model is reported in Ref. [14], the full charac-
terization of the magneto-optical spectrum in Refs. [15,16],
and its application to atomic magnetometry in Ref. [17].
Symmetric right- and left-circular polarization modulation is
particularly efficient because the pumping light is modulated
synchronously with the spin evolution dynamics induced by
B. This is the concept behind the push-pull optical pumping
originally proposed to increase the contrast of magnetic
insensitive resonance (atomic clock applications) [18]. In this
paper we address the effect on the atomic ensemble of a
symmetric modulation of the laser polarization between linear
orthogonal states.

The interaction geometry we discuss from the theoretical
and experimental point of view is shown in Fig. 1. The laser
beam propagates along k, and the polarization ε is modulated
at frequency � between two orthogonal linear polarization
states: the εx and εy components of the polarization vector,
respectively. The magnetic field, whose strength is kept
constant, can be applied in an arbitrary direction.

The paper is organized as follows. In Sec. II we describe
the theoretical model developed for the data interpretation
leaving cumbersome calculation details to the Appendix. The
main characteristic of the experimental apparatus and data
treatment are given in Sec. III. The full spectra of resonances
detected with phase-sensitive detections and their dependence
on the magnetic-field direction are reported in Secs. IV and V,
respectively.

II. THEORETICAL MODEL

To properly model the system, the full optical Bloch
equations for the transition Fg → Fe, have to be solved in
the presence of a magnetic field. In general this is a difficult
task, and can be pursued only by numerical methods, often
obfuscating the physical insight. Hence introducing relevant
approximations will both simplify the calculations and make
transparent the physical mechanisms involved.

1050-2947/2014/89(6)/062507(10) 062507-1 ©2014 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/43658808?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevA.89.062507


G. BEVILACQUA AND E. BRESCHI PHYSICAL REVIEW A 89, 062507 (2014)

FIG. 1. (Color online) The interaction geometry. The laser beam
propagating along the z axis passes through the caesium cell kept at
room temperature. The transmitted signal is recorded and analyzed
in standard way. A magnetic field whose strength is constant, and
the direction can be varied, is applied to the atoms, The Larmor
frequency ωL is typically about 2π × 2 kHz. The beam polarization is
switched between two orthogonal states via a polarization modulator:
the horizontal (εx) and the vertical (εy) linear polarization, at a rate
� which is swept across the resonances. In the lower part is sketched
the time dependence of the polarization vector ε components.

The first approximation is dictated by the low laser power
(about 2 μW for our experimental condition), which suggests
to treat the atom-laser interaction in a perturbative way.
Second, we observe that the interaction has two characteristic
time scales that differ by several orders of magnitude: (i)
the laser optical pumping cycle in the μs range, and (ii) the
ground-state dynamics determined by ωL and � in the ms
range. Practically the optical pumping is instantaneous on the
ms time scale allowing us to decouple the effect of the laser
pumping and of the magnetic field. As a consequence the effect
of laser light can be taken into account by means of pumping
rates on the ground Zeeman multiplet, neglecting the excited
Zeeman multiplet, allowing us to substantially simplify the
initial problem [19].

The optical properties of the atomic ensemble are described
by the linear absorption coefficient κ which can be opportunely
used to compare theoretical and experimental results. The κ is
connected to the ground-state multipoles [20,21], and reads

κ ∝ E2
0

∑
k,q

(−1)k+q
(
mk

q

)∗ Ak E
k
−q, (1)

where the ground state and laser field multipole moments mk
q

(see the Appendix for the definition) and Ek
−q are introduced.

These latter are defined in terms of the laser polarization vector

as

EK
Q = (−1)K+Q

√
2K + 1

1∑
q,q ′=−1

(
1 1 K

q q ′ Q

)

× (ε∗)−qε−q ′ . (2)

The constants Ak are not important in the following and will
be discarded. Note that κ is time dependent because both Ek

−q

and mk
q are time dependent.

With our axis convention (Fig. 1) εz = 0 while εx and εy

are real quantities having the time behavior sketched in the
right part of Fig. 1, and by using definition (2), one can see
that the only nonzero laser field multipoles are E0

0 = −1/
√

3,
E2

0 = −1/
√

6, and E2
±2 = (ε2

x − ε2
y )/2 ≡ f (t)/2, and then κ

becomes

κ = − 1√
6
m2

0(t) + f (t)

2

[
m2

2(t) + m2
−2(t)

]
, (3)

where we have dropped the total population (m0
0) contribution,

and the proportionality constant A2. The function f (t) rep-
resents a symmetric square wave signal oscillating between
−1 and +1 with angular frequency �. Its Fourier series is
given by f (t) ≡ ∑+∞

n=−∞ fne
i n� t = 4

π

∑
n>0,odd

1
n

sin(n� t).
Explicitly f2n+1 = −(2 i/π )/(2n + 1), f2n = 0, and f−n =
f ∗

n = −fn.
In the presence of a magnetic field and of relaxation

mechanisms, the mk
q satisfy the following equations [20]:

ṁk
q = (

iω0 q − γ (k)
q

)
mk

q + i
ω−
2

c+
k,q−1m

k
q−1

+ i
ω+
2

c−
k,q+1m

k
q+1 + Sk

q , (4)

where k = 0, . . . ,2Fg , q = −k, . . . ,k, and c±
k,q ≡√

k (k + 1) − q (q ± 1); ω0 = gFg
μBBz ≡ gFg

μBB cos θ and
ω± = gFg

μB(Bx ± iBy) ≡ gFg
μBB sin θ e± iφ are the long-

itudinal and transverse Larmor frequency components,
respectively. The pumping rates Sk

q (t),

(
d mk

q

d t

)
laser

≡ Sk
q (t) ∝ (−1)q Ek

−q, (5)

act as source terms in the evolution equations of the multipole
moments. The full derivation of the previous equation is given
in the Appendix. We stress that the rates Sk

q (t) depend on time
because the polarization vector is modulated in the kHz range.
Essentially we are assuming that Eq. (5) fully describes the
optical pumping in the ground-state Zeeman multiplet.

The relaxations rates γ (k)
q as usual describe the effect of

relaxation mechanisms on the ground state. Typically for
atomic vapor in a glass cell the main relaxation mechanisms
are due to collisions between alkali-metal atoms and buffer
gas or cell walls (coated or uncoated) [22]. As dictated by
(3), to describe our experiments we need to solve Eq. (4)
for k = 2. Simplifying the notation γ (2)

q ≡ γq , we neglect the
associated frequency shifts, thus, the γq are real and positive
and they satisfy the relation γq = γ−q to ensure the density
matrix Hermiticity.

For convenience we introduce the vectors x =
(m2

−2,m
2
−1,m

2
0,m

2
1,m

2
2) for the k = 2 multipole moments and
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u = (f (t),0, − 2/
√

6,0,f (t)) for the pumping rates. Then
equations (4) can be cast as

ẋ(t) = A x(t) + u(t) (6)

leading to the solution

x(t) = eAt x(0) + eAt

∫ t

0
e−At ′ u(t ′) dt ′. (7)

The matrix A represents the dynamics of the quadrupole
moment in a magnetic field in the presence of relaxation
mechanisms; its explicit form can be derived from Eqs. (4). By
direct inspection of its characteristic polynomial one can see
that the eigenvalues of A, λk (k = 1, . . . ,5), are real or complex
conjugate couples. The λk have a negative real part, and thus
the initial conditions in the right-hand side of Eq. (7) decay
exponentially, and in the long-time limit (t 	 |1/Re(λk)|) can
be neglected.

To efficiently evaluate the remaining integral we introduce
the diagonal form of A = UD U−1, and we use the explicit
expression of u deriving, then (in the long time limit), the
complete solution

xi = 2√
6

5∑
k=1

Ui,kU
−1
k,3

λk

+
∑
n 
= 0

k = 1, . . . ,5

fn

Ui,k

(
U−1

k,1 + U−1
k,5

)
i n� − λk

ei n � t . (8)

After some tedious but straightforward algebra the absorp-
tion coefficient can be rewritten as

κ = Z0 +
∑
q>0

[Z+,q cos(q� t) + Z−,q sin(q� t)]. (9)

The Z0 is the amplitude of the dc signal, while Z+,q and Z−,q

represent the in-phase and quadrature parts of the demodulated
signal at the qth harmonic of the �. Explicit and cumbersome
expressions for the Z±,q coefficients can be obtained using
Eqs. (8), which we prefer to not report in the general case,
because they can be noticeably simplified looking at the
characteristic values of the model parameters used in the
experiment.

All experiments are carried out with the atomic ensemble
contained in a paraflint wall coated cell, thus the relaxation
rates of multipole moment mk

q , γq , are all � 10 Hz [22]. On
the other hand ωL is in the kHz range, i.e., several orders of
magnitude larger than the relaxation rates. It is then convenient
to define a perturbative parameter η as the ratio between
the longitudinal (or population) relaxation rate, γ0, which
is the smaller relaxation rate, and ωL, i.e., η = γ0/ωL � 1.
This allows us to find a compact expression for both the
eigenvalues λk and the matrix U . In fact rewriting the matrix
A as A = ωL(iA0 − ηG) one finds that the matrix A0 is
diagonalized by a rotation that brings the quantization axis
z along to the magnetic field. Thus the diagonal form A0,D =
W−1A0W represents the Zeeman effect and its eigenvalues are
−2,−1,0,1,2. The rotation is expressed by the Wigner matrix
W [23]. The matrix G is diagonal and represents the relaxation.
Its diagonal elements are γq/γ0. By factoring the eigenvectors
matrix as U = WV we find

D = ωLV −1[iA0,D − ηW−1GW ]V (10)

and W−1GW is no longer diagonal. We assumed that V =
1 + ηV1 + η2V2 + · · · and D = ωL(iA0,D + ηD1 + η2D2 +
· · · ) and proceed by applying the usual perturbation theory
[23]: numerically we found that the first-order eigenvalues
and the zero-order eigenvectors describe the experimental
results. We can then approximate V ≈ 1, U ≈ W , and D ≈
ωL(iA0,D + ηD1). Finally by writing λk = i αk − k the first-
order eigenvalues are α1 = 2ωL, α2 = ωL, α3 = 0, and

1

γ0
= 1 + 5

16
g1 + 35

64
g2 + 7g2 − 4g1

16
cos(2θ )

+ g2 − 4g1

64
cos(4θ ), (11)

2

γ0
= 1 + 1

2
g1 + 5

16
g2

− g2 − g1

4
cos(2θ ) − g2 − 4g1

16
cos(4θ ), (12)

3

γ0
= 1 + 9

32
g2 + 3

8
g1 − 3g2

8
cos(2θ )

− 12g1 − 3g2

32
cos(4θ ), (13)

where gi = γi/γ0 − 1. Remind that λ5 = λ∗
1 and λ4 = λ∗

2.
We stress that in the simplified case of isotropic relaxation,

i.e., γ2 = γ1 = γ0 (gi ≡ 0), often solved in literature [24], G

is the identity matrix, and then W−1GW remains diagonal. As
a consequence the eigenvalues are exactly λ1 = 2iωL − γ0,
λ2 = iωL − γ0, λ3 = −γ0. Essentially imposing γi equal
corresponds to neglect the linewidth dependence in the
magnetic-field direction.

Using the explicit form of U and λk and the Lorentzian L
and dispersive D profiles,

L±1,p − iD±1,p = 1

i (� ∓ ωL/p) + 2/p
, (14a)

L±2,p − iD±2,p = 1

i (� ∓ 2ωL/p) + 1/p
, (14b)

L0,p − iD0,p = 1

i� + 3/p
, (14c)

we find Z+,q and Z−,q describing our experiment.
In the following we present the results for odd and even

detection harmonics, i.e., the harmonics of the modulation
frequency used to demodulate the signal; see Eq. (9).

Odd detection harmonics. Defining the coefficients

M
(R)
1 =

√
6

8
cos 2φ sin2 θ (1 + cos2 θ ), (15a)

M
(I )
1 = −

√
6

4
sin 2φ sin2 θ cos θ, (15b)

M
(R)
2 = −

√
6

2
cos 2φ sin2 θ cos2 θ, (15c)

M
(I )
2 = −2M

(I )
1 (15d)

M3 =
√

6

4
cos 2φ sin2 θ (3 cos2 θ − 1), (15e)
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the in-phase and quadrature parts of the demodulated signal
reads √

6 π q2

4
Zodd

+,q = [
M

(I )
1 L−2,q + M

(R)
1 D−2,q

]

+ [−M
(I )
1 L2,q + M

(R)
1 D2,q

]
+ [

M
(I )
2 L−1,q + M

(R)
2 D−1,q

]
+ [−M

(I )
2 L1,q + M

(R)
2 D1,q

]
+M3 D0,q , (16a)

√
6 π q2

4
Zodd

−,q = −{[
M

(R)
1 L2,q + M

(I )
1 D2,q

]

+ [
M

(R)
1 L−2,q − M

(I )
1 D−2,q

]
+ [

M
(R)
2 L1,q + M

(I )
2 D1,q

]
+ [

M
(R)
2 L−1,q − M

(I )
2 D−1,q

]

+M3 L0,q

} +
√

6 q

2
offset. (16b)

These expressions clearly show that the spectrum (as a function
�) is symmetric around � = 0, and is composed of exactly
five resonances occurring at � = ±2ωL/q, � = ±ωL/q, and
� = 0, respectively. Each resonance, apart that at � = 0, is
neither Lorentzian nor dispersive but a mixing of both types.
Finally in the quadrature part of the signal (Zodd

−,q) one can
observe a �-independent background.

Even detection harmonics. The case of even harmonics is
more structured. We obtain

Zeven
+,q ∝ −

∑
n>0,odd

1

n(q2 − n2)
{C1[L−2,n + L2,n]

+C2[L−1,n + L1,n] + C3 L0,n}, (17a)

Zeven
−,q ∝ −

∑
n>0,odd

q

n2(q2 − n2)
{C1[D−2,n + D2,n]

+C2[D−1,n + D1,n] − C3 D0,n}. (17b)

The spectra are symmetric and composed of a superposition
of two series of resonances at ±2ωL, ±2ωL/3, ±2ωL/5, etc.,
and at ±ωL, ±ωL/3, ±ωL/5, etc. This is due to the fact that
the nth odd harmonics of f (t) goes in resonance at 2ωL/n (or
ωL/n). The lack of even harmonics in f (t) prevents a similar
structure in the Zodd

±,q . Equations (17) also show that the line
shape of resonances is purely absorptive and purely dispersive.
Again the explicit form of Ck coefficients is

C1 = − 1
8 (1 − cos 4φ) sin4 θ + 1

4 (1 + cos2 θ )2, (18a)

C2 = 1
2 (1 − cos 4φ) sin4 θ + 1

4 sin2(2θ ), (18b)

C3 = 3
4 (1 + cos 4φ) sin4 θ. (18c)

III. EXPERIMENTAL APPARATUS AND DATA ANALYSIS

The experimental apparatus has been described in detail in
several recent papers; see [16] and references therein. Here
for the sake of completeness we overview the fundamental
features.

The polarization of a distributed feedback laser whose
optical frequency is stabilized on the Fg = 4 → Fe = 3
transition of the cesium D1 line (6S1/2 → 6P1/2), is modulated
via an electro-optical modulator driven with a symmetric
square wave (50% duty cycle). The polarization of the beam is
then essentially switched between horizontal (εx) and vertical
(εy) linear polarizations. The degree of linear polarization
is measured and approaches 98% for both states. We point
out that spurious circular polarization components would add
resonances due to the atomic orientation as studied in Ref. [16].
The laser power is about PL ≈ 2μW and the spot diameter is
4 mm for all experiments, so that �R/ ≈ 0.13 thus fulfilling
the theory validity condition (see the Appendix). We remark
that for each measurement PL is independently monitored in
order to determine the value within a few percent.

The cesium vapor is contained into a paraflint coated
glass-blow spherical cell with a diameter of 30 mm [25].
The cell is at room temperature (about 20 ◦C). The laser
beam diameter is noticeably smaller than the cell diameter
in order to avoid a spurious effect in the quality of transmitted
polarizations. The light transmitted through the cell is collected
into a photodetector, and a second identical photodetector
is used to reduce the effect of the laser amplitude noise
[15]. The differential signal is subsequently demodulated with
a lock-in amplifier at different harmonics q of �. Three
independent orthogonal coil systems supplied by high stability
voltage-controlled-current sources, are used to generate the
magnetic-field components [26]. The magnetic-field modulus
B is nominally 0.5 μT corresponding to a Larmor frequency
of ωL ≈ 2π × 2 kHz.

The experimental resonances are fitted with a Lorentzian
or dispersive function multiplied by an amplitude parameter
(Aq or Dq) or a combination of the two functions, as predicted
by the model. Following the model prediction, we also use
two different parameters for the linewidth of resonance at ωL

(and its subharmonics), and at 2ωL (and its subharmonics), 2

and 1, respectively. In order to efficiently compare theoretical
and experimental spectra they are normalized using a single
scaling factor: the amplitude of the resonance demodulated in
second harmonic recorded at 2ωL.

We then define the theoretical scaling factor by setting
q = 2 and n = 1 in Eq. (17a), whereas the experimental
scaling factor is obtained by fitting the q = 2,n = 1 resonance
with a purely absorptive Lorentzian function. This simple
normalization procedure allows us to get rid of the technical
specifications of our experimental apparatus, and of the
atomic system. One could remark that for q = 2 and n = 1
the amplitude of the expected [see Eqs. (17a) and (17b)]
in-phase part of the lock-in signal is two times larger with
respect to the quadrature part, as has been observed in the
case of polarization modulation between orthogonal circularly
polarized light states [16].

The theoretical linewidths are calculated using Eq. (11)
where the population and coherence relaxation rates, i.e., γ0

and γi , i = 1,2, have been estimated by using the ground-state
Hanle effect based on atomic alignment [27]. The method to
estimate the relaxation rates is very similar to the one described
in Ref. [28]. We have obtained γ0 ≈ 6 Hz, γ1 ≈ 9 Hz, and
γ2 ≈ 11 Hz.
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Notice that thanks to the amplitude normalization and the
independent determination of the relaxation rates, we compare
theory and experiments without adding free fit parameters.

IV. ANALYSIS OF THE FULL SPECTRUM AS A
FUNCTION OF THE DETECTION HARMONICS

In the following we discuss the full spectra and the
resonance linewidths and amplitudes separately for the even
and the odd demodulating harmonics.

Odd harmonics. In Fig. 2 the in-phase and quadrature
part of the lock-in signal for the first and the third detection
harmonics are shown. The black lines are the experimental
spectra while the red-dashed lines are the model results. In
perfect agreement with the model prediction, we observe
that the qth odd harmonics experimental spectrum (� > 0) is
composed only by two resonances occurring when � matches
either ωL/q or 2ωL/q.

From direct inspection of Eqs. (16) we found that for
the opportune choice of lock-in phase, fixed q for both
the amplitude of the in-phase (absorptive) and quadrature
(dispersive) signals, are equal, Aq = Dq for resonance at ωL/q

(2ωL/q), while decreasing proportionally to q−2.
We define the relative amplitude as the ratio between the

quadrature and the in-phase amplitude either calculated or de-
termined by fit of the experimental data, Dq/Aq = 1. In Fig. 3
we report the experimental amplitude for the in-phase signal at
2ωL; the dashed line accounts for the 1/q2 dependence of the
resonance amplitudes predicted by Eq. (16a), and it is simply
calculated by dividing the experimental amplitudes A1 by q2.

The same dependence on q2 is predicted for all signal
components both at 2ωL and ωL. In Fig. 3 inset the exper-
imental relative amplitudes (Dq/Aq) of lock-in signals are
plotted versus the detection harmonic q.

Resonances at 2ωL and ωL are expected to have slightly
different linewidths. For θ = 45◦ one would expect 1/2π =
9.55 Hz and 2/2π = 8.46 Hz from Eqs. (11). In Fig. 4
we plot the linewidth obtained from the fit of in-phase and
quadrature resonances at ωL/q and 2ωL/q. For fixed q and
ωL the linewidth of the in-phase and quadrature signals are
essentially equal within fluctuations of a few %. We calculate
from the values of experimental resonances 1/2π = 8.2(2)

FIG. 3. Amplitude of the in-phase (absorptive) part of the lock-in
resonance at � = 2ωL as a function of the detection harmonic for
odd q value, i.e., q = 1,3,5,7,9,11,13. The dashed line is obtained
dividing A1 by q2. Inset: Relative amplitude of the resonances at
� = 2ωL (black) and ωL (gray); the relative amplitude defined as
Dq/Aq for each resonance is expected to be 1.

and 2/2π = 8.1(9)Hz; those values differ 15% and 4% from
theoretical predictions, respectively.

Even harmonics. In Fig. 5 the in-phase and quadrature lock-
in spectrum as a function of the modulation frequency are
represented for q = 2 and 4. The spectrum is enriched, as
explained above, by subharmonic resonances at ωL/n and
2ωL/n, where n is an odd integer.

One could remark that in Fig. 5 the outermost resonance at
(�/ωL = 2) is not perfectly symmetric. This effect is due to
imperfections in the time response of the EOM to the � sweep,
and can be completely suppressed by reducing the frequency
range and by locally optimizing the lock-in phase.

We verified the behavior of resonance parameters (ampli-
tude and linewidth) as a function of q and n.

The relative amplitude, Dq/Aq of the resonance at � =
2ωL/n is proportional to q/n, as shown in Fig. 6 where it
is plotted as a function of q for different values of n. The
dots represent experimental relative amplitudes while the lines
mark the (q/n) trend.

FIG. 2. (Color online) In-phase and quadrature lock-in signals at the first (q = 1) and third (q = 3) harmonic of � normalized taking into
account the appropriate scaling factors: black and red-dashed lines represent experiment and model results, respectively. The magnetic-field
direction is defined by θ = 45◦ and ϕ = 120◦.
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FIG. 4. Linewidth (/2π ) of resonances at ωL/q and 2ωL/q as
a function of q. The dots are the average values obtained by fit of
the experimental resonances. The lines are calculated accounting for
the 1/q dependence of the i , where the initial values, i.e., 1/2π =
9.55 Hz and 2/2π = 8.46 Hz at q = 1, are calculated for the set of
experimental parameters by applying Eqs. (11).

We studied the resonance subharmonics from n = 1 up to
n = 9 for 2ωL group of resonances. The same dependence is
expected in the ωL group of resonances. In contrast to what we
observe for odd-q detection, the linewidth of the resonances
does not depend on q but it does on n. In order to reduce the
number of fitting parameters, the resonances at 2ωL/n and
ωL/n are fitted with 1/n and 2/n linewidths.

In Fig. 7 the values of 1 (2) from a multiresonance fit for
a given q are shown. The solid lines mark the average value of
the data set, i.e., 1/2π = 9.3(7) Hz and 2/2π = 8(1) Hz,
while the dashed line is the theoretical value calculated from
Eqs. (11) corresponding to 1/2π = 9.55 Hz and 2/2π =
8.46 Hz.

V. DEPENDENCE OF THE ωL AND 2ωL MAGNETIC
RESONANCES ON THE MAGNETIC-FIELD DIRECTION

We fix q = 2, and study the amplitude and linewidth of the
resonance at ωL and 2ωL as a function of the magnetic field
direction.

FIG. 6. Relative amplitude of the 2ωL group of resonances as
a function of the detection harmonic for even q value, i.e., q =
2,4,6,8,10. We have studied the subharmonic resonances up to n = 9.

The array of plots in Fig. 8 shows the amplitude of the
experimental resonances at 2ωL and ωL which are expressed
in terms of normalized amplitudes related to the C1 and C2

coefficients. The agreement between theory and experiment
is excellent. We observe that the amplitudes oscillate with
a period of π/2 which is compatible with the alignment
symmetry, when the resonance at 2ωL amplitude reaches
its maximum value, the resonance at ωL amplitude is at its
minimum, and vice versa.

It is worthwhile to remark that the minimum values of
the resonance amplitudes do not reach exactly zero. In the
worst case, i.e., for θ = 90◦, the contrast of resonances is
noticeably reduced, however resonances are recordable during
the experiments. This is not in contrast with the model
predictions as commented in the Fig. 8 caption. The linewidths,
1 and 2, do not show any dependence on the azimuthal angle
φ, while they show a weak dependence on θ that is represented
in Fig. 9. The experimental points in the figure are the average
values of the linewidth obtained by fitting the 36 resonances
(18 in-phase and 18 quadrature signals) recorded for different
φ. The linewidth variation on the (0,π ) range is about 20%.
1 and 2 oscillate with a period π and the phase difference
is π/2. The lines in Fig. 9 are calculated from Eqs. (11) by

FIG. 5. (Color online) In-phase (absorptive) and quadrature (dispersive) lock-in signal at the second (q = 2) and fourth (q = 4) harmonic
of the modulation frequency, as a function of the dimensionless ratio between the modulation frequency � and the Larmor frequency ωL.
The spectra are normalized with the appropriate scaling factors. The angles θ and φ are 45◦ and 50◦. Black and dashed-red lines represent
experiment and model results, respectively.

062507-6



MAGNETO-OPTIC SPECTROSCOPY WITH LINEARLY . . . PHYSICAL REVIEW A 89, 062507 (2014)

FIG. 7. The linewidths 1 and 2 of the resonance at 2ωL (upper
plot) and ωL (lower plot): dots are obtained by fitting the experimental
resonances, solid lines are the average experimental values, i.e.,
9.3(7) Hz and 8(1) Hz, while the dotted lines are the theoretical
predictions for θ = 45◦, i.e. 9.55 and 8.46 Hz, respectively.

°

°

FIG. 8. Experimental (dots) and theoretical (line) values for the
normalized amplitudes (∝C1 and C2) of 2ωL and ωL resonance
alternate in a complementary way when the direction of the magnetic
field is varied. We remark that in the θ = 90◦ inset, the experimental
amplitude minima do not reach exactly zero, even though strongly
suppressed; the resonances are clearly visible. This is not in contrast
with the model predictions when all orders in η are taken into account,
as we have verified by numerical simulation.

°

FIG. 9. Linewidth of resonance at ωL (2/2π ), and 2ωL (1/2π )
as a function of θ : dots are experiments and line is Eqs. (11).

using γ0 = 6 Hz, γ1 = 8 Hz, and two slight different values
for γ2 = 10 Hz (2) and γ2 = 11 (1). In the worst case the
values used for relaxation rates are in 10–15% agreement with
the measured ones.

The oscillatory complementary behavior of both amplitude
and linewidth of the two groups of resonances excited in
the proposed configuration can be interesting in view of a
coupled atomic magnetometer similar to the one developed
in Graz [29]. A feedback loop magnetometer uses an error
signal to monitor the frequency fluctuations proportional to the
magnetic-field fluctuations. The error signal can be the disper-
sive part or the phase of the lock-in signal. In both cases the
magnetometer sensitivity is proportional to the ratio between
the linewidth and the amplitude of the resonance. However
we want to underline that the resonances at ωL and 2ωL are
never simultaneously suppressed. The information carried by
the two resonances can be exploited to build up a dead-zone
free magnetometer with reduced sensitivity losses. In addition,
after appropriate characterization of the magnetometer, it could
be interesting to study the possibility of exploiting these
structured spectra to realize a vectorial magnetometer.

All experiments are carried out at low laser power, i.e., in the
range of validity of the theory, far from optimal operating mag-
netometer conditions. However we expect such an interaction
scheme will reach the same performance of the other magne-
tometers based on similar approaches, i.e., pT sensitivity down
to tens of fT sensitivity in the shot-noise limit expectation.

VI. CONCLUSIONS

We studied the magneto-optical resonances prepared
with a laser whose polarization alternates between two
linear orthogonal states focusing our attention to the
Fg = 3 → Fe = 4 transitions which is a good candidate
for high performance atomic magnetometer. This interaction
scheme is characterized by the synchronous excitation of
atomic alignment, which is the base of the push-pull optical
pumping technique. A model is developed taking into account
the low laser power and the separation of the time scales. We
characterize the resonance spectra as a function of the lock-in
detection harmonic observing two independent resonance
groups at the Larmor frequency and its second harmonic.
We study the dependence of amplitude and linewidth of the
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two groups of resonances for 126 magnetic-field directions
observing that they alternate. Utilizing both resonances at ωL

and 2ωL a dead-zone free magnetometer can be built in which
sensitivity losses depending on the magnetic-field direction
can be reduced. Finally the symmetric synchronous pumping
of atomic alignment in principle reduces also the so-called
heading errors as discussed in [19].
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APPENDIX: DERIVATION OF THE PUMPING RATES

In this Appendix we derive, for the sake of completeness,
the pumping rate terms Sk

q appearing in Eq. (5). We follow
mainly the method outlined in the paper of Dumont [30]. The
density-matrix description of an ensemble of degenerate two-
level atoms can be written as

ρ =
(

eeρ egρ

geρ ggρ

)
, (A1)

where eeρ and ggρ are Hermitian square matrices of di-
mension (2Fe + 1) × (2Fe + 1) and (2Fg + 1) × (2Fg + 1)
describing the excited and ground state respectively, while
the optical coherence egρ(=geρ

†) is a rectangular matrix
of dimension (2Fe + 1) × (2Fg + 1). We use the multipole
moments representation of the density matrix [21,22,30,31]
operator because their transparent physical meaning allows
for noticeable description of magneto-optical resonances (see
for instance the discussion in [20] and references therein).
Then, ρ reads

ρ =
∑

i,j=g,e

∑
k,q

ij ρ
k
q ij T

k
q , (A2)

where the coefficients ij ρ
k
q are the multipole moments and

the operators ij T
k
q , using the 3J symbol, take the usual form

[21,22]

ij T
k
q ≡ √

2k + 1
∑
M

(−1)Fi+M

(
Fi Fj k

M q − M −q

)

× |Fi,M〉〈Fj ,M − q|. (A3)

Notice that a complete description of the problem requires
the multipole moments related to both ground (ggρ

k
q ) and

excited (eeρk
q ) Zeeman multiplets as well as those related

to the optical coherences (egρk
q and geρ

k
q ). A common and

simplified notation used in the literature [20] for the ground-
state multipole moments is ggρ

k
q ≡ mk

q as used in the main text.
In the presence of a laser field resonant with the Fg → Fe

transition, the atom-laser interaction Hamiltonian HAL = −d ·
E, where d and E = E0[ε e−i ω t +ε∗ e+i ω t ] are the electric
dipole and the laser electric field, respectively, can be written

in the rotating wave approximation (RWA) frame as [31]

HAL = −〈Fe||d||Fg〉E0√
3

1∑
q=−1

(−1)q
[
ε−q egT

1
q

+ (−1)Fg+Fe (ε∗)−q geT
1
q

]
. (A4)

The dynamic evolution of the atomic ensemble is given by
the solution of the optical Bloch equations. Using standard
methods and the form (A4) of the interaction, the optical Bloch
equations in the RWA frame become

ggρ̇
k
q = �(k) eeρ

k
q − i �R

∑
k′,q ′

[
A

k,q

k′,q ′ geρ
k′
q ′ + B

k,q

k′,q ′ egρ
k′
q ′
]
,

(A5a)

eeρ̇
k
q = − eeρ

k
q + i �R

∑
k′,q ′

[
C

k,q

k′,q ′ geρ
k′
q ′ + D

k,q

k′,q ′ egρ
k′
q ′
]
,

(A5b)

geρ̇
k
q =

(
−

2
+ i δ

)
geρ

k
q

+ i �R

∑
k′,q ′

[
F

k,q

k′,q ′ eeρ
k′
q ′ + G

k,q

k′,q ′ ggρ
k′
q ′
]
, (A5c)

egρ̇
k
q =

(
−

2
− i δ

)
egρ

k
q

+ i�R

∑
k′,q ′

[
H

k,q

k′,q ′ eeρ
k′
q ′ + L

k,q

k′,q ′ ggρ
k′
q ′
]
, (A5d)

which have the same structure as in the nondegenerate two-
level system. Here  is the rate of spontaneous emission
Fe → Fg , δ ≡ ω − ωeg is the optical detuning, and �R =
〈Fe||d||Fg〉E0/

√
3 is the laser Rabi frequency (we assume

� ≡ 1 through the paper). The coefficients

�(k) ≡ (−1)1+k+Fg+Fe (2Fe + 1)

{
Fe Fe k

Fg Fg 1

}


(A6)

describe the feeding of the ground-state quantities due to
spontaneous emission [30]. The explicit expression for the
coefficients like A

k,q

k′,q ′ are given in terms of scalar products,

A
k,q

k′,q ′ = ε · (
gge

�
k,q

k′,q ′
)
, (A7a)

B
k,q

k′,q ′ = (−1)Fg+Fe+k′+k ε∗ · (
gge

�
k,q

k′,q ′
)
, (A7b)

C
k,q

k′,q ′ = (−1)1+k′+k ε · (
eeg

�
k,q

k′,q ′
)
, (A7c)

D
k,q

k′,q ′ = (−1)Fg+Fe+1 ε∗ · (
eeg

�
k,q

k′,q ′
)
, (A7d)

F
k,q

k′,q ′ = (−1)Fg+Fe+k′+k+1 ε∗ · (
ege

�
k,q

k′,q ′
)
, (A7e)

G
k,q

k′,q ′ = (−1)Fg+Fe+1 ε∗ · (
geg

�
k,q

k′,q ′
)
, (A7f)

H
k,q

k′,q ′ = − ε · (
ege

�
k,q

k′,q ′
)
, (A7g)

L
k,q

k′,q ′ = (−1)k
′+k+1 ε · (

geg
�

k,q

k′,q ′
)
, (A7h)
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where the σ spherical component of the � vector, that couples
different multipoles, is given by(

abc
�

k,q

k′,q ′
)
σ

= (−1)Fa+Fb−q
√

3(2k + 1)(2k′ + 1)

×
(

1 k′ k

σ q ′ −q

) {
1 k′ k

Fa Fb Fc

}
. (A8)

The solution of the (A5) can be pursued only by numerical
methods for intermediate and high laser power.

However, if the laser intensity is weak so that the transition
is not saturated, �R/ � 1 and �R can used as a perturbative
parameter, that is assuming

ij ρ
k
q =

∞∑
n=0

�n
R

n
ijρ

k
q , (A9)

Eqs. (A5) can be solved easily. It is well known [30] that the
optical coherence multipoles get only odd order contributions
while the ground- and excited-state multipoles have only the
even ones. Assuming an initial (before laser action) thermo-
dynamical equilibrium 0

ij ρ
k
q = √

2Fg + 1 δi,g δj,g δk,0 δq,0, one
obtains the first-order quantities

1
geρ

k
q = i(2Fg + 1)−1/2 1

/2 − iδ
G

k,q

0,0 , (A10)

1
egρ

k
q = i(2Fg + 1)−1/2 1

/2 + iδ
L

k,q

0,0 , (A11)

where G
k,q

0,0 and L
k,q

0,0 are easily computed as

G
k,q

0,0 = (−1)Fg+Fe+1+q(2Fg + 1)−1/2 (ε∗)−q δk,1, (A12)

L
k,q

0,0 = (−1)k+1+q(2Fg + 1)−1/2 (ε)−q δk,1. (A13)

To compute second-order quantities one needs sums like∑
k′,q ′ A

k,q

k′,q ′G
k′,q ′
0,0 which can be expressed after some algebra

introducing the laser field multipoles (2). For instance∑
k′,q ′

A
k,q

k′,q ′G
k′,q ′
0,0 = 3(−1)Fg+Fe+1+q(2Fg + 1)−1/2

×
{

1 1 k

Fg Fg Fe

}
Ek

−q . (A14)

We do not explicitly report the other sums which can be
elaborated along the same steps of this one. After some algebra
the second-order ground-state multipole pumping rates Sk

q are
found to be

Sk
q = 3�R



(/2)2 + δ2
Rk (−1)q Ek

−q, (A15)

where the Rk coefficients are

Rk = 1

2Fg + 1

[
(−1)Fg+Fe+1

{
1 1 k

Fg Fg Fe

}

− (2Fe + 1)

{
1 1 k

Fe Fe Fg

}{
Fe Fe k

Fg Fg 1

}]
.

(A16)

For the transition Fg = 4 → Fe = 3 the only Rk different
from zero are R1 = −√

30/1296 ≈ −4 × 10−3 and R2 =√
462/3888 ≈ 5 × 10−3.
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