
High-Performance State-Machine Replication

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Parisa Jalili Marandi

under the supervision of

Fernando Pedone

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/43658796?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Dissertation Committee

Matthias Hauswirth University of Lugano, Switzerland
Antonio Carzaniga University of Lugano, Switzerland

Andre Schiper EPFL, Switzerland
Kenneth P. Birman Cornell University, USA

Dissertation accepted on

Research Advisor PhD Program Director

Fernando Pedone Stefan Wolf, Igor Pivkin

i

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been sub-
mitted previously, in whole or in part, to qualify for any other academic award;
and the content of the thesis is the result of work which has been carried out
since the official commencement date of the approved research program.

Parisa Jalili Marandi
Lugano,

ii

To my parents

iii

iv

Only when we know a little do we
know anything; doubt grows with
knowledge.

Johann Wolfgang von Goethe

v

vi

vii

Publications

• R.Soule, S.Basu, P.J.Marandi, F.Pedone, R.Kleinberg, EG.Sirer, N.Foster.
“Merlin: A Language for Provisioning Network Resources”, (CoNEXT 2014).

• S.Benz, P.J.Marandi, F.Pedone, B.Garbinato. “Building global and scalable
systems with Atomic Multicast”, (Middleware 2014).

• P.J.Marandi, F.Pedone. “Optimistic Parallel State-Machine Replication”,
(SRDS 2014).

• P.J.Marandi, S.Benz, F.Pedone, K.P.Birman. “The Performance of Paxos in
the Cloud”, (SRDS 2014).

• P.J.Marandi, E.Bezzera, F.Pedone. “Rethinking State-Machine Replication
for Parallelism”, (ICDCS 2014).

• P.J.Marandi, M.Primi, F.Pedone. “Multi-Ring Paxos”, (DSN 2012).

• P.J.Marandi, M.Primi, F.Pedone. “High Performance State-Machine Repli-
cation”, (DSN 2011).

• P.J.Marandi, M.Primi, N.Schiper, F.Pedone. “Ring Paxos: A High-Throughput
Atomic Broadcast Protocol”, (DSN 2010).

viii

Abstract

Replication, a common approach to protecting applications against failures, refers
to maintaining several copies of a service on independent machines (replicas).
Unlike a stand-alone service, a replicated service remains available to its clients
despite the failure of some of its copies. Consistency among replicas is an im-
mediate concern raised by replication. In effect, an important factor for provid-
ing the illusion of an uninterrupted service to clients is to preserve consistency
among the multiple copies. State-machine replication is a popular replication
technique that ensures consistency by ordering client requests and making all
the replicas execute them deterministically and sequentially. The overhead of
ordering the requests, and the sequentiality of request execution, the two essen-
tial requirements in realizing state-machine replication, are also the two major
obstacles that prevent the performance of state-machine replication from scal-
ing.

In this thesis we concentrate on the performance of state-machine replica-
tion and enhance it by overcoming the two aforementioned bottlenecks, the
overhead of ordering and the overhead of sequentially executing commands.
To realize a truly scalable system, one must iteratively examine and analyze all
the layers and components of a system and avoid or eliminate potential per-
formance obstructions and congestion points. In this dissertation, we iterate
between optimizing the ordering of requests and the strategies of replicas at re-
quest execution, in order to stretch the performance boundaries of state-machine
replication.

To eliminate the negative implications of the ordering layer on performance,
we devise and implement several novel and highly efficient ordering protocols.
Our proposals are based on practical observations we make after closely assess-
ing and identifying the shortcomings of existing approaches. Communication is
one of the most important components of any distributed system and thus se-
lecting efficient communication patterns is a must in designing scalable systems.

ix

x

We base our protocols on the most suitable communication patterns and extend
their design with additional features that altogether realize our protocol’s high
efficiency. The outcome of this phase is the design and implementation of the
Ring Paxos family of protocols. According to our evaluations these protocols are
highly scalable and efficient. We then assess the performance ramifications of
sequential execution of requests on the replicas of state-machine replication. We
use some known techniques such as state-partitioning and speculative execu-
tion, and thoroughly examine their advantages when combined with our order-
ing protocols. We then exploit the features of multicore hardware and propose
our final solution as a parallelized form of state-machine replication, built on
top of Ring Paxos protocols, that is capable of accomplishing significantly high
performance.

Given the popularity of state-machine replication in designing fault-tolerant
systems, we hope this thesis provides useful and practical guidelines for the
enhancement of the existing and the design of future fault-tolerant systems that
share similar performance goals.

Acknowledgements

I wish to express my genuine gratitude to my advisor prof. Fernando Pedone.
I owe the creation and completion of this thesis to his inexhaustible patience,
persistent passion for educating, his continuous stream of fresh ideas, and his
dedication to correcting the mistakes of his students. To him research is a glori-
ous adventure, and his commitment to advising comes effortlessly; having wit-
nessed his spirit has always been and will be a great motivation to me. Whenever
I needed help it was impossible not to reach Fernando, as his communication
links are the most reliable and fault-tolerant ones. I am extremely fortunate to
have met you and to have learnt some of the most valuable lessons of my life
while working with you. I could not make any phrase that justly describes the
value of what you have directly and indirectly taught to me, “Thank you”.

I would like to thank the rest of my thesis committee: Prof. Andre Schiper,
Prof. Kenneth P. Birman, Prof. Antonio Carzaniga, Prof. Matthias Hauswirth.
Having met these great people has been a unique pleasure and has contributed
to the quality of this work. I would like to also thank Prof. Mehdi Jazayeri for
his friendly guidance and support. I would like to thank all the faculty and staff
of the University of Lugano for their commitment to enhancing the quality of ed-
ucation at the University. I am grateful to the Swiss National Science Foundation
for supporting the projects I was assigned to. I am also grateful to Prof. Kenneth
P. Birman and Prof. Robert Van Renesse for their hospitality at the Cornell Uni-
versity and the Zeno Karl Schindler Foundation for supporting my stay there.

I am in particular indebted to the members of the distributed systems lab
at the University of Lugano: Marco Primi, Nicolas Schiper, Daniele Sciascia,
Amirhossein Malekpour, Ricardo Padilha, Eduardo Bezzera, Leandro Pacheco,
Samuel Benz, and Alex Tomic, without whose help and contributions this work
would not be accomplished.

I would like to in particular thank Shima and Parvaz for their valuable friend-

xi

xii

ship over the last few years. Many other dear friends have accompanied me dur-
ing this journey to whom my gratitude is endless: Pascale, little Helena, Mar-
jan, little Melina, Luciana, little Giovanni, Katherine, Stefania, Adina, Marjaneh,
Sepideh, Sara, Elena, Elisa, Nina, Daniella, Noushin, Nayereh, Paniz, Amirhos-
sein, Mehran, Carlo, Nicoals, Hamid, Sandeep, koorosh, Marco, Andrea, Amanj,
and many many others. Thanks to the Luganese my stay at Lugano has been
nothing short of amazing. In rainy days and sunny days, I have been only con-
fronted with warm smiling faces.

I would like to dedicate this work to Fatemeh and Javad my dearest parents,
for their everlasting and unconditional support, love, and companionship. Your
courage, resilience, and inspiring life has always been and will be the light of my
life at the dark days. I am not sure how I would have coped with the distance if it
was not for your daily calls, kindness, support, and listening ears. I am fortunate
to have been born to you and words fall short at expressing my gratitude, love,
and respect to you, “Thank you”. I also would like to dedicate this work to the
memories of my grandparents and in particular my grandfather who wished me
to be a medical doctor. I am grateful to my dear sister and her family: Samira,
Javad, and little Martia for their greatest friendship. I will remain indebted to
you for having always welcomed me in your small but the warmest gatherings.
Thank you for creating some of the most happiest moments in my life.

Contents

Contents xiii

List of Figures xvii

List of Tables xix

1 Introduction 1
1.1 Research Contributions . 3
1.2 Structure of the Dissertation . 6

2 System Model and Definitions 7
2.1 System model . 7
2.2 Definitions . 8

2.2.1 State-machine replication . 8
2.2.2 Consensus . 9
2.2.3 Atomic broadcast . 9
2.2.4 Atomic multicast . 9
2.2.5 Consistency . 10

3 Ring Paxos 13
3.1 Problem statement . 13

3.1.1 Outline . 14
3.2 Basic Paxos . 14
3.3 Ring Paxos . 17

3.3.1 Motivation and design considerations 18
3.3.2 Multicast-based Ring Paxos (M-Ring Paxos) 22
3.3.3 Unicast-based Ring Paxos (U-Ring Paxos) 25
3.3.4 Handling message loss . 26
3.3.5 Handling process crashes . 28
3.3.6 Flow control . 28

xiii

xiv Contents

3.3.7 Garbage collection . 29
3.4 Related work . 30
3.5 Experimental evaluation . 33

3.5.1 Hardware settings . 34
3.5.2 Implementation . 34
3.5.3 Ring Paxos versus other protocols 35
3.5.4 Impact of processes in the ring 36
3.5.5 Impact of disk writes . 38
3.5.6 Impact of message size . 39
3.5.7 Impact of socket buffer size 41
3.5.8 Flow control . 42
3.5.9 CPU and memory usage . 43
3.5.10 Conclusions from the experiments 43

3.6 Conclusion . 44

4 Speculation and State Partitioning in State-Machine Replication 45
4.1 Problem statement . 45

4.1.1 Outline . 47
4.2 Overcoming limitations of state-machine replication 47

4.2.1 Speculative execution . 48
4.2.2 State partitioning . 49

4.3 Related work . 52
4.4 Experimental evaluation . 53

4.4.1 Hardware settings . 54
4.4.2 Implementation and experimental setup 54
4.4.3 The cost of replication . 57
4.4.4 Speculative execution . 58
4.4.5 State partitioning . 59
4.4.6 Speculation and partitioning 63
4.4.7 Conclusions from the experiments 63

4.5 Conclusion . 64

5 Multi-Ring Paxos 65
5.1 Problem statement . 65

5.1.1 Outline . 68
5.2 Multi-Ring Paxos . 68

5.2.1 Overview . 68
5.2.2 Multi-Ring Paxos in detail . 70
5.2.3 Failures and reconfigurations 72

xv Contents

5.2.4 Extensions and optimizations 72
5.2.5 Additional properties of Multi-Ring Paxos 73

5.3 Related work . 73
5.4 Experimental evaluation . 75

5.4.1 Hardware settings . 75
5.4.2 Implementation and experimental setup 76
5.4.3 Scalability of Multi-Ring Paxos 76
5.4.4 Impact of ∆ on Multi-Ring Paxos 79
5.4.5 Impact of M on Multi-Ring Paxos 80
5.4.6 Impact of λ on Multi-Ring Paxos 80
5.4.7 Impact of discontinued communication 85
5.4.8 Conclusions from the experiments 85

5.5 Conclusion . 86

6 Replicating Parallel Applications with State-Machine Replication 87
6.1 Problem statement . 87

6.1.1 Outline . 88
6.2 A Survey on Parallel State-Machine Replication 88

6.2.1 Non-replicated setup . 89
6.2.2 Sequential State-Machine Replication (sequential SMR) . . 89
6.2.3 Pipelined State-Machine Replication (pipelined SMR) . . . 89
6.2.4 Sequential Delivery-Parallel Execution (SDPE) 90
6.2.5 Execute-Verify (EV) . 91
6.2.6 Parallel Delivery-Parallel Execution (PDPE) 92
6.2.7 Summary . 92

6.3 Parallel State-Machine Replication (P-SMR) 93
6.3.1 Design goals . 93
6.3.2 Client and server organization 94
6.3.3 Protocol design . 96
6.3.4 P-SMR: algorithm in detail . 97

6.4 Related Work . 98
6.5 Experimental evaluation . 99

6.5.1 Hardware settings . 101
6.5.2 Implementation and experimental setup 101
6.5.3 Performance of independent commands 103
6.5.4 Performance of dependent commands 105
6.5.5 Performance of mixed workloads 106
6.5.6 Scalability . 107
6.5.7 Performance of skewed workloads 108

xvi Contents

6.5.8 Conclusions from the experiments 108
6.6 Conclusion . 109

7 Experimenting with Paxos in the Cloud 111
7.1 Problem Statement . 111

7.1.1 Outline . 113
7.2 Open-source Paxos libraries . 113

7.2.1 S-Paxos . 114
7.2.2 OpenReplica . 114
7.2.3 U-Ring Paxos . 115
7.2.4 Libpaxos . 116
7.2.5 Libpaxos+ . 117

7.3 Experimental evaluation . 117
7.3.1 Experimental setup . 117
7.3.2 Methodology . 121
7.3.3 Peak performance . 121
7.3.4 S-Paxos under failures . 123
7.3.5 OpenReplica under failures 123
7.3.6 U-Ring Paxos under failures 124
7.3.7 Libpaxos and Libpaxos+under failures 125

7.4 Main lessons from the experiments 128
7.5 Conclusion . 129

8 Conclusion 131
8.1 Summary of our findings and lessons learnt 132
8.2 Future directions . 134

Appendices 137

Proofs of Correctness 139

Bibliography 147

Figures

1.1 Non-replicated service and state-machine replication 3

2.1 Linearizabiliy vs. sequential consistency. 11

3.1 Optimized Paxos. 17
3.2 Many-to-one communication . 18
3.3 The impact of multiple ip-multicast senders on packet loss. 20
3.4 One-to-many communication. 21
3.5 M-Ring Paxos. 22
3.6 U-Ring Paxos. 25
3.7 Ring Paxos versus other atomic broadcast protocols. 36
3.8 Impact of processes in the ring on performance. 37
3.9 Impact of disk writes on performance. 38
3.10 Impact of message size on the performance of M-Ring Paxos. . . . 39
3.11 Impact of message size on the performance of U-Ring Paxos. . . . 40
3.12 Impact of socket buffer size on the performance of M-Ring Paxos. 41
3.13 Impact of socket buffer size on the performance of U-Ring Paxos. 41
3.14 Flow control in M-Ring Paxos. 42

4.1 Non replicated server versus state-machine replication. 46
4.2 Full versus partial replication of a B+-tree. 50
4.3 The cost of replication-1. 56
4.4 The cost of replication-2 . 57
4.5 Impact of speculative execution on the performance-1 58
4.6 Impact of speculative execution on the performance-2 59
4.7 Impact of state partitioning on the performance (no cross-partition

query). 60
4.8 Impact of state partitioning on the performance (with cross-partition

queries, 2 replicas). 61

xvii

xviii Figures

4.9 Impact of state partitioning on the performance (with cross-partition
queries, 3 replicas). 62

4.10 Impact of speculative execution and state partitioning on the per-
formance. 63

5.1 Performance of In-memory and Recoverable Ring Paxos. 66
5.2 Performance of a partitioned service using In-memory Ring Paxos. 66
5.3 Muli-Ring Paxos with two rings and M = 1. 70
5.4 Scalability of Multi-Ring Paxos (one group per learner). 77
5.5 Scalability of Multi-Ring Paxos (multiple groups per learner). . . . 78
5.6 Impact of ∆ on Multi-Ring Paxos. 79
5.7 Impact of M on Multi-Ring Paxos. 80
5.8 Impact of λ (2 rings with constant rates.) 81
5.9 Impact of λ (2 rings with constant rates, one twice the other) . . . 82
5.10 Impact of λ (2 rings with variable rates). 83
5.11 Impact of failures on Multi-Ring Paxos. 84

6.1 Architectures of various approaches to SMR. 90
6.2 Execution modes in P-SMR. 97
6.3 Performance of P-SMR with independent commands. 104
6.4 Performance of P-SMR with dependent commands. 105
6.5 Performance of P-SMR with independent and dependent commands.106
6.6 Scalability of P-SMR with uniform workload. 107
6.7 Scalability of P-SMR with non-uniform workload. 109

7.1 Architectural differences among S-Paxos, OpenReplica, RingPaxos,
LibPaxos. 119

7.2 Peak performance of S-Paxos, OpenReplica, RingPaxos, LibPaxos. 120
7.3 S-Paxos in heterogeneous configurations. 123
7.4 OpenReplica in heterogeneous configurations. 124
7.5 U-Ring Paxos in heterogeneous configurations. 125
7.6 Libpaxos and Libpaxos+ in heterogeneous configurations-1. 126
7.7 Libpaxos and Libpaxos+ in heterogeneous configurations-2. 127

Tables

3.1 Comparison of several atomic broadcast algorithms. 32
3.2 Efficiency comparison among atomic broadcast protocols. 37
3.3 CPU and memory use in M-Ring Paxos. 43
3.4 CPU and memory use in U-Ring Paxos. 43

6.1 A comparison among approaches to parallelizing SMR. 92

7.1 Configurations in which S-Paxos, OpenReplica, RingPaxos, and
Libpaxos are evaluated for peak performance. 118

7.2 Configurations in which S-Paxos, OpenReplica, RingPaxos, and
Libpaxos are evaluated for flow control. 121

xix

xx Tables

Chapter 1

Introduction

With the wide availability of commodity hardware, failures in data centers are
common and inevitable. Machines fail individually due to hardware issues and
software bugs, or collectively due to problems in interconnects and power distri-
bution. Storage devices are equally subject to failures, and network performance
is often degraded due to malfunctioning switches and damaged links. These
types of failures are frequently observed in many data centers, including those
from well-established service providers [1]. Given the prevalence of failures and
in order to offer uninterrupted service to their clients, services deployed in data
centers must look for solutions to reduce their vulnerability to failures.

Replication is a well-known approach to making computer systems fault-
tolerant. To enhance fault-tolerance via replication, multiple copies of a service
are created and operated on failure-independent machines. Therefore, a repli-
cated service is always available to its clients despite the failure of some of its
replicas. Since replicas operate independently, their state might diverge due to
concurrent and isolated execution of requests. Thus, consistency among replicas
is an immediate concern raised by replication. From the consistency perspective,
replication strategies can be categorized into two classes: eager (synchronous)
and lazy (asynchronous) [2]. In order to ensure that a service’s state is always
identical among replicas, in eager replication all the requests are synchronized
among replicas before execution. In lazy replication, however, synchronization
among the replicas happens in the background, possibly after executing the re-
quests and responding to the clients. Therefore, in systems that implement lazy
replication, replicas have weaker consistency guarantees. Inconsistency among
replicas is undesirable if the clients can not tolerate contradictory responses; it
is acceptable if the clients can bear inconsistencies in the interest of rapid re-

1

2

sponses.

A popular eager replication technique that enforces strong consistency among
replicas is state-machine replication [3]. State-machine replication is based on
the concept of deterministic state machines. A deterministic state machine mod-
els a system as a set of states among which transitions happen deterministically
by the execution of well-defined operations. State-machine replication builds
on this concept where all the replicas of a service independently implement a
deterministic state machine: they all start at the same initial state and sequen-
tially apply an ordered set of operations to their states, one operation at a time.
Therefore, state machines on different replicas traverse the same series of states,
produce the same sequence of outputs, and look consistent and identical at any
given time. Consistency among the replicas of state-machine replication is the
key to masking failures: the client of a failed replica can smoothly be directed
to another replica without observing meaningless or inconsistent responses. In
other words, consistency makes replication transparent and conveys to clients
the illusion of a coherent and centralized service.

Ordering the operations and sequentially executing the ordered operations
are two crucial properties of state-machine replication for realizing strongly con-
sistent systems that are immune to failures. Throughout this dissertation, we
argue that these same wanted requirements are also the reasons that restrain
the performance of state-machine replication from scaling. First, to order the
requests, an agreement layer is often positioned between clients and servers, to
which all the requests are directed before being executed on the replicas (see
Figure 1.1). This new layer of communication and computation adds extra over-
head to the system’s performance and increases the response time experienced
by the clients. Therefore, as a result of ordering, a replicated service often loses
to a single-copy service in terms of performance. Second, with the addition of
replicas, as physically independent machines, there are extra resources in the
system (e.g. CPU, memory, IO), but because of the sequential execution of all
the requests on all the replicas, the added resources can not be exploited to the
advantage of performance.

Our main goal in this dissertation is to focus on the ordering requirement and
the sequentiality of execution in state-machine replication and devise efficient
solutions toward the realization of high-performance available systems that are
implemented by state-machine replication. The main research questions (RQ)
of this dissertation are as follows:

3 1.1 Research Contributions

AgreementAgreement

(b) state-machine replication

Agreement

Server

(a) non-replicated service

Client

Server

RequestResponse

Client

Figure 1.1. Non-replicated service and state-machine replication

• RQ1. How to efficiently design an agreement layer that does not restrict
the performance of a replicated service?

• RQ2. How to overcome the sequentiality of execution in state-machine
replication to enhance performance while preserving consistency?

In the next section, we briefly overview our main contributions in addressing
these questions.

1.1 Research Contributions

In this section, we outline the main contributions of this dissertation and pro-
vide a short description of each one. We defer detailed discussions to the next
chapters.

The design of Ring Paxos protocols (RQ1): Ring Paxos is derived from Paxos [4]
and is composed of two high-throughput atomic broadcast protocols. The com-
mon feature among both versions of Ring Paxos is the presence of a ring topology
at the heart of the protocols. Besides relying on a logical ring overlay, Ring Paxos
is based on a series of practical observations that altogether realize its high per-

4 1.1 Research Contributions

formance. Ring Paxos minimizes the overhead of ordering so that the agreement
layer adds little overhead. Two variants of Ring Paxos were developed:

• Multicast-based Ring Paxos (M-Ring Paxos): This variant of Ring Paxos
leverages network level ip-multicast to attain wire-speed throughput. Ip-
multicast is an efficient primitive for disseminating messages to a set of re-
ceivers. This property, combined with a set of other practical observations,
helps M-Ring Paxos achieve high throughput with reasonable latency.

• Unicast-based Ring Paxos (U-Ring Paxos): Ip-multicast may not be avail-
able in some environments. Therefore, we have developed U-Ring Paxos,
a variant of Ring Paxos in which all communication is based on unicast.
Removing ip-multicast, as one of the main communication mechanisms,
raised new challenges that resulted in several modifications to the design
of the protocol. Although on average it has higher latency, U-Ring Paxos’s
throughput is comparable to M-Ring Paxos’s.

Speculative delivery with M-Ring Paxos (RQ1): Ordering in Ring Paxos is ef-
ficient and has a reasonably low latency. Yet to investigate the possibility of
reducing latency further, we have implemented speculative delivery with M-
Ring Paxos. We have modified M-Ring Paxos such that requests are delivered
to replicas before their order is determined. Speculative delivery assumes that
the order in which requests are received at replicas will comply with the or-
der decided by M-Ring Paxos. Based on the speculative assumption, replicas
execute requests parallel to M-Ring Paxos ordering them. According to our find-
ings, speculative delivery proves effective and is able to reduce latency.

State partitioning with M-Ring Paxos (RQ2): In the presence of Ring Paxos as
a high-throughput atomic broadcast protocol, the performance bottleneck of a
replicated service may shift from the agreement layer to the service side: perfor-
mance is limited by the number of requests that replicas can execute rather than
the number of requests the agreement layer can order. Partitioning the state of
a service is a well-known approach to enhancing the execution of requests on
replicas. In a fully replicated service, all the replicas deliver all the requests and
execute all of them. Thus one can not expect to gain performance as a result
of adding new replicas to the system. To study the effect of partitioning, we
modified M-Ring Paxos to combine it with a partitioned service. In the resulting
system, M-Ring Paxos totally orders all the requests but uses a set of multicast
groups rather than one, to transfer requests to relevant partitions. Our evalua-
tions show that partitioning the state and using the modified M-Ring Paxos in

5 1.1 Research Contributions

the agreement layer results in significant improvements in performance.

Multi-Ring Paxos (RQ1): Partitioning a service elevates the throughput of re-
quest execution on replicas as far as the agreement layer allows. In other
words, assuming a service that can be partitioned into a large number of sub-
states in which request execution is extremely efficient, the performance bottle-
neck once more slides to the agreement layer. We observed this phenomenon
with Ring Paxos: state partitioning continues to increase the performance until
Ring Paxos reaches its maximum capacity in ordering the requests. When this
happens, adding more processes to the agreement layer increases its availability
and fault-tolerance without having positive impact on the performance. We de-
signed Multi-Ring Paxos as an ensemble of isolated but coordinated Ring Paxos
instances to address the scalability issue of Ring Paxos. Multi-Ring Paxos imple-
ments atomic multicast by relying on a set of pre-defined parameters to coor-
dinate independent instances of Ring Paxos. Performance of Multi-Ring Paxos
scales linearly as new resources and machines are added to the system.

Parallel state-machine replication (P-SMR) (RQ2): Sequential execution of
requests on replicas, with both partial and full replication, is a source of per-
formance bottleneck in state-machine replication. The development of multi-
threaded services on the one hand and the sequentiality of replicas at processing
requests on the other hand make the union of parallel applications with state-
machine replication harder. We have built parallel state-machine replication
(P-SMR) on top of Multi-Ring Paxos as an attempt to adapt state-machine repli-
cation to multicore environments, increase its performance, and bridge the gap
between state-machine replication and multi-threaded services. Compared to
other parallelized replication strategies, P-SMR achieves a significantly higher
performance.

Evaluating Paxos in the Cloud: The last contribution of this dissertation is de-
voted to comparing the performance of Ring Paxos to other Paxos implementa-
tions when deployed in the cloud. We evaluated four open source Paxos libraries
on Amazon EC2 under various configurations to closely analyze the performance
and behavior of these libraries with and without failures. Our experiments re-
veal the differences among the policies open source implementations use to cope
with failures. We propose some improvements and demonstrate their effective-
ness with experiments.

6 1.2 Structure of the Dissertation

1.2 Structure of the Dissertation

The rest of this dissertation is structured as follows. In Chapter 2, we present
our system model and definitions that are frequently used in the rest of the
text. In Chapter 3 we present the Ring Paxos protocols and discuss their de-
sign and properties in detail. In Chapter 4 we study speculative delivery and
state partitioning and discuss their performance advantages when combined
with Ring Paxos. In Chapter 5 we discuss scalability issues of Ring Paxos and
introduce Multi-Ring Paxos to address them. In Chapter 6 we question the se-
quentiality of execution in state-machine replication and propose P-SMR, a new
parallel execution model, to parallelize execution. In Chapter 7 we evaluate sev-
eral open source implementations of Paxos in Amazon EC2 and compare their
policies in handling failures. Finally, in Chapter 8, we conclude the dissertation
by outlining our main findings and presenting directions for future research.

Chapter 2

System Model and Definitions

In this chapter, we present our assumptions about the system model and
review the definitions of several concepts that are repeatedly referred to in the
rest of this text.

2.1 System model

Unless mentioned otherwise, we make the following assumptions about pro-
cesses, failure and synchrony models.

• Processes and communication. We assume a distributed system com-
posed of a set Π = {p1, p2, ...} of interconnected processes. If required we
differentiate between processes as C = {c1, c2, ...}, an unbounded set of
client processes, and S = {s1, s2, ..., sn}, a bounded set of server processes
(replicas). We also assume the nodes (machines) on which processes
are located are in a local-area network. The network is mostly reliable
and subject to small latencies. Communication among processes happens
through message passing. Communication can be one-to-one through the
primitives send(p, m) and receive(m), and one-to-many through the prim-
itives ip-multicast(g, m) and ip-deliver(m), where m is a message, p is a
process, and g is a group of processes to which m is addressed. Messages
can be lost but not corrupted. Therefore, if a process p sends a message m
to another process q, and q is non-faulty, q eventually receives m as long
as p retries sending m. Moreover, nodes have access to stable storage if
required.

7

8 2.2 Definitions

• Failure model. We assume the crash recovery model, in which nodes can
fail by crashing and recover later, but no byzantine or malicious behavior
is tolerated.

• Synchrony model. Our protocols ensure safety under both asynchronous
and synchronous execution periods. The FLP impossibility result [5] states
that under asynchronous assumptions consensus cannot be both safe and
live may a process crash. For our consensus algorithms, we thus assume
that the system is partially synchronous, which means that it is initially
asynchronous and eventually becomes synchronous. The time when the
system becomes synchronous is called the Global Stabilization Time (GST)
[6] and is unknown to the processes. Before GST, there are no bounds on
the time it takes for messages to be transmitted and actions to be executed.
After GST, such bounds exist but are unknown. Moreover, in order to prove
liveness, we assume that after GST all remaining processes are correct;
a process that is not correct is faulty. A correct process is operational
“forever” and can reliably exchange messages with other correct processes.
In practice, “forever” means long enough for consensus to terminate.

2.2 Definitions

In this section, we define several concepts that constitute the building blocks of
this work.

2.2.1 State-machine replication

Replication is a fundamental approach to building fault-tolerant distributed sys-
tems [3; 7]. One approach to replication is state-machine replication that is
based on the concept of deterministic state machines. The idea is to model a
system as a set of states among which transitions happen deterministically by
the execution of commands. Consequently, in state-machine replication all the
replicas of a service implement a state machine. Thus, all of the replicas are
initialized with the same initial state and by applying the same set of commands
in an identical order traverse the same sequence of states and always remain
consistent [3].

9 2.2 Definitions

2.2.2 Consensus

Consensus is a problem in which one or more processes cooperate to select a
value which is proposed by one or more participants. Uniform consensus is
defined by the primitives propose(v) and decide(v), where v is an arbitrary value.
Uniform consensus satisfies the following properties:

I. Uniform integrity: if a process decides v then some process proposed v.

II. Uniform agreement: no two processes decide different values.

III. Termination: if one or more correct processes propose a value then eventu-
ally some value is decided by all correct processes.

2.2.3 Atomic broadcast

Atomic broadcast, also referred to as total order broadcast, is defined in terms of
two primitives: broadcast(m) and deliver(m) (where m is a message) and should
satisfy the following properties:

I. Validity: if a correct process broadcasts a message m, then all correct pro-
cesses eventually deliver m.

II. Uniform integrity: for any message m, every process delivers m at most once
and only if m was previously broadcast by some process.

III. Uniform agreement: if a process delivers m then all correct processes even-
tually deliver m.

IV. Uniform total order: if processes p and q both deliver messages m and m′,
then p delivers m before m′, if and only if q delivers m before m′.

Atomic broadcast can be implemented as a sequence of consensus instances [8].

2.2.4 Atomic multicast

Atomic multicast is a generalization of atomic broadcast and implements the
abstraction of groups Γ = {g1, ..., gγ}, where for each g ∈ Γ, g ⊆ Π. Processes
may belong to one or more groups. If process p ∈ g, we say that p subscribes
to group g. Atomic multicast is defined by the primitives multicast(g, m) and
deliver(m), and satisfies the following properties:

10 2.2 Definitions

I. Validity: if a correct process multicasts a message m to g, then all correct
processes in g will eventually deliver m .

II. Uniform integrity: for any message m, every process p in g delivers m at
most once and only if m was previously multicast by some process.

III. Uniform agreement: if a process delivers m, then all correct processes in g
deliver m.

IV. Uniform partial order: if processes p and q both deliver messages m and m′,
then p delivers m before m′, if and only if q delivers m before m′.

If Γ is a singleton, then atomic multicast is equivalent to atomic broadcast.

2.2.5 Consistency

An object that can be concurrently accessed by many processes is called a con-
current object [9]. Interleaving accesses to the same object can sometimes lead
to unexpected behaviors. The effect of this issue can be captured by defining a
consistency criterion over the shared object, which specifies the level in which
operations can interleave in accessing the object. In the following we explain
linearizability and sequential consistency as two types of consistency that we
are interested in.

• Linearizability. A sequence of operations is linearizable if there is a way
to reorder the operations in the sequence such that (a) they respect the
semantics of the objects as expressed in their sequential specifications, and
(b) they respect the real-time ordering of events among all the nodes. For
example, if the response of operation o1 occurs in the sequence before
the invocation of operation o2 then in the reordering of the operations o1

appears before o2.

• Sequential Consistency. A sequence of operations is sequentially consis-
tent if there is a way to reorder them such that (a) they respect the seman-
tics of the objects as expressed in their sequential specifications, and (b) if
the response of operation o1 at node pi occurs in the sequence before the
invocation of operation o2 at node pi then in the reordering of the oper-
ations o1 appears before o2. Basically sequential consistency is a weaker
form of linearizability.

11 2.2 Definitions

(a) Sequential consistent but not linearizable

Read(x) Reply(10)

Write(x,20) Reply(ok)

Client C1

Client C2

Read(x) Reply(20)

time

Read(x) Reply(10)

Write(x,20) Reply(ok)

Client C1

Client C2

Read(x) Reply(20)

(b) Sequential consistent and linearizable

Reordered
Sequence

Figure 2.1. Linearizabiliy vs. sequential consistency.

Figure 2.1 illustrates sequential consistency versus linearizability for a shared
object x . The sequence shown in (a) is not linearizable since any reordering of
the operations that satisfies the specifications of linearizability violates the real-
time ordering of the operations. Since the response for Write(x, 20) occurs before
the invocation of Read(x), client C1 should read 20 instead of 10. However, this
is not the case based on the results. On the other hand, the sequence shown
in (b) is linearizable and thus sequentially consistent. This is because the re-
sponse of Write(x) occurs after the invocation of Read(x). And thus these two
operations can be reordered with respect to each other such that linearizabil-
ity is ensured without violation of real-time ordering. Both linearizability and
sequential consistency are considered strong consistency conditions.

12 2.2 Definitions

Chapter 3

Ring Paxos

Atomic broadcast is a communication primitive often present at the core of
state-machine replication. Because of the canonical role atomic broadcast pro-
tocols play in the design of the systems replicated by state-machine approach,
their efficiency directly affects the performance of the replicated services. Paxos
is a well-known consensus protocol upon which an atomic broadcast protocol
can be built. In this chapter we devise Ring Paxos, a new high-performance
atomic broadcast protocol that is optimized for local-area networks and inher-
its the reliabilities of Paxos. The techniques used in the design of Ring Paxos
are chosen to maximize its efficiency. Our evaluations at the end of this chapter
demonstrate significant performance gains obtained by Ring Paxos.

3.1 Problem statement

Atomic broadcast is a dominant primitive for implementing the agreement layer
of the state-machine replication approach. Agreement is a key component of
state-machine replication at preserving consistency among the replicas and is
responsible for ordering client requests before they can be executed on the repli-
cas. The agreement layer, however, imposes additional performance overhead
on a replicated system compared to a stand-alone deployment, the price that
must be paid to gain availability and fault tolerance. Therefore, the efficiency of
the agreement layer directly affects the performance of replicated services and
effort must be put into the design of efficient atomic broadcast protocols. The
rich literature of atomic broadcast protocols indicates the considerable amount
of effort invested in designing various atomic broadcast protocols with different

13

14 3.2 Basic Paxos

properties [53].1 However, building efficient systems out of these algorithms is
only seen in a few papers [10].

We define the efficiency of an atomic broadcast protocol to be the rate be-
tween its maximum achieved throughput per receiver and the nominal trans-
mission capacity of the system per receiver. For example, a protocol that allows
a receiver to deliver up to 500 Mbps of application data in a system equipped
with a gigabit network has efficiency 0.5 or 50%. A protocol is efficient if it has
high efficiency (> 90%), ideally independent of the number of receivers. How-
ever, due to inherent limitations of an algorithm, implementation details, and
various overheads (e.g., added by the network layers), typical atomic broadcast
protocols are not ideal according to this metric.

In this chapter, we focus on a class of atomic broadcast protocols that are
based on Paxos [4]. Paxos is a consensus algorithm upon which an atomic
broadcast protocol can be built. Paxos has several important properties that
make it popular among system practitioners. For example it is (a) safe under
asynchrony assumptions, (b) live under weak synchrony assumptions, and (c)
resiliency-optimal (i.e., it requires only a majority of non-faulty processes to en-
sure progress). This chapter is devoted to the design and implementation of
new and highly efficient Paxos-based atomic broadcast protocols to reduce the
negative implications of the agreement layer on the performance of a replicated
service.

3.1.1 Outline

The rest of this chapter is organized as follows. In Section 3.2 we review the
basic form of the Paxos protocol and then present Ring Paxos in Section 3.3.
We first motivate the design principles of Ring Paxos and then present in de-
tail its two variations: M-Ring Paxos and U-Ring Paxos. In Section 3.4 we dis-
cuss related work and compare the performance of several other protocols with
Ring Paxos. In Section 3.5 we experimentally evaluate Ring Paxos and discuss
the main findings of our experiments. Finally in Section 3.6 we conclude the
chapter.

3.2 Basic Paxos

Paxos is a well-known fault-tolerant consensus algorithm [4] that is used for
implementing state-machine replication. There are three distinguished roles in

1We review the literature in Section 3.4.

15 3.2 Basic Paxos

Paxos: proposers, acceptors, and learners. A process can execute multiple roles
simultaneously. Proposers propose a value, acceptors choose a value, and learn-
ers learn the decided value. Hereafter, Na denotes the set of acceptors, Nl the set
of learners, and Qa a majority quorum of acceptors (m-quorum), that is, a subset
of Na of size d(|Na|+ 1)/2e.

The execution of one consensus instance spans a sequence of rounds that
are uniquely identified by a round number which is a positive integer. For
each round, one process plays the role of the coordinator of the round. To pro-
pose, proposers send their value to the coordinator.2 The coordinator maintains
two variables: (a) c-rnd: the highest-numbered round that the coordinator has
started, and (b) c-val: the value that the coordinator has picked for round c-rnd.
The first is initialized to 0 and the second to null.

Acceptors maintain three variables: (a) rnd is the highest-numbered round
in which the acceptor has participated, initially 0, (b) v-rnd is the highest-
numbered round in which the acceptor has cast a vote, initially 0; thus v-rnd ≤
rnd always holds, and (c) v-val is the value voted by the acceptor in round v-rnd
and is initially null.

Paxos, presented in Algorithm 1, has two phases. To execute Phase 1, the co-
ordinator selects a unique round number c-rnd greater than any round number
it has used so far, and sends it to the acceptors (Task 1, Phase 1A). Upon re-
ceiving this message (Task 2, Phase 1B), an acceptor checks whether the round
proposed by the coordinator is greater than any round it has received so far; if
so, the acceptor promises not to accept any future Phase 1A messages with a
round smaller than c-rnd. The acceptor then replies to the coordinator with the
highest-numbered round in which it has cast a vote, if any, and the value it has
voted for in that round. Notice that the coordinator does not send any proposal
in Phase 1. The coordinator starts Phase 2 after receiving a reply from a m-
quorum (Task 3). Before proposing a value in Phase 2A, the coordinator checks
to see if some acceptor has already cast a vote in a previous round. If an acceptor
has voted for a value in a previous round, then the coordinator will propose this
value (this task guarantees that only one value can be chosen in an instance of
consensus); otherwise, if no acceptor has cast a vote in a previous round, then
the coordinator can propose any value that is received from the proposers. In
some cases it may happen that more than one acceptor have cast a vote in a
previous round. In this case, the coordinator chooses the value that was voted
for in the highest-numbered round. From the algorithm, two acceptors cannot

2Selection of the coordinator is not essential for preserving the safety of Paxos, and proposers
can directly send their proposals to the acceptors. However, selecting a coordinator, enhances
the liveness of the protocol.

16 3.2 Basic Paxos

1: Algorithm 1: Paxos (for process p)

2: Task 1 (coordinator)
3: upon receiving value v from proposer P(v)
4: increase c-rnd to an arbitrary unique value
5: for all q ∈ Na do send (q, (PHASE 1A, c-rnd))

6: Task 2 (acceptor)
7: upon receiving (PHASE 1A, c-rnd) from coordinator
8: if c-rnd> rnd then
9: let rnd be c-rnd

10: send (coordinator, (PHASE 1B, rnd, v-rnd, v-val))

11: Task 3 (coordinator)
12: upon receiving (PHASE 1B, rnd, v-rnd, v-val) from Qa such that c-rnd= rnd
13: let k be the largest v-rnd value received
14: let V be the set of (v-rnd,v-val) received with v-rnd=k
15: if k = 0 then let c-val be v
16: else let c-val be the only v-val in V
17: for all q ∈ Na do send (q, (PHASE 2A, c-rnd, c-val))

18: Task 4 (acceptor)
19: upon receiving (PHASE 2A, c-rnd, c-val) from coordinator
20: if c-rnd≥ rnd then
21: let rnd be c-rnd
22: let v-rnd be c-rnd
23: let v-val be c-val
24: send (coordinator, (PHASE 2B, v-rnd, v-val))

25: Task 5 (coordinator)
26: upon receiving (PHASE 2B, v-rnd, v-val) from Qa such that c-rnd= v-rnd
27: for all q ∈ Nl do send (q, (DECISION, v-val))

17 3.3 Ring Paxos

cast votes for different values in the same round.

Proposer

Coordinator
Acceptor n

. . .

Acceptor 1

Acceptor 2

Learners

v

Phase 2A

Phase 2B

Phase 2B

. . .

(up to n-1)

Figure 3.1. Optimized Paxos.

An acceptor will vote for a value c-val with corresponding round c-rnd in
Phase 2 if the acceptor has not received any Phase 1 message for a higher round
(Task 4, Phase 2B). Voting for a value means setting the acceptor’s variables v-rnd
and v-val to the values sent by the coordinator. If the acceptor votes for the value
received, it replies to the coordinator. When the coordinator receives replies
from an m-quorum (Task 5), it knows that a value has been decided and informs
the learners about the decision. In order to know whether its value has been
decided, a proposer is typically also a learner. If a proposer does not learn its
proposed value after a certain time (e.g., because its message to the coordinator
was lost), it proposes the value again. As long as a nonfaulty coordinator is
eventually selected, there is a majority quorum of nonfaulty acceptors, and at
least one nonfaulty proposer, every consensus instance will eventually decide on
a value.

Paxos can be optimized in a number of ways [4]. For example, the coordi-
nator can execute Phase 1 before a value is received from a proposer. In doing
so, once the coordinator receives a value from a proposer, consensus can be
reached in four communication steps, as opposed to six. Moreover, if acceptors
send Phase 2B messages directly to the learners, the number of communication
steps for a decision is further reduced to three (see Figure 3.1).

3.3 Ring Paxos

Ring Paxos is designed around two main ideas: (a) the separation of message
ordering from payload propagation, and (b) the usage of efficient means for

18 3.3 Ring Paxos

performing these two tasks. We have developed two variants of Ring Paxos
as M-Ring Paxos and U-Ring Paxos. Before presenting them in detail, in the
following section we discuss a set of experiments and consequent findings that
have played an important role in shaping these protocols.

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25

T
hr

ou
gh

pu
t p

er
 r

ec
ei

ve
r

(M
bp

s)

Number of receivers

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25
C

PU
 (

%
)

pe
r

se
nd

er

Number of receivers

unicast
multicast
pipeline

Figure 3.2. Performance comparison of unicast, multicast, and pipeline for
implementing one-to-many communication pattern; the coordinator of Paxos
uses this type of communication in Phase 1A and Phase 2A to communicate
with a set of processes; the left graph shows the throughput per receiver and the
right graph shows the CPU usage at the sender; packet size in this experiment
is 8 Kbytes.

3.3.1 Motivation and design considerations

Due to the importance of communication efficiency in a message-passing sys-
tem we have performed a set of experiments to evaluate and compare several
communication patterns. Based on the specifications of Paxos, we are mostly in-
terested in one-to-many and many-to-one communications. In the former, a sin-
gle process (sender) transmits a message to a set of other processes (receivers),
and in the latter, a set of processes (senders) transmit messages to one process
(receiver). In this section we discuss our findings about these communication
patterns and highlight their influence in the design of Ring Paxos protocols.3

(A) One-to-many communication. In the following, we compare the perfor-
mance of three strategies that implement one-to-many communication: (1) net-
work level ip-multicast (multicast), (2) a set of direct unicast links from the

3Details about experimental setup are available in Section 3.5

19 3.3 Ring Paxos

sender to the receivers (unicast), and (3) a uni-directional set of links pipelined
among the processes (pipeline).

multicast vs. unicast. Network level ip-multicast enables high-throughput
propagation of messages to the nodes of a cluster [11] and has two advantages
over unicast. First, independent of the number of receivers only one system
call at the sender is sufficient to transmit a message to all the receivers. This is
possible because ip-multicast delegates the task of propagating a message to the
ethernet switch. In unicast however, the number of system calls at the sender
increases linearly with the number of receivers. Second, unlike the multicast
sender, the outgoing bandwidth of the unicast sender should be divided among
the receivers.

pipeline vs. unicast. A throughput-efficient alternative to multicast is to have
nodes communicate in a pipelined pattern. In contrast to unicast where one
node sends a message multiple times (equal to the number of receivers), in
pipeline each node sends the message once to its successor. Pipeline enables a
more balanced usage of CPU and bandwidth resources of the nodes [12].

Applicability to Paxos. It is in Phase 1A and Phase 2A of Paxos that one-to-
many communication is needed. Optimizing communication in Phase 2
is more important than in Phase 1 as Phase 1 can be pre-executed for
a range of instances and is not frequent. Thus, to efficiently propagate
values to other processes in Phase 2A we will use multicast and pipeline in
M-Ring Paxos and U-Ring Paxos respectively.

Experimental results. As it is seen in the left-most graph of Figure 3.2 as the
number of receivers increases the throughput of each receiver decreases
with unicast but remains constant with multicast and pipeline. The perfor-
mance advantages of multicast and pipeline do not come at the expense
of increased CPU utilization as the CPU of the three strategies compare
similarly (right-most graph).

Packet loss. Losing packets in a message passing system invokes retransmis-
sions and demands additional CPU and network consumption. Preventing
packet loss is a challenging task, but some simple techniques can reduce
its possibility. For example, the sending rate at a process can be controlled
to prevent it from exceeding network capacity. This prevents message loss
at the sender side. If the receiver at the other side of the communication
is not fast enough to remove the received packets from its socket buffers,
new messages will be dropped. To address this issue, socket buffer sizes
can be configured properly. In some deployments the number of senders

20 3.3 Ring Paxos

maybe unknown and relying only on these strategies is not sufficient to
address packet loss. We will discuss this issue further in Section 3.3.6.

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

L
os

t p
ac

ke
ts

 (
%

)

Aggregated sending rate (Mbps)

1 sender
2 senders
5 senders

Figure 3.3. The impact of multiple ip-multicast senders on packet loss; 14
receivers are used in this experiment.

We have performed an experiment with several ip-multicast senders and
measured the amount of packet loss (see Figure 3.3). As it is seen in the
graph by increasing the number of senders, the rate at which packet loss
starts happening reduces. The aggregate sending rate in these experiments
was controlled not to exceed the capacity of the network.

(B) Many-to-one communication. In the following, we compare the perfor-
mance of two strategies that implement many-to-one communication: (1) a set
of direct unicast links from the senders to the receiver (unicast), and (2) a uni-
directional set of links pipelined among the processes (pipeline).

pipeline vs. unicast. Pipeline has two advantages over unicast. First, it en-
ables extensive use of batching. Each process on the line appends its own mes-
sage to the one received from its predecessor and forwards it to its successor.
Batching is advantageous to the receiver, as the receiver receives only one packet
that contains many small messages in contrast to many small messages that are
received in unicast. This reduces CPU usage at the receiver. Second, it balances
the usage of the incoming and outgoing links of all the nodes. In unicast, senders
only use their outgoing bandwidth.

Applicability to Paxos. It is in Phase 1B and Phase 2B of Paxos that many-to-
one communication is needed. Both M-Ring Paxos and U-Ring Paxos pro-
tocols pipeline acceptors to propagate votes to the coordinator. For exam-
ple, upon receiving a Phase 2A message, the first acceptor at the head of

21 3.3 Ring Paxos

 0

 200

 400

 600

 800

 1000

0.5 1 2 4 8

T
hr

ou
gh

pu
t (

M
bp

s)
 a

t c
oo

rd
.

Packet size (KB)

 0

 20

 40

 60

 80

 100

0.5 1 2 4 8

C
PU

 (
%

)
at

 a
cc

ep
to

r
Packet size (KB)

0

20k

40k

60k

80K

100K

0.5 1 2 4 8

T
hr

ou
gh

pu
t (

in
st

/s
)

at
 c

oo
rd

.

Packet size (KB)

pipeline
unicast

 0

 20

 40

 60

 80

 100

0.5 1 2 4 8

C
PU

 (
%

)
at

 c
oo

rd
.

Packet size (KB)

Figure 3.4. Performance comparison of pipeline and unicast for implementing
many-to-one communication pattern; acceptors of Paxos protocol use this type
of communication in Phase 1B and Phase 2B to propagate their votes to the
coordinator; in all the experiments we have deployed four acceptors and one
coordinator while varying the size of the packets; top left graph shows the
receiving throughput from only one of the incoming links at the coordinator
(which are in total one and four for pipeline and unicast respectively); bottom
left graph shows the corresponding number of instances decided at the coordi-
nator; the graphs on the right show the CPU usage at the acceptors (top) and
the coordinator (bottom); for pipeline, CPU is shown for an acceptor at the
middle of the path.

22 3.3 Ring Paxos

the pipeline builds a Phase 2B message and forwards it to its successor.
Forwarding continues until the message reaches the coordinator.

Proposer

Coordinator
Acceptor n

Acceptor 1

Acceptor 2

Learners

. . .

Proposers

Coord/Acceptor n

Acceptor 1

Learners

Acceptor 2

➀

➁⧸➃

➂

v

(a) (b)

Phase 2A

Phase 2B

DecisionPhase 2B

ip-multicast

unicast

➀

➁

➂

➃

. . .

(up to n-1)

➂

Figure 3.5. M-Ring Paxos.

Experimental results. We compare the efficiency of pipeline and unicast with
respect to different message sizes with five acceptors, where one of them
plays the role of the coordinator. With respect to throughput, pipeline is
preferable to unicast. For small messages, this happens because pipeline is
less CPU-intensive at the coordinator. For large messages, the advantage
stems from a balanced use of the incoming and outgoing bandwidth of the
nodes. Pipeline is more CPU-intensive at the acceptors as each acceptor
(except the first one) receives and forwards a Phase 2B message, whereas
the coordinator only receives Phase 2B messages.4

3.3.2 Multicast-based Ring Paxos (M-Ring Paxos)

In this section we present the Ring Paxos algorithm that is based on multicast
communication (M-Ring Paxos hereafter). This protocol is outlined in Algo-
rithm 2. Statements in gray are the same for Paxos and M-Ring Paxos. Similarly
to Paxos, the protocol is executed in two phases and the mechanism to ensure
that only one value can be decided in an instance of consensus is the same as in
Paxos. Differently from Paxos, M-Ring Paxos disseminates a majority quorum of
acceptors (m-quorum) in a logical and directed ring (see Figure 3.5(a)(b)). The
coordinator is the last process on the ring and it also plays the role of acceptor.

4As we will show later, acceptors are not the most CPU-intensive nodes when the rest of the
protocol is also considered.

23 3.3 Ring Paxos

From Section 3.3.1 we know that placing acceptors in a ring reduces the num-
ber of incoming messages at the coordinator and balances the communication
among the acceptors. Before the coordinator starts Phase 1, it proposes the ring
on which acceptors will be located. By replying to the coordinator, the acceptors
acknowledge that they abide by the proposed ring. Since Phase 1 can be exe-
cuted before values are proposed, there is little gain in optimizing the sending of
Phase 1B messages. Thus, we use the ring only to propagate Phase 2B messages.

In addition to checking what value can be proposed in Phase 2 (Task 3),
the coordinator also creates a unique identifier for the value to be proposed.
Ring Paxos executes consensus on value ids [13; 14]; proposed values in Phase 2A
messages are disseminated to the m-quorum and to the learners using ip-multicast.

Upon ip-delivering a Phase 2A message (Task 4), an acceptor checks that it
can vote for the proposed value. If so, it updates its v-rnd and v-val variables
as in Paxos, and its v-vid variable in addition to them. Variable v-vid contains
the unique identifier of the proposed value which is initialized with null. The
first acceptor in the ring sends a Phase 2B message to its successor in the ring.
Learners also ip-deliver the proposed value but they do not learn it since it has
not been accepted yet.

The next acceptor in the ring to receive a Phase 2B message (Task 5) checks
whether it has ip-delivered the value proposed by the coordinator in a Phase 2A
message. The acceptor can only vote if it has received the value and not only its
unique identifier. The check is done by comparing the acceptor’s v-vid variable
to the value’s identifier chosen by the coordinator. This is to ensure that when
consensus is reached, a majority of acceptors knows the chosen value and this
value can be retrieved by learners at any time. If the condition holds (i.e., the
corresponding value is ip-delivered) then there are two possibilities: either the
acceptor is not the coordinator (i.e., the last process in the ring), in which case it
sends a Phase 2B message to its successor, or it is the coordinator and then it ip-
multicasts a decision message including the identifier of the chosen value. Once
a learner ip-delivers this message, it can learn the value received previously from
the coordinator through a Phase 2A message.

Ring Paxos can use a number of optimizations, most of which have been
described previously in the literature. For example, when a new coordinator is
elected it executes Phase 1 for several consensus instances [4]. Another opti-
mization is to execute Phase 2 for a batch of proposed values rather than for a
single value (e.g., [10; 15]). In addition, multiple consensus instances can be
started simultaneously without the previous ones being finished [4].

Placing a majority of acceptors in the ring, as opposed to placing all of them,
reduces the number of communication steps to reach a decision. The remaining

24 3.3 Ring Paxos

1: Algorithm 2: M-Ring Paxos (for process p)

2: Task 1 (coordinator)
3: upon receiving value v from proposer
4: increase c-rnd to an arbitrary unique value
5: for all q ∈Qa do send (q, (PHASE 1A, c-rnd))

6: Task 2 (acceptor)
7: upon receiving (PHASE 1A,c-rnd) from coordinator
8: if c-rnd> rnd then
9: let rnd be c-rnd

10: send (coordinator, (PHASE 1B, rnd, v-rnd, v-val))

11: Task 3 (coordinator)
12: upon receiving (PHASE 1B, rnd, v-rnd, v-val) from Qa such that rnd= c-rnd
13: let k be the largest v-rnd value received
14: let V be the set of (v-rnd,v-val) received with v-rnd=k
15: if k = 0 then let c-val be v
16: else let c-val be the only v-val in V
17: let c-vid be a unique identifier for c-val
18: ip-multicast (Qa∪Nl , (PHASE 2A, c-rnd, c-val, c-vid))

19: Task 4 (acceptor)
20: upon ip-delivering (PHASE 2A, c-rnd, c-val, c-vid)
21: if c-rnd≥ rnd then
22: let rnd be c-rnd
23: let v-rnd be c-rnd
24: let v-val be c-val
25: let v-vid be c-vid
26: if p = f irst(ring) then
27: send (successor(p, ring), (PHASE 2B, c-rnd, c-vid))

28: Task 5 (coordinator and acceptors)
29: upon receiving (PHASE 2B,c-rnd,c-vid)
30: if v-vid= c-vid then
31: if p 6= last(ring) then
32: send (successor(p, ring), (PHASE 2B, c-rnd, c-vid))
33: else
34: ip-multicast (Qa ∪ Nl , (DECISION, c-vid))

Note: f irst(ring): process that succeeds the coordinator in
ring
last(ring): the coordinator process in ring
successor(p, ring): process that succeeds p in ring

25 3.3 Ring Paxos

acceptors are spares, used only when an acceptor in the ring fails.5 Finally,
although ip-multicast is used by the coordinator in Tasks 3 and 5, this can be
implemented more efficiently by overlapping consecutive consensus instances,
such that the message sent by Task 5 of consensus instance i is ip-multicast
together with the message sent by Task 3 of consensus instance i+ 1.

. . .

(a)

v➀

Phase 2A,2B

Decision

Decision

Decision

Phase 2A,2B

Decision,v

Decision,v

Proposers Coord/Acceptor 1

Acceptor 2

Acceptor 3

(b)

Learners

unicast

➁

➃
➅

Proposer

Coordinator

Acceptor 1

Acceptor 2

Acceptor 3

Learners

. . .

(up to n)

➀⧸➆

➁⧸➇

➂

➃
➄

➅

➂

➄

➆

➇

Figure 3.6. U-Ring Paxos.

3.3.3 Unicast-based Ring Paxos (U-Ring Paxos)

In some data centers network-level ip-multicasting may not be available. In
this section we present a variant of Ring Paxos algorithm (U-Ring Paxos) that is
entirely based on unicast communication. In Algorithm 3 statements in gray are
the same for M-Ring Paxos and U-Ring Paxos. Similarly to Paxos, the protocol is
executed in two phases and the mechanism to ensure that only one value can be
decided in an instance of consensus is the same as in Paxos.

In addition to a m-quorum of acceptors, U-Ring Paxos also places proposers
and learners in a logical directed ring (see Figure 3.6). Recalling from Sec-
tion 3.3.1 pipelining all the processes in a ring is an alternative to multicast that
can reach high throughput, a fact that was proved in [12]. Processes in the ring
can assume multiple roles and there is no restriction on the relative position
of these processes in the ring. However, for simplicity of discussion, hereafter
it is assumed that acceptors are lined up one after the other in the ring (see
Figure 3.6(b)). To reduce latency, the coordinator is the first acceptor in the
ring.

5This idea is conceptually similar to Cheap Paxos [14], although Cheap Paxos uses a reduced
set of acceptors in order to save hardware resources, and not to reduce latency.

26 3.3 Ring Paxos

Once a proposer proposes a value, it is forwarded along the ring until it
reaches the coordinator, which will execute Phase 1 as in Paxos. When the
coordinator receives Phase 1B messages from an m-quorum (Task 3), it will
check which value can be proposed and assigns a unique identifier to the value
to be proposed as in M-Ring Paxos. The coordinator then sends Phase 2A and
Phase 2B messages to its successor in the ring (Task 3). Similarly to Paxos and M-
Ring Paxos, the coordinator in U-Ring Paxos can execute Phase 1 before a value
is proposed, reducing the latency of the protocol. Upon receiving a Phase 2A/2B
message (Task 4), an acceptor checks that it can vote for the proposed value. If
so, it updates its v-rnd, v-val, and v-vid variables. If the acceptor does not precede
the last acceptor in the ring, it sends the Phase 2A/2B message to its successor.
Differently from M-Ring Paxos where the coordinator checks whether a decision
has been made in the instance, in U-Ring Paxos this task is delegated to the last
acceptor in the ring. After deciding, the last acceptor sends the decision, possibly
together with the value chosen, to its successor in the ring.

Forwarding the chosen-value ends at the predecessor of the process that has
proposed the chosen value as at this point the value has been received by all
the processes in the ring. The decision, i.e., the chosen-value identifier, should
be forwarded along the ring until it reaches the predecessor of the last acceptor
(Task 5).

3.3.4 Handling message loss

Because of unreliable communication mechanisms in M-Ring Paxos, message
losses are unavoidable. In general, lost messages are handled with retransmis-
sions. Because of message loss, three cases may happen with the learners: (a)
they receive the proposed value but not the notification that it was accepted, (b)
they do not receive the proposed value but receive the notification of its accep-
tance, or (c) they receive neither the value nor the acceptance notification. In all
the cases, the learners can recover lost messages by inquiring other processes.
M-Ring Paxos assigns each learner to a preferential acceptor in the ring, which
the learner can contact to retrieve the lost messages. Apart from that in both
M-Ring Paxos and U-Ring Paxos learners may not have sufficient time to han-
dle the decisions, and this may cause learners to drop some decisions. In fact,
both versions of Ring Paxos need flow control to mitigate this phenomenon. We
discuss flow control in Section 3.3.6.

If the coordinator does not receive a response to its Phase 1A / 2A messages,
it re-sends them, possibly with a bigger round number. Eventually the coordina-
tor will receive a response or will suspect the failure of a process (this suspicion

27 3.3 Ring Paxos

1: Algorithm 3: U-Ring Paxos (for process p)

2: Task 1 (all)
3: upon receiving value v proposed by P(v) from predecessor(p, ring)
4: if p = coordinator then
5: increase c-rnd to an arbitrary unique value
6: for all q ∈Qa do send (q, (PHASE 1A, c-rnd))
7: else
8: send v to successor(p, ring)

9: Task 2 (acceptor)
10: upon receiving (PHASE 1A,c-rnd) from coordinator
11: if c-rnd> rnd then
12: let rnd be c-rnd
13: send (coordinator, (PHASE 1B, rnd, v-rnd, v-val))

14: Task 3 (coordinator)
15: upon receiving (PHASE 1B, rnd, v-rnd, v-val) from Qa such that rnd= c-rnd
16: let k be the largest v-rnd value received
17: let V be the set of (v-rnd,v-val) received with v-rnd=k
18: if k = 0 then let c-val be v
19: else let c-val be the only v-val in V
20: let c-vid be a unique identifier for c-val
21: send (successor(p, ring), (PHASE 2A/2B, c-rnd, c-val, c-vid))

22: Task 4 (acceptor)
23: upon receiving (PHASE 2A/2B, c-rnd, c-val, c-vid)
24: if c-rnd≥ rnd then
25: let rnd be c-rnd
26: let v-rnd be c-rnd
27: let v-val be c-val
28: let v-vid be c-vid
29: if p = last_acceptor(ring) then
30: Send_Decision(c-vid, c-val)
31: else
32: send (successor(p, ring), (PHASE 2A/2B, c-rnd, c-val, c-vid))

33: Task 5 (all)
34: upon receiving (DECISION, c-vid, c-val)
35: if p 6= predecessor(last_acceptor(ring))
36: Send_Decision(c-vid, c-val)

37: Send_Decision(c-vid, c-val)
38: if p 6= predecessor(P(c-val), ring)
39: send (successor(p, ring), (DECISION, c-vid, c-val))
40: else
41: send (successor(p, ring), (DECISION, c-vid, –))

Note: P(v): proposer of value v
predecessor(p, ring): process that precedes p in ring
successor(p, ring): process that succeeds p in ring
last_acceptor(ring): the f -th acceptor after the
coordinator in ring

28 3.3 Ring Paxos

might be erroneous). In this situation, the coordinator lays out a new ring and
excluds the suspected process.

3.3.5 Handling process crashes

A coordinator that suspects the failure of one or more acceptors may simply
try to contact all the acceptors in order to gather an m-quorum. This solution
would reduce throughput but allows progress despite failures. With both proto-
cols, when an acceptor replies to a Phase 1A or to a Phase 2A message, it must
not forget its state (i.e., variables rnd, ring, v-rnd, v-val, and v-vid) despite fail-
ures. There are two ways to ensure this. First, by assuming that a majority of
acceptors never fails. Second, by requiring acceptors to keep their state on the
stable storage before replying to Phases 1A and 2A messages. Finally, a failed
coordinator is detected by the other processes, which select a new coordinator.
Before GST (see Section 2.1) it is possible that multiple coordinators co-exist.
However, similarly to Paxos, Ring Paxos guarantees safety even when multiple
coordinators co-exist, although it may not guarantee liveness. After GST, even-
tually a single correct coordinator is selected.

3.3.6 Flow control

In Ring Paxos, flow control helps regulate the speed at which consensus in-
stances are executed. In doing so, we not only reduce the likelihood of mes-
sage loss for both unicast and multicast communications, but we also ensure
that learners are given enough time to process decisions. For instance, when
Ring Paxos is used to implement state-machine replication, values represent
commands that read or write the application state, and may need extra pro-
cessing time. To illustrate why flow control is important, consider a scenario
where commands are ordered faster than they can be processed at the leaners.
Without flow control, buffers that store commands at learners will eventually
overflow and new messages will be dropped. This will cause learners to do extra
work to retrieve the lost decisions. As a consequence, the performance of the
replicated system may decrease to the point where clients time out and retrans-
mit their commands frequently. In the following we discuss the flow control in
M-Ring Paxos and U-Ring Paxos protocols:

• In M-Ring Paxos, communication is based on UDP and flow control at the
coordinator ensures that messages are sent at a rate the network can han-
dle. With M-Ring Paxos, since learners are not part of the ring, we use

29 3.3 Ring Paxos

the following mechanism for flow control. Learners constantly monitor
their buffers for decisions that remain to be processed. When the occupied
buffer space reaches a certain threshold, they notify one of the acceptors.
The notification tells the acceptors about the number of unprocessed re-
quests at the learner. Acceptors forward this notification along the ring
until it reaches the coordinator. The coordinator reduces the window of
outstanding consensus instances and thus opens fewer instances in par-
allel. Provided that the coordinator slows down sufficiently, learners will
be able to process decisions as fast as they are ordered, and eventually
they will stop sending notifications to the acceptors. This technique allows
learners to slow down the coordinator before decisions are dropped. In
case some decisions are lost, for instance if the coordinator starts with a
window that is too large, lost decisions are retrieved from the acceptors.
To allow M-Ring Paxos to recover from temporarily slow learners, the co-
ordinator gradually increases its window size if it does not receive new
notifications from the learners.

• It is easier to implement flow control in U-Ring Paxos since communica-
tion between two consecutive processes in the ring is done using TCP. Ac-
cordingly, TCP buffers are made sufficiently large to take into account the
processing time of Phase 1 and 2 messages. To ensure that learners have
enough time to handle the decided values, U-Ring Paxos (a) lets learners
process a decision before forwarding it to the next process in the ring and
(b) limits the number of outstanding consensus instances.

3.3.7 Garbage collection

As we have seen in the description of the protocols, an acceptor stores several
variables for each instance of Ring Paxos it participates in. The variables are:
(a) the highest-round rnd in which the acceptor executed a Phase 1 or 2, (b) the
highest-round v-rnd in which the acceptor cast a vote in Phase 2, as well as (c)
the corresponding value v-val and the identifier of the value v-vid the acceptor
voted for. Variable rnd is shared across consensus instances and does not need to
be garbage collected. The other variables are discarded when f +1 learners have
applied the corresponding decision to their application state. Each learner main-
tains its version, the largest instance for which it has applied the corresponding
decision. Learners apply decisions in instance order so if a learner has applied
decision of instance x , it also has applied all decisions of instances lower than
x . In M-Ring Paxos, each learner periodically communicates its version to one

30 3.4 Related work

of the acceptors (learners are assigned different acceptors to balance the asso-
ciated load), and acceptors propagate this information along the ring. Once an
acceptor receives a version from f +1 learners, it computes the smallest version
and garbage collects variables for instances up to this version. In U-Ring Paxos,
learners are part of the ring and directly forward their version to their successor.

The coordinators of M-Ring Paxos and U-Ring Paxos store two variables, (a)
the highest-round started c-rnd and (b) the value picked c-val for a particular in-
stance and round. Variable c-rnd, similarly to rnd, is shared across instances and
does not need to be garbage collected. The value picked for a given instance and
round can be discarded as soon as the coordinator receives the corresponding
Phase 2B messages from its f + 1 acceptors. Acceptors store the decisions sent
by the coordinator in order to let learners retrieve decisions that they may not
have received. These decisions can be discarded similarly as with the acceptor
variables. If a learner requests a decision that has been garbage collected, the
learner can be brought up to date by communicating with a learner with a suf-
ficiently recent version, i.e., one that is larger than the instance of the decision
missing at the learner. Such a learner will always exist since we garbage collect
a decision only after it is reflected in the state of f + 1 learners.6

3.4 Related work

Paxos is a subtle algorithm and its description leaves many non-trivial design de-
cisions open. Several papers have argued that Paxos is not an easy algorithm to
implement [16; 10; 17]. Besides providing insight into the difficulty of imple-
menting Paxos, two of these papers present performance results of their Paxos
implementations. In [15], an analytical analysis of the impact of several opti-
mizations on the performance of the basic Paxos algorithm is presented. The
authors also present extensive experimental results of their implementation in
both LAN and WAN environments. Several systems use Paxos to provide various
abstractions such as storage systems [18], locking services [19], and distributed
databases [20]. Paxos is not the only algorithm to implement atomic broad-
cast. Some protocols implement atomic broadcast through the virtual synchrony
model introduced by the Isis system [21]. With virtual synchrony, processes are
part of a group. They may join and leave the group at any time. When processes
are suspected of crashing they are evicted from the group; virtual synchrony en-
sures that processes observe the same sequence of group memberships or views

6For the proof of correctness for M-Ring Paxos and U-Ring Paxos protocols see Appendix.

31 3.4 Related work

and non-faulty members deliver the same set of messages in each view. Imple-
menting such properties requires solving consensus.

In [53], five classes of broadcast algorithms have been identified: fixed
sequencer, moving sequencer, destination agreement, communication history-
based, and privilege-based. Below, we review the five classes of atomic broadcast
protocols.

In fixed sequencer algorithms (e.g., [22; 23]), broadcast messages are sent
to a distinguished process, called the sequencer, who is responsible for order-
ing these messages. The role of the sequencer is unique and only transferred
to another process in case of failure of the current sequencer. In this class of
algorithms, the sequencer may eventually become the system bottleneck.

Moving sequencer protocols are based on the observation that rotating the
role of the sequencer distributes the load associated with ordering messages
among processes. The ability to order messages is passed from process to process
using a token. The majority of moving sequencer algorithms are optimizations
of [24]. These protocols differ in the way the token circulates in the system:
in some protocols the token is propagated along a ring [24; 25], in others, the
token is passed to the least loaded process [26]. All the moving sequencer pro-
tocols we are aware of are based on the broadcast-broadcast communication
pattern. According to this pattern, to atomically broadcast a message m, m is
propagated to all processes in the system; the token holder process then replies
by broadcasting a unique global sequence number for m. High-throughput can
be obtained by resorting to network-level broadcast. Mencius is another mov-
ing sequencer-based protocol that implements state-machine replication and is
derived from Paxos [27]. Mencius is designed for wide-area networks in which
optimizing for latency is the main objective in contrast to throughput, the focus
of Ring Paxos.

Protocols falling in the destination agreement class compute the message
order in a distributed fashion (e.g., [8; 28]). These protocols typically exchange
a quadratic number of messages for each message broadcast, and thus are not
good candidates for high throughput.

In communication history-based algorithms, the message ordering is deter-
mined by the message sender, that is, the process that broadcasts the message
(e.g., [29; 30]). Message ordering is usually provided using logical or physical
time. Of special interest is LCR, which arranges processes along a ring and uses
vector clocks for message ordering [12]. This protocol has similar throughput
to our Ring Paxos protocols but requires perfect failure detection: erroneously
suspecting a process to have crashed is not tolerated. Perfect failure detection
implies strong synchrony assumptions about processing and message transmis-

32 3.4 Related work

Table 3.1. Comparison of several atomic broadcast algorithms (f : number of
tolerated failures).

Algorithm Class Communication Steps Number of processes Synchrony assumptions

LCR [12] comm. history 2 f f + 1 strong
Totem [31] privilege (4 f + 3) 2 f + 1 weak

Ring+FD [13] privilege (f 2+ 2 f) f (f + 1) + 1 weak
S-Paxos [32] — 5 2 f + 1 weak
M-Ring Paxos — (f + 3) 2 f + 1 weak
U-Ring Paxos — 5 f 2 f + 1 weak

sion times.

The last class of atomic broadcast algorithms, denoted as privilege-based, al-
lows a single process to broadcast messages at a time; the message order is thus
defined by the broadcaster. Similarly to moving sequencer algorithms, the priv-
ilege to order messages circulates among broadcasters in the form of a token.
Differently from moving sequencer algorithms, message ordering is provided by
the broadcasters and not by the sequencers. In [31], the authors propose Totem,
a protocol based on the virtual synchrony model. In the case of process or net-
work failures, the ring is reconstructed and the token regenerated using the new
group membership. In [13], fault-tolerance is provided by relying on a failure
detector; tolerating f process failures requires a quadratic number of processes.
A general drawback of privilege-based protocols is their high latency: before a
process p can totally order a message m, p must receive the token, which delays
m’s delivery. M-Ring Paxos and U-Ring Paxos combine ideas from several broad-
cast protocols to provide high throughput and low latency. In this sense, they fit
multiple classes, as defined above. To ensure high throughput, our protocols de-
couple message dissemination from ordering. The former is accomplished using
ip-multicast or pipelined unicast; the latter is done using consensus on message
identifiers. To use the network efficiently, processes executing consensus com-
municate using a ring, similarly to the majority of privilege-based protocols.

In Table 3.1, we compare algorithms that are closest to our Ring Paxos proto-
cols in terms of throughput efficiency. Some of these protocols use a logical ring
for process communication, which is an effective communication pattern when
optimizing for throughput. For each algorithm, we report its class, the minimum
number of communication steps required by the last process to deliver a mes-
sage, the number of processes required as a function of f , and the synchrony
assumption needed for correctness. For the Ring Paxos protocols, we assume
that each process plays the roles of proposer, acceptor, and learner. There are
f + 1 processes in the ring of M-Ring Paxos and 2 f + 1 processes in the ring of

33 3.5 Experimental evaluation

U-Ring Paxos (i.e,. all processes are in the ring).
With M-Ring Paxos, delivery occurs as soon as messages make one revolution

around the ring. Its latency is f + 3 message delays since each message is first
sent to the coordinator, circulates around the ring of f + 1 processes, and is
delivered after the final ip-multicast is received. With U-Ring Paxos, the worst
case latency is 5 f . This happens when the process that broadcasts the message
follows the coordinator in the ring. It takes 2 f steps to reach the coordinator,
and another f steps for the decision. The decision must circulate around the
ring in order to reach all processes, taking another 2 f steps.

LCR requires two revolutions and thus has a latency in between the two
Ring Paxos algorithms. In Totem, each message must also rotate twice along
the ring to guarantee safe-delivery, a property equivalent to uniform agreement:
if a process (correct or not) delivers a message m then all correct processes
eventually deliver m. The atomic broadcast protocol in [13] has a latency that
is quadratic in f since a ring requires more than f 2 nodes.

S-Paxos [32] is another implementation of Paxos. The key idea in S-Paxos is
to distribute the tasks of request reception and dissemination among all replicas.
A client selects a replica arbitrarily and submits its requests to it. After receiving
a request, a replica forwards it to all the other replicas. A replica receiving a
forwarded request sends an acknowledgement to all other replicas. When a
replica receives f + 1 acknowledgements, it declares the request as stable. As
in basic Paxos, the leader is responsible for ordering requests; differently from
Paxos, ordering is performed on request ids. S-Paxos makes a balanced use
of CPU and network resources; on the negative side, many messages must be
exchanged before a request can be ordered. Due to the number of messages
exchanged, this protocol is CPU-intensive.

3.5 Experimental evaluation

In this section, we briefly describe the implementation of Ring Paxos protocols
and evaluate our prototypes with respect to the following aspects:

• Ring Paxos versus other protocols. Our main goal in designing Ring Paxos
protocols was to optimize for throughput. Thus in this experiment we
evaluate throughput of Ring Paxos protocols and compare it to some other
atomic broadcast protocols (Section 3.5.3).

• Impact of ring size on performance. Pipelining processes on a ring has
several advantages for throughput, but it negatively affects the latency.

34 3.5 Experimental evaluation

We perform this experiment to assess the effect of pipelining on latency
(Section 3.5.4).

• Impact of disk writes on performance. Recording data on disk is essen-
tial to preventing the loss of critical information in Paxos. In this experi-
ment we show the effect of synchronous disk writes on the performance of
Ring Paxos (Section 3.5.5).

• Impact of message sizes on performance. The performance of Ring Paxos
protocols is affected by the size of the requests submitted to the coordi-
nators. The goal of this experiment is to measure the effect of various
message sizes on the throughput of Ring Paxos (Section 3.5.6).

• Impact of socket buffer sizes on performance. Message losses happen
relatively often because of high network traffic. Increasing socket buffer
sizes is a simple solution to solve this issue. In this experiment we measure
the performance of Ring Paxos protocols with different socket buffer sizes
(Section 3.5.7).

• Efficiency of flow control. Adjusting socket sizes alone is not sufficient
to entirely prevent message losses. In this experiment we evaluate the
efficiency of our flow control mechanism in M-Ring Paxos protocol (Sec-
tion 3.5.8).

3.5.1 Hardware settings

We ran the experiments in a cluster of Dell SC1435 nodes equipped with 2 dual-
core AMD-Opteron 2.0 GHz CPUs and 4GB of main memory. The servers were in-
terconnected with an HP ProCurve2900-48G Gigabit switch. The round trip time
is 0.1 milisecond. For the experiments with disk writes we use OCZ-VERTEX3
SSDs. In the experiments every process is deployed on a dedicated machine.

3.5.2 Implementation

In this section we review several properties of M-Ring Paxos and U-Ring Paxos’s
implementations:

• In M-Ring Paxos each process allocates 160 Mbytes of memory for a circu-
lar buffer. Acceptors and learners use this buffer to match proposal ids to
proposal contents, as these are decomposed by the coordinator. Messages

35 3.5 Experimental evaluation

received out of sequence (e.g., because of transmission losses) are stored
in the buffer until they can be delivered (i.e., learned) in order. Each
packet sent by the coordinator is composed of two parts: one part stores
the ids of decided values, and the other stores new proposed values with
their unique ids. A buffer entry is allowed to be freed only after the co-
ordinator has received the entry’s Phase 2B message and ip-multicast the
corresponding decision. Unless mentioned otherwise, the size of packets
in the experiments with M-Ring Paxos is 8 Kbytes.

• In U-Ring Paxos each process maintains a circular buffer to store packets.
Each process devotes 16 Mbytes of its circular buffer to each proposer (e.g.,
with five proposers the total space needed for the buffer in one process is
80 Mbytes). In U-Ring Paxos, it is the last acceptor in the ring that checks
whether a decision has been reached. Thus each message originated in
this process includes the ids of decided values. This message is carried
along the ring until all the processes are informed about the decided val-
ues. The coordinator can piggyback new proposals on this message before
forwarding it. A buffer entry can be freed only after the corresponding
Phase 2B message is received by the last acceptor and the decision is for-
warded along the ring. Unless mentioned otherwise, the size of packets in
the experiments with U-Ring Paxos is 32 Kbytes.

3.5.3 Ring Paxos versus other protocols

We compare the throughput of Ring Paxos to five other atomic broadcast pro-
tocols: LCR [12], Spread [33], Libpaxos [34], S-Paxos [32], and the protocol
presented in [10], which hereafter we refer to as PFSB. LCR is a ring-based pro-
tocol that achieves very high throughput (see also Section 3.4). Spread is one
of the most-used group communication toolkits and is based on Totem [31].
Libpaxos, PFSB, and S-Paxos are all implementations of Paxos. Libpaxos is en-
tirely based on ip-multicast; and PFSB is entirely based on unicast. S-Paxos is a
unicast-based implementation of Paxos which disseminates the task of receiving
and forwarding client requests among all the acceptors.

We have implemented LCR, and Ring Paxos protocols, and used the open
source disseminations of S-Paxos, Libpaxos, and Spread. The performance data
for PFSB is taken from [10]. The setup reported in [10] has slightly more pow-
erful processors than the ones used in our experiments, but both setups use a
gigabit switch. We have tuned Spread for the best performance we could achieve
after varying the number of daemons, number of readers and writers and their

36 3.5 Experimental evaluation

 1

 10

 100

 1000

 0 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

M
bp

s)

Number of receivers

0.1K

1K

10K

100K

 0 5 10 15 20 25 30 35 40

M
es

sa
ge

s
pe

r
se

co
nd

Number of receivers

U-Ring Paxos

M-Ring Paxos

LCR

Libpaxos

Paxos4sb

S-Paxos

Spread

Figure 3.7. Ring Paxos versus other atomic broadcast protocols (message sizes
c.f. Table 3.2). In PFSB, U-Ring Paxos, and LCR the number of receivers is
equal to the total number of processes. In Libpaxos and M-Ring Paxos it is
equal to the number of learners. In Spread it is equal to the number of readers.
For Ring Paxos protocols f is equal to two; notice that in both graphs the
y-axis is in log scale.

locations in the network, the message size, and some other parameters suggested
by the support team of Spread. In the experiments that we report we have used
a configuration with 3 daemons in the same segment, one writer per daemon,
and a number of readers evenly distributed among the daemons.

Figure 3.7 shows the throughput in megabits per second (left graph) and
the number of messages delivered per second (right graph) as the number of
receivers increases. For all the protocols, with the exception of PFSB, we ex-
plored the space of message sizes and selected the value corresponding to the
best throughput. Table 3.2 shows the message sizes used in our experiments. We
assess the effect of different message sizes on the performance of Ring Paxos in
Section 3.5.6. As it is seen in the graph on the left of Figure 3.7, protocols based
on a ring only (LCR and U-Ring Paxos), on ip-multicast (Libpaxos), and on both
(M-Ring Paxos) present throughput approximately constant with the number of
receivers.

3.5.4 Impact of processes in the ring

We now consider how the number of processes affects the throughput and la-
tency of the Ring Paxos protocols, LCR, and S-Paxos. In Figure 3.8, the x-axis
shows the number of acceptors in M-Ring Paxos, U-Ring Paxos, and S-Paxos.

37 3.5 Experimental evaluation

Table 3.2. Protocol efficiency and message sizes in the experiments of Fig-
ure 3.7; values used for calculating efficiency correspond to 10 processes.

Protocol Message size Efficiency
LCR 32 kbytes 91%
U-Ring Paxos 32 kbytes 90.4%
M-Ring Paxos 8 kbytes 90%
S-Paxos 32 kbytes 31.2%
Spread 16 kbytes 18%
PFSB 200 bytes 4%
Libpaxos 4 kbytes 3%

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

M
bp

s)

Number of processes

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30

L
at

en
cy

 (
m

se
c)

Number of processes

U-Ring Paxos
M-Ring Paxos

LCR
S-Paxos

Figure 3.8. Performance when varying the number of processes in the protocols;
except for S-Paxos, the number of processes represents the size of the ring.

In U-Ring Paxos every acceptor is also a proposer and a learner. LCR does not
distinguish process roles and requires all processes to be in the ring.

M-Ring Paxos has constant throughput with the number of processes in the
ring. Throughput of LCR and U-Ring Paxos slightly decreases as processes are
added. With few processes, LCR and U-Ring Paxos can achieve efficiency greater
than one, which may look counterintuitive. This happens because in a ring
with n processes, 1/n of the messages delivered by a process are created by the
process itself. Thus, the process can use its available incoming bandwidth to
receive messages broadcast by the other processes [12]. In order for LCR and U-
Ring Paxos to achieve high throughput, every process on the ring must broadcast
messages. M-Ring Paxos does not have this constraint.

Figure 3.8 shows the latency measured at the message’s proposer. In U-

38 3.5 Experimental evaluation

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12

L
at

en
cy

 (
m

se
c)

Number of processes

U-Ring Paxos
M-Ring Paxos

LCR
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Latency (ms) with 9 processes in the ring

U-Ring Paxos
M-Ring Paxos

LCR

Figure 3.9. Impact of synchronous disk writes on the latency when varying the
number of processes in the ring.

Ring Paxos and LCR, latencies vary according to the location of the proposer in
the ring. The values reported for these two protocols are for the best-located
proposer, that is, for the proposer with the lowest latency.

Latency in LCR and U-Ring Paxos increases with the number of processes;
M-Ring Paxos presents a less-pronounced increase in the latency as more accep-
tors are placed in the ring (left graph in Figure 3.8). Notice that there is less
information circulating in the ring of M-Ring Paxos than in the rings of LCR and
U-Ring Paxos. In LCR and U-Ring Paxos, the content of each message is sent n−1
times, where n is the number of processes in the ring. Message content is prop-
agated only once in M-Ring Paxos (using ip-multicast). LCR and U-Ring Paxos
present similar latency in Figure 3.8, despite the expected difference, as pre-
sented in Table 3.1. The reason is that for a given setup with n processes, LCR
can tolerate f = n− 1 failures, while U-Ring Paxos can tolerate f = (n− 1)/2
failures, for an odd n. Thus, for the same n, the number of communication steps
for each protocol is, respectively, 2(n−1) and 2.5(n−1). In the experiments with
S-Paxos we observed substantial variability in the results due to java’s garbage
collection mechanism, and average values for all experiments were above 35 ms.

3.5.5 Impact of disk writes

In this experiment we assess the performance of Ring Paxos protocols when
processes store accepted values on disk and compare the results to LCR as it
is the only protocol with a comparable performance. With synchronous disk
writes all the techniques are essentially disk bound with a constant throughput

39 3.5 Experimental evaluation

 0

 200

 400

 600

 800

 1000

0.2k 1k 2k 4k 8k

T
hr

ou
gh

pu
t (

M
bp

s)

Message size

 0

 1

 2

 3

 4

 5

0.2k 1k 2k 4k 8k

L
at

en
cy

 (
m

se
c)

Message size

 0

 20

 40

 60

 80

 100

 120

0.2k 1k 2k 4k 8k

M
es

sa
ge

s/
se

c
(x

10
00

)

Message size

 0

 2

 4

 6

 8

 10

 12

 14

0.2k 1k 2k 4k 8k

B
at

ch
es

/s
ec

 (
x1

00
0)

Message size

batch size: 8 kbytes

Figure 3.10. Impact of application message size on the performance of M-
Ring Paxos.

of 270 Mbps, regardless the number of processes. However, as it is seen in
Figure 3.9, latency increases as nodes are added to the ring. The right-most
graph shows the CDF for latency when there are 9 processes in the ring. LCR
and U-Ring Paxos have comparable latency. M-Ring Paxos has lower latency
than LCR and U-Ring Paxos as processes write their values on disk in parallel;
in LCR and U-Ring Paxos disk writes across processes happen sequentially. In all
protocols, data is written on disk in units of 32 Kbytes.

3.5.6 Impact of message size

Figures 3.10 and 3.11 quantify the effects of application message size (payload)
on the performance of M-Ring Paxos and U-Ring Paxos respectively. In both
figures throughput (top left graphs) increases with the size of application mes-

40 3.5 Experimental evaluation

 0

 200

 400

 600

 800

 1000

0.2k 1k 2k 4k 8k 32k

T
hr

ou
gh

pu
t (

M
bp

s)

Message size

 0

 1

 2

 3

 4

 5

 6

 7

0.2k 1k 2k 4k 8k 32k

L
at

en
cy

 (
m

se
c)

Message size

 0

 20

 40

 60

 80

 100

 120

0.2k 1k 2k 4k 8k 32k

M
es

sa
ge

s/
se

c
(x

10
00

)

Message size

 0

 1

 2

 3

 4

0.2k 1k 2k 4k 8k 32k

B
at

ch
es

/s
ec

 (
x1

00
0)

Message size

batch size: 32 kbytes

Figure 3.11. Impact of application message size on the performance of U-
Ring Paxos.

sages, up to 8 Kbytes and 32 Kbytes in M-Ring Paxos and U-Ring Paxos, respec-
tively. Notice that in our prototype ip-multicast packets are 8 Kbytes long, but
datagrams are fragmented since the maximum transmission unit (MTU) in our
network is 1500 bytes. In U-Ring Paxos communication is based on TCP. Latency
is less sensitive to application message size (top right graphs). Figures 3.10 and
3.11 also show the number of application messages delivered as a function of
their size (bottom left graphs). Many small application messages can fit in a
single Paxos message and Phase 2 is executed for a batch of proposed values.
As a consequence, many application messages can be delivered per time unit
(left-most bars).

41 3.5 Experimental evaluation

 0

 200

 400

 600

 800

 1000

0.1M 1M 4M 8M 16M 32M

T
hr

ou
gh

pu
t (

M
bp

s)

Buffer size

 0

 1

 2

 3

 4

 5

 6

0.1M 1M 4M 8M 16M 32M

L
at

en
cy

 (
m

se
c)

Buffer size

Figure 3.12. Impact of socket buffer size on the performance of M-Ring Paxos.

 0

 200

 400

 600

 800

 1000

 1200

0.1M 1M 4M 8M 16M 32M

T
hr

ou
gh

pu
t (

M
bp

s)

Buffer size

 0

 1

 2

 3

 4

 5

 6

0.1M 1M 4M 8M 16M 32M

L
at

en
cy

 (
m

se
c)

Buffer size

Figure 3.13. Impact of socket buffer size on the performance of U-Ring Paxos.

3.5.7 Impact of socket buffer size

Figures 3.12 and 3.13 show the effect of socket buffer sizes on the maximum
throughput and latency of M-Ring Paxos and U-Ring Paxos, respectively. The
reliability of unicast and ip-multicast depends on the size of the buffers allocated
by the sockets. Lost messages have a negative impact on M-Ring Paxos, as they
result in retransmissions. However, according to our experiments even with
buffer sizes of 0.1M the attainable throughput is not far from the maximum
throughput. In U-Ring Paxos we can achieve the maximum throughput with
buffer sizes as big as 1M. In this protocol all the communications are based on
TCP and with the buffers smaller than 1M due to the congestion protocol of TCP
the maximum attainable throughput is lower. We have used socket buffer sizes
of 16 Mbytes in M-Ring Paxos and 32 Mbytes in U-Ring Paxos in all the other

42 3.5 Experimental evaluation

experiments.

3.5.8 Flow control

0

200

400

600

800

(d
)

propose rate

0

200

400

600

800

(c
)

0

200

400

600

800

(b
)

0

200

400

600

800

 0 20 40 60 80 100

(a
)

Time (seconds)

delivery rate drop rate

Figure 3.14. Flow control in M-Ring Paxos; in all the graphs the y-axis shows
the throughput in Mbps for: (a) coordinator, (b) slow learner, (c) learner-
proposer 1, (d) learner-proposer 2; the slow learner reduces its delivery speed
after 20 seconds of execution and restores to its original rate after 40 seconds
of execution.

Figure 3.14 illustrates the effect of the flow control mechanism in M-Ring Paxos
with three learners among which two are also proposers. The aggregate propos-
ing rate of proposers is 850 Mbps. After 20 seconds, one of the learners (graph
(b)) reduces its speed in delivering Paxos instances. As soon as the number of
pending instances reaches a predefined threshold, the slow learner sends a mes-
sage to one of the acceptors in the ring to notify it about the situation. This
notification is forwarded along the ring until it reaches the coordinator. Having
received this message, the coordinator reduces its proposing rate. Since fewer

43 3.5 Experimental evaluation

Table 3.3. CPU and memory use in M-Ring Paxos.

Role CPU Memory
Proposer 37.2% 90 Mbytes
Coordinator 88.0% 168 Mbytes
Acceptor 24.0% 168 Mbytes
Learner 21.3% 168 Mbytes

Table 3.4. CPU and memory use in U-Ring Paxos.

Role CPU Memory
proposer-acceptor-learner 48.0% 80 Mbytes

instances are proposed after receiving this message, the delivery rate also re-
duces. As proposers continue submitting requests at a constant rate, eventually
the receiving buffer of the coordinator overflows and new requests are dropped.
Proposers submit new requests and re-submit pending requests. They only re-
duce their proposing rate if they detect buffer overflows. After 40 seconds, the
slow learner restores its original delivery rate. Since the coordinator does not
receive new slow-down requests it also restores its original proposing rate.

3.5.9 CPU and memory usage

Table 3.3 shows the CPU and memory usage of M-Ring Paxos under maximum
throughput. For this experiment we isolated the processes running M-Ring Paxos
in a single node and measured their CPU and memory usage. Not surprisingly,
the coordinator is the process with the maximum load since it should both re-
ceive a large stream of values from the proposers and ip-multicast these values.

Table 3.4 shows the results for U-Ring Paxos. In this case, all the processes
play the roles of proposer, acceptor, and learner. Therefore, the CPU and memory
usage of all of them is similar. In both tables memory consumption at coordi-
nator, acceptors, and learners is mostly used by the circular buffer of proposed
values. For efficiency, in our prototype the buffer is statically allocated.7

3.5.10 Conclusions from the experiments

We infer the following main points from our experiments:

7As a reference, the average CPU usage per process in LCR is in the range of 65%–70% and
for S-Paxos it is about 270% (i.e., S-Paxos is multithreaded).

44 3.6 Conclusion

• By using ip-multicast in M-Ring Paxos and a topology entirely based on a
ring, as in U-Ring Paxos and LCR, we could achieve throughput near the
limits of the network (Section 3.5.3).

• Latency increases with the size of the ring in the Ring Paxos protocols,
although M-Ring Paxos is less prone to the effects of ring size on latency
(Section 3.5.4).

• Both M-Ring Paxos and U-Ring Paxos are affected by message size. M-
Ring Paxos achieves high throughput with messages of 4 Kbytes or bigger;
U-Ring Paxos reaches maximum performance with 8-Kbyte messages. If
application messages are small, batching can improve performance (Sec-
tion 3.5.6).

• In-memory deployments of M-Ring Paxos and U-Ring Paxos are network-
bound; the performance of disk-based deployments is determined by the
capacity of the storage device (Section 3.5.5).

• Our simple flow control mechanism in M-Ring Paxos proved effective in
avoiding message losses by slowing down the rate of coordinator (Sec-
tion 3.5.8).

3.6 Conclusion

In this chapter we presented Ring Paxos, composed of two atomic broadcast pro-
tocols specifically designed for achieving high throughput in local-area networks.
In their design, we have embedded proper communication patterns to optimize
various types of message passing among processes. We have implemented both
protocols and compared them to a variety of other atomic broadcast protocols.

Our experimental results showed that both protocols have a constant through-
put with respect to the number of receivers in the network, which is a desired
property in clustered environments. In the absence of the ip-multicast primitive
(e.g., in a data center) we suggest U-Ring Paxos over M-Ring Paxos. Further-
more, most of our findings in this chapter (specifically about communication
mechanisms) can be applied to the design of other distributed systems with sim-
ilar requirements.

Chapter 4

Speculation and State Partitioning in
State-Machine Replication

State-machine replication improves availability, but often degrades perfor-
mance in contrast to a stand-alone deployment. In this chapter we study per-
formance limitations of state-machine replication and propose novel solutions
to overcome them. First, we note that ordering the requests in state-machine
replication increases the response time experienced by the clients. To alleviate
the impact of ordering on latency, we build speculative replicas. Our spec-
ulative replicas parallelize the execution of requests with the ordering in the
agreement layer, M-Ring Paxos, to reduce the overhead on latency. Second,
state-machine replication requires all the replicas to execute all the requests.
Thus performance can not be improved by adding new replicas. To scale per-
formance with the number of replicas we partition the state and modify M-
Ring Paxos accordingly. With these two techniques, speculation and state
partitioning, in addition to having higher availability, a service replicated by
the state-machine approach can also achieve a higher performance.

4.1 Problem statement

State-machine replication, a technique to improve availability, requires all the
replicas to deterministically execute all the requests in an identical order to al-
ways remain consistent.1 From a performance perspective, state-machine repli-
cation suffers from two shortcomings. First, it imposes extra overhead on the
response time when compared to a stand-alone service. The increased response

1The type of consistency we are interested in is linearizability (see Chapter 2).

45

46 4.1 Problem statement

time stems from the need to order client commands before they can be exe-
cuted, whereas in a stand-alone setup commands are directly sent to the servers
for execution. In Chapter 3, we mitigated the overhead of the agreement layer
by designing the Ring Paxos protocols. Although Ring Paxos is highly optimized,
latency remains affected by its mere existence. Second, the overall performance
is limited by the throughput of a single replica. If demand augments (e.g., more
clients join the system) it cannot be absorbed by adding replicas to the system.
The throughput limitation is a consequence of each replica storing a full copy of
the service state and executing all the commands.

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30 35 40

L
at

en
cy

 (
m

se
c)

Number of clients

SMR
CS

0

2

4

6

8

10

CS 1 2 4 8

T
hr

ou
gh

pu
t (

K
cp

s)

Number of replicas

Figure 4.1. Client-server (CS) versus state-machine replication (SMR) with
read-only commands; right graph shows throughput measured in Kilo com-
mands per second (Kcps); left graph shows latency measured at clients (for
SMR the values correspond to the throughput of one replica).

To investigate the negative impacts of these two items, ordering and full
replication, we performed an experiment with a replicated B+-tree service, where
the workload is composed of read-only commands.2 The left graph of Figure 4.1
shows the response time of the two systems, replicated and non-replicated, as
the number of clients increases. The difference between the two curves indicates
the overhead introduced by replication. The right graph of Figure 4.1 shows the
scalability of the throughput with the number of replicas. Since the workload is
composed of read operations only, not all the replicas have to execute all the re-
quests. This is a workload one would expect an ideal scalability with. However,
as our experiments show, replication improves the throughput up to four repli-
cas, but after that the overhead of delivering and discarding read commands
prevents the performance from scaling further.

2More details about these experiments are available in Section 4.4.

47 4.2 Overcoming limitations of state-machine replication

To conclude, state-machine replication requires commands to be ordered,
and ordering commands is inherently more expensive than directly sending them
to a server. Moreover, the fact that all replicas must deliver all commands—
although not all commands must be executed by all replicas—limits the attain-
able performance (see [35] for a similar argument). In this Chapter, we apply
two mechanisms, speculation and state partitioning, in the context of M-Ring
Paxos protocol from Chapter 3 to overcome these overheads.

4.1.1 Outline

The rest of this chapter is structured as follows. In Section 4.2, we discuss specu-
lative delivery and state partitioning as two well-known approaches to overcom-
ing the inherent performance limitations of state-machine replication. Then in
Section 4.3 we relate to previous works on speculation and state-partitioning. In
Section 4.4 we extensively evaluate our prototypes and explain the main results.
In Section 4.5 we conclude the chapter.

4.2 Overcoming limitations of state-machine replication

Our approach to improving the performance of state-machine replication is to
address the overhead of ordering and full replication separately: we show how
to reduce the response time and how to increase the throughput of a replicated
system with speculation and state partitioning respectively. As for the ordering
of client requests we will use M-Ring Paxos protocol (see Chapter 3 for more
details).

Response time. To reduce the impact of agreement layer on response time we
use speculative (or optimistic) execution on the replicas, a technique that has
been used before in the context of replicated databases (e.g., [36; 37]). The
idea is to expose servers to a command before its final order has been estab-
lished. As a result, the execution of the command by the server and the ordering
of the command in the agreement layer overlaps in time, improving response
time. The technique is speculative because it only works if the order in which
commands are executed is confirmed by the ordering protocol. If not, the com-
mands must be rolled back and re-executed in the correct order (i.e., the order
defined by the ordering protocol). In Section 4.2.1 we explain the combination
of this technique with M-Ring Paxos.

48 4.2 Overcoming limitations of state-machine replication

Throughout. We address the throughput limitation of state-machine replication
with state partitioning. In brief, we allow applications to decompose their state
into sub-states and replicate each sub-state individually. Commands are directed
to and executed by the appropriate partitions only. By partitioning the state of a
service, we allow to process commands in parallel. This is particularly effective
for services whose state partitioning is perfect, that is, all commands access one
sub-state or another, but no command accesses two or more sub-states. Com-
mands that access more than one sub-state must be carefully ordered to avoid
inconsistencies. In Section 4.2.2 we will discuss how to efficiently integrate state
partitioning with M-Ring Paxos.

4.2.1 Speculative execution

The response time experienced by a client of a replicated service is the result of
the aggregated overhead of the following four steps:

(a) Proposing the command by the client.

(b) Ordering the command in the agreement layer.

(c) Executing the command at the servers.

(d) Transmitting the response to the client.

A reduction in the duration of any of these activities will likely decrease
response time. In the context of M-Ring Paxos this is not trivial since the protocol
is highly optimized and it seems unlikely that it can be significantly improved
to accommodate high throughput and lower response time. Moreover, the delay
incurred by the execution of a command and the transmission of its response is
mostly service specific.

We resort to a speculative (or optimistic) strategy which consists in over-
lapping part of the ordering protocol with the execution of commands. In M-
Ring Paxos, a command reaches the servers before its ordering information (see
Chapter 3, Section 3.3.2). When a command arrives, it is buffered by the server
and only executed once its order is known. We propose to execute the command
immediately after it is received, avoiding any buffering. In doing so, servers can
start processing the command before its order is confirmed, saving some time.
A server can only respond to a client after it has executed the command and
the order of the command is confirmed. The mechanism is speculative because
it works as long as the order in which commands arrive at the servers (and

49 4.2 Overcoming limitations of state-machine replication

thus the order in which they are executed) match. In rare occasions (discussed
below) commands may be executed out-of-order. If the order in which one or
more commands were executed is not confirmed, the server must rollback them
and re-execute the commands in the proper order. Rolling back a command is
service-specific and can be done physically (e.g., by using an undo log) or log-
ically (e.g., by executing an action that reverses the effects of the out-of-order
command) [38]. We briefly discuss logical rollback in Section 4.4.2 for a simple
B+-tree service.

Fortunately, in M-Ring Paxos the order assigned by the coordinator when a
command is ip-multicast is always confirmed by the acceptors. The only sit-
uation in which the execution order of a command may change is when the
coordinator is replaced by another process (e.g., due to a crash), a rare event.
Lost messages do not cause commands to be executed out-of-order since each
command (or batch of commands) contains a consensus instance number, which
allows a server to detect missing commands.

We can estimate the improvements expected from speculative execution with
a simple formulation. Let δ be the time it takes for a client to send a command to
the coordinator and for a server to respond to the client with its results. Assume
further that ∆o is the time needed to order the command (in M-Ring Paxos this
means the time difference between the first and the second ip-multicast related
to the command) and ∆e is the time needed to execute the command. Without
speculative execution, the response time expected by a client in the absence of
contention is 2δ+∆o+∆e. With speculative execution, it depends on the values
of∆o and∆e: if∆o <∆e then response time is 2δ+∆e; otherwise response time
is 2δ+∆o. Thus, we can expect an improvement of the order of min(∆o,∆e).

4.2.2 State partitioning

A service implemented by means of state-machine replication has limited or no
scalability at all, as a consequence of replicas storing the full service state, and re-
ceiving and handling all client commands. To make the system scalable, we must
partition the service’s state into “sub-states”. If the partitioning is perfect, that is,
all commands access one sub-state or another, but no command accesses two or
more sub-states, then the technique can be trivially implemented: it suffices to
replicate each partition individually, using different and independent instances
of M-Ring Paxos, and submit client commands to the appropriate partition.

Some services, however, may not allow perfect partitioning. This is the case
when a service’s state is partitioned into sub-states such that some of the com-
mands access more than one partition. We illustrate this case with an example.

50 4.2 Overcoming limitations of state-machine replication

Neither sequential consistent nor linearizable

Query(0,100) Reply({10})

Client C3

Client C4

Reordered
Sequence

(Proof)

Client C2

Client C1

Insert(10)

Insert(75)

Reply(ok)

Reply(ok)

Query(0,100) Reply({75})

Both sequential consistent and linearizable

Client C3

Client C4

Reordered
Sequence

(Proof)

Client C2

Client C1

Insert(10)

Insert(75)

Reply(ok)

Reply(ok)

Query(0,50)

Query(51,100)

Query(0,50)

Query(51,100) Reply({75})

Reply({10})
Reply(∅)

Reply(∅)

Figure 4.2. (Left) A non-linearizable execution that cannot happen if a B+-tree
is replicated with state-machine replication. (Right) How the same execution
can happen if sub-trees of the B+-tree are replicated independently.

Consider a B+-tree service with insert and query commands (see Section 4.4.2
for more details). We can partition the B+-tree into sub-trees by assigning to
each sub-tree a non-overlapping key interval and replicate each sub-tree using
state-machine replication. An insert command is directed to a single replicated
sub-tree. A query command that requests a set of keys within a certain range
may be addressed to a single sub-tree or to multiple sub-trees, depending on the
range and the key intervals assigned to each sub-tree. If the query command
addresses multiple sub-trees, then it is divided into “sub-commands”, one for
each sub-tree; the client builds the final response from the results received from
each sub-tree. Such a service, however, cannot be implemented by independent
instances of M-Ring Paxos, as we now explain.

To understand the reason, consider the execution on the left of Figure 4.2.
Under linearizability, this execution cannot happen since client C3 sees C1’s in-
sert before C2’s, and C4 sees C2’s insert before C1’s. If we partition the B+-tree
into two independent sub-trees, however, as in the execution on the right of
Figure 4.2, then clients may observe a non-linearizable behavior. In this execu-
tion, C3’s and C4’s Query(0, 100) command is composed of two subcommands,
Query(0,50) and Query(51, 100). The problem is that while C3’s Query(0, 50)
succeeds C4’s Query(0, 50) in one partition, C3’s Query(51,100) precedes C4’s
Query(51,100) in the other partition, and thus, C3’s Query(0,100) neither pre-
cedes nor succeeds C4’s Query(0,100). To ensure linearizability we must be able
to establish a total order on all commands, not only on sub-commands. No-
tice that this happens in spite of the fact that the execution of each sub-tree is
individually linearizable.

We now define state partitioning ordering, a guarantee needed to ensure that

51 4.2 Overcoming limitations of state-machine replication

an execution with commands involving multiple service partitions is linearizable.
Let a service state be decomposed into partitions P1, ..., Pk, each one replicated
and implemented as a series of consensus executions—the i-th consensus in-
stance decides on the i-th sub-command of partition Pk. Let command Cx be
composed of sub-commands {cx ,i | cx ,i is a subcommand of Cx in Pi}. We define
directed graph G = (V, E) such that V contains all commands Cx in the execution
and E contains directed edges Cx → Cy such that cx ,i precedes cy,i in Pi. State
partitioning ordering requires that G be acyclic.

A consequence of G being acyclic is that it can be topologically ordered, and
therefore for any two commands Cx and Cy , if cx ,i precedes cy,i in partition Pi,
then in no partition Pj, cy, j precedes cx , j, where cx ,i, cx , j ∈ Cx and cy,i, cy, j ∈ Cy .
We state the property as an acyclic graph of commands to cover more complex
cases involving relations between more than two commands (see [39] for an
example).

State partitioning with M-Ring Paxos. We have integrated state partitioning
order into M-Ring Paxos as follows. First, there is one ip-multicast address as-
sociated with each partition and one ip-multicast address associated with deci-
sions. Differently than M-Ring Paxos, we do not piggyback decision messages
with commands. Learners (i.e., replicas) listen on the partition addresses they
are interested in and on the decision address. Acceptors listen on all addresses.
A command contains information about the partitions it accesses. For each par-
tition accessed by the command, the coordinator ip-multicasts one Phase 2A
message (with the command) using the address associated with the partition.
If a process receives the same message more than once, it simply discards the
duplicates. When order is established, the coordinator ip-multicasts the decision
message using the decision address. Learners may receive decision messages for
partitions they are not interested in, in which case they discard the messages.

To conclude, the state partitioning technique improves the scalability of state-
machine replication but it may not be applicable in some cases or it may impose
restrictions on how the state of a service can be partitioned. Consider a service
whose state contains variables x and y , and a command that modifies x based
on the value of y . In this case, the service’s state can only be partitioned such
that both x and y belong to the same partition. While this constraint limits the
number of services that can benefit from state partitioning, we show later in
Section 4.4 that the technique is general enough to allow the implementation of

52 4.3 Related work

a high performance fault-tolerant B+-tree service.3

4.3 Related work

In this section we overview related work on speculative execution and state
partitioning. Since we evaluate our prototypes with a B+-tree we also review
literature on parallel B-tree implementations.

Speculative execution. Optimistic or speculative execution has been suggested
before as a mechanism to reduce the latency of agreement problem. For exam-
ple, in [40; 41], clients are included in the execution of the protocol to reduce
the latency of Byzantine fault-tolerant agreement. In [36; 37] the authors in-
troduce atomic broadcast with optimistic delivery in the context of replicated
databases. The motivation is similar to ours: overlapping the execution of trans-
actions or commands with the ordering protocol. Optimistic delivery relies on
spontaneous ordering of messages, typical in local-area networks. The property
holds in the absence of contention. If too many commands are submitted si-
multaneously, then out-of-order deliveries can happen more frequently and the
technique becomes less interesting. M-Ring Paxos can use speculative execution
under high contention as it does not depend on spontaneous message ordering.

State Partitioning. Partitioning the state of a replicated service is conceptu-
ally similar to partial replication of databases [39]. Partial database replica-
tion addresses scalability issues identified in fully replicated databases. Sev-
eral partial database replication protocols have been proposed, some optimized
for local-area networks (e.g., [42; 43; 44; 45]) and some topology-agnostic
(e.g., [46; 47; 48; 49]). Partitioning the state of a replicated service differs
from partially replicating a database with respect to the granularity of the data
and the consistency criterion. Databases are usually organized as collections
of data items. Partitioning such a state is simpler than partitioning the state
of a service, which may not have been designed with partitioning as a goal.
With respect to consistency, the two main consistency criteria used in replicated
databases are one-copy serializability [50] and a generalized form of snapshot
isolation [51; 52]. These criteria do not take real-time dependencies between
operations into account and therefore admit more efficient implementations
than linearizability. M-Ring Paxos equipped to implement the state partition-
ing technique resembles an atomic multicast protocol [53]. In fact, our state

3For a proof of correctness see Appendix.

53 4.4 Experimental evaluation

partitioning ordering is inspired by the acyclic order property of atomic multi-
cast [39]. To the best of our knowledge, however, no previous work has explored
multicast communication in the Paxos family of protocols, and no speculative or
optimistic multicast protocol has been proposed so far.

Parallel B-tree. The closest work to our B+-tree service is [54], where the
authors implement and evaluate a distributed B+-tree built on top of Sinfonia
[55]. Sinfonia is a distributed, fault-tolerant storage engine that offers a low-
level address space in which application processes can store their data. Sinfonia
offers a minitransaction interface to its clients. Minitransactions are short-lived
operations similar to a generalized compare-and-swap operation. The authors
exploit the flexibility offered by Sinfonia to implement a scalable B+Tree. As
an optimization, inner nodes are replicated on all Sinfonia client nodes. On the
one hand this allows nodes to traverse a tree locally, without contacting any
other node; on the other hand, all nodes must be involved in the update of inner
nodes. Sinfonia relies on stronger system assumptions than the ones assumed in
this chapter. This is due to the use of a two-phase commit protocol to terminate
minitransactions.

4.4 Experimental evaluation

In this section, we first review some details about our implementations and ex-
perimental setup and then evaluate our prototypes with respect to the following
aspects:

1. The cost of replication. Although replication strengthens a system’s fault
tolerance, it often negatively affects the performance. The goal of this ex-
periment is to measure this effect on latency and throughput by comparing
a replicated service against a single-copy deployment (Section 4.4.3).

2. Speculative execution. Latency of a replicated service is higher than
a non-replicated service due to the additional tasks that are performed
before a request can be executed. This experiment is performed to see
whether speculative execution can bring the latency of the replicated ser-
vice closer to that of a single-copy deployment (Section 4.4.4).

3. State partitioning. In a fully replicated service, except for certain work-
loads, all the replicas receive and execute all the requests. Therefore,

54 4.4 Experimental evaluation

adding more replicas does not increase throughput. We perform this ex-
periment to see if partitioning the state can help to scale the throughput
when more replicas are added (Section 4.4.5).

4. Speculative execution and state partitioning. We perform this experi-
ment to study the combined effect of speculation and partitioning on the
latency and throughput of a replicated service (Section 4.4.6).

4.4.1 Hardware settings

All the experiments are performed in a cluster of Dell SC1435 servers equipped
with 2 dual-core AMD-Opteron 2.0 GHz CPUs and 4GB of main memory. The
servers are interconnected through an HP ProCurve2900-48G Gigabit switch
whereas the round trip time is 0.1 mili second. In all the experiments clients
and servers are deployed on separate machines.

4.4.2 Implementation and experimental setup

In our prototypes the speculative server is composed of four active threads,
whose tasks can be described as follows: (1) delivering the commands and their
order decided by M-Ring Paxos, (2) tracking the commands once their order is
decided, (3) processing the commands, and (4) sending responses to the clients
after the commands are successfully processed and their order is known. Thus
once the first thread receives a command, puts it in a shared buffer from which
the third thread will later remove the command and process it. This implies that
each command spends some time waiting in the buffer until the third thread is
free to process it. Therefore, in practice due to the implementation overheads a
request is not processed immediately after its arrival. A non-speculative server
is implemented by three threads: a thread receives commands, another thread
executes commands, and a third thread responds to clients. In all of our experi-
ments each thread is assigned to a different processor.

We evaluate our prototypes with an open source implementation of B+-
tree [56]. The in-memory B+-tree stores (key, value) tuples, where keys
and values are 8-byte integers. Three types of operations are defined on the
tree: insert(key, value), delete(key), and query(key_min, key_max). An
insert operation inserts a new tuple in the tree if it does not already exist. A
delete operation deletes a tuple from the tree if it exists in the tree. A query

searches the tree to retrieve the values for the range of the keys specified in the
command (hereafter, we refer to insert and delete operations as updates).

55 4.4 Experimental evaluation

Update operations return a small reply to the clients about the result of the
operation and a range query returns the set of the values extracted from the
tree. Thus, the size of the replies for range queries is often bigger than the size
of replies for update operations. We measure performance with the following
three workloads:

1. Queries: in this workload, a command issued by clients is a query for a
range over an interval of 1000 keys, where the keys are chosen randomly
following a uniform distribution.

2. Ins/Del (single): in this workload, each command includes one update
operation, either an insert or a delete.

3. Ins/Del (batch): in this workload, each command includes seven up-
dates. In addition, the coordinator of M-Ring Paxos batches the requests
into packets of 8 Kbytes (in both Ins/Del (batch) and Ins/Del (single)

workloads, the portion of delete and insert commands are such that the
size of the trees does not change over the time).

In the experiments with full replication, the tree on all the replicas is ini-
tialized with 12 million keys in the range of [1, 12M]. To preserve the size of
the tree, in the experiments with partial replication we have a bigger range of
keys: [1,12M * num_partitions], whereas a tree in each partition is initialized
with 12 million distinct keys. Thus in both full and partial replication the tree
on each replica is initially populated with 12 million (key, value) tuples. A
command that accesses more than one partition is broken into sub-commands by
the client (i.e., by a client replication library) and submitted to each concerned
partition. Responses received from multiple partitions are merged at the client.
In the fully replicated B+-tree, all the replicas receive all the operations. All the
replicas execute insert and delete commands on their local tree but only one
replica returns the result to the client. For range queries, only one replica ex-
ecutes the command and responds to the client. In the experiments assessing
speculation, in case of mismatches between the receive and delivery order, oper-
ations must be rolled back. As range queries do not change the state of the trees
there is no need to roll them back. But to roll back an insert, a delete command
should be executed. For rolling back a delete, an insert is performed given that
the value of the deleted key should be kept until the final ordering is known.

The size of client commands is 256 bytes in all the workloads. Responses
are 8 Kbytes for ranges and 256 bytes for inserts and deletes. In addition, our
experiments are performed in the absence of process failures, but message losses

56 4.4 Experimental evaluation

0

0.8

1.6

2.4

3.2

4

 0 5 10 15 20 25 30 35 40

T
hr

ou
gh

pu
t (

K
cp

s)

Number of clients

SMR
CS

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30 35 40

L
at

en
cy

 (
m

se
c)

Number of clients

Queries

10

20

30

40

50

60

 0 50 100 150 200

T
hr

ou
gh

pu
t (

K
cp

s)

Number of clients

SMR
 CS

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200

L
at

en
cy

 (
m

se
c)

Number of clients

Ins/Del (single)

0.1

1

10

100

1000

 0 50 100 150 200

T
hr

ou
gh

pu
t (

K
cp

s)

Number of clients

SMR
CS

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200

L
at

en
cy

 (
m

se
c)

Number of clients

Ins/Del (batch)

Figure 4.3. Performance of client-server (CS) versus state-machine replication
(SMR) with three workloads; the pair of graphs on top are for queries, the ones
in the middle are for update operations without batching, and the graphs in
the bottom are for the batched update operations; left graphs show throughput
measured in Kilo commands per second (Kcps) (the values in y axis of the
bottom-most graph are in log scale); right graphs show corresponding latency
measured at clients.

57 4.4 Experimental evaluation

1

10

100

1000

CS 1 2 4 8

T
hr

ou
gh

pu
t (

K
cp

s)

Number of servers

 0

 1

 2

 3

 4

 5

 6

CS 1 2 4 8

L
at

en
cy

 (
m

se
c)

Number of servers

Queries
Ins/Del (single)
Ins/Del (batch)

Figure 4.4. Performance of client-server (CS) versus state-machine replication
(SMR) with increasing number of replicas for three workloads; left graph shows
throughput measured in Kilo commands per second (Kcps) (y-axis is in log
scale); right graph shows the corresponding latency.

are possible. Process failures are rare events, however, message losses happen
relatively often because of high network traffic. In all the graphs each point is
obtained over a 60-second run of which the first and the last 10 seconds are
discarded.

4.4.3 The cost of replication

Our first set of experiments evaluates the cost of state-machine replication (SMR)
with respect to a non-replicated client-server (CS) setup (see Figures 4.3 and 4.4).
For queries and batched updates, replication does not introduce a cost in through-
put. In these cases, the executions are CPU-bound. For single updates, the
replicated setting cannot reach the same throughput as a client-server configu-
ration because the execution of the former is limited by the maximum number
of instances per second that can be run by M-Ring Paxos. In all cases, however,
replication imposes a cost in response time, as shown by the graphs in the right
column of Figure 4.3. Latency with fewer number of clients is high for SMR with
batched updates (bottom-right graph in Figure 4.3) because in lower loads the
transmission of M-Ring Paxos packets is triggered by timeouts; the effect disap-
pears as clients are added and messages are sent as soon as an 8-Kbyte packet is
full.

Adding replicas can help improve the throughput of read-only commands.
This is evident by looking at the values of the left-most bars in the left graph
of Figure 4.4. For update commands, however, no improvement in throughput

58 4.4 Experimental evaluation

 0
 1
 2
 3
 4
 5
 6

 L

at
en

cy
 (

m
se

c)

0

1

2

3

4

0 5 10 15 20 25 30 35 40T
hr

ou
gh

pu
t (

K
cp

s)

Number of clients (a)

Speculative
SMR

 0
 1
 2
 3
 4
 5
 6

 L

at
en

cy
 (

m
se

c)

0

2

4

6

8

0 20 40 60 80 100T
hr

ou
gh

pu
t (

K
cp

s)

Number of clients (b)

 0
 1
 2
 3
 4
 5
 6

 L

at
en

cy
 (

m
se

c)

0
2
4
6
8

10

0 40 80 120 160T
hr

ou
gh

pu
t (

K
cp

s)

Number of clients (c)

 0
 1
 2
 3
 4
 5
 6

 L

at
en

cy
 (

m
se

c)

0
2
4
6
8

10

0 50 100 150 200T
hr

ou
gh

pu
t (

K
cp

s)

Number of clients (d)

Figure 4.5. The impact of speculative execution on the performance of state-
machine replication with a workload composed of queries only; number of repli-
cas is (a): 1, (b): 2, (c): 4, (d): 8; throughput is measured in Kilo commands
per second (Kcps).

is possible since all replicas must be involved in the operations, even if only to
receive the commands in the right order, as discussed in Section 4.1. Figure 4.4
also shows the corresponding latency.

4.4.4 Speculative execution

We report our assessment of speculative execution for configurations with 1, 2,
4, and 8 servers using the Queries and the Ins/Del (batch) workloads (see
Figures 4.5 and 4.6). In all scenarios speculation reduces response time with
respect to state-machine replication, although the results are more visible with
the Ins/Del (batch) workload. By reducing response time, the technique also
proportionally improves throughput, a direct consequence of Little’s law [57].

59 4.4 Experimental evaluation

 0
 1
 2
 3
 4
 5
 6

 L

at
en

cy
 (

m
se

c)

0
50

100
150
200
250
300
350

0 50 100 150 200 250 300 350T
hr

ou
gh

pu
t (

K
cp

s)

Number of clients (a)

Speculative
SMR

 0
 1
 2
 3
 4
 5
 6

L

at
en

cy
 (

m
se

c)

0

100

200

300

400

0 50 100 150 200 250 300T
hr

ou
gh

pu
t (

K
cp

s)

Number of clients (b)

 0
 1
 2
 3
 4
 5
 6

 L

at
en

cy
 (

m
se

c)

0

100

200

300

400

0 75 150 225 300 375 425T
hr

ou
gh

pu
t (

K
cp

s)

Number of clients (c)

 0
 1
 2
 3
 4
 5
 6

L

at
en

cy
 (

m
se

c)

0

100

200

300

400

0 75 150 225 300 375 425T
hr

ou
gh

pu
t (

K
cp

s)

Number of clients (d)

Figure 4.6. The impact of speculative execution on the performance of state-
machine replication with a workload composed of batched inserts and deletes;
number of replicas is (a): 1, (b): 2, (c): 4, (d): 8; throughput is measured in
Kilo commands per second (Kcps).

4.4.5 State partitioning

To assess the state partitioning strategy, we consider two configurations, one
with the B+-tree state divided into two partitions and the other with the B+-
tree state divided into four partitions (labels “2 P” and “4 P”, respectively, in
Figure 4.7). In both configurations each partition has two replicas. In executions
with cross-partition query commands (Figures 4.8 and 4.9), a cross-partition
query accesses two partitions, regardless the number of existing partitions.

The graph on the left of Figure 4.7 shows that for queries, the throughput
increases by a factor of 2.1 from SMR to two partitions, and by a factor of nearly
four from SMR to four partitions. The improvement with the Ins/Del (batch)

workload is not as remarkable as on queries, although the system throughput
increases by factors of 1.8 and 2.6 for two and four partitions, respectively. The

60 4.4 Experimental evaluation

1

5
10
20

100

300
500
800

Queries Ins/Del (batch)

T
hr

ou
gh

pu
t (

K
cp

s)

1X

2.1X

3.9X

1X

1.8X
2.6X

 0

 1

 2

 3

 4

 5

 6

Queries Ins/Del (batch)

L
at

en
cy

 (
m

se
c)

SMR
2 P
4 P

Figure 4.7. Performance of state partitioning (2 and 4 partitions) versus state-
machine replication for queries and batched updates with no cross-partition
commands; left graph shows throughput measured in Kilo commands per sec-
ond (Kcps) (y-axis is in log scale); numbers in this graph show the speedup
over SMR; right graph shows corresponding latency.

graph on the right shows that such an increase in throughput does not incur
in significant changes in response time with respect to SMR. Although these
experiments were run using no cross-partition queries, as we show next, this is
not the most favorable setup for state partitioning.

Figure 4.8 demonstrates the effects of cross-partition queries in the state par-
titioning technique with two partitions in an execution with query commands
whereas there are 2 replicas in each partition. The graphs show that for lower
load (i.e., 100 clients) there is almost no difference in throughput and response
time between different configurations. For higher loads, configurations with
50% and 75% of cross-partition queries reach higher throughputs. In fact, the
lowest throughput and highest response time is obtained with a configuration
without cross-partition queries. To understand the reason, we must look at how
CPU is used in a server. The bottom-right graph in Figure 4.8 shows the CPU
usage for threads responsible for execution and responses. The thread that re-
ceives commands has low use. While in configurations with no cross-partition
queries, 98% of the processor is used for command execution, in configurations
with 25% and 100% of cross-partition queries, the processor for command exe-
cution and response is 95% used. Finally, in configurations with 50% and 75%
of cross-partition queries, the processors are used less than 90%. The 50% con-
figuration has slightly higher throughput than the 75% configuration because it
uses less bandwidth.

The reason for the execution processor-use to decrease with the increase in

61 4.4 Experimental evaluation

0

4

8

12

16

20

 0 50 100 150 200 250

T
hr

ou
gh

pu
t (

K
cp

s)

Number of clients

0 %
25 %
50 %
75 %

100 %
 0

 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 50 100 150 200 250

B
an

dw
id

th
 (

M
bp

s)

Number of clients

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250

L
at

en
cy

 (
m

se
c)

Number of clients

 0

 20

 40

 60

 80

 100

0 25 50 75 100

C
PU

 (
%

)

% of cross-partition queries

Execution
Response

Figure 4.8. Impact of cross-partition queries on the performance with 2 replicas
in each partition; top-left graph shows throughput measured in Kilo commands
per second (Kcps); top-right graph shows outgoing bandwidth per replica mea-
sured in Mega bits per second (Mbps); bottom-left graph shows the correspond-
ing latency; bottom-right graph shows the corresponding CPU utilization.

the number of cross-partition queries is that a cross-partition query is “cheaper”
to execute than a single-partition query since it processes fewer elements in
the B+-tree. However, the response thread’s processor-use increases with the
number of cross-partition queries because a cross-partition query is split into
two queries (and thus there are more queries) and servers respond to queries
with fixed-size messages, regardless the amount of information contained in the
message. The top right graph shows the outgoing bandwidth per server for
the cross-partition queries. As expected, by increasing the percentage of cross-
partition queries the outgoing bandwidth for each server increases. However, it
seems that for 75% and 100% cases the bandwidth is not scaling as expected.
To avoid the server’s outgoing bandwidth as a bottleneck, one can keep adding

62 4.4 Experimental evaluation

0

4

8

12

16

20

24

 0 50 100 150 200 250

T
hr

ou
gh

pu
t (

K
cp

s)

Number of clients

0 %
25 %
50 %
75 %

100 %
 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 50 100 150 200 250

B
an

dw
id

th
 (

M
bp

s)

Number of clients

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250

L
at

en
cy

 (
m

se
c)

Number of clients

 0

 20

 40

 60

 80

 100

0 25 50 75 100

C
PU

 (
%

)

% of cross-partition queries

Execution
Response

Figure 4.9. Impact of cross-partition queries on the performance with 3 replicas
in each partition; top-left graph shows throughput measured in Kilo commands
per second (Kcps); top-right graph shows outgoing bandwidth per replica mea-
sured in Mega bits per second (Mbps); bottom-left graph shows the correspond-
ing latency; bottom-right graph shows the corresponding CPU utilization.

more replicas to each partition. The effect of 3 replicas in each partition is shown
in Figure 4.9 where the maximum achievable throughput for all the cases is in-
creased compared to the 2-replica case (see Figure 4.8). The bottom-right graph
depicts the CPU usage for threads responsible for execution and responses. As
the percentage of cross-partition queries increase, the responding thread con-
sumes more CPU and the executing thread’s CPU usage decreases. Moreover,
compared to the 2-replica case the outgoing bandwidth per server is no more a
bottleneck.

63 4.4 Experimental evaluation

 0

 1

 2

 3

 4

 5

 6

0 25 50 75 100

In
cr

ea
se

 in
 th

ro
ug

hp
ut

 (
%

)

% of cross-partition queries

 0

 5

 10

 15

 20

0 25 50 75 100

D
ec

re
as

e
in

 la
te

nc
y

(%
)

% of cross-partition queries

Figure 4.10. Improvements of performance over SMR when speculative execu-
tion is combined with state partitioning for cross-partition queries; left graph
shows increase in throughput and right graph the reduction in latency.

4.4.6 Speculation and partitioning

Our final set of experiments considers the combined effects of speculative exe-
cution and state partitioning. Figure 4.10 shows the relative improvements of
the speculative execution technique over state-machine replication with state
partitioning for different percentages of cross-partition queries. In all configu-
rations the technique is effective in that it decreases response time, with minor
improvements in throughput. The reason for the improvement to decrease with
the number of cross-partition queries is that the execution time in a server of
a cross-partition query is smaller than the execution time of a single-partition
query, as explained above. Therefore, the window of opportunity for speculative
execution is narrower (see Section 4.2.1).

4.4.7 Conclusions from the experiments

The following conclusions can be drawn from our experiments:

• Regardless the workload, once the service is replicated, response time in-
creases. Speculative delivery is effective in reducing the negative effect of
ordering on latency but as we observed in our experiments the improve-
ment is not significant. M-Ring Paxos is a highly optimized protocol and
reducing its latency via speculation was challenging and required exten-
sive optimizations in the implementation. The effect of speculation in im-
proving performance depends on the specific properties and efficiency of
the atomic broadcast protocol and duration of execution on replicas.

64 4.5 Conclusion

• Our experiments also indicate that state partitioning can greatly improve
the throughput regardless the workload.

4.5 Conclusion

State-machine replication is a well-known approach to building fault tolerant
services. The idea is to fully replicate the service state on several servers and exe-
cute every client command in every nonfaulty server in the same order. Although
some optimizations for performance are possible, inherently the technique intro-
duces an overhead in service response time and is limited by the throughput of
a single server. To mitigate these drawbacks, in this chapter we have studied the
effect of speculative execution and state partitioning on state-machine replica-
tion while using the M-Ring Paxos protocol.

To enable speculative delivery we have implemented a server in which sev-
eral threads co-operate to execute the requests before their final order is de-
termined by the M-Ring Paxos protocol. The results of our experiments on a
B+-tree service show that speculative execution at best reduces the response
time by only 16.2%. M-Ring Paxos is a highly efficient ordering protocol and
the execution of operations in our B+-tree service are quite fast. Therefore, the
improvement obtained by speculative execution is not significant. To improve
throughput, we have slightly modified the M-Ring Paxos protocol to broadcast
instances via several ip-multicast groups to which different partitions subscribe.
Our experiments show that state partitioning allows our B+-tree service to scale
with a throughput near 4 times greater than classic state-machine replication.

Chapter 5

Multi-Ring Paxos

Performance of an atomic broadcast protocol is restrained from scaling when
the resources of an individual participant rather than the aggregate resources
of all the participants in the protocol, are fully consumed. In this situation
adding more participants increases the availability and fault-tolerance of the
atomic broadcast protocol without any positive impact on the scalability of the
performance. We observe that Ring Paxos is also subject to this problem. In
this chapter we propose Multi-Ring Paxos as an atomic multicast protocol to
address the scalability issues of Ring Paxos. Multi-Ring Paxos is a collection
of independent instances of Ring Paxos that are coordinated via a set of pre-
defined parameters. As our evaluations show, performance of Multi-Ring Paxos
scales linearly as new participants and thus resources are added to the system.

5.1 Problem statement

State-machine replication requires all the replicas to execute all the requests in
the same order. As mentioned in the previous chapters, delivering requests to
all the replicas in a unique order is often done by atomic broadcast protocols.
Atomic broadcast protocols must be efficient enough not to prevent a capable
service with a high execution capacity from meeting the increasing demands
of its clients. In other words, ordering requests must cost less than executing
them, or otherwise the maximum performance will be determined by the atomic
broadcast protocol rather than the execution power of the replicas.

Similarly to our procedure in designing Ring Paxos protocols in Chapter 3, an
atomic broadcast protocol can be optimized to achieve high efficiency in order-
ing. However, no matter how efficient, the maximum throughput will be limited
as soon as a participant’s resources such as CPU, network, or disk are saturated.

65

66 5.1 Problem statement

 10

 20

 30

 40

 50

 0 100 200 300 400 500 600 700 800

L
at

en
cy

 (
m

se
c)

Delivery throughput per server (Mbps)

62.5% 97.6%

57.5% 92.4%

Disk bound CPU bound

Recoverable Ring Paxos
In-memory Ring Paxos

Figure 5.1. Performance of In-memory
and Recoverable Ring Paxos.

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 2 4 8

Se
rv

ic
e

th
ro

ug
hp

ut
 (

M
bp

s)

Number of partitions

Figure 5.2. Performance of a par-
titioned service using In-memory
Ring Paxos.

After reaching this point, adding more nodes although improves availability,
does not enhance performance. As an example we observed this problem in the
experiments of Ring Paxos protocols (see Chapter 3 Sections 3.5.4 and 3.5.5).
Thus, the maximum throughput of an atomic broadcast protocol is dictated by
the capacity of the individual participants and not by the aggregated capacity of
all the participants. In this sense atomic broadcast protocols are not scalable. We
define scalability to be the ability of a group communication system to increase
throughput, measured in number of messages ordered per time unit, when re-
sources (i.e., nodes) are added.

We illustrate the scalability problem with an experiment of an open source
implementation of M-Ring Paxos protocol [58].1 Hereafter we distinguish be-
tween two versions of M-Ring Paxos protocol, In-memory and Recoverable. The
durability of a consensus instance is configurable: if a majority of acceptors is al-
ways operational, then consensus decisions can be stored in the main memory of
acceptors only (In-memory Ring Paxos). Without such an assumption, consen-
sus decisions must be written on the acceptors’ disks (Recoverable Ring Paxos).
The maximum throughput of In-memory Ring Paxos is determined by what the
CPU or the network interface of an acceptor can handle, whichever becomes a
bottleneck first. In Recoverable Ring Paxos, the maximum throughput is limited
by the bandwidth sustained by an acceptor’s disks. Figure 5.1 shows the per-
formance of In-memory and Recoverable Ring Paxos. In-memory Ring Paxos is
CPU-bound: throughput can be increased until approximately 700 Mbps, when
the coordinator, reaches its maximum processing capacity. When this happens,

1For experimental details see Section 5.4

67 5.1 Problem statement

even small increases in the coordinator’s load result in large increases in delivery
latency. Recoverable Ring Paxos is bounded by the bandwidth of the acceptors’
disks. At maximum throughput, around 400 Mbps, the acceptors approach the
maximum number of consensus instances they can store on disk per time unit.
Notice that at this point the coordinator has moderate processing load, around
60%. In either case, adding resources (i.e., acceptors) will not improve perfor-
mance.

Effect of state partitioning in overcoming the scalability issue. If executing
requests is more costly than ordering them, then throughput will be dictated by
the number of requests a server can execute per time unit and not by the number
of requests that Ring Paxos can order. In such cases, one solution is to partition
the service into sub-services (e.g., Chapter 4, [59]), each sub-service replicated
using state-machine replication. Requests concerning a single partition are sub-
mitted to and executed by the involved partition only; requests concerning mul-
tiple partitions must be consistently ordered across partitions and executed by
all involved partitions. As a result, if most requests affect a single partition (or
few partitions), the scheme improves performance as the various partitions can
execute requests in parallel. As presented in Chapter 4, Ring Paxos can be config-
ured to work with partitioned services by ordering all messages and selectively
delivering them to the concerned partitions only. By partitioning a service, the
cost of executing requests can be distributed among partitions.

But if a service can be partitioned into a large number of sub-services, then
throughput may be limited by the overall number of requests that Ring Paxos can
order and deliver to the various partitions, and not by the capacity of the servers
to execute the requests. Figure 5.2 illustrates this with a multi-partition service
implemented using In-memory Ring Paxos. To emphasize our point, we assess
the overall system throughput of a dummy service: delivered messages are sim-
ply discarded by the servers, that is, requests take no time to be executed. In this
experiment, all submitted requests are single-partition and evenly distributed
among partitions. The graph shows that the throughput of M-Ring Paxos does
not increase as partitions and nodes (three per partition) are added. Instead,
since the total throughput sustained by M-Ring Paxos is approximately the same
for the various configurations, the more partitions a configuration has, the less
throughput can be allocated to each partition.

If requests access only a single partition, then one can expect a system with n
partitions to provide n times the throughput of a single-partition system. Such a
system is a scalable system. In reality, as shown in Figure 5.2, this only happens
if the group communication primitive itself scales, meaning that the number

68 5.2 Multi-Ring Paxos

of messages per time unit ordered and delivered by the primitive grows with
the size of the system. In this chapter we present Multi-Ring Paxos, an atomic
multicast primitive with this property. The key insight in Multi-Ring Paxos is to
compose an unbounded number of parallel instances of Ring Paxos in order to
scale throughput. While the idea behind Multi-Ring Paxos is conceptually sim-
ple, its realization entailed non-obvious engineering decisions, which we discuss
in the following sections.

5.1.1 Outline

The remainder of this chapter is organized as follows. In Section 5.2 we present
Multi-Ring Paxos, discuss the algorithm, and explain several optimizations to
improve its performance. In Section 5.3 we review related work. In Section 5.4
we evaluate Multi-Ring Paxos and compare its performance to other protocols.
We end this chapter by presenting our conclusions in Section 5.5.

5.2 Multi-Ring Paxos

Multi-Ring Paxos implements atomic multicast, a group communication abstrac-
tion whereby senders can atomically multicast messages to groups of receivers;
atomic multicast ensures ordered message delivery for receivers that deliver
messages in common (see Chapter 2 for more details). In brief, Multi-Ring Paxos
assigns one instance of M-Ring Paxos to each group (or set of groups). Re-
ceivers that subscribe to a single group will have their messages ordered by the
M-Ring Paxos instance responsible for this group. Receivers that subscribe to
multiple groups will have multiple sources of messages and use a deterministic
merge mechanism to ensure ordered delivery. Most of the complexity of Multi-
Ring Paxos lies in its deterministic merge procedure, which accounts for dynamic
load and imbalances among the various instances of M-Ring Paxos, without sac-
rificing performance or fault tolerance. In this section we discuss its properties
in detail.

5.2.1 Overview

Multi-Ring Paxos uses multiple independent instances of M-Ring Paxos to scale
throughput without sacrificing response time—hereafter, we refer to a M-Ring Paxos
instance as a “ring” and assume the existence of one ring per group (we revisit
this assumption in Section 5.2.4). Learners subscribe to the groups they want

69 5.2 Multi-Ring Paxos

to deliver messages from. Within a group, messages are ordered by the ring
responsible for the group. If a learner subscribes to multiple groups, it uses
a deterministic procedure to merge messages coming from different rings. Al-
though deterministically merging messages from multiple rings is conceptually
simple, its implementation has important performance consequences, as we ex-
plain next.

In brief, learners implement the deterministic merge in round-robin fash-
ion, delivering a fixed number of messages from each group they subscribe to
in a pre-defined order. More precisely, each group has a unique identifier, to-
tally ordered with any other group identifier. If a learner subscribes to groups
gl1 , gl2 , ..., glk , where l1 < l2 < ...< lk, then the learner first delivers M messages
from gl1 , then M messages from gl2 , and so on, where M is a parameter of the al-
gorithm. In order to guarantee ordered delivery, the learner may have to buffer
messages that do not arrive in the expected pre-defined order.

This scheme has two drawbacks, which we illustrate with an example. As-
sume that a learner subscribes to groups g1 and g2, which generate messages at
rates λ1 and λ2, respectively, where λ1 < λ2. First, the learner’s delivery rate
will be 2λ1, as opposed to the ideal λ1 + λ2. Second, the learner’s buffer will
grow at rate λ2−λ1 and will eventually overflow.

One way to address these two drawbacks is as follows. Rather than defining
a global value for M we define a value of M for each group that accounts for
different rates: If for each M1 messages delivered for g1, the learner delivers
M2 = M1λ2/λ1 messages for g2, then its total delivery rate will tend to the ideal.
In the general case of a learner that subscribes to groups gl1 , gl2 , ..., glk , it fol-
lows that Ml1/λl1 = Ml2/λl2 = ... = Mlk/λlk must hold in order for the learner
to deliver messages at the ideal rate of λl1 + λl2 + ...+ λlk . Such a mechanism,
however, requires estimating the message rate of each group and dynamically
adapting this estimate during the execution. Moreover, to avoid buffer over-
flows, learners have to quickly adapt to changes in the message rate of a group.
Our strategy does not require adapting to a group’s message rate. Instead, we
define λ, the maximum expected message rate of any group, a parameter of the
system.

The coordinator of each ring monitors the rate at which messages are gener-
ated in its group, denoted µ, and periodically compares λ to µ. If µ is lower than
λ, the coordinator proposes enough “skip messages” to reach λ. Skip messages
waste minimum bandwidth: they are small and many can be batched in a single
consensus instance.

Figure 5.3 illustrates an execution of Multi-Ring Paxos with two groups where
M = 1. Learner 1 subscribes to group g1; learner 2 subscribes to groups g1 and

70 5.2 Multi-Ring Paxos

Proposer 1

Learner 1

Proposer 2

Learner 2
g1

g1, g2

(g1,m1)

m1

skip
message

(g1,m3)

(g2,m2) (g1,m4)

m2 m3

m4m1 m2

Ring Paxos 1 : g1

Ring Paxos 2 : g2

m3

m4

Figure 5.3. Muli-Ring Paxos with two rings and M = 1.

g2. Notice that after receiving message m4 learner 2 cannot deliver it since it
must first deliver one message from group g2 to ensure order. Therefore, learner
2 buffers m4. Since learner 1 only subscribes to g1, it can deliver all messages it
receives from first ring as soon as it receives them. At some point, the coordina-
tor of the second ring realizes its rate is below the expected rate and proposes
to skip a message. As a consequence, learner 2 can deliver message m4.

5.2.2 Multi-Ring Paxos in detail

Algorithm 1 presents Multi-Ring Paxos in detail. To multicast message m to
group g, a proposer sends m to the coordinator of g (lines 3–4), which upon
receiving m, proposes m in consensus instance k (lines 11–12). The acceptors
execute consensus instances as in M-Ring Paxos (line 22). For simplicity, in Al-
gorithm 1 only one message is proposed in every consensus instance (in our
prototype, multiple messages are batched and proposed in a single instance).2

Since consensus instances decide on batches of fixed size, if we set λ to be the
maximum expected consensus rate, as opposed to the maximum expected mes-
sage rate, we can easily determine λ since we know the maximum throughout
of M-Ring Paxos.

The coordinator sets a local timer (lines 9 and 20), which expires in intervals
of ∆ time units. In each interval, the coordinator computes µ, the number of
consensus instances proposed in the interval (line 14). If µ is smaller than λ
(line 15), the coordinator proposes enough skip instances, i.e., empty instances,

2A consensus instance is triggered when a batch is full or a timeout occurs. We use batches
of 8 Kbytes, as this results in high throughput (see Chapter 3 for more details).

71 5.2 Multi-Ring Paxos

1: Algorithm 1: Multi-Ring Paxos (executed by process p)

2: Task 1 (proposer)
3: To multicast message m to group g:
4: send m to coordinator of g

5: Task 2 (coordinator)
6: Initialization:
7: k← 0
8: prev_k← 0
9: set timer to expire at current time + ∆

10: upon receiving m from proposer
11: propose(k, m)
12: k← k+ 1

13: upon timer expires
14: µ← (k− prev_k)/∆
15: if µ < λ then
16: skip← prev_k+∆λ
17: for k← k to skip do
18: propose(k,⊥)
19: prev_k← k
20: set timer to expire at current time + ∆

21: Task 3 (acceptor)
22: execute consensus (Phases 1 and 2 of Ring Paxos)

23: Task 4 (learner)
24: Initialization:
25: for i← 1 to γ do
26: if p ∈ gi then ki ← 0

27: repeat forever
28: for i← 1 to γ do
29: if p ∈ gi then
30: repeat M times
31: wait for decide(ki , v)
32: if v 6=⊥ then deliver v
33: ki ← ki + 1

34: Algorithm variables:
35: k : current consensus instances in a group (coordinator)
36: prev_k : value of k at the beginning of an interval
37: µ : number of consensus instances per time in a group
38: skip : consensus instances below optimum in last interval
39: ki : the next consensus instance at group gi (learner)

40: Algorithm parameters:
41: γ : number of groups
42: ∆ : duration of an interval (i.e., time between samplings)
43: M : number of consecutive messages delivered for a group
44: λ: expected number of consensus instances per ∆

72 5.2 Multi-Ring Paxos

to make up for the missing ones (lines 16–18). Notice that although in Algo-
rithm 1 the coordinator executes a propose for each missing instance, in our
prototype this is implemented much more efficiently by proposing a batch of in-
stances using the same physical messages. The coordinator then sets the timer
for the next interval (line 20).

For each group gi to which the learner subscribes, the number of the next
consensus instance in which it will participate is stored in variable ki (lines 25–
26). The procedure at the learner consists in deterministically delivering M
messages (lines 30–32) multicast to each group gi subscribed by the learner
(lines 28–29). Since groups are totally ordered according to their unique iden-
tifiers, each two learners will round robin through the groups they subscribe to
in the same order, and hence respect multicast order.

5.2.3 Failures and reconfigurations

Algorithm 1 assumes that rings guarantee progress individually. Therefore, for
each ring, up to f < n/2 acceptors can fail, where n is the total number of
acceptors in a ring. To reduce response time, M-Ring Paxos keeps f +1 acceptors
in the ring only (see Chapter 3); the remaining acceptors are spares and could
be shared by multiple rings in Multi-Ring Paxos, similarly to Cheap Paxos [14].

When an acceptor is suspected to have failed, its ring must be reconfigured,
excluding the suspected acceptor and including a new one, from the spares.
Until the ring is reconfigured, learners that subscribe to this ring cannot deliver
messages broadcast to this ring and to any other ring the learner also subscribes.
We assess the effects of reconfiguration in Section 5.4.7. Recovering from lost
messages is done with retransmissions, as in M-Ring Paxos protocol (see Chap-
ter 3).

5.2.4 Extensions and optimizations

Algorithm 1 can be optimized for performance in a number of ways. The coor-
dinator does not propose a single message in a consensus instance, but a batch
of messages. Moreover, multiple skip instances for an interval are executed to-
gether. Thus, the cost of executing any number of skip instances is the same as
the cost of executing a single skip instance. Another issue concerns the mapping
of groups to rings (i.e., instances of M-Ring Paxos). If there are as many rings
as groups, then we can have one group per ring—this is the setting used in our
experiments. Alternatively, multiple groups can be mapped to the same ring.
The drawback of such a setting is that some learners may receive messages from

73 5.3 Related work

groups they do not subscribe to. Such messages will not be delivered to the ap-
plication, but they waste the learner’s incoming bandwidth and processor. While
there are many strategies to address this issue (e.g., a simple one is to assign the
busiest groups to different rings), we note that mapping γ groups to δ rings,
where γ > δ, is an optimization problem with implications that go beyond the
scope of this work [60]. 3

5.2.5 Additional properties of Multi-Ring Paxos

In this section we discuss two advantages provided by Multi-Ring Paxos:

State-partitioning is not a must. To use Multi-Ring Paxos, a service does not
have to partition its state. Requests can be submitted to different rings and or-
dered independently. Deterministic merge guarantees that all the replicas host-
ing the full state will deliver and process requests in an identical order. This is
important as for example not all the services are easy to be partitioned. Thus
partitioning the state is not a must to benefit from the high performance offered
by Multi-Ring Paxos.

Machines can be shared among rings. The amount of work performed by
processes in Ring Paxos differs from one role to the other. For example often the
machine on which an acceptor is located has less CPU utilization compared to
the machine on which the coordinator is located. By deploying multiple rings
and carefully positioning their processes on the same set of machines Multi-
Ring Paxos can make a better use of the same number of machines without
compromising fault tolerance. For example a coordinator from one ring can be
co-located with an acceptor from another ring on the same machine.

5.3 Related work

Multi-Ring Paxos is an atomic multicast protocol. Differently from atomic broad-
cast, atomic multicast protocols can be made to scale under certain workloads.
In the following we focus the discussion mostly on atomic multicast and review
atomic broadcast protocols that share some similarities with Multi-Ring Paxos.
For a more comprehensive review on atomic broadcast refer to Chapter 3.

3For a proof of correctness see Appendix.

74 5.3 Related work

Atomic multicast. Although the literature on atomic broadcast protocols is
vast [?] (see also chapter 3), few atomic multicast algorithms have been pro-
posed. Possibly, the first atomic multicast algorithm is presented in [61] which
is an algorithm for failure-free scenarios. In this algorithm, the destination pro-
cesses of a message m exchange timestamps and eventually decide on m’s final
timestamp. The destinations deliver messages according to the message’s final
timestamp. The algorithm scales under certain workloads since only the desti-
nations of a message are involved in its ordering.

Several papers have proposed extensions to render the algorithm in [61]
fault tolerant [62; 63; 64; 65]. The basic idea behind these algorithms is to re-
place failure-prone processes by fault-tolerant groups of processes; each group
implementing the logic of the original algorithm by means of state-machine
replication. Different algorithms have proposed different optimizations of this
basic idea, all based on the assumption that groups do not intersect. An algo-
rithm that departures from the previous proposals appears in [66]. The idea is
to daisy-chain the set of destination groups of a message according to the unique
group ids. The first group runs consensus to decide on the delivery of the mes-
sage and then hands it over to the next group, and so on. Thus, the latency of a
message depends on the number of destination groups.

Most previous work on atomic multicast had a theoretical focus. One notable
exception is the Spread toolkit [33]. Spread is a configurable group communi-
cation system, which supports the abstraction of process groups. It relies on
interconnected daemons, essentially the components that handle the physical
communication in the system, to order messages. Participants connect to a dae-
mon to multicast and deliver messages. The abstraction of groups in Spread,
however, was not created for performance, but to simplify application design. In
Section 5.4 we experimentally compare Multi-Ring Paxos and Spread.

Skipping instances. Mencius is a protocol that implements state-machine repli-
cation in a wide-area network [27]. Mencius is a multi-leader protocol derived
from Paxos. The idea is to partition the sequence of consensus instances among
the leaders to amortize the load and better balance the bandwidth available
at the leaders. Similarly to Multi-Ring Paxos, leaders can account for load
imbalances by proposing skip instances of consensus. Differently from Multi-
Ring Paxos, Mencius does not implement the abstraction of groups; it is essen-
tially an atomic broadcast protocol.

Deterministic merge. Multi-Ring Paxos’s deterministic merge is conceptually
similar to the work proposed in [67], which totally orders message streams in a

75 5.4 Experimental evaluation

widely distributed publish-subscribe system. Differently from Multi-Ring Paxos
merge scheme, the mechanism proposed in [67] uses approximately synchro-
nized clocks to estimate the expected message rates of all publishers and then
merges messages throughout the network in the same way.

5.4 Experimental evaluation

In this section, we briefly describe some implementation details and then evalu-
ate our protocol with respect to the following aspects:

• Scalability of Multi-Ring Paxos. As we argued before, performance of
an atomic broadcast protocol does not scale with the number of its par-
ticipants. The aim of this experiment is to compare the scalability of our
proposed solution, Multi-Ring Paxos, with several other protocols (Sec-
tion 5.4.3).

• Impact of ∆, M , and λ on performance. Rings in Multi-Ring Paxos may
be imbalanced with respect to client load. Therefore, in certain intervals
(∆) the coordinator of each ring skips some of its instances—given that its
ring is under-loaded based on a pre-specified global parameter (λ). This
is important since a slow ring should not prevent a learner from delivering
messages from other rings. We recall that a learner uses a deterministic
merge strategy to deliver M instances from each ring in a round-robin
mode. We perform three experiments to investigate the effects of ∆, M ,
and λ on the performance of a learner who subscribes to more than one
ring (Sections 5.4.4, 5.4.5, and 5.4.6).

• Impact of discontinued communication on performance. Learners can
choose to subscribe to more than one ring. This experiment is performed
to investigate the effect of ring failures or the effect of interrupted com-
munication with rings on the performance of a learner that subscribes to
multiple rings (Section 5.4.7).

5.4.1 Hardware settings

We ran the experiments in a cluster of Dell SC1435 servers equipped with 2
dual-core AMD-Opteron 2.0 GHz CPUs and 4GB of main memory. The servers
are interconnected through an HP ProCurve2900-48G Gigabit switch whereas
the round trip time is 0.1 mili second.

76 5.4 Experimental evaluation

5.4.2 Implementation and experimental setup

We have implemented a prototype of Multi-Ring Paxos based on an open-source
version of M-Ring Paxos [58]. Furthermore, we differentiate between In-memory
and Recoverable M-Ring Paxos, where in the latter acceptors persist their data
on disk.

In all the experiments, unless specified otherwise, λ, ∆, and M are set to
9000 consensus instances per interval, 1 millisecond, and 1 message, respec-
tively and the size of application-level messages is 8 Kbytes. In all the experi-
ments each group has a dedicated ring. Recoverable Multi-Ring Paxos uses asyn-
chronous disk writes. Thus, in the experiments both In-memory and Recoverable
Multi-Ring Paxos assume that a majority of acceptors is operational during each
consensus instance. To remove peaks in latency due to flushes to disk, we re-
port the average latency after discarding the 5% highest values. Whenever a
disk write happens, clients experience high values for latency. Thus eliminating
5% of the highest values allows to represent the latency that a client experi-
ences most frequently. When analyzing throughput, we report the aggregated
throughput of the system, which combines the throughput of all the groups.

5.4.3 Scalability of Multi-Ring Paxos

Depending on the number of learners and groups, there can be many config-
urations of Multi-Ring Paxos. Two extreme cases are when (1) each learner
subscribes to only one group and (2) each learner subscribes to all the groups.
The first case assesses the scalability of Multi-Ring Paxos since throughput is not
limited by the incoming bandwidth of a learner. The second case assesses the
ability of learners to combine messages from multiple rings.

(1) Best case. When each learner subscribes to only one group (see Figure 5.4),
the throughput of the learner is limited by the maximum throughput of the ring
in charge of the learner’s group. This is because before the learner uses up its lo-
cal resources, the coordinator of each ring in In-memory Multi-Ring Paxos satu-
rates its CPU and the acceptors in Recoverable Multi-Ring Paxos reach their max-
imum disk bandwidth (see also Figure 5.1). The throughput of both In-memory
and Recoverable Multi-Ring Paxos protocols grows linearly with the number of
partitions, peaking at more than 5 Gbps with In-memory Multi-Ring Paxos and
about 3 Gbps with Recoverable Multi-Ring Paxos. As a reference, we also present
the performance of Spread, M-Ring Paxos, and LCR. Spread implements the ab-
straction of groups but does not scale with the number of groups. LCR [12] is

77 5.4 Experimental evaluation

0

1

2

3

4

5

6

1 2 4 8 1 2 4 8 2 4 816 1 2 4 8 1 2 4 8

T
hr

ou
gh

pu
t (

G
bp

s)

Spread
Ring Paxos

LCR
 DISK M-RP

RAM M-RP

 0

 5

 10

 15

 20

 25

1 2 4 8 1 2 4 8 2 4 816 1 2 4 8 1 2 4 8
L

at
en

cy
 (

m
se

c)

0

20

40

60

80

100

1 2 4 8 1 2 4 8 2 4 816 1 2 4 8 1 2 4 8

T
hr

ou
gh

pu
t (

K
m

sg
/s

)

 0

 20

 40

 60

 80

 100

1 2 4 8 1 2 4 8 2 4 816 1 2 4 8 1 2 4 8

C
PU

 (
%

)

Figure 5.4. Performance of In-memory Multi-Ring Paxos (RAM M-RP) and
Recoverable Multi-Ring Paxos (DISK M-RP), compared with Spread, M-
Ring Paxos and LCR; the x-axis shows number of partitions for RAM M-RP,
DISK M-RP and M-Ring Paxos; number of daemons/groups for Spread; and
number of nodes in the ring of LCR; there are 2 acceptors per partition in RAM
M-RP and DISK M-RP, and a fixed number of 2 acceptors in M-Ring Paxos;
the CPU graph shows the CPU of the most-loaded node, which for RAMM-RP,
DISK M-RP and M-Ring Paxos is the coordinator; the latency graph shows
the corresponding latencies.

78 5.4 Experimental evaluation

 0

 200

 400

 600

 800

 1000

 1200

1 2 4 8 1 2 4 8

T
hr

ou
gh

pu
t (

M
bp

s)

DISK M-RP

RAM M-RP

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 4 8 1 2 4 8

L
at

en
cy

 (
m

se
c)

0

2

4

6

8

10

12

14

16

1 2 4 8 1 2 4 8

T
hr

ou
gh

pu
t(

K
m

sg
/s

)

 0

 20

 40

 60

 80

 100

1 2 4 8 1 2 4 8

C
PU

 (
%

)

Figure 5.5. Performance of Multi-Ring Paxos when each learner subscribes to
all the groups.

a high performance atomic broadcast protocol and does not implement groups,
we have varied the size of the ring to measure its throughput. The packet size
used for Spread and LCR are 16 and 32 Kbytes respectively.

(2) Worst case. Figure 5.5 shows the performance of Multi-Ring Paxos when
learners subscribe to all the groups. For both Multi-Ring Paxos protocols, with
one ring the bottleneck is the single M-Ring Paxos instance. As groups (i.e.,
rings) are added, the aggregate throughput of the various rings eventually satu-
rates the learners’ incoming links. To reach the maximum capacity of a learner,
In-memory Multi-Ring Paxos needs two rings and Recoverable Multi-Ring Paxos
needs three rings. This experiment illustrates how Multi-Ring Paxos can combine
multiple “slow” atomic broadcast protocols (e.g., due to disk writes) to build a
much faster protocol.

79 5.4 Experimental evaluation

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000

L
at

en
cy

 (
m

se
c)

Throughput (Mbps)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

C
PU

 (
%

)

Throughput (Mbps)

∆ = 1 msec
∆ = 10 msec
∆ = 100 msec

Figure 5.6. The impact of ∆ on Multi-Ring Paxos. Latency versus throughput
(left) and CPU at the coordinator of one of the rings (right).

5.4.4 Impact of ∆ on Multi-Ring Paxos

Recalling from Section 5.2.2, ∆ is the interval in which the coordinator of a
ring samples the number of executed consensus instances to then check for the
need of skip instances. The value assigned to ∆ should be big enough to avoid
unnecessary samplings, and small enough to allow quick corrections in the rate
of the ring. To investigate the effects of ∆, we have deployed In-memory Multi-
Ring Paxos with two rings and one learner that subscribes to both rings. The
load on both rings is equal and remains constant during the experiment.

As the left-most graph of Figure 5.6 suggests, a large ∆ results in higher
latency at the learner. Notice that even though each ring has the same rate,
small variations in the transmission and handling of messages can lead to the
buffering of messages at the learners and increased latency. For large values of
∆ (e.g., 100 milliseconds), latency decreases with the throughput. This happens
since fewer skip instances are needed and thus the negative effect of a large
∆ on the latency diminishes. Unlike latency, the maximum throughput is not
affected by ∆, as all configurations reach approximately the same value. This
implies that to attain both low latency and high throughput, small values of ∆
are preferred.

The right-most graph of Figure 5.6 shows the processing cost of ∆ measured
as the CPU usage at one of the coordinators. As it is seen, small values of∆ have
no additional processing cost. To conclude, we suggest choosing small values for
∆ as it results in better performance with no additional cost.

80 5.4 Experimental evaluation

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000

L
at

en
cy

 (
m

se
c)

Throughput (Mbps)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

C
PU

 (
%

)

Throughput (Mbps)

M = 1
M = 10

M = 100

Figure 5.7. The impact of M on Multi-Ring Paxos. Latency versus throughput
(left) and corresponding CPU usage in the learner (right).

5.4.5 Impact of M on Multi-Ring Paxos

In this section we evaluate the effect of M in the execution. We recall that M
is the number of consensus instances that a learner handles at a time from each
ring it expects messages from. In these experiments, we have deployed an In-
memory Multi-Ring Paxos with two rings, and one learner that receives messages
from both of the rings. As the left graph of Figure 5.7 implies, by increasing the
value of M , the average latency increases. The reason is that while M instances
of a ring are handled in the learner, instances of other rings are buffered and
delayed. As M increases, this delay increases and so does the average latency.
As it is evident in Figure 5.7 (right side), M has no effect on the throughput and
CPU usage of the learner. Therefore, choosing a smaller value for M to keep the
latency low has no additional costs.

5.4.6 Impact of λ on Multi-Ring Paxos
If a learner subscribes to several groups, each with a different message rate,
slow groups will delay the delivery of messages multicast to faster groups, and
therefore negatively affect the latency and overall throughput observed by the
learners. Multi-Ring Paxos copes with these issues by skipping consensus in-
stances and by carefully setting λ, the maximum expected consensus rate of any
group. In the following, we investigate the effect of λ on the system. We have
conducted three sets of experiments using In-memory Multi-Ring Paxos with
two rings and one learner. In the first experiment (see Figure 5.8) proposers
multicast messages to the two groups at a fixed and equal rate. In the second

81 5.4 Experimental evaluation

 0

 300

 600

 900

 0 20 40 60 80 100
M

ul
tic

as
t r

at
e

(M
bp

s)

Ring 1 Ring 2 Total

 0

 10

 20

 30

 0 20 40 60 80 100

L
at

en
cy

 (
m

se
c)

Time (seconds)

λ = 0

< 10% < 20% < 10% < 20% < 50%

 0

 10

 20

 30

 0 20 40 60 80 100

L
at

en
cy

 (
m

se
c) λ = 1000

< 10% < 10% < 20% < 30% < 50%

 0

 10

 20

 30

 0 20 40 60 80 100

L
at

en
cy

 (
m

se
c)

Time (seconds)

λ = 1000

< 10% < 10% < 20% < 30% < 50%

λ = 5000

< 10% < 10% < 20% < 30% < 50%

Figure 5.8. The impact of λ when the rates of the rings are constant and equal
(percentages show CPU load at ring coordinators).

82 5.4 Experimental evaluation

 0

 250

 500

 750

 1000

 0 20 40 60 80 100
M

ul
tic

as
t r

at
e

(M
bp

s)

Ring 1 Ring 2 Total

 0

 10

 20

 30

 40

 0 20 40 60 80 100

L
at

en
cy

 (
m

se
c)

Time (seconds)

λ = 1000

< 10%

 0

 10

 20

 30

 40

 0 20 40 60 80 100

L
at

en
cy

 (
m

se
c) λ = 5000

< 10% < 30% < 30% < 40%

 0

 10

 20

 30

 40

 0 20 40 60 80 100

L
at

en
cy

 (
m

se
c)

Time (seconds)

λ = 5000

< 10% < 30% < 30% < 40%

λ = 9000

< 10% < 20% < 40% < 40% < 70%

Figure 5.9. The impact of λ when the rates of the rings are constant and one
is twice the other (percentages show CPU load at ring coordinators).

83 5.4 Experimental evaluation

 0

 250

 500

 750

 1000

 0 20 40 60 80 100
M

ul
tic

as
t r

at
e

(M
bp

s)

Ring 1 Ring 2 Total

 0

 10

 20

 30

 40

 0 20 40 60 80 100

L
at

en
cy

 (
m

se
c)

Time (seconds)

λ = 5000

< 10% < 10% < 20% < 30%

 0

 10

 20

 30

 40

 0 20 40 60 80 100

L
at

en
cy

 (
m

se
c) λ = 9000

< 10% < 10% < 20% < 30%

 0

 10

 20

 30

 40

 0 20 40 60 80 100

L
at

en
cy

 (
m

se
c)

Time (seconds)

λ = 9000

< 10% < 10% < 20% < 30%

λ = 12000

< 10% < 10% < 20% < 30% < 70%

Figure 5.10. The impact of λ when the rates vary over time and on average
one is twice the other (percentages show CPU load at ring coordinators).

84 5.4 Experimental evaluation

experiment (see Figure 5.9) the ratio of multicast messages to one of the groups
is twice the other, though the multicast rate is constant in both groups through-
out the execution. In the last experiment (see Figure 5.10), not only the ratio of
multicast messages to one of the groups is twice the other, but their submission
rates oscillates over the time such that the average is the same as in the previous
experiment. In all the cases, we increase the multicast rate every 20 seconds. In
all the figures, the top left graph shows the individual multicast rate per group
and the total multicast rate in the system.

In Figure 5.8, we initially set λ to 0 (i.e., no mechanism to skip consensus
instances). Even though the group rates are the same, even under low rates the
traffic from the rings gets “out-of-sync” at the learner and messages have to be
buffered, a phenomenon that the learner does not recover from. With λ equal
to 1000, latency remains stable with higher loads, but the problem still exists at
very high load. With λ set to 5000 the problem is solved. Figure 5.9 illustrates
the problem when the learner’s buffer overflows (i.e., λ= 1000 after 20 seconds
and λ = 5000 after 80 seconds). A buffer overflow brings the learner to a halt
since it cannot deliver buffered messages and new messages keep arriving. A
large value of λ is enough to handle the most extreme loads in this experiment.
Figure 5.10 shows a similar situation, which is only solved when λ is set to
12000. Skipping up to 12000 consensus instances in an interval of one second,
where each instance decides on messages of 8 kB, corresponds to “skipping" up
to 750 Mb of data per second, approximately the maximum throughput achieved
by a ring. We recall that all such instances are skipped using a single consensus
execution.

 0

 200

 400

 600

 800

 1000

10 20 30 40

R
ec

ei
vi

ng
 th

ro
ug

hp
ut

 (
M

bp
s)

Time (seconds)

ring 1
ring 2

total

 0

 200

 400

 600

 800

 1000

10 20 30 40

D
el

iv
er

y
th

ro
ug

hp
ut

 (
M

bp
s)

Time (seconds)

4250

Figure 5.11. The impact of a coordinator failure in a learner of In-memory
Multi-Ring Paxos.

85 5.4 Experimental evaluation

5.4.7 Impact of discontinued communication

We now investigate the effect of discontinued communication (e.g., due to a co-
ordinator failure) in Multi-Ring Paxos. In this experiment we deploy two rings
and a learner that subscribes to these rings. Each ring generates messages with
the same constant rate of approximately 4000 messages per second in average.
In steady state, the learner receives and delivers approximately 500 Mbps of data
(see Figure 5.11). After 20 seconds we stop the coordinator of ring 1, bringing
the receiving throughout from this ring at the learner to zero. Although mes-
sages still arrive at the learner from ring 2, the learner buffers such messages as
it cannot execute its deterministic merge procedure. The result is that the deliv-
ery throughput at the learner drops to zero (right-most graph of Figure 5.11).
Notice that after ring 1 stops, the incoming throughput from ring 2 decreases,
as the learner does not acknowledge the delivery of messages from group 2 to
the node that multicasts to ring 2 and this one slows down its sending rate.

Three seconds later the execution at ring 1 proceeds. We forced a restart after
three seconds to emphasize the effects of the discontinuity of traffic. In reality,
it takes much less time to detect the failure of a coordinator and replace it with
an operational acceptor. When the coordinator of the first ring starts, it notices
that no consensus instances were decided in the last intervals and proposes to
skip multiple consensus instances. As a result, the learner delivers all messages
it has enqueued, momentarily leading to a high peak in the delivery throughput.
Then the execution proceeds as normal.

5.4.8 Conclusions from the experiments

The following conclusions can be drawn from our experiments:

• Performance of Multi-Ring Paxos scales as new rings are added to the en-
semble. Therefore by using Multi-Ring Paxos the performance of the repli-
cated service will always be determined by the number of requests the
service is capable of processing rather than the number of requests the
ordering layer can order.

• Although Multi-Ring Paxos uses a few configuration parameters to coor-
dinate the rings, assigning proper values to these parameters does not
impose extra processing costs on the system.

• In the presence of failures, given that the failed rings can be replaced in
a reasonable time, learners are not subject to buffer overflow that could
otherwise paralyze their delivery.

86 5.5 Conclusion

5.5 Conclusion

In this chapter we revisited the scalability of atomic broadcast protocols and pro-
posed the Multi-Ring Paxos protocol that implements atomic multicast. While
atomic broadcast induces a total order on the delivery of messages, atomic mul-
ticast induces a partial order. Differently from previous atomic multicast algo-
rithms, Multi-Ring Paxos exploits the abstraction of groups in a different way:
in Multi-Ring Paxos, messages are addressed to a single group only, but pro-
cesses can subscribe to multiple groups. In all atomic multicast algorithms we
are aware of, messages are multicast to one or more groups, and often groups
cannot intersect.

The results of our experiments are promising: by composing eight instances
of In-memory Ring Paxos, for example, we can reach an aggregated throughput
of more than 5 Gbps, eight times the throughput of a single Ring Paxos instance.
Recoverable Ring Paxos has similar scalability, linear in the number of Ring Paxos
instances.

Chapter 6

Replicating Parallel Applications with
State-Machine Replication

The advent of multi-core processors and their wide availability has revo-
lutionized systems programming and application development strategies. To
increase their capacity in serving clients and to benefit from the new hardware,
service providers have to parallelize their services. Similarly to their sequen-
tial predecessors, however, parallel services must also be continually available
to the clients, despite failures. State-machine replication is a well-established
strategy to make services fault tolerant. In this chapter, we will look at the
capability of the state-machine approach in replicating parallel services. On
the one hand, parallel applications require concurrent processing of requests
to provide high performance and on the other hand, state-machine replication
requires sequential processing of requests to preserve consistency. We will con-
sider the possibility of uniting these two apparently incompatible models and
will propose a scalable solution to achieve it.

6.1 Problem statement

Replicas in state-machine replication execute an ordered sequence of client re-
quests sequentially and deterministically. Sequential execution of requests is
an important means for ensuring strong consistency promised by state-machine
replication. Multithreaded applications on the other hand, allow multiple threads
to concurrently process client requests. Concurrent execution of requests is im-
portant from a performance perspective, in particular when the servers have ac-
cess to multi-core processors. Replicating parallel applications by state-machine
replication is not straightforward due to their incompatible execution models.

87

88 6.2 A Survey on Parallel State-Machine Replication

The problem under study in this chapter is to modify state-machine replication
to make its integration with parallel services a reality, while preserving the high
performance of multithreaded applications and the strong consistency guaran-
tees of state-machine replication.

It has been observed earlier that replicas in state-machine replication can
relax the order among the independent commands and execute them concur-
rently [68]. Two commands are independent if they access different variables
or they only read the values of the common variables. Two commands are de-
pendent if they access at least one common variable, v, and at least one of the
commands modifies the value of v. As an example, consider a service composed
of three objects x , y , and z and assume commands Cx , Cy , Cz, Cx y , where the in-
dices indicate the objects accessed and modified by the commands. Commands
Cx , Cy , and Cz access disjoint objects. Thus, they are independent and can be ex-
ecuted in parallel at each replica. Command Cx y depends on commands Cx and
Cy and must be serialized with Cx and Cy . Cx y can be executed in parallel with
Cz, however. Several techniques have built on the command interdependencies
to introduce parallelism in the execution of commands on replicas [69; 70].
In the next sections, we review these techniques and by identifying their main
shortcomings we propose a novel and high performance approach to implement-
ing parallelism in state-machine replication.

6.1.1 Outline

The rest of this chapter is organized as follows: In Section 6.2 we review parallel
approaches to state-machine replication. In Section 6.3 we present our model, P-
SMR, and discuss its algorithmic details. In Section 6.5 we empirically compare
several techniques used in implementing parallel services. Finally in Section 6.6
we conclude this chapter.

6.2 A Survey on Parallel State-Machine Replication

In this section, we review typical architectures for client-server communications
and survey several techniques that have adapted state-machine replication to
multi-core architectures.

89 6.2 A Survey on Parallel State-Machine Replication

6.2.1 Non-replicated setup

A typical way for clients to interact with a stand-alone (non-replicated) server is
by means of remote procedure invocations [71; 72]. Clients access the service
by invoking service commands with the appropriate parameters. Client proxies
intercept client invocations and turn them into requests that include a com-
mand identifier and the marshaled parameters. Requests are delivered by the
server proxies, which re-assemble invocations and issue them against the local
service. Similarly to remote procedure calls, the client and client proxy (respec-
tively, server and server proxy) can be implemented as a single process, sharing
a common address space. The command’s response follows the reverse path to
the client using one-to-one communication. As depicted in Figure 7.1 (a), in
a non-replicated service (i) client requests are communicated to the server di-
rectly, without passing through an agreement layer,1 and (ii) execution of client
requests at the server can be multithreaded.

6.2.2 Sequential State-Machine Replication (sequential SMR)

As repeatedly seen in the previous chapters, state-machine replication provides
clients with the illusion of a non-replicated service, that is, replication is trans-
parent to the clients. A command issued by a client is handled by the client
proxy, which multicasts the command to all replicas and waits for the response
from one replica (see Figure 7.1 (b)). Before requests can be executed on the
replicas, they are ordered by the agreement layer. Since replicas execute com-
mands deterministically and in the same order, every replica produces the same
response after the execution of the same command.

Differently from a non-replicated service, clients remain oblivious to failures,
as the service remains operational despite the failure of some of its replicas. In
failure-free scenarios, however, a non-replicated service is often more efficient
than a replicated service since in the replicated case requests reach the servers
through an agreement layer and execution is single-threaded.

6.2.3 Pipelined State-Machine Replication (pipelined SMR)

Having replicas execute commands sequentially by a single thread does not im-
ply that the whole replica’s logic must be single-threaded; multiple threads on a

1The agreement layer exists in replicated schemes and often encapsulates a communication
primitive such as atomic broadcast or atomic multicast, and provides important guarantees to
the replication model.

90 6.2 A Survey on Parallel State-Machine Replication

Agreement and
VerificationAgreement and

Verification

Proxy

Proxy

ProxyProxy

AgreementAgreementAgreementAgreementAgreementAgreementAgreementAgreement

Proxy

Agreement

Scheduler

Replica

Application

Agreement

Replica

Service
Execution

Replica

Proxy

(b) Sequential SMR (d) SDPE (f) PDPE

Agreement

Service
Execution

Service
Execution

Server

(a) non-replicated

Application

Proxy

Application

Proxy

Application

Proxy

Proxy Proxy

Proxy

Proxy

Service
Execution

Replica

(c) Pipelined SMR

Agreement

Service
Execution

Application

Proxy

Proxy

Application

Agreement and
Verification

Proxy

(e) EV

Mixer

Replica

Service
Execution

Proxy

RequestResponse

Client Client Client Client Client Client

Figure 6.1. Architecture differences among (a) non-replicated service, (b) se-
quential state-machine-replication, (c) pipelined state-machine replication, (d)
sequential delivery-parallel execution (SDPE), (e) execute-verify, and (f) paral-
lel delivery-parallel execution. Agreement layer and replicas are fault-tolerant.

replica can cooperatively handle the requests. For example, one thread receives
the requests, another executes the requests, and a third thread responds to the
clients. In [73], the authors propose a pipelined architecture to exploit the pro-
cessing power of multi-core servers. The agreement layer (atomic broadcast)
and the replicas are organized as a collection of modules connected through
shared message queues where messages are totally ordered (see Figure 7.1 (c)).
Although pipelining improves the throughput of state-machine replication, there
is always only one thread sequentially executing the commands.

6.2.4 Sequential Delivery-Parallel Execution (SDPE)

Replicas in sequential state-machine replication execute all the commands se-
quentially by adhering to the order decided by the agreement layer. As we men-
tioned in Section 6.1, a replica can execute commands that access disjoint vari-
ables (independent commands) concurrently without jeopardizing consistency.

To benefit from command inter-dependencies and parallelize execution, some
proposals add a deterministic scheduler (also known as parallelizer) to the repli-
cas [70]. The scheduler delivers all the commands ordered through the agree-
ment layer, examines command dependencies, and distributes them among a
pool of worker threads for execution (see Figure 7.1 (d)). To distribute the

91 6.2 A Survey on Parallel State-Machine Replication

commands among threads, besides considering dependencies, the scheduler can
also balance the load among threads. Threads that are less occupied can be
given more commands to execute if their execution does not conflict with the
commands that are being executed by other threads.

Although thanks to the scheduler the execution is parallelized, the sched-
uler delivers and dispatches commands sequentially, which restrains the overall
performance from scaling. For this reason, we identify these techniques as Se-
quential Delivery-Parallel Execution (SDPE). Adapting a sequential policy for
delivery has its roots in the requirements of SMR where replicas deliver one and
only one stream of ordered commands. Synchronization between the scheduler
and the worker threads for dispatching commands is yet another performance
overhead of this model.2

6.2.5 Execute-Verify (EV)

One of the shortcomings of the SDPE model is the agreement layer, where only
one stream of ordered requests is generated. Eve [69] addresses this issue by
first executing the requests on replicas and then verifying the correctness of the
states through a verification stage, hence named as Execute-Verify (EV) (see Fig-
ure 7.1 (e)). Eve distinguishes one of the replicas as the primary to which clients
send their requests. The primary replica organizes the requests into batches and
assigns to each batch a unique sequence number. The primary then transmits
the batched requests to the other replicas. All the replicas, including the pri-
mary, are equipped with a deterministic mixer. Using the application semantics,
the mixer converts a batch of requests in to a set of parallel batches such that
all the requests in a parallel batch can be executed in parallel. Once the exe-
cution of a batch terminates, replicas calculate a token based on their current
state and send their token to the verification stage. The verification stage checks
the equality of the tokens. If the tokens are equal, replicas commit the requests
and respond to the clients. Otherwise, replicas must roll back the execution and
re-execute the requests in the order that was determined by the primary when it
was batching the requests. The verification stage also adds to Eve the advantage
of detecting concurrency bugs [69].

Similar to the scheduler in the SDPE model, the mixer in the Eve may restrict
the execution performance since the content of all the requests must be scruti-
nized by the mixer before they can be executed. Moreover, the primary replica
might be overwhelmed by the amount of requests it receives. The verification

2We also refer to this model as semi-parallel SMR, or sP-SMR for short.

92 6.2 A Survey on Parallel State-Machine Replication

Sequential SMR Pipelined SMR SDPE EV PDPE

Single coordination point Yes Yes Yes Yes No
Scalability None Limited Limited Limited Unlimited
Order on commands Total Total Total Total Partial
Load balancing None None Yes Yes Approximative
Application semantics No No Yes Yes Yes
Dependency tracking No No Server-side Server-side Client-side
Execution strategy Conservative Conservative Conservative Optimistic Conservative
Rollback No No No Yes No

Table 6.1. A comparison of parallel approaches to state-machine replication.

stage is another synchronization point that besides the mixer and the primary
replica can threaten the scalability of this approach.

6.2.6 Parallel Delivery-Parallel Execution (PDPE)

Motivated by the shortcomings of the previous models, In this Chapter we pro-
pose P-SMR to parallelize command delivery in addition to command execution;
we categorize this model as Parallel Delivery-Parallel Execution (PDPE). P-SMR
has no scheduler and several threads on replicas concurrently deliver and ex-
ecute multiple disjoint streams of ordered commands. To preserve correctness,
commands in each stream must be independent from the commands in any other
stream. To ensure independency among the concurrently delivered streams, un-
like previous approaches in which command dependencies are determined at the
replicas, in P-SMR command dependencies are determined by the clients, before
commands are ordered. Commands in P-SMR are ordered by an atomic multi-
cast library and clients multicast independent commands to different multicast
groups. P-SMR implements a fully parallel model in which independent com-
mands are ordered, delivered, and executed in parallel. Dependent commands
are ordered through dedicated multicast groups and executed sequentially (see
Figure 7.1 (f)). We will thoroughly describe P-SMR in Section 6.3.

6.2.7 Summary

Table 6.1 shows the main differences among the techniques we have discussed.
Both SDPE and EV have centralized entities that can limit scalability: the sched-
uler and the agreement layer in SPDE; the mixer, the primary replica, and the
verification layer in EV. PDPE does not include central roles in its design. More-
over, differently from other approaches, PDPE orders requests using an atomic
multicast, as opposed to an atomic broadcast.

93 6.3 Parallel State-Machine Replication (P-SMR)

The parallelizer in SDPE and the mixer in EV also perform load balancing on
the server side. Although in a limited way, clients in PDPE can try to distribute
the load evenly among server threads (e.g., by multicasting read commands to
different groups).

SPDE, EV, and PDPE rely on tracking command dependencies to parallelize
execution on replicas. In SDPE and EV, command dependencies are checked on
the server side. In PDPE, however, it is the clients that track dependencies and
submit commands to the appropriate multicast groups. Unlike other techniques,
due to its optimistic nature, EV may be subject to rollbacks.

Having highlighted its main differences with existing techniques, in the next
section we describe our proposed approach in more detail.

6.3 Parallel State-Machine Replication (P-SMR)

In this section we present P-SMR, a new approach to parallelizing state-machine
replication. We first discuss the main goals in P-SMR’s design and then present
its architecture and algorithmic details.

6.3.1 Design goals

P-SMR’s design is guided by two main goals:

(1) Preserving replication transparency. In the state-machine replication ar-
chitecture, replication is transparent for clients: details about communicating
with multiple replicas are hidden from the clients and handled by the client
proxies and the multicast library (see Figure 7.1 b). Similarly to SMR, P-SMR
should not expose replication details to the client application.

(2) Optimizing performance for the common case. P-SMR targets workloads
dominated by independent commands, when concurrency is possible. Services
whose state is mostly read (e.g., name services) or can be partitioned so that
most commands fall in one partition or another but rarely in both (e.g., file sys-
tems) are the most suitable services to benefit from P-SMR.

In the following sections, we elaborate on these design principles further.

94 6.3 Parallel State-Machine Replication (P-SMR)

6.3.2 Client and server organization

P-SMR follows the transparent architecture of state-machine replication, where
client and server proxies are created based on the following metrics:

(a) the signature of each service command, including the command’s identifier
and a description of the command’s input and output parameters together
with the types of these parameters, and

(b) the command dependencies (C-Dep), specifying which commands depend on
each other.

Therefore, in addition to providing the server’s code, the service designer
must also provide the command signatures and the C-Dep.3 At the clients, com-
mand signatures are used by the client proxy to create a request from client
invocation and return a response to the client. At the servers, command signa-
tures are used by the server proxy to turn delivered requests into local server
invocations and assemble the response of commands.

C-Dep is used to automate the computation of the Command-to-Groups (C-
G) function, used by both the client proxy to determine the multicast groups
a request must be multicast to, and also by the server proxy to coordinate the
local execution of dependent commands. Similarly to SMR, a client application
in P-SMR will be oblivious to replication. Moreover, since coordination among
worker threads, in the case of dependent commands, is handled by the server
proxy, a service designed for state-machine replication will work unchanged in
P-SMR.

In the rest of this section we define C-Dep, and C-G function together with
MPL, a parameter of the system for specifying the multiprogramming level.

C-Dep: defining command dependencies. In our prototype, C-Dep encodes
two levels of dependency information:

(a) commands that depend on each other, regardless their parameters (e.g.,
commands to create and delete objects), and

(b) commands that may be dependent, according to their parameters (e.g., two
updates on the same object).

3Although the C-Dep can be automatically generated from the signatures and the server’s
code, in our prototype C-Deps were created manually.

95 6.3 Parallel State-Machine Replication (P-SMR)

C-Dep includes all such interdependencies; if no entry exists in C-Dep as-
serting the dependency of two commands, they are independent. Although our
encoding is simple, more complex schemes could be used (e.g., [70]). In Sec-
tion 6.5 we show how this scheme can represent interdependencies in a key-
value store.

MPL: multiprogramming level. The multiprogramming level is a parameter of
the system that defines the number of worker threads at the servers. It can be
set, for example, based on the number of processing units (i.e., cores) at the
servers. In a configuration where MPL is set to k, we identify worker threads as
t1, ..., tk. P-SMR organizes threads in k multicast groups such that the i-th thread
of each replica, t i, belongs to group gi.

C-G: mapping commands to destination groups. The client proxy determines
the destination groups of a command using a Command-to-Group (C-G) func-
tion that maps the command id and its input parameters to a set of multicast
groups. The C-G is part of the client proxy and is created based on the MPL
and the C-Dep. Allowing independent commands to execute concurrently is
achieved by assigning them to different groups; ensuring proper synchroniza-
tion amounts to assigning at least one common group to any two dependent
commands. The amount of concurrency in a service depends on the interdepen-
dencies among the service’s commands. These interdependencies are defined
by the code that implements each command. In P-SMR the interdependencies
among commands are captured by the command dependencies list (C-Dep) and
the command code that runs at the replicas. Therefore, a C-Dep that precisely
captures interdependencies will likely result in more concurrency at the replicas.
For example, consider a service with the following two commands:

• get_state(in: int x, out: char[] v), and

• set_state(in: int x, char[]v),

where x is an object identifier and v an object value. A simple C-Dep would
state that set_state depends on any other command, regardless the object ac-
cessed. Defining such a C-Dep requires inspecting commands get_state and
set_state and concluding that the first command reads the service’s state and
the second command modifies the service’s state. The C-G for this C-Dep assigns
a get_state command to a single group (randomly chosen between 1 and k, k
being the multiprogramming level) and a set_state command to all groups, as
shown next:

96 6.3 Parallel State-Machine Replication (P-SMR)

function C-G(cid)
switch (cid)

case get_state: return(random(1..k))
case set_state: return(ALL_GROUPS)

A more complex C-Dep identifies that set_state depends only on other com-
mands on the same object. In this case, the C-G can assign commands on the
same object to the same group and commands on different objets to different
groups:

function C-G(cid, x)
return((x mod k) + 1)

Besides client proxy, each thread on server proxy also uses C-G function to de-
termine the set of groups concerned by a delivered command. If commands are
assigned to different groups they can execute concurrently, even if they modify
the state of objects. Otherwise the execution of commands must be synchronized
among threads. Moreover, additional information, if available, can be used when
computing the C-G function. For example, objects that are commonly accessed
could be assigned to different groups, allowing increased concurrency.

6.3.3 Protocol design

P-SMR takes as input the command dependencies (C-Dep) of a service and the
desired multiprogramming level (MPL) at the replicas to define how indepen-
dent commands can be executed concurrently and dependent commands are
synchronized.

Basic principle. A client proxy executes command C by multicasting a request
with C to a set of destination groups, computed by the C-G function. Worker
threads at the server proxy deliver commands and invoke their execution against
the local server. The execution of a worker thread alternates between two
modes:

• The thread is in parallel mode when it delivers a command multicast to a
single group. Upon delivering C , thread t i executes C , sends C ’s response
to the client and waits for the next command.

• The thread is in synchronous mode when it delivers a command multi-
cast to multiple groups. Threads that deliver C , hereafter identified as τ,

97 6.3 Parallel State-Machine Replication (P-SMR)

t1

t2

t3

s

c2

c1
 Cx

 Cy

 Cx

 Cy

Independent commands Cx and Cy
execute concurrently

Dependent commands Cx and Cy
execute sequentially

Parallel execution mode Synchronous execution mode

Legend:
Multicast of a command

Response from execution

Signal between threads

Command execution

Cx, Cy Service commands

c1, c2 Client application/proxy

t1, t2, t3 Threads at server s

(a)

(a)

(b)

(b)

Figure 6.2. Two execution modes in P-SMR, parallel (left) and synchronous
(middle). For clarity, we show the execution of clients c1 and c2 against a single
server replica s with three worker threads, t1, t2 and t3.

synchronize using barriers: threads in τ send a signal to one designated
thread t i ∈ τ (signal (a) in Figure 6.2) and wait for a signal from t i; af-
ter t i receives the signals it executes C , sends C ’s response to the client,
and signals threads in τ to continue with the next command (signal (b) in
Figure 6.2).

6.3.4 P-SMR: algorithm in detail

To execute command C , invoked by an application client (line 1 in Algorithm 1),
the client proxy determines all groups γ involved in the command using the ser-
vice’s C-G function (line 2) and multicasts C and its input parameters to groups
in γ (line 3). The client proxy then waits for the first response from the replicas
(line 4), assigns the response received to the output parameters of C (line 5),
and returns to the application (line 6). Upon delivering C (line 8), thread t i

at a server first uses the C-G function to determine the set of groups concerned
by the command (line 9). If C was multicast to a single group, then t i contin-
ues in parallel mode: t i executes C (line 12) and returns the response to the
client (line 13). If C was multicast to multiple groups, then t i continues in syn-
chronous mode and determines the thread te, among C ’s destinations, that will
execute C (line 16). If t i is in charge of executing C (lines 18–23), it waits for
a signal from every other thread in C ’s destination set (lines 18–19), executes C
(line 20), sends the response to the client (line 21), and then signals all other
threads in C ’s destination set to continue their execution (lines 22–23). If t i is
not in charge of C ’s execution, it signals thread te (line 25) and waits for C ’s

98 6.4 Related Work

execution to complete (line 26).4

Algorithm 1: Parallel State-Machine Replication (P-SMR)

1: A client proxy c executes a call to command C with identifier cid and input and output
parameters as follows:

2: γ← C-G(cid, input) {γ is the set of groups involved in C}
3: multicast(γ, [cid, input])
4: wait for first response
5: output← response
6: return

7: Thread t i at a server proxy executes a command as follows:
8: upon deliver([cid, input]), multicast by c
9: γ← C-G(cid, input)

10: if γ is a singleton then
11: // Thread t i is in parallel mode
12: execute cid with input and output parameters
13: send response to c
14: else
15: // Thread t i is in synchronous mode
16: e← min{ j : g j ∈ γ} {pick a thread deterministically}
17: if i = e then
18: for each j 6= i such that g j ∈ γ
19: wait for signal from t j

20: execute cid with input and output parameters
21: send response to c
22: for each j 6= i such that g j ∈ γ
23: signal t j

24: else
25: signal te

26: wait for signal from te

6.4 Related Work

In Section 6.2 we have provided a thorough discussion on parallel state-machine
replication and reviewed the related work. In this section we review general-
purpose approaches that can be used to implement parallel replicas.

4For a proof of correctness see Appendix.

99 6.5 Experimental evaluation

General-purpose approaches. Allowing multiple threads to execute commands
concurrently may result in state and output inconsistencies if dependent com-
mands are scheduled differently in two or more replicas. In [74; 75; 76; 77] the
authors propose different approaches to enforcing deterministic multithreaded
execution of commands. These solutions impose performance overheads and
may require re-development of the service using new abstractions. Another so-
lution is to allow one of the multithreaded replicas to execute commands non-
deterministically and log the execution path, which will be later replayed by the
rest of the replicas. Logging and replaying have been mainly developed for de-
bugging and security rather than fault tolerance [78; 79; 80; 81; 82; 83; 84].
These approaches typically have high overhead due to logging and may suf-
fer from inaccurate replay, leading to differences among original and secondary
copies.

Using semantics to improve performance. Other works have proposed the use
of application semantics to improve the performance of state-machine replica-
tion (e.g., [85; 86; 87]). These are based on the assumption that if two com-
mands commute (e.g., incrementing a counter), then different replicas can exe-
cute them in different order and still reach the same final state. These works aim
at reducing the delay to deliver a command by avoiding an expensive ordering
protocol when possible.

6.5 Experimental evaluation

In this section, we first describe our implementations and outline several details
about the experimental setup. We then introduce a key-value store as an appli-
cation to compare P-SMR against SMR, sP-SMR, and two non-replicated single-
server architectures: (a) a scheduler-worker server that uses a scheduling policy
similar to servers in sP-SMR (hereafter, no-rep) and (b) a multithreaded server
that relies on locks to synchronize the execution, without a scheduler (BDB).
In no-rep and sP-SMR a scheduler at the server is responsible for scheduling
incoming commands for execution at worker threads.

We configure Berkeley DB version 5.3 (BDB) to use the in-memory B-tree ac-
cess method with transactions disabled and multithreading and locking enabled.
Differently from P-SMR and sP-SMR and no-rep, BDB uses locks to synchronize
the concurrent execution of commands. As a result, there is no scheduler be-
tween clients and server threads: each server thread receives requests through
a separate socket, executes them, and responds to clients. We compare all these

100 6.5 Experimental evaluation

strategies for the following aspects:

• Performance with independent-only workload. Parallel execution of
commands is only possible if commands are independent (i.e., they do not
have any variables in common or if they do, they only read the values
of the common variables). In Section 6.5.3 we perform an experiment
to compare the performance of all the aforementioned techniques under
workloads that are composed of independent-only commands and allow
maximum amount of parallel execution.

• Performance with dependent-only workload. To execute dependent
commands (i.e., commands that modify the values of the same variables),
each technique uses a mechanism to synchronize the access of the con-
current threads to the common variables. In Section 6.5.4 we perform an
experiment to both compare the performance of all the techniques with
workloads that are composed of dependent commands only and also to
implicitly compare the performance implications of various synchroniza-
tion methods.

• Performance with mixed workload. P-SMR performs best in workloads
dominated by independent commands. In the experiment of Section 6.5.5,
we seek to determine “P-SMR’s breakeven point”: the percentage of depen-
dent commands in the workload that make P-SMR neither better nor worse
than SMR.

• Scalability. It is important to determine the scalability of each server
model with the number of threads. To investigate this, in Section 6.5.6
we perform an experiment to evaluate the performance with an increasing
number of threads and to measure the amount each thread contributes to
the overall throughput.

• Load balancing. Due to the absence of a scheduler thread in P-SMR, it is
not subject to the overhead of sequential delivery and scheduling. On the
negative side, however, unlike sP-SMR, P-SMR has limited load balancing
and can not evenly distribute load across worker threads. We perform
an experiment in Section 6.5.7 to compare these two techniques under
skewed workloads.

101 6.5 Experimental evaluation

6.5.1 Hardware settings

We have performed all the experiments on a cluster with two types of nodes:
(a) HP SE1102 nodes equipped with two quad-core Intel Xeon L5420 proces-
sors running at 2.5 GHz and 8GB of main memory, and (b) Dell SC1435 nodes
equipped with two dual-core AMD Opteron processors running at 2.0 GHz and
4GB of main memory. The HP nodes are connected to an HP ProCurve Switch
2910al-48G gigabit network switch, and the Dell nodes are connected to an HP
ProCurve 2900-48G gigabit network switch. Each node is equipped with two
network interfaces. The switches are interconnected via a 20 Gbps link. The
nodes ran CentOS Linux 6.2 64-bit with kernel 2.6.32. Clients were deployed
on the Dell nodes and cceptors of Paxos and servers were deployed on the HP
nodes.

6.5.2 Implementation and experimental setup

Key-value store. Our in-memory key-value store implements a B+-tree where
each entry has an 8-byte integer key, used as the tree index, and an 8-byte value.
The store implements the following commands:

• insert(in: int k, char[] v, out: int err). An insert adds a new
entry with key k and value v to the tree and possibly returns an error code
(e.g., out of memory).

• delete(in: int k, out: int err). A delete removes the entry cor-
responding to k from the tree or returns an error code if the entry does not
exist.

• read(in: int k, out: char[] v, int err). A read returns the value
of k. An error code is returned if the key does not exist.

• update(in: int k, char[] v, out: int err). An update replaces
the current value of k with v. An error code is returned if the key does not
exist.

While a read does not result in any changes in the tree, an update changes
a single entry, the one corresponding to the provided key (if present). Inserts
and deletes may modify multiple entries, depending on the structure of the tree
when the command is executed (i.e., requiring partitioning and joining of tree
cells). We define the following dependencies between commands: inserts and

102 6.5 Experimental evaluation

deletes depend on all commands; an update on key k depends on other updates
on k, on reads on k, and on inserts and deletes.

To generate enough load to reach maximum performance, each client main-
tains a window of outstanding requests that can contain up to 50 commands.
The tree is initialized with 10 million keys on each replica and unless specified
otherwise, clients select the keys uniformly. Except for the no-rep and BDB tech-
niques, in which there is only one replica, the key-value store is fully replicated
on two replicas.

sP-SMR. We next review some implementation details of the sP-SMR model.
Server and client proxies in sP-SMR are similar to P-SMR except for the follow-
ing differences. First, at the server proxy, sP-SMR differentiates between two
types of threads: scheduler and worker. The scheduler thread sequentially de-
livers the commands and dispatches them among the worker threads. Worker
threads are the threads that execute the commands and respond to clients. In a
configuration where MPL is set to W , we identify worker threads as t1,..., tW and
the scheduler thread as ts. Second, sP-SMR uses an atomic broadcast primitive
rather than an atomic multicast primitive to order the requests and deliver them
to the replicas. Therefore, a client proxy does not need to map commands to
groups as in the P-SMR model. As a consequence, unlike P-SMR, client proxies
are oblivious to the command dependencies and the C-Dep structure. However,
C-Dep is used by the scheduler thread at the server proxy to parallelize command
execution.

Similar to P-SMR, sP-SMR takes as input the command dependencies (C-Dep)
of a service to decide on the concurrent execution of independent commands. A
client proxy executes command C by atomically broadcasting a request including
C to all replicas. The scheduler thread at the server proxy delivers commands
and detects their interdependencies to appropriately disseminate them among
the worker threads. Worker threads scan their queues and invoke the execution
of requests against the local server. The execution at the server proxy alternates
between two modes:

• The execution is in parallel mode when the scheduler thread delivers an
independent or a dependent command that does not require global syn-
chronization. Upon delivering C , the scheduler thread ts, selects a worker
thread tw, to execute C . The scheduler inserts C in tw ’s queue. tw executes
C , sends C ’s response to the client, and waits for the next command.

• The execution is in synchronous mode when the scheduler thread delivers a
dependent command that needs global synchronization. After delivering a

103 6.5 Experimental evaluation

dependent command C , the scheduler thread first waits for all the worker
threads to finish the execution of all the commands in their queues and
then selects a worker thread tw to execute the dependent command. All
the other worker threads remain idle while tw is executing C . The sched-
uler thread can deliver other requests meanwhile, but dispatches them
only after the execution of C is finished. Thread tw executes C , sends C ’s
response to the client, and signals the scheduler thread to continue with
the next command.

The scheduler thread shares with each worker thread a queue. Therefore,
independent of the workload, the insertion of the commands in the queues of
the worker threads requires some synchronization mechanism, such as locking,
to prevent anomalies that can happen due to the concurrent enqueueing and
dequeueing of the commands. Worker threads do not communicate with each
other and do not share any information.

Atomic multicast. For multicast library we use Multi-Ring Paxos protocol from
Chapter 5. As a reminder, Multi-Ring Paxos implements the abstraction of groups
by composing multiple parallel instances of M-Ring Paxos whereas each multi-
cast group is mapped to one or more M-Ring Paxos instances. A message can
be addressed to a single group only, and not to multiple groups. In our P-SMR
prototype, each thread t i belongs to two groups: one group, gi, to which no
other thread in the server belongs, and one group gall , to which every thread in
each server belongs. Threads deliver messages from multiple streams and use
the deterministic merge mechanism of Multi-Ring Paxos to ensure ordered deliv-
ery. This is enough to implement both C-G functions presented in Section 6.3.3.
Commands multicast to a group are batched by the group’s coordinator (i.e.,
the coordinator in the corresponding M-Ring Paxos instance) and order is estab-
lished on batches of commands. Each batch has a maximum size of 8 Kbytes.
The system was configured so that each M-Ring Paxos instance uses 3 acceptors
and can tolerate the failure of one acceptor. For sP-SMR and SMR techniques
that demand total ordering we also use Multi-Ring Paxos where all the repli-
cas subscribe to all the groups and the deterministic merge guarantees the total
order delivery.

6.5.3 Performance of independent commands

In this section we perform a set of experiments to compare all the techniques
with workloads that allow maximum parallelism (Figure 6.3). We use a work-

104 6.5 Experimental evaluation

0

500

1000

1500

2000

2500

3000

no-rep SMR sP-SMR P-SMR BDB

T
hr

ou
gh

pu
t (

K
cp

s)

1.22X
1X 1.14X

3.15X

0.2X

 0

 1

 2

 3

 4

 5

 6

 7

 8

no-rep SMR sP-SMR P-SMR BDB

A
vg

 la
te

nc
y

(m
se

c)

 0

 100

 200

 300

 400

 500

 600

 700

 800

no-rep SMR sP-SMR P-SMR BDB

C
PU

 (
%

)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 4 8 12 16 20

C
D

F

SMR

sP-SMR

P-SMR

Figure 6.3. Performance of independent commands; throughput in Kilo com-
mands executed per second (Kcps) (top-left); CPU usage (bottom-left); average
latency in milli seconds (top-right); CDF of latency (bottom-right).

load composed of read commands only. The values we report correspond to the
peak throughput of each technique and are obtained with 8 threads for P-SMR,
2 threads for sP-SMR and no-rep, 1 thread for SMR, and 6 threads for BDB. In
the case of norep and sP-SMR, the number of threads excludes the scheduler.

The throughput of P-SMR is about 3.15 and 2.75 times higher than SMR and
sP-SMR, respectively (Figure 6.3). The scheduler in sP-SMR and no-rep becomes
CPU-bound and caps performance. The throughput of SMR is limited by what a
single thread can achieve, whereas no-rep is multithreaded and achieves higher
throughput. The throughput of no-rep is slightly higher than sP-SMR as no-rep
does not rely on atomic multicast. BDB has the lowest throughput due to high
overhead with locking, reflected in the CPU usage. Latency of P-SMR is the
highest at peak throughput. Although not shown in the figure, under similar
throughput P-SMR has latency comparable to the other techniques. Latency of
no-rep is lower than all other techniques as it is not subject to the overhead

105 6.5 Experimental evaluation

0

250

500

750

1000

no-rep SMR sP-SMR P-SMR BDB

T
hr

ou
gh

pu
t (

K
cp

s)

0.32 X

1 X

0.28 X

0.5 X

0.12 X

 0

 1

 2

 3

 4

 5

 6

 7

 8

no-rep SMR sP-SMR P-SMR BDB

A
vg

 la
te

nc
y

(m
se

c)

 0

 100

 200

 300

 400

 500

 600

no-rep SMR sP-SMR P-SMR BDB

C
PU

 (
%

)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 4 8 12 16 20

C
D

F

SMR

sP-SMR

P-SMR

Figure 6.4. Performance of dependent commands; throughput in Kilo com-
mands executed per second (Kcps) (top-left); CPU usage (bottom-left); aver-
age latency in milliseconds (top-right); CDF of latency (bottom-right).

of multicast library. Latency of sP-SMR is affected by both the overhead of the
ordering and scheduling and is higher than the latency of no-rep.

6.5.4 Performance of dependent commands

In this experiment we study the performance of all the techniques under work-
loads that induce maximum synchronization among threads (Figure 6.4). To
this end, we determine the maximum throughput of the key-value store service
when commands are inserts and deletes. The values are obtained with 4 threads
for BDB and with 1 thread for all the other techniques. In case of norep and sP-
SMR the number of threads excludes the scheduler. These are the configurations
that correspond to the peak throughput of each technique (for the performance
of dependent commands under different number of threads see Section 6.5.6).
SMR is not subject to synchronization overhead, which allows it to reach the
highest throughput (Figure 6.4). Moreover, throughput in SMR remains con-

106 6.5 Experimental evaluation

0

250

500

750

1000

1250

1500

1750

 0.001 0.01 0.1 1 10

T
hr

ou
gh

pu
t (

K
cp

s)

Percentage of dependent commands

P-SMR
SMR

 0

 2

 4

 6

 8

 10

 0.001 0.01 0.1 1 10

L
at

en
cy

 (
m

se
c)

Percentage of dependent commands

Figure 6.5. Performance of mixed workloads (both independent and depen-
dent commands); throughput measured in Kilo commands executed per second
(Kcps) (left); the average latency measured in milliseconds (right); x-axis is in
log scale.

stant at about 842 Kcps, both with independent and dependent commands; in
BDB the throughput decreases from 140 Kcps to 105 Kcps. P-SMR’s latency is
higher than SMR’s and sP-SMR’s. The long tail in the CDF graphs suggests that
P-SMR’s latency is subject to more variation than SMR’s and sP-SMR’s.

6.5.5 Performance of mixed workloads

We now assess the performance of P-SMR under workloads with a mix of de-
pendent and independent commands (Figure 6.5). To this end, we measure the
maximum throughput of the key-value store service with workloads composed of
inserts, deletes, and reads. The x-axis shows the percentage of dependent com-
mands (inserts and deletes) with respect to all the commands in the workload.
P-SMR uses 8 worker threads in this experiment. We compare the performance
of P-SMR to SMR, the only approach that is not subject to synchronization over-
head and therefore has the highest performance under dependent commands.

SMR’s throughput remains constant with the mixed workload. This is ex-
pected since most of the cost to execute a read, insert, and delete operation
is related to traversing the tree (statistics gathering starts after the tree is ini-
tialized; thus, few inserts and deletes involve changes in multiple levels of the
tree). P-SMR’s throughput is above SMR’s up to about 10% of dependent com-
mands. The reduction in performance is due to synchronization overhead. P-
SMR’s latency decreases as the percentage of dependent commands increases.

107 6.5 Experimental evaluation

0

500

1000

1500

2000

2500

3000

0 1 2 4 6 8

T
ot

al
 th

ro
ug

hp
ut

 (
K

cp
s)

Number of threads

P-SMR
sP-SMR

no-rep
BDB

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 4 6 8

pe
r-

th
re

ad
no

rm
al

iz
ed

 th
ro

ug
hp

ut

Number of threads

0

125

250

375

500

625

0 1 2 4 6 8

T
ot

al
 th

ro
ug

hp
ut

 (
K

cp
s)

Number of threads

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 4 6 8

pe
r-

th
re

ad
no

rm
al

iz
ed

 th
ro

ug
hp

ut

Number of threads

Figure 6.6. The effect of the number of threads on the performance of indepen-
dent commands (top) and dependent commands (bottom); maximum through-
put in Kilo commands executed per second (Kcps) (left graphs); normalized
per-thread throughput (right graphs).

The decrease in latency corresponds to a reduction in throughput.

6.5.6 Scalability

In this experiment we assess the scalability of sP-SMR, P-SMR, no-rep, and BDB
with respect to the number of threads (Figure 6.6). We measure the maximum
throughput of the key-value store service while the number of threads changes
from one to eight when commands are independent (top graphs) and when de-
pendent (bottom graphs). In sP-SMR, the number of threads reflects the number
of worker threads excluding the scheduler. We report absolute values for the
peak throughput and also the normalized throughput of an individual thread.
If perfectly scalable, the throughput of each thread must remain constant as
worker threads are added.

108 6.5 Experimental evaluation

With independent commands only, the throughput of all the techniques, ex-
cept for BDB, compare equally with one thread. As threads are added, the
throughput of all the techniques, except for P-SMR, decreases. For sP-SMR and
no-rep this happens due to scheduling overhead at the scheduler. P-SMR has bet-
ter scalability than the other techniques (see top left graph). With dependent-
only commands, in all the approaches, except BDB, throughput decreases with
the number of worker threads. The throughput of BDB increases up to 4 threads
and then it also decreases.

6.5.7 Performance of skewed workloads

In this experiment, we compare the effect of skewed workloads on the perfor-
mance of P-SMR and sP-SMR (Figure 6.7). The workload is composed of 50%
updates and 50% reads against the key-value store. We evaluate the scalability
of each approach with both uniform and Zipfian distributions for key selection.
In the latter case, clients select keys following a Zipfian distribution with ex-
ponent value of one. In skewed distributions, communication is expected to
be uneven across multicast groups. In sP-SMR, the number of threads reflects
the number of worker threads excluding the scheduler. Besides absolute values
for the maximum throughput, we also show the normalized throughput of an
individual thread.

With a uniform selection of keys, commands are evenly distributed across
groups and P-SMR’s throughput increases up to the capacity of each available
core. With a Zipfian distribution, however, P-SMR’s throughput is bounded by
the most-loaded multicast group (point with 8 threads). sP-SMR is not bounded
by a single multicast group as is P-SMR, but rather by the load the scheduler can
handle until it becomes CPU-bound. Increasing the number of worker threads af-
ter two threads has a negative impact on sP-SMR’s performance since the sched-
uler spends more time synchronizing with worker threads. Also notice that with
1 and 2 threads the throughput of sP-SMR with a uniform workload is lower
than its throughput with a Zipfian distribution. In the Zipfian distribution, some
keys are accessed more often than the others and there are higher chances that
these keys are cached at the processor. According to the normalized per-thread
throughput, P-SMR scales better with the number of cores than sP-SMR under
both uniform and Zipfian distributions.

6.5.8 Conclusions from the experiments

We draw the following main conclusions from the experiments:

109 6.6 Conclusion

0

500

1000

1500

2000

2500

0 1 2 4 6 8

T
hr

ou
gh

pu
t (

K
cp

s)

Number of threads

 P-SMR: uniform
 Zipfian

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 4 6 8

pe
r-

th
re

ad
no

rm
al

iz
ed

 th
ro

ug
hp

ut

Number of threads

 sP-SMR: uniform
 Zipfian

Figure 6.7. The effect of the number of threads on the performance of a skewed
workload; maximum throughput in Kilo commands executed per second (Kcps)
(left); normalized per-thread throughput (right).

• P-SMR is optimized for workloads that mostly include independent com-
mands and as the experiments illustrated, P-SMR outperforms other se-
quential and parallel approaches with this type of workload.

• When the workload is dominated by dependent commands, a sequential
implementation of state-machine replication outperforms the parallel im-
plementations. This is a result of synchronization among the threads in
parallelized approaches.

• Although P-SMR lacks the flexibility of sP-SMR’s model in distributing the
load among the worker threads, we have seen that with skewed workloads
P-SMR has still a higher throughput. This is because sP-SMR’s performance
is limited by the overhead of the tasks the scheduler does before its advan-
tages in load balancing reveal themselves.

6.6 Conclusion

In this chapter, we have questioned the sequentiality of state-machine replica-
tion and the possibility of its integration with parallel services. State-machine
replication is widely used in making systems fault tolerant and parallel systems
are no exception. We have designed and implemented P-SMR, a new paral-
lelized model for state-machine replication. In summary, we have found that

110 6.6 Conclusion

for independent commands, P-SMR outperforms sequential state-machine repli-
cation by a factor of more than 3 and other approaches by a factor of more
than 2. For dependent commands, although P-SMR has better performance than
other parallel techniques, it is defeated by SMR, the sequential implementation
of state-machine replication that is not subject to the overhead of synchroniza-
tion. Moreover, P-SMR scales better with the number of cores whereas other
techniques show poor scalability.

Chapter 7

Experimenting with Paxos in the Cloud

Paxos is often present at the core of state-machine replication and has
been the most central component of this study. Implementations of Paxos are
currently used in many prototypes and production systems in both academia
and industry. Given its wide usage, Paxos’s performance and behavior in the
presence and absence of failures is critical to the overall performance of a system
built on top of it. In this chapter, we present the results of an extensive
performance evaluation conducted using four open-source implementations of
Paxos deployed in Amazon’s EC2. Although all protocols surveyed in this
chapter implement Paxos, they are optimized in a number of different ways,
resulting in very different behaviors. In addition to reporting our findings in
a variety of configurations with and without failures, we propose and assess
additional optimizations to existing implementations.

7.1 Problem Statement

In this chapter we present the results of an extensive performance evaluation we
conducted with open-source implementations of Paxos [4] deployed in Amazon’s
EC2, a public cloud-computing environment.1 Our study is motivated by the fact
that many online services deployed in the cloud require both high availability
and sustained performance. High availability is achieved by means of repli-
cation, using techniques such as state-machine replication [68] and primary-
backup replication [88]. At the core of these techniques lies an agreement pro-
tocol (e.g., [4; 89]). A large variety of such agreement protocols exist in the
literature that solve the problem under many different system assumptions [?].

1http://aws.amazon.com/ec2/

111

112 7.1 Problem Statement

Among these protocols, Paxos has received much attention in recent years both
from the industry (e.g., [87; 16]) and the academia (e.g., [10; 90]). Several re-
cent efforts (including the first three chapters of this thesis) have reported on the
performance of Paxos implementations, mostly under “normal conditions” (e.g.,
[10; 32]), that is, deployments with homogenous nodes, balanced communica-
tion links, and the absence of failures. While differences in the implementations
impact overall performance, these reports typically show steady behavior in the
normal case. Yet, anecdotal evidence tells that under less favorable conditions
(e.g., after the failure of a node), Paxos may lose its sustained performance. In-
tuitively, this is explained by the fact that by relying on a quorum of acceptors
for progress, Paxos may proceed at the pace of the quorum of faster acceptors,
leaving slower acceptors lagging behind with an ever-increasing backlog of re-
quests. Paxos implementations generally read and process messages in arrival
order, hence even if the messages in question relate to protocol actions that have
been completed long time before, they will be read and processed just as if they
are associated with pending decisions. All of this will take time, hence should
a fast acceptor fail and a slow one be needed to form a quorum, the system
may experience a performance hiccup, corresponding to the time it takes for the
slower acceptor to catch up. Bursty behavior is undesirable because it can cas-
cade into the application, within which end-user requests may be piling up and
replicas falling behind.

We set out to understand to what extent existing implementations genuinely
suffer from this phenomenon and if so, under what conditions. To this end we
evaluated four open-source implementations of Paxos: S-Paxos, OpenReplica, U-
Ring Paxos, and Libpaxos under different message sizes in four configurations:
(a) a homogeneous set of nodes in the same availability zone (i.e., data cen-
ter); (b,c) two heterogeneous configurations with nodes in the same availabil-
ity zone; and (d) homogeneous nodes distributed across different availability
zones. In each case, we considered executions with and without participant
failures. These configurations represent the deployment of many current online
services in the cloud. Placing replicas on a set of nodes with similar hardware
characteristics (configuration (a)) is probably the most common configuration
used in experimental evaluations. Heterogeneous settings (configurations (b)
and (c)) may arise involuntarily (e.g., if applications run in a virtual machine
whose physical node turns out to be shared among other applications) or vol-
untarily: a designer might choose to deploy Paxos in this manner, perhaps to
reduce the perceived risk of correlated failures, or to reduce cost, for example
by paying for 3 powerful nodes and 1 or 2 weaker backup nodes (e.g., Cheap
Paxos [14] is a variation of Paxos that exploits this alternative). In addition to

113 7.2 Open-source Paxos libraries

these two configurations, the participants of a service can be geographically dis-
tributed (configuration (d)) to improve locality and availability. Locality reduces
user-perceived latency and is achieved by moving the data closer to the users.
Availability improves as the service can be configured to tolerate the crash of a
few nodes within a data center or the crash of multiple data centers.

By evaluating the four open-source Paxos libraries under these configura-
tions, we show that standard Paxos implementations sometimes have unex-
pected behavior and long delays, although the phenomenon varies and depends
very much on the details of the implementations: some protocols are more prone
to problematic behavior; others are more robust but at the price of reduced per-
formance.

7.1.1 Outline

The remainder of this chapter is organized as follows. In Section 7.2 we de-
scribe the libraries used in our performance evaluation with emphasis on their
flow control mechanisms. In Section 7.3 we detail our experimental setup
and present the results. In Section 7.4 we discuss the main lessons we have
learnt while interacting with these libraries and we conclude this chapter in Sec-
tion 7.5.

7.2 Open-source Paxos libraries

In our evaluation, we worked with four open-source Paxos implementations.
Recalling from Chapter 3, Paxos requires a majority-quorum for progress (i.e.,
it remains operational despite the failure of f acceptors out of 2 f+1). As soon
as a participant (e.g., leader) receives a majority of Phase 2B messages for a
value in an instance, the participant knows the instance is decided. We call this
quorum the participant’s first majority-quorum. Different participants may have
distinct first majority-quorums, but if an acceptor is “slow”, then it is unlikely
to participate in any first majority-quorum. In fact, one can expect that a first
majority-quorum will likely contain “fast” acceptors only.

An acceptor can be slow for many reasons. For example, perhaps the slow
acceptor cannot keep up with the fast acceptors because it is running on a node
with less processing power than the fast acceptors or its CPU is shared among
several processes. It could also be that its communication links are subject to
higher latencies than the other nodes’ links. Whatever the reason, the notions of
slow and fast acceptors are important because Paxos is quorum-based, moving

114 7.2 Open-source Paxos libraries

from one consensus instance to the other as soon as a majority of acceptors is
prepared to do so. In the following, we argue that in principle such a distinction
between acceptors may have performance implications, notably in the case of
failures. In the subsequent section, we assess this phenomenon experimentally.

7.2.1 S-Paxos

S-Paxos [32] is implemented in Java2 and is composed of a set of replicas, each
one playing the combined roles of proposer, acceptor, and learner. One of the
replicas is elected as the leader. The key idea in S-Paxos is to load-balance
request reception and dissemination among all the replicas. A client selects
an arbitrary replica and submits its requests to it. After receiving a request, a
replica forwards it (or possibly a batch of requests) to all the other replicas. A
replica that receives a forwarded request sends an acknowledgement to all the
other replicas. When a replica receives f + 1 acknowledgements, it declares
the request stable. This is needed because in S-Paxos ordering is performed on
request ids. As in classic Paxos, the leader is responsible for ordering requests. A
participant considers an instance decided after receiving f +1 Phase 2B messages
from the acceptors. All the replicas execute all the requests but only the replica
who receives the request responds to the client. S-Paxos strives to balance CPU
and network resources, but many messages must be exchanged before a request
can be ordered. Due to the high number of messages exchanged, S-Paxos is
CPU-intensive and benefits from deployment on powerful multi-core machines.

S-Paxos uses blocking I/O for the communications among replicas. As men-
tioned earlier, a replica forwards batches of requests to all the other replicas.
If a replica is slow in handling its incoming traffic, another replica will block
upon sending new messages to the slow replica since communication is based
on TCP. Thus, faster acceptors cannot transfer more batches to the slow replica
and we expect the performance of the system to follow the speed of the slowest
replica. Moreover, since S-Paxos is designed around the idea of distributing the
load among acceptors, reducing the number of acceptors (e.g., due to failures)
may result in reduced performance.

7.2.2 OpenReplica

OpenReplica is an open-source library implemented in Python3 that enables au-
tomatic replication of user-provided objects [91]. OpenReplica is composed of a

2https://github.com/nfsantos/S-Paxos
3https://pypi.python.org/pypi/concoord

115 7.2 Open-source Paxos libraries

set of replicas and a set of acceptors. Replicas are the processes that replicate an
object and in Paxos’s parlance, they play the “learner” role. One of the replicas
is also the leader in Paxos. In OpenReplica, clients send their requests to a client
proxy who batches the requests. The client proxy then connects to the pool of
replicas to send the batched requests; OpenReplica ensures that the requests
are forwarded to the leader to be ordered. Replicas deliver and execute the se-
quence of requests in the order dictated by instance identifiers. After executing
a request, replicas respond to the clients.

The leader in OpenReplica uses non-blocking I/O to communicate with the
acceptors. If the transmission of a message to an acceptor cannot happen imme-
diately (e.g., because the communication buffer associated with the acceptor is
full), the leader is notified and retries the transmission until it succeeds. If an
acceptor is slower than the others, its buffers will fill up faster and communica-
tions with it will cause retransmissions at the leader. This affects performance
because the leader will work harder and some portion of its I/O bandwidth will
be lost to retransmissions. If during the time it takes for the slow acceptor to
catch up a fast acceptor crashes, we can expect a further reduction in perfor-
mance since a majority-quorum of acceptors will not be available immediately
given that the slow acceptor is needed to form a majority-quorum.

7.2.3 U-Ring Paxos

U-Ring Paxos is an open-source implementation of U-Ring Paxos in Java.4 (There
is also a C implementation of M-Ring Paxos5 that relies on ip-multicast; we use
the Java version, which is based entirely on unicast communication and is the
most suitable for Amazon’s infrastructure. See Chapter 3 for detailed expla-
nations of M-Ring Paxos and U-Ring Paxos protocols). As presented in Chap-
ter 3, U-Ring Paxos disseminates all the processes on a logical uni-directional
ring to make a balanced usage of the available bandwidth. In the implementa-
tion considered, a process of U-Ring Paxos can play the roles of acceptor, pro-
poser, learner, and coordinator. One of the acceptors is elected as the leader. U-
Ring Paxos handles leader election and the ring’s configuration via Zookeeper.6

Clients submit their requests to those processes in the ring that assume the role
of proposers. Proposers batch the requests and forward them along the ring.
The leader initiates Paxos for the batches of requests that it assembles and the
batches it receives from other processes in the ring. Acceptors create Phase 2B

4https://github.com/sambenz/URingPaxos
5http://sourceforge.net/projects/libpaxos/files/RingPaxos/
6http://zookeeper.apache.org/

116 7.2 Open-source Paxos libraries

messages and send them to their successors. Processes that are not acceptors
simply forward Phase 2B messages they receive to their successors. The final
decision is made by the acceptor that receives f + 1 Phase 2B messages. The
decision circulates in the ring until all processes receive it. The learners deliver
instances following instance identifiers.

Processes in the ring communicate using TCP; learners send replies to the
clients through UDP. All the communications is based on non-blocking I/O. Both
clients and processes in the ring can batch messages. In a ring, a slow process
can negatively affect the overall performance as it may become a system’s bot-
tleneck. We expect the ring to operate at the speed of the slowest acceptor. If
an acceptor leaves the ring, U-Ring Paxos will reconfigure the ring and during
reconfiguration performance may suffer.

7.2.4 Libpaxos

Libpaxos is implemented in C.7 It distinguishes proposers, acceptors, and learn-
ers, where proposers are also learners. Libpaxos does not handle leader election.
Applications must decide how to ensure the existence of a single leader (e.g.,
one option is to use Zookeeper). To submit requests, clients connect directly to
the proposers. Acceptors send their Phase 2B messages, including the agreed
value, to the proposers and to the learners. Upon receiving f +1 Phase 2B mes-
sages from the acceptors, the learners and the proposers declare an instance as
decided. The learners deliver instances following instance identifiers.

Processes in Libpaxos communicate using non-blocking buffered I/O pro-
vided by the libevent library.8 Libpaxos does not explicitly batch the requests;
batching is implemented by the buffered communication provided by libevent.
Besides sending Phase 2B messages, an acceptor also sends values to the learn-
ers and proposers, therefore, the acceptor’s outgoing traffic is higher than its
incoming traffic. A slow acceptor may become overwhelmed by a high volume
of incoming messages, in which case messages will pile up at the sender’s side,
or by a high rate of outgoing messages, in which case messages will pile up at
acceptor’s side. In either case, until a slow acceptor becomes overwhelmed, per-
formance in Libpaxos will be driven by the faster acceptors. If a fast acceptor
crashes and a slow acceptor is needed to form a majority quorum, the system
may experience periods of inactivity until the slow acceptor processes its backlog
of requests.

7https://bitbucket.org/sciascid/libpaxos
8http://libevent.org

117 7.3 Experimental evaluation

7.2.5 Libpaxos+

Motivated by our observations on the behavior of Libpaxos, presented in Sec-
tion 7.3, we created Libpaxos+, an extension to the original protocol. The key
idea is for proposers to selectively involve acceptors in Paxos’s Phase 2 based on
how the acceptors performed in previous instances. If an acceptor was not in
the first majority-quorum of past instances, then it might be a slow acceptor and
should be spared in the next few instances. Libpaxos+ thus attempts to reduce
the backlog of slow acceptors in order to allow them to catch up, so that they
can achieve better response times later in instances in which they participate.

We modify a proposer so that its execution is divided into steps, where a step
is a sequence of Paxos instances. In the first instances of a step, the proposer
sends Phase 2A messages to all acceptors and records the number of instances
each acceptor is included in the first majority-quorum. In the next instances
in the step, the proposer sends Phase 2A messages to a majority-quorum only,
composed of those acceptors who appeared most often in the initial instances.
A step finishes when a pre-determined number of instances are executed or the
proposer suspects the crash of an acceptor among the selected ones to participate
in the instance.

7.3 Experimental evaluation

In this section, we describe the experimental setup, explain our methodology for
the experiments, report on the peak performance of each library under various
conditions, and analyze each library under failures.

7.3.1 Experimental setup

Hardware setup. All the experiments are performed in Amazon’s EC2 infras-
tructure with a mix of small, micro, and large instances, as detailed next. In
all the experiments each process runs on a separate Amazon EC2 instance. In
the following, one EC2 compute unit provides the equivalent CPU capacity of
a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor, and vCPU represents the
number of virtual CPUs for the instance.

• Micro: up to 2 ECUs (EC2 Compute Unit), 1 vCPUs, 0.613 GBytes memory,
very low network capacity.

• Small: 1 ECUs, 1 vCPUs, 1.7 GBytes memory, 1x 160 GBytes of storage,
low network capacity.

118 7.3 Experimental evaluation

• Large: 4 ECUs, 2 vCPUs, 7.5 GBytes memory, 2x 420 GBytes of storage,
moderate network capacity.

All servers run Ubuntu Server 12.04.2-64 bit and the socket buffer sizes are
equal to 16 MBytes.

Configurations. We measure the performance of S-Paxos, OpenReplica, U-
Ring Paxos, and Libpaxos in four different configurations (see Table 7.1). In
S-Paxos and U-Ring Paxos one of the acceptors plays the role of the leader and
thus in Table 7.1 the leader represents acceptor A1 for S-Paxos and U-Ring Paxos.
For each configuration, all the libraries are evaluated with three request sizes:
200 Bytes, 4 KBytes, and 100 KBytes. All the libraries are in-memory in our
experiments. U-Ring Paxos relies on Zookeeper for ring configuration. Session
timeout for Zookeeper is set to 3 seconds in all the experiments.

Configuration Type Environment Leader∗ A1 A2 A3 Learner†

(a) Homogeneous LAN Small

(b) Heterogeneous LAN Small Micro Small

(c) Heterogeneous LAN Large Small Micro Small

(d) Homogeneous‡ WAN Small

Table 7.1. Configurations used in the evaluations. (Legend: ∗The leader in
S-Paxos and U-Ring Paxos is also acceptor A1 and the leader in OpenReplica
is also replica. †The concept of an independent learner only exists in Libpaxos
and U-Ring Paxos. ‡ Although machines in this configuration are homogenous,
the acceptor in the remote data center, A3, is connected to other processes with
a lower bandwidth.)

In the experiments performed in a LAN, all the instances are deployed in the
US-West-2c region. In the experiments performed in a WAN, processes are dis-
tributed among three availability zones: In the experiments with Libpaxos and
OpenReplica, the leader, A2, the learner, and clients are located in US-West-2c,
A1 is located in US-West-2b, and A3 is located in US-East-1b. In the experiments
with S-Paxos and U-Ring Paxos, the leader, A1, the learner (in U-Ring Paxos),
and the clients are located in US-West-2c, A2 is located in US-West-2b, and A3
is located in US-East-1b. Moreover, in all the experiments with U-Ring Paxos,
a stand-alone version of Zookeeper is deployed on a micro instance located in
US-East-1c. As a reference, the RTT value is 1.5 ms (millisecond) in US-West-2c,

119 7.3 Experimental evaluation

(b) OpenReplica

Client

Client
Proxy

A1

A2

A3

Leader/Replica
A1/

Coordinator

A2

A3

Learner

Client

(c) U-Ring Paxos

A1
A2

A3

Proposer/
Learner

Learner

Client

(d) Libpaxos

A1/
Leader/
Learner

A3/
Learner

A2/
LearnerClient

(a) S-Paxos

Client
Proxy

Client-Learner communication
Paxos communication

Figure 7.1. The communication pattern and architectural differences among
the four libraries as deployed in the experiments (f is equal to one). In all the
libraries the learner/replica sends the responces back to the client; in S-Paxos
and OpenReplica clients send their requests to the nodes that also assume the
learner/replica role.

3.9 ms between US-West-2b and US-West-2c, 82 ms between US-West-2c and
US-East-1b, and 90 ms between US-West-2b and US-East-1b.

Architectural differences. Figure 7.1 illustrates the inter-process communica-
tion patterns and architectural differences of the four libraries while preserving
their specific terminology (for the details see Section 7.2). Notice that the terms
leader, proposer, and coordinator convey the same concept and so do the terms
replica and learner. In U-Ring Paxos, however, proposer refers to any node that
receives requests from clients and forwards them to other processes. In all the
experiments, there are three acceptors in all the libraries and f is equal to one.
In S-Paxos and U-Ring Paxos, the leader (or the coordinator) role is assumed by
one of the acceptors (acceptor A1). In OpenReplica and Libpaxos, a separate
process is elected as the leader (or proposer).9

In the experiments with OpenReplica, each client process has a client proxy
(as a separate module in the client process) that batches the requests of the
client and sends them to the leader. The client waits for the responses before
submitting new requests. Similarly to OpenReplica, in U-Ring Paxos a client has
a module for batching the requests. The client proxy batches the requests and
sends them to an acceptor that also plays the role of proposer. The size of a batch

9We emphasize that the differences in the deployments are due to the unique properties of
the libraries rather than the choices made by the author.

120 7.3 Experimental evaluation

is 12 KBytes in all the experiments. Batching in U-Ring Paxos has been disabled
throughout the experiments. In the experiments with S-Paxos, a client sends a
request to a randomly chosen replica and waits for its response before sending a
new request. A replica batches requests before disseminating them to the other
replicas. In our experiments, this batch size is 1 KByte. Also note that the batch
sizes in these two libraries are chosen to get the best performance. In the exper-
iments with Libpaxos, to ensure progress we have configured a single proposer.
Clients send a request to the proposer and wait for the request’s response from
the learner before sending a new request.

 1

 10

 100

 1000

T
hr

ou
gh

pu
t (

M
bp

s)

Libpaxos S-Paxos OpenReplica U-Ring Paxos

10

100

1K

10K

100K

T
hr

ou
gh

pu
t (

in
st

/s
ec

)

0

40

80
100
120

160

200B 4KB 100KB 200B 4KB 100KB 200B 4KB 100KB 200B 4KB 100KB

C
PU

 a
t l

ea
de

r
(%

)

Configuration (a) Configuration (b) Configuration (c) Configuration (d)

Figure 7.2. Peak performance of Libpaxos, S-Paxos, U-Ring Paxos, and Open-
Replica in four configurations (see Table 7.1); the y-axis in the two top-most
graphs is in log scale.

121 7.3 Experimental evaluation

Library [Conf. ,Size]

S-Paxos [(b),4] [(d),4]

OpenReplica [(c),100] [(d),4]

U-Ring Paxos [(b),100] [(d),4]

Libpaxos [(b),4] [(d),4]

Table 7.2. Configurations in which we evaluate the flow control mechanism of
the open-source libraries.

7.3.2 Methodology

The goal of our performance assessment is twofold: First, we measure the peak
performance of S-Paxos, OpenReplica, U-Ring Paxos, and Libpaxos in a set of
configurations as illustrated in Table 7.1 (Section 7.3.3). Second, we select a
subset of these configurations to take a closer look at the flow control mech-
anisms of the libraries (Sections 7.3.4, 7.3.5, 7.3.6, 7.3.7). Since libraries are
different in their implementation and communication strategies, the configura-
tions we choose vary across libraries. Table 7.2 enlists the set of the chosen
configurations.

7.3.3 Peak performance

Figure 7.2 displays the results for peak performance. The graphs in this fig-
ure measure the following performance metrics from top to bottom: delivery
throughput in megabits per second, delivery throughput in number of decided
instances per second, and CPU usage at the leader. The number of requests de-
livered per second is directly proportional to the delivery throughput in megabits
per second. Each experiment is performed for a period of 100 seconds and the
results from the first and last 10 seconds are discarded. S-Paxos, U-Ring Paxos,
and OpenReplica are multithreaded and therefore in some scenarios (configu-
ration (c)) the CPU usage at the leader is higher than 100%. When compar-
ing performance, unless stated otherwise, the values of throughput in Mbps are
considered (top-most graph). The following patterns can be discerned from Fig-
ure 7.2.

• For all implementations and configurations, throughput improves as the

122 7.3 Experimental evaluation

request size increases, although the improvement is more noticeable from
small to medium messages.

• In most of the configurations, OpenReplica and Libpaxos show similar per-
formance, better than S-Paxos and U-Ring Paxos’s performance.

• When we replaced one of the small acceptors in configuration (a) with
a slower acceptor (see configuration (b) in Table 7.1), performance of
Libpaxos and OpenReplica does not change between configurations (a)
and (b), regardless of request size since their execution is driven by the
fastest majority-quorum and in both configurations there is a majority-
quorum that contains two small acceptors. The throughput of S-Paxos and
U-Ring Paxos in configuration (b) is lower than in configuration (a) since
S-Paxos and U-Ring Paxos adapt their performance to the speed of the
slowest member.

• When we placed the leader in configuration (b) in a more powerful node,
configuration (c), we observed that in all protocols except U-Ring Paxos
the throughput increased, regardless of the request size. The leader of U-
Ring Paxos is not CPU-bound in configuration (b) and therefore replacing
the leader by a stronger machine had no effect in performance.

• To understand the effects of geographical deployments on the performance,
compare the results in configurations (a) and (d). The performance of
Libpaxos and OpenReplica do not change between the two configurations:
in both cases there is a majority-quorum in the vicinity of the proposer
(leader) in the two libraries. Hence, Libpaxos and OpenReplica are not
limited by the slow links between the proposer and the acceptor located in
a remote region (US-East). Performance of S-Paxos and U-Ring Paxos on
the other hand is dictated by the slowest link.

• In most of the configurations and with small requests the leader in Lib-
paxos and OpenReplica is CPU-bound. Except for configuration (c), S-
Paxos is always CPU-intensive. This happens because threads constantly
spin while waiting for events (e.g., a message to arrive). U-Ring Paxos is
never CPU-bound.

• Although all the implementations achieve more or less comparable peak
throughput (in Mbps), the number of instances decided per second varies
across them. We attribute this to differences in their batch sizes and also
to the way batching takes place.

123 7.3 Experimental evaluation

7.3.4 S-Paxos under failures

 0

 150

 300

 450

 600

 0 25 50 75 100 125 150

L
at

en
cy

 (
m

se
c)

Time (sec)

 0

 5

 10

 15

 20

 0 25 50 75 100 125 150

T
hr

ou
gh

pu
t (

M
bp

s) Terminate A2 Terminate A3

 0

 6

 12

 18

 24

 30

 0 25 50 75 100 125 150

T
hr

ou
gh

pu
t (

M
bp

s) Terminate A2 Terminate A3

 0

 100

 200

 300

 400

 0 25 50 75 100 125 150

L
at

en
cy

 (
m

se
c)

Time (sec)

Figure 7.3. Performance of S-Paxos in configuration (b) with 4 KByte requests
at 70% of peak throughput (left-most graphs); and in configuration (d) with 4
KByte requests at peak performance (right-most graphs). In each configura-
tion, two experiments are performed; at each experiment one acceptor (A2 or
A3) is terminated after 50 seconds.

Figure 7.3 shows the performance of S-Paxos in configuration (b) with 4
KByte requests at 70% of peak throughput and also in configuration (d) with
4 KByte requests over a period of 150 seconds and at peak throughput. The
top graphs show the delivery throughput in megabits per second and the bottom
graphs show the corresponding latency in milliseconds. In the experiments, after
50 seconds of the execution one acceptor is terminated.

In S-Paxos the load is distributed among acceptors and the execution pro-
ceeds at the pace of the slowest or the most distant acceptor. Thus, in both
configurations after the termination of acceptor A3, throughput increases and
latency decreases. This happens because performance is no longer limited by
the slow acceptor. However, after the termination of acceptor A2, throughput
decreases and latency increases. This is a consequence of the fact that acceptor
A2 no longer contributes its share to the performance.

7.3.5 OpenReplica under failures

The left-most graphs of Figure 7.4 shows the performance of OpenReplica at
configuration (c) with 100 KByte requests for a duration of 350 seconds at peak
performance. In this execution, throughput varies between two thresholds. Dur-
ing intervals in which all the acceptors are responsive, throughput is higher.

124 7.3 Experimental evaluation

Throughput is lower when the leader needs to devote a fraction of its process-
ing power to retransmit messages to the slow acceptor (see also Section 7.2).
During this period, only the faster acceptors contribute to performance. We ter-
minated acceptor A2 after 150 seconds of the execution when the throughput
was at its lower value. As it is seen in the figure, performance suffers a small
reduction at this point. This is due to the fact that a majority-quorum is not
immediately available, preventing the Paxos protocol from deciding new values
until the quorum is restored.

 0

 40

 80

 120

 160

 0 50 100 150 200 250 300 350

T
hr

ou
gh

pu
t (

M
bp

s)

 0

 10

 20

 30

 40

 0 50 100 150 200 250 300 350

L
at

en
cy

 (
m

se
c)

Time (sec)

Terminate A2

 0

 15

 30

 45

 60

 0 50 100 150 200 250 300 350

T
hr

ou
gh

pu
t (

M
bp

s)

 0

 100

 200

 300

 400

 0 50 100 150 200 250 300 350

L
at

en
cy

 (
m

se
c)

Time (sec)

Terminate A2

Figure 7.4. Performance of OpenReplica in configuration (c) with 100 KByte
requests at peak performance (left-most graphs); and in configuration (d) with
4 KByte requests at 70 % of peak performance (right-most graphs); In both
configurations, acceptor A2 is terminated after 150 seconds.

In the right-most graphs of Figure 7.4, we executed OpenReplica in configu-
ration (d) with 4 KByte requests at 70% of peak performance. When acceptor A2
is terminated, after 150 seconds, throughput drops and latency increases since
every majority quorum includes acceptors in different regions. With both accep-
tors A1 and A2 operational, though, we can see that throughput oscillates. We
also observed that while OpenReplica has bursty behavior under high load (i.e.,
peak performance in a LAN with medium and large values, and 70% of peak
performance in a WAN), it presents respectively more stable performance under
moderate load.

7.3.6 U-Ring Paxos under failures

Figure 7.5 shows the performance of U-Ring Paxos in configurations (b) (left-
most graphs) and configuration (d) (right-most graphs) over a period of 350
seconds. In all the experiments, after 150 seconds one of the acceptors (A2 or

125 7.3 Experimental evaluation

 0

 40

 80

 120

 160

 200

 0 50 100 150 200 250 300 350

T
hr

ou
gh

pu
t (

M
bp

s) Terminate A2 Terminate A3

 0

 15

 30

 45

 60

 0 50 100 150 200 250 300 350

L
at

en
cy

 (
m

se
c)

Time (sec)

 0

 15

 30

 45

 60

 0 50 100 150 200 250 300 350

T
hr

ou
gh

pu
t (

M
bp

s) Terminate A2 Terminate A3

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300 350

L
at

en
cy

 (
m

se
c)

Time (sec)

Figure 7.5. Performance of U-Ring Paxos in configuration (b) with 100 KByte
requests at 100% of the peak performance (left-most) graphs; and in configu-
ration (d) with 4 KByte requests at 70% of the peak performance (right-most
graphs). In each configuration two experiments are performed; in each experi-
ment one acceptor (A2 or A3) is terminated after 150 seconds.

A3) is terminated. After an acceptor is terminated, the performance drops to
zero for a period of 2 to 3 seconds during which the ring is reconfigured. T
he left-most graphs show the performance of U-Ring Paxos in configuration (b)
with 100 KByte requests when the system is operating at its peak performance.
When acceptor A3 is terminated, after 150 seconds, throughput increases. This
is because U-Ring Paxos operates at the speed of the slowest acceptor (acceptor
A3 in this experiment) and as soon as it leaves the ring, the protocol is no longer
limited to its speed. This is also the reason why after terminating acceptor A2
the performance is not affected.

The right-most graphs of Figure 7.5 show the performance of U-Ring Paxos in
configuration (d) with 4 KByte messages when the system is operating at 70% of
the peak performance. When acceptor A3, in the east coast is terminated (after
150 seconds), throughput increases and latency decreases. This is because U-
Ring Paxos is no longer bound by the slow communication links of acceptor A3.
Similarly to configuration (b) in configuration (d) after terminating acceptor A2
performance does not improve.

7.3.7 Libpaxos and Libpaxos+under failures

In this section, we consider the performance of Libpaxos and Libpaxos+ in con-
figurations (b) (Figure 7.6) and (d) (Figure 7.7) over a period of 150 seconds. In
these experiments, the request size is 4 KBytes and the system operates at 70%

126 7.3 Experimental evaluation

 0

 4

 8

 12

 16

 0 25 50 75 100 125 150

L
at

en
cy

 (
m

se
c)

Time (sec)

 0

 15

 30

 45

 60

 0 25 50 75 100 125 150

T
hr

ou
gh

pu
t (

M
bp

s)
Terminate A2

 0

 4

 8

 12

 16

 0 25 50 75 100 125 150

L
at

en
cy

 (
m

se
c)

Time (sec)

 0

 15

 30

 45

 60

 0 25 50 75 100 125 150

T
hr

ou
gh

pu
t (

M
bp

s)

Terminate A2

100

1K

10K

100K

1M

 0 25 50 75 100 125 150B
uf

fe
re

d
da

ta
 (

B
yt

es
)

Time (sec)

A3

0

1K

2K

3K

4K

0 25 50 75 100 125 150

M
aj

or
ity

-q
uo

ru
m A1 A2 A3

100

1K

10K

100K

1M

 0 25 50 75 100 125 150B
uf

fe
re

d
da

ta
 (

B
yt

es
)

Time (sec)

A3

0

1K

2K

3K

4K

0 25 50 75 100 125 150
M

aj
or

ity
-q

uo
ru

m A1 A2 A3

Figure 7.6. Performance of Libpaxos (left graphs) and Libpaxos+ (right graphs)
with 4 KByte requests at configuration (b) at 70% of peak throughput (see
Table 7.1); acceptor A2 is terminated after 50 seconds. Majority-quorum for
each acceptor measures the number of instances for which that acceptor is
included in the first majority-quorum; The y-axis of the bottom-most graphs
is in log scale.

of the peak throughput. Acceptor A2 is terminated after 50 seconds of the execu-
tion. In configuration (b), A2 is a fast acceptor and in configuration (d) A2 is an
acceptor located in the same region as A1. In both cases, the termination of A2
forces slow acceptor A3 to be part of a majority-quorum. We report the following
results in the graphs, from top to bottom: the delivery throughput in megabits
per second, the latency as measured by the clients in milliseconds, the number
of instances for which an acceptor’s Phase 2B is included in that instance’s first
majority-quorum, and the amount of outgoing data buffered in the operating
system at acceptor A3. We recall that acceptors in Libpaxos forward values and
Phase 2B messages to the learners and proposers. Before the termination of ac-
ceptor A2 in the experiments of Libpaxos (left-side graphs in Figure 7.6), it is
mostly acceptors A1 and A2 that participate in the majority-quorums. It can be

127 7.3 Experimental evaluation

 0

 40

 80

 120

 160

 0 25 50 75 100 125 150

L
at

en
cy

 (
m

se
c)

Time (sec)

 0

 15

 30

 45

 60

 0 25 50 75 100 125 150

T
hr

ou
gh

pu
t (

M
bp

s)
Terminate A2

 0

 40

 80

 120

 160

 0 25 50 75 100 125 150

L
at

en
cy

 (
m

se
c)

Time (sec)

 0

 15

 30

 45

 60

 0 25 50 75 100 125 150

T
hr

ou
gh

pu
t (

M
bp

s)

Terminate A2

100

1K

10K

100K

1M

 0 25 50 75 100 125 150B
uf

fe
re

d
da

ta
 (

B
yt

es
)

Time (sec)

A3

0

1K

2K

3K

4K

0 25 50 75 100 125 150

M
aj

or
ity

-q
uo

ru
m A1 A2 A3

100

1K

10K

100K

1M

 0 25 50 75 100 125 150B
uf

fe
re

d
da

ta
 (

B
yt

es
)

Time (sec)

A3

0

1K

2K

3K

4K

0 25 50 75 100 125 150
M

aj
or

ity
-q

uo
ru

m A1 A2 A3

Figure 7.7. Performance of Libpaxos (left graphs) and Libpaxos+ (right graphs)
with 4 KByte requests at configuration (d) at 70% of peak throughput (see
Table 7.1); acceptor A2 is terminated after 50 seconds. Majority-quorum for
each acceptor measures the number of instances for which that acceptor is
included in first majority-quorum. The y-axis of the bottom-most graphs is in
log scale.

seen in the third graph from the top that in the first 30 seconds of the execution,
A3 participates in a few majority-quorums but then it becomes overwhelmed
and data in its send buffers accumulates (see bottom graph). When acceptor A2
is terminated (after 50 seconds), the delivery throughput drops to zero for a du-
ration of 4 seconds, the time it takes for slow acceptor A3 to process its backlog
of previous instances. After acceptor A3 empties its buffers and can participate
in the majority-quorum, the system becomes responsive. With acceptors A1 and
A3, throughput is lower and latency is higher than in the beginning of the exe-
cution. In Libpaxos+ (graphs on the right), after termination of A2, the shift to a
new majority-quorum happens smoothly since A3 was never overwhelmed with
requests. The proposer detects the slower acceptor A3 and spares it. Thus, when
acceptor A2 is terminated, a majority-quorum is available immediately and the

128 7.4 Main lessons from the experiments

execution continues smoothly. Notice the sustainable throughput in Libpaxos+

before and after the termination of A2 is similar to Libpaxos.
In Figure 7.7 we investigate the behavior of Libpaxos and Libpaxos+ in a

wide-area deployment (configuration (d) in Table 7.1) with 4 KByte requests.
The behavior of Libpaxos after the termination of faster acceptor A2 in configu-
ration (d) is similar to configuration (b), except that in a wide-area deployment
it takes longer (18 seconds) for acceptor A3 to catch up with A1. After the exe-
cution resumes (at time 68), there is an important reduction in throughput and
increase in latency when compared to the execution before the termination of
A2. This is due to the large round-trip time between US-West and US-East re-
gions. Similarly to Figure 7.6, the throughput of Libpaxos+ does not drop to
zero after the termination of acceptor A2.

In both Figures 7.6 and 7.7, there is a peak in latency when normal operation
resumes. This happens as the requests that the clients sent immediately before
the crash are only decided after acceptor A3 catches up.

7.4 Main lessons from the experiments

In this section we share the main lessons we have learnt from our experiments
with the four open-source Paxos libraries. Unlike Libpaxos and OpenReplica,
S-Paxos and U-Ring Paxos allow clients to send their requests to any processes,
which in turn disseminate the requests to other processes. The advantages of
this scheme is that the protocol is not limited by the network and CPU resources
of only one process (mostly the leader). Processes that receive client requests
directly can batch the requests to make the distribution of requests to other
participants more efficient. The downside of this strategy is that in global de-
ployments (e.g., configuration (d)) the clients might select a process that is “far
away”. One way to enhance these libraries is to include policies for clients to se-
lect the process to which they transmit their requests (e.g., considering the delay
between client and process). S-Paxos and U-Ring Paxos operate at the speed of
the slowest participant. Therefore, in heterogeneous configurations (e.g., config-
urations (b) and (c)) or when participants are distributed across multiple data
centers (e.g., configuration (d)), U-Ring Paxos and S-Paxos are likely outper-
formed by the other libraries, which do not require all acceptors to be equally
powerful as the leader or in the vicinity of the leader. If heterogeneity affects a
majority of the participants, however, all the libraries will operate at the speed of
the slowest member. Notice that leaving out a slow acceptor during failure-free
scenarios has both advantages and disadvantages. The advantage is that in the

129 7.5 Conclusion

absence of failures, the protocol operates at the speed of the fastest available
majority. Libpaxos and OpenReplica benefit from this. The disadvantage is that
during failures, the protocol might be stuck as it happens with Libpaxos but not
with U-Ring Paxos and S-Paxos. (U-Ring Paxos has to reconfigure the ring, but
the reduction in performance is not due to the backlog of messages that gather
at the slowest acceptor.) Ideally, a protocol would operate at the speed of the
fastest members in failure-free scenarios and would not be penalized in case of
failures, something we observed with Libpaxos+.

While it may be tempting for systems running on a tight budget to deploy
Paxos with a majority of fast acceptors, adding a few slower ones purely as
backups, our study shows that this strategy may seriously impact failover. De-
spite this, the implications of a heterogeneous quorum is often neglected in prac-
tice. We hope this study will bring to the foreground the fact that performance
differences in acceptors can have a significant impact on overall performance,
especially when failures occur. We further suspect that the lessons we learnt
apply to other quorum-based protocols, such as ABD [92] and the initial Isis
protocol [93] since they all rely on a majority quorum for progress.

7.5 Conclusion

Paxos is one of the dominant protocols in building fault-tolerant systems and
its performance has a significant impact on the overall efficiency of the systems
built on top of it. Consequently, it is very important that Paxos implementations
achieve steady performance and that they deal well with the load and scheduling
variations common in modern cloud computing settings. Our experiments reveal
that this property is achievable, but not without effort, and illustrate the surpris-
ingly large variations in performance that out-of-the-box Paxos implementations
may exhibit under even mild stress. In particular, we showed that without taking
actions to stabilize the protocol, widely used Paxos libraries can exhibit sudden
and rather long periods with no protocol decisions occurring at all. Our exper-
iments also reveal surprising variability in the rate of decisions: some versions
of Paxos are extremely bursty. Bursty throughput can cascade to create bursty
and hence inefficient application-level performance. Finally, focusing on one
Paxos implementation (Libpaxos), we showed how one can modify the protocol
to preserve correctness and yet reduce the degree to which such problems arise.

130 7.5 Conclusion

Chapter 8

Conclusion

State-machine replication is a popular approach to high availability. In this the-
sis, we studied state-machine replication from a performance perspective and
proposed new solutions to improve its efficiency. State-machine replication pre-
serves strong consistency among independent replicas so that the users of a repli-
cated service remain oblivious to the existence of multiple copies. However, if
the replication library is not implemented efficiently, the users of a replicated ser-
vice will perceive a performance lower than that of a single-copy non-replicated
service. With this in mind, we designed, implemented, and extensively eval-
uated several solutions to reduce the negative effects of replication on perfor-
mance. Our solutions proved promising not only at preserving the performance
of a single-copy service but also at increasing it beyond the performance of a
non-replicated service.

The flow of our study was shaped by two main objectives: Our first goal was
to study the implications of request ordering on the performance of a service
built on state-machine replication. To this end we studied and identified several
fundamental issues in the design of atomic broadcast protocols and devised so-
lutions to overcome them. Our observations and findings are mostly general and
applicable to other protocols that seek high performance. As our second goal, we
questioned sequential execution of requests on replicas in state-machine repli-
cation and employed parallelism in two different forms, state-partitioning and
multithreading, to enhance performance. We iterated between these two goals
as our findings in one direction led to new insights in the other. In the next
section we briefly overview our findings and overview the important lessons we
have learnt throughout this study.

131

132 8.1 Summary of our findings and lessons learnt

8.1 Summary of our findings and lessons learnt

In the following we discuss and review some of the important lessons that we
have learnt during this study.

1. To develop an efficient distributed system, effective communication pat-
terns and networking requirements of the target environment must be
identified and considered in the design, since communication is one of the
most important and essential elements of any distributed system. We par-
ticularly emphasized the importance of communication patterns in Chap-
ter 3 where we designed Ring Paxos, composed of two efficient atomic
broadcast protocols: M-Ring Paxos and U-Ring Paxos. These protocols can
be used interchangeably except that M-Ring Paxos needs ip-multicast sup-
port from the environment. Ring Paxos distributes its processes on a ring
overlay and builds on several practical observations to achieve wire-speed
efficiency. Our findings on communication patterns are general and appli-
cable to the design of similar systems.

2. In classic state-machine replication, ordering and execution of requests
follow a pipeline structure: a request is executed only after its order is de-
termined. The existence of an ordering stage between clients and servers
adds extra overhead to the response time. An approach to mitigating the
effect of ordering on response time is to replace the pipelined structure
with a parallel model. Optimistic delivery is a solution for realizing this
parallelism. The idea is for the replicas to execute requests while their
order is being determined. This strategy is deemed optimistic as replicas
assume that the final order will abide by the execution order. In the case of
a mismatch, execution must be rolled back and the system’s state prior to
the execution must be restored. For optimistic delivery to prove efficient,
the optimistic assumption must be based on some realistic evidence. If
not, high frequency of roll backs will impose extra overheads on the per-
formance, such that contrary to its initial motivation, optimistic delivery
will increase the response time. In Chapter 4 we implemented speculative
delivery with M-Ring Paxos to reduce latency. Depending on the efficiency
of the ordering protocol, the amount of advantage gained by optimistic
delivery will vary. M-Ring Paxos is an efficient protocol and obtaining any
gains in latency is challenging. Improvement on latency also depends on
the service and duration of a request’s execution. If execution time is much
higher than ordering time, then the advantage of optimistic delivery will
be negligible.

133 8.1 Summary of our findings and lessons learnt

3. Throughput of a replicated service is limited either by the number of re-
quests that replicas can execute or by the number of requests an atomic
broadcast protocol can order. For the former case, partitioning the state
is a well-known technique to speedup request execution. Partitioning is
effective in that it introduces parallelism in the execution: different sets
of replicas deliver different streams of ordered requests and in parallel to
each other execute their own stream of requests sequentially. In Chapter 4
we used state partitioning in combination with M-Ring Paxos to improve
throughput. We saw that state partitioning was extremely useful in in-
creasing throughput of our examined application where the execution was
limiting the performance.

4. If throughput of a replicated service is restricted by the number of re-
quests that can be ordered, state partitioning will be ineffective in improv-
ing performance. Adding new participants to atomic broadcast protocol
can not help either, as more processes will only enhance the availabil-
ity and fault-tolerance of the protocol but not its performance. More-
over, if the participants of an atomic broadcast protocol assume uneven
roles, throughput will be restrained from increasing once a process with
a heavier role reaches its maximum performance. We observed this phe-
nomenon with M-Ring Paxos protocol in Chapter 5. These problems are
not specific to Ring Paxos and can be found in similar atomic broadcast
protocols. In Chapter 5 we studied the scalability of Ring Paxos’s through-
put and proposed Multi-Ring Paxos: a group of Ring Paxos instances that
are coordinated via several pre-configured parameters to collectively or-
der the requests with a high throughput. The ideas used in designing
Multi-Ring Paxos can be generalized and applied to other atomic broad-
cast protocols. Multi-Ring Paxos does not demand partitioning but can be
used with partitioned services as well. Since partitioning is not a must,
services whose states can not be partitioned can also benefit from the high
performance and scalability of Multi-Ring Paxos.

5. Partitioning the state of a service, as an approach to enhancing perfor-
mance of request execution, is only useful for applications whose state can
be partitioned. An alternative technique is to make multiple threads con-
currently execute the requests. In Chapter 6 we studied this approach and
observed that sequentiality of state-machine replication can be altered to
support the replication of multithreaded services without compromising
consistency. We studied parallel replication models in Chapter 6 and real-
ized that despite parallelism in executing requests, they suffer from a se-

134 8.2 Future directions

quential delivery mechanism. With multi-core processors and multi-queue
network interfaces available as commodity, a parallelized system must not
possess intrinsic design properties that restrict its capability at fully bene-
fiting from these technologies. Based on this observation we built on top
of Multi-Ring Paxos and proposed P-SMR, a new model for parallelizing re-
quest execution and request delivery in state-machine replication. Our ex-
perimental evaluations showed significant performance improvement over
the state-of-the-art approaches. We also saw that parallelized models lose
performance to the sequential execution model if the workload demands
heavy synchronization among concurrent threads.

6. When evaluating Paxos and its variants often a homogenous and highly
controlled environment is assumed, in which processes operate at com-
parable speeds and exclusively own the machine on which they are de-
ployed. In the emerging cloud-based deployments, however, this is not
the case. We evaluated several open-source libraries of Paxos on Amazon’
EC2 infrastructure and demonstrated that the performance of even highly
efficient implementations of Paxos is subject to the heterogeneity of the
environment and can suffer from down times. We concluded that a Paxos
implementation should take proper actions to protect its performance’s
stability in such environments, and proposed a solution to be integrated
with one of the evaluated libraries.

8.2 Future directions

In this section we conclude the dissertation by suggesting some directions for
future research:

Local versus geographic replication. A service can be replicated locally within
a data center or geographically across multiple data centers. In this work we
have studied the performance of state-machine replication in local deployments.
Geographic replication has several advantages over local replication. First, the
replicated service is no longer vulnerable to the failures that affect an entire site
such as data center-wide power outages or natural disasters that affect a specific
area (e.g., earthquake). Second, the latency observed by clients is reduced as
a consequence of data locality (i.e., to issue their requests clients communicate
with a replica in their vicinity rather than with some replica in a remote loca-
tion, assuming that the clients of a service are spread world wide). In addition to

135 8.2 Future directions

differences in fault tolerance and co-locality, local and geographic deployments
differ also in the quality and characteristics of their networking infrastructure.
While network links within a data center have low latency and high bandwidth,
network links among data centers are subject to high, unpredictable, and vari-
able latency and many suffer from low bandwidth and high congestion. As a con-
sequence, systems designed to operate in geographic scale should avoid inter-
data center communications to a large extent and mask the negative effects of
long-distance communication from the user. Because of these differences, repli-
cation techniques developed for local deployments are not efficient when used
in geographic distributions. As one of the directions for expanding the subject
of this study, it is worthwhile to investigate the applicability and adaptability of
our techniques to geographic replication and also to propose new and specific
solutions that meet the requirements of these environments.

Sensitivity of performance to workload specifics. In Chapter 6 we proposed
a new model for parallelizing request execution on the replicas of state-machine
replication. We observed that the scalability and efficiency of our model and its
competitors is affected by the characteristics of the workload. In our case, this
effect stems from the need to synchronize concurrent threads. In some scenar-
ios, the effect of synchronization is such that the parallelized models have lower
performance than the sequential model. Clearly, for parallelized models to be
favored and widely used, their performance should be higher from and at worst
equal to the performance of sequential execution model. To achieve this, syn-
chronization strategies in parallel replication models should be optimized. The
literature on synchronization techniques is vast. While some techniques offer
optimizations over well-known synchronization strategies (e.g., locking) others
aim at avoiding the inefficiency of locking algorithms all together. As the sec-
ond direction for improving this work, it is worthwhile to study synchronization
techniques and possibly propose new and efficient synchronization mechanisms
that can be integrated with parallel replication models.

136 8.2 Future directions

Appendices

137

Proofs of Correctness

Ring Paxos

In this section we provide a proof sketch of the correctness of M-Ring Paxos
and U-Ring Paxos protocols. We focus on properties II and III of consensus (see
Chapter 2). Property (I) holds trivially from the algorithms.

Proposition 1 (II) Uniform agreement: No two processes decide different values.

Let v and v′ be two decided values, and v-id and v′-id their unique identifiers.
We prove that v-id = v′-id.

M-Ring Paxos: Let r (r ′) be the round in which some coordinator c (c′) ip-
multicast a decision message with v-id (v′-id). In M-Ring Paxos, c ip-multicasts
a decision message with v-id after:

(a) c receives f+1 messages of the form (Phase 1B, r, *, *);

(b) c selects the value vval = v with the highest round number vrnd among the
set M1B of phase 1B messages received, or picks a value v if vrnd = 0;

(c) c ip-multicasts (Phase 2A, r, v, v-id); and

(d) c receives (Phase2B, r, v-id) from the second last process in the ring, q.
When c receives this message from q, it is equivalent to c receiving f+1
(Phase 2B, r, v-id) messages directly because the ring is composed of f+1
acceptors. Let M2B be the set of f+1 phase 2B messages.

Now consider that coordinator c received the set of messages M1B and M2B

in a system where all processes ran Paxos on value identifiers. In this case, c
would send a decide message with v-id as well. Since the same reasoning can

139

140

be applied to coordinator c′, and Paxos implements consensus, v-id = v′-id. �

U-Ring Paxos: Let r (r ′) be the round in which the last acceptor al (a′l) sends
a decision message mD with v-id (v′-id) along the ring. The proof for U-
Ring Paxos is similar to the proof for M-Ring Paxos since U-Ring Paxos only
differs in the way mD is propagated to the learners and in the identity of the pro-
cess who first sends mD. In contrast to M-Ring Paxos where it is the coordinator
that sends mD, in U-Ring Paxos, it is the last acceptor in the ring al that initiates
the propagation of mD along the ring. Despite this difference, al sends mD when
al receives, f +1 (Phase 2B, r, v, v-id) messages, just as in M-Ring Paxos. Since
M-Ring Paxos guarantees that v-id = v′-id, the same holds in U-Ring Paxos. �

Proposition 2 (III) Uniform termination: If one (or more) correct process proposes
a value then eventually some value is decided by all correct processes.

The proof is almost identical for M-Ring Paxos and U-Ring Paxos. We note the
differences when necessary. After GST, processes eventually select a correct co-
ordinator c. c considers a ring (c-ring) composed entirely of correct acceptors,
for M-Ring Paxos, and a ring (c-ring) composed entirely of correct proposers,
acceptors, and learners, for U-Ring Paxos. Coordinator c sends a message of
the form (Phase 1A, *, c-ring) to the acceptors in c-ring. Because after GST, all
processes are correct and all messages exchanged between correct processes are
received, all correct processes eventually decide some value. �

141

Linearizability of state partitioning

In this section we argue that our replicated and partitioned B-tree from Chap-
ter 4 is linearizable (see Chapter 2 for the definition of linearizability).

Assumptions. We make the following assumptions:

• Assume a B-tree whose state is divided into partitions Π = {P1, P2, ...}.

• A command C is composed of one or more sub-commands C(k), one for
each partition Pk it addresses. In particular, C can insert, delete or query
items in the B-tree.

• Each B-Tree partition is replicated and implemented as a series of consen-
sus executions such that the i-th consensus instance decides on the i-th
sub-command of partition Pk. Sub-commands in a partition are executed
in the order in which they are decided, that is, the i-th sub-command only
starts after the (i− 1)-th sub-command has finished.

• G = (V, E) is a directed graph where V contains all commands Cx in the
execution and E contains a directed edge Cx → Cy iff a sub-command of
Cx is executed before a sub-command of Cy in some partition Pk. State
partitioning ordering states that G is acyclic.

Proof Sketch. In order to show that any execution of the B-tree implemented
using state-machine replication and state partitioning is linearizable, we must
show that there is a way to reorder the commands in a sequence S such that
(i) S respects the order of non-overlapping commands across all clients, and
(ii) S respects the semantics of the commands, as defined in their sequential
specifications.

(i) We first show that there is a sequence S that respects the order of non-overlapping
commands across all clients. To do so, we consider two conditions:

(a) If Cx precedes Cy in G, then Cx precedes Cy in S.

(b) If Cx finishes before Cy starts (i.e., they are non-overlappping), then we
order Cx before Cy in S.

We claim that conditions (a) and (b) can always be accommodated. To see why,
assume for a contradiction that Cx precedes Cy in G and Cy finishes before Cx

starts. From the fact that Cx precedes Cy in G, both Cx and Cy access some

142

partition Pk and Cx(k) is executed before Cy(k) at Pk. Thus, Cx(k) is delivered
before Cy(k), and it follows that Cy cannot finish before Cx starts.

(ii) We next show that sequence S respects the semantics of B-tree commands. We
must show that any command in S takes into account all commands that pre-
cede it, and in the order in which they appear in S. Let Cx be a command in
S. For every sub-command Cx(k) of Cx , only commands on Pk can affect Cx(k),
thus, we can focus on sub-commands Cy(k) only, that is, sub-commands of some
command Cy on the same partition Pk. Since Cx and Cy are composed of sub-
commands on a common partition, from the definition of G and the fact that
it is acyclic, we can totally order them. Thus, sub-commands Cx(k) and Cy(k)
will be executed on partition Pk according to the order of Cx and Cy in S. More-
over, from the implementation of each partition, a sub-command in a partition
is only executed after the sub-command that precedes it is completed. Thus,
sub-commands take into account their preceding sub-commands, in the order
they are executed.

143

Multi-Ring Paxos

In this section, we argue that Multi-Ring Paxos ensures uniform agreement, uni-
form partial order, and validity (for the definition of atomic multicast see Chap-
ter 2).

Proposition 3 (III) Uniform agreement: If a process delivers message m multicast
to gi, then all correct processes in gi deliver m.

Assume p and q subscribe to gi and q delivers m multicast to gi. From the
correctness of the Ring Paxos instance responsible for gi, if p is correct, it will
eventually decide on an instance that contains m. We claim that p will eventu-
ally deliver m. If p only subscribes to gi, this is obviously true. Thus, assume
that p also subscribes to group g j, where j < i. Process p will deliver m after
having delivered M messages from each g j. There could simply not be so many
messages multicast to g j. If so, the coordinator of the Ring Paxos instance re-
sponsible for g j eventually times out and submits enough skip instances to reach
the optimum in the interval. Thus, eventually enough application messages or
skip messages will be decided to complete M , and eventually m is delivered by
p. �

Proposition 4 (IV) Uniform partial order. If processes p and q deliver messages m
and m′, then they deliver them in the same order.

Two cases must be considered:

(a) m and m′ were multicast to the same group g;

(b) m and m′ were multicast to groups gi and g j, respectively, where i < j.

In case (a), it is simple to see from Algorithm 1 in Chapter 5 that both messages
are delivered in the same order by all processes. Partial order also holds for case
(b) from the fact that processes order groups in the same way and first deliver
M messages from one group and then deliver M from the other. Assume m is
delivered in consensus instance ki and m′ in consensus instance k j. If ki ≤ k j,
then both p and q will deliver m first and then m′. If ki > k j, then both processes
will deliver m′ first and then m. �

144

Proposition 5 (I) Validity. If a correct process multicasts a message m to g, then
all correct processes in g will eventually deliver m.

It follows from the correctness of the Ring Paxos instance implementing g
that m will be eventually in the decision of a consensus instance executed by
all correct processes in g. Consequently, from an argument similar to that of
uniform agreement, all such correct processes eventually deliver m. �

145

P-SMR

In this section we show that P-SMR is linearizable and deadlock-free.

P-SMR is linearizable. From the definition of linearizability (see Chapter 2),
we show that there is a permutation π of commands in E that respects (i) the
real-time ordering of commands across all clients, and (ii) the semantics of the
commands. Let Cx and Cy be two commands in E submitted by clients cx and
cy , respectively.

Two cases must be considered:

(a) Cx and Cy are independent. Thus, either Cx and Cy access disjoint sets
of variables or only read variables commonly accessed. Consequently, the
execution of one command does not affect the execution of the other and
they can be placed in any relative order in π. We arrange Cx and Cy in π so
that their relative order respects their real-time dependencies, if any.

(b) Cx and Cy are dependent. Assume Cx and Cy are multicast to groups in γx

and γy , respectively. From the fact that Cx and Cy depend on each other,
γx y = γx ∩ γy 6= ;. In every correct server s, Cx (resp. Cy) is delivered by all
threads in groups in γx (resp. γy) and executed by one thread, say t x (resp.
t y). From the order property of atomic multicast, every thread in groups in
γx y delivers Cx and Cy in the same relative order. Without lack of generality,
assume Cx is delivered before Cy .

We first claim that t x executes Cx before t y executes Cy and the execution
satisfies the sequential semantics of the commands. To see why, notice that
t x only executes Cx after t i delivers Cx and every other thread in groups in
γx delivers Cx and signal t i. Every thread t 6= t i in a group in γx then waits
until t i executes Ci to proceed with the next command. Thus, t y will only
receive a signal from threads in groups in γx y and execute Cy after t x has
executed Cx . Consequently, the two commands execute in sequence, which
satisfies their semantics.

We now claim that the delivery order satisfies any real-time constraints
among Cx and Cy . Without lack of generality, assume Cx finishes before
Cy starts, that is, Cx precedes Cy in real time. Thus, before Cy is multicast
by a client, Cx has completed (i.e,. its client has received Cx ’s response). The
claim follows from the fact that before Cx is executed, it must be multicast,

146

and thus Cx is delivered before Cy . From the claims above, we can arrange
Cx and Cy in π according to their delivery order so that the execution of
each command satisfies its semantics.

P-SMR is deadlock-free. For a contradiction, assume a deadlock where thread
x1 waits for x2, ..., x l waits for x1. Let p(x) (resp. n(x)) be the thread that
precedes (resp. succeeds) x in the deadlock chain. Thread x waits for n(x)
if (1) there is a command Cx ,n(x) multicast to groups that contain x and n(x);
(2) x delivered Cx ,n(x); and (3) x needs a signal from n(x) (a) before x executes
Cx ,n(x) or (b) after n(x) executes Cx ,n(x).

We now claim that x delivers Cx ,n(x) before Cp(x),x , that is, Cx ,n(x) < Cp(x),x .
To see why, assume x delivers Cp(x),x before Cx ,n(x). From the algorithm, when x
delivers Cx ,n(x) it has

(a) sent a signal to p(x), if p(x) was to execute Cp(x),x or

(b) received a signal from p(x), if x was to execute Cp(x),x .

In both cases, p(x) cannot wait for x , as assumed in our deadlock chain.
From the claim above, Cx l ,x1

< Cx l−1,x l
< ...< Cx l ,x1

, which contradicts the atomic
multicast order property.

Bibliography

[1] S. Shankland, “Google spotlights data center inner workings.”

[2] J. Gray, P. Helland, P. O’Neil, and D. Shasha, “The dangers of replication and
a solution,” in ACM SIGMOD Record, vol. 25, pp. 173–182, ACM, 1996.

[3] L. Lamport, “Time, clocks, and the ordering of events in a distributed sys-
tem,” Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978.

[4] L. Lamport, “The part-time parliament,” ACM Transactions on Computer
Systems, vol. 16, pp. 133–169, May 1998.

[5] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of distributed
consensus with one faulty processor,” Journal of the ACM, vol. 32, no. 2,
pp. 374–382, 1985.

[6] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence of
partial synchrony,” Journal of the ACM, vol. 35, no. 2, pp. 288–323, 1988.

[7] F. B. Schneider, “What good are models and what models are good?,” in
Distributed Systems (S. Mullender, ed.), ch. 2, Addison-Wesley, 2nd ed.,
1993.

[8] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable dis-
tributed systems,” J. ACM, vol. 43, no. 2, pp. 225–267, 1996.

[9] M. P. Herlihy and J. M. Wing, “Linearizability: a correctness condition for
concurrent objects,” ACM Trans. Program. Lang. Syst., vol. 12, pp. 463–
492, July 1990.

[10] J. Kirsch and Y. Amir, “Paxos for system builders: An overview,” in LADIS,
2008.

147

148 Bibliography

[11] Y. Vigfusson, H. Abu-Libdeh, M. Balakrishnan, K. Birman, R. Burgess,
G. Chockler, H. Li, and Y. Tock, “Dr. multicast: Rx for data center com-
munication scalability,” EuroSys, 2010.

[12] R. Guerraoui, R. R. Levy, B. Pochon, and V. Quéma, “Throughput optimal
total order broadcast for cluster environments,” ACM Trans. Comput. Syst.,
vol. 28, pp. 5:1–5:32, July 2010.

[13] R. Ekwall, A. Schiper, and P. Urbán, “Token-based atomic broadcast using
unreliable failure detectors,” in SRDS, 2004.

[14] L. Lamport and M. Massa, “Cheap Paxos,” in DSN, 2004.

[15] N. Santos and A. Schiper, “Tuning paxos for high-throughput with batching
and pipelining,” in ICDCN, 2012.

[16] T. Chandra, R. Griesemer, and J. Redstone, “Paxos made live: An engineer-
ing perspective,” in PODC, 2007.

[17] R. van Renesse, “Paxos made moderately complex,” tech. rep., Cornell Uni-
versity, March 2011.

[18] W. J. Bolosky, D. Bradshaw, R. B. Haagens, N. P. Kusters, and P. Li, “Paxos
replicated state machines as the basis of a high-performance data store,”
in NSDI, 2011.

[19] M. Burrows, “The Chubby Lock Service for loosely-coupled distributed sys-
tems,” in OSDI, 2006.

[20] J. Baker, C. Bond, J. Corbett, J. J. Furman, A. Khorlin, J. Larson, J.-M.
Leon, Y. Li, A. Lloyd, and V. Yushprakh, “Megastore: Providing scalable,
highly available storage for interactive services,” in CIDR, 2011.

[21] K. P. Birman and T. A. Joseph, “Reliable communication in the presence of
failures,” ACM Trans. Comput. Syst., vol. 5, pp. 47–76, Jan. 1987.

[22] K. P. Birman, A. Schiper, and P. Stephenson, “Lightweight causal and atomic
group multicast,” ACM Trans. Computer Systems, vol. 9, pp. 272–314, Aug.
1991.

[23] M. F. Kaashoek and A. S. Tanenbaum, “Group communication in the
Amoeba distributed operating system,” in ICDCS, 1991.

149 Bibliography

[24] J.-M. Chang and N. Maxemchuk, “Reliable broadcast protocols,” ACM
Trans. Comput. Syst., vol. 2, no. 3, pp. 251–273, 1984.

[25] F. Cristian and S. Mishra, “The Pinwheel asynchronous atomic broadcast
protocols,” in International Symposium on Autonomous Decentralized Sys-
tems (ISADS), (Phoenix, Arizona, USA), 1995.

[26] J. Kim and C. Kim, “A total ordering protocol using a dynamic token-
passing scheme,” Distributed Systems Engineering, vol. 4, no. 2, pp. 87–95,
1997.

[27] Y. Mao, F. P. Junqueira, and K. Marzullo, “Mencius: building efficient repli-
cated state machines for wans,” in OSDI, 2008.

[28] U. Fritzke, P. Ingels, A. Mostéfaoui, and M. Raynal, “Fault-tolerant total
order multicast to asynchronous groups,” in SRDS, 1998.

[29] L. Lamport, “The implementation of reliable distributed multiprocess sys-
tems,” Computer Networks, vol. 2, pp. 95–114, 1978.

[30] T. Ng, “Ordered broadcasts for large applications,” in Symposium on Reli-
able Distributed Systems (SRDS), pp. 188–197, 1991.

[31] Y. Amir, L. Moser, P. Melliar-Smith, D. Agarwal, and P. Ciarfella, “The Totem
single-ring membership protocol,” ACM Trans. Computer Systems, vol. 13,
no. 4, pp. 311–342, 1995.

[32] M. Biely, Z. Milosevic, N. Santos, and A. Schiper, “S-paxos: Offloading the
leader for high throughput state machine replication,” Reliable Distributed
Systems, IEEE Symposium on, vol. 0, pp. 111–120, 2012.

[33] Y. Amir, C. Danilov, M. Miskin-Amir, J. Schultz, and J. Stanton, “The Spread
toolkit: Architecture and performance,” tech. rep., Johns Hopkins Univer-
sity, 2004. CNDS-2004-1.

[34] http://libpaxos.sourceforge.net.

[35] R. Jimenez-Peris, M. Patino-Martinez, G. Alonso, and B. Kemme, “Are quo-
rums an alternative for data replication?,” ACM Transactions on Database
Systems, vol. 28, no. 3, pp. 257–294, 2003.

[36] R. Jiménez-Peris, M. Patiño Martínez, B. Kemme, and G. Alonso, “Improv-
ing the scalability of fault-tolerant database clusters,” in ICDCS, 2002.

150 Bibliography

[37] B. Kemme, F. Pedone, G. Alonso, and A. Schiper, “Processing transactions
over optimistic atomic broadcast protocols,” in ICDCS, 1999.

[38] G. Weikum and G. Vossen, Transactional Information Systems: Theory, Al-
gorithms, and the Practice of Concurrency Control and Recovery. Morgan
Kaufmann, 2002.

[39] N. Schiper, On Multicast Primitives in Large Networks and Partial Replication
Protocols. PhD thesis, University of Lugano, 2009.

[40] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva: specu-
lative byzantine fault tolerance,” in PSOSP, 2007.

[41] B. Wester, J. Cowling, E. B. Nightingale, P. M. Chen, J. Flinn, and B. Liskov,
“Tolerating latency in replicated state machines through client specula-
tion,” in NSDI, 2009.

[42] C. Coulon, E. Pacitti, and P. Valduriez, “Consistency management for partial
replication in a high performance database cluster,” ICPADS, 2005.

[43] A. de Sousa, R. C. Oliveira, F. Moura, and F. Pedone, “Partial replication in
the database state machine,” NCA, pp. 298–309, IEEE Computer Society,
2001.

[44] E. Cecchet, J. Marguerite, and W. Zwaenepoel, “C-JDBC: Flexible database
clustering middleware,” in Proc. of USENIX Annual Technical Conference,
Freenix track, 2004.

[45] N. Schiper, R. Schmidt, and F. Pedone, “Optimistic algorithms for partial
database replication,” OPODIS, 2006.

[46] U. Fritzke and P. Ingels, “Transactions on partially replicated data based on
reliable and atomic multicasts,” in ICDCS, 2001.

[47] N. Schiper, P. Sutra, and F. Pedone, “P-store: Genuine partial replication in
wide area networks,” in SRDS, 2010.

[48] D. Serrano, M. Patiño-Martínez, R. Jiménez-Peris, and B. Kemme, “Boost-
ing database replication scalability through partial replication and 1-copy-
snapshot-isolation,” in PRDC, IEEE Computer Society, 2007.

[49] D. Serrano, M. Patiño-Martínez, R. Jiménez-Peris, and B. Kemme, “An auto-
nomic approach for replication of internet-based services,” in SRDS, 2008.

151 Bibliography

[50] P. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and Re-
covery in Database Systems. Addison-Wesley, 1987.

[51] S. Elnikety, F. Pedone, and W. Zwaenepoel, “Database replication using
generalized snapshot isolation,” in SRDS, (Orlando, USA), 2005.

[52] Y. Lin, B. Kemme, R. Jiménez-Peris, M. Patiño-Martínez, and J. E.
Armendáriz-Iñigo, “Snapshot isolation and integrity constraints in repli-
cated databases,” ACM Trans. Database Syst., vol. 34, no. 2, 2009.

[53] X. Défago, A. Schiper, and P. Urbán, “Total order broadcast and multicast
algorithms: Taxonomy and survey,” ACM Comput. Surv., vol. 36, no. 4,
pp. 372–421, 2004.

[54] M. K. Aguilera, W. M. Golab, and M. A. Shah, “A practical scalable dis-
tributed B-tree,” PVLDB, vol. 1, no. 1, pp. 598–609, 2008.

[55] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Karamanolis, “Sin-
fonia: a new paradigm for building scalable distributed systems,” in SOSP,
2007.

[56] M. Primi. http://libmarco.googlecode.com/svn/trunk/.

[57] R. Jain, The art of computer systems performance analysis : techniques for
experimental design, measurement, simulation, and modeling. New York:
John Wiley and Sons, Inc., 1991.

[58] http://libpaxos.sourceforge.net/ringpaxos.

[59] C. Curino, E. Jones, Y. Zhang, and S. Madden, “Schism: a workload-driven
approach to database replication and partitioning,” Proc. VLDB Endow.,
vol. 3, pp. 48–57, 2010.

[60] M. Adler, Z. Ge, J. F. Kurose, D. F. Towsley, and S. Zabele, “Channelization
problem in large scale data dissemination,” ICNP, pp. 100–109, 2001.

[61] K. P. Birman and T. A. Joseph, “Reliable communication in the presence of
failures,” ACM Transactions on Computer Systems (TOCS), vol. 5, pp. 47–
76, Feb. 1987.

[62] R. Guerraoui and A. Schiper, “Genuine atomic multicast in asynchronous
distributed systems,” Theor. Comput. Sci., vol. 254, no. 1-2, pp. 297–316,
2001.

152 Bibliography

[63] N. Schiper and F. Pedone, “On the inherent cost of atomic broadcast and
multicast in wide area networks,” ICDCN, 2008.

[64] J. Fritzke, U., P. Ingels, A. Mostefaoui, and M. Raynal, “Fault-tolerant total
order multicast to asynchronous groups,” SRDS, 1998.

[65] L. Rodrigues, R. Guerraoui, and A. Schiper, “Scalable atomic multicast,”
ICCCN, 1998.

[66] C. Delporte-Gallet and H. Fauconnier, “Fault-tolerant genuine atomic mul-
ticast to multiple groups,” OPODIS, 2000.

[67] M. K. Aguilera and R. E. Strom, “Efficient atomic broadcast using deter-
ministic merge,” PODC, 2000.

[68] F. B. Schneider, “Implementing fault-tolerant services using the state ma-
chine approach: A tutorial,” ACM Computing Surveys, vol. 22, no. 4,
pp. 299–319, 1990.

[69] M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi, and M. Dahlin,
“Eve: Execute-verify replication for multi-core servers,” in OSDI, 2012.

[70] R. Kotla and M. Dahlin, “High throughput byzantine fault tolerance,” in
DSN, 2004.

[71] A. D. Birrell and B. J. Nelson, “Implementing remote procedure calls,” ACM
Transactions on Computer Systems, vol. 2, no. 1, pp. 39–59, 1984.

[72] A. S. Tanenbaum, Distributed operating systems. Pearson Education India,
1995.

[73] N. Santos and A. Schiper, “Achieving high-throughput state machine repli-
cation in multi-core systems,” tech. rep., EPFL, 2011.

[74] A. Aviram, S.-C. Weng, S. Hu, and B. Ford, “Efficient system-enforced de-
terministic parallelism,” in OSDI, 2010.

[75] T. Bergan, N. Hunt, L. Ceze, and S. D. Gribble, “Deterministic process
groups in dos,” in OSDI, 2010.

[76] J. Devietti, B. Lucia, L. Ceze, and M. Oskin, “DMP: deterministic shared
memory multiprocessing,” in ASPLOS, 2009.

153 Bibliography

[77] A. Thomson and D. J. Abadi, “The case for determinism in database sys-
tems,” Proc. VLDB Endow., vol. 3, pp. 70–80, Sept. 2010.

[78] G. Altekar and I. Stoica, “ODR: output-deterministic replay for multicore
debugging,” in SOSP, 2009.

[79] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M. Chen, “Execution
replay of multiprocessor virtual machines,” in VEE, 2008.

[80] P. Montesinos, L. Ceze, and J. Torrellas, “Delorean: Recording and de-
terministically replaying shared-memory multiprocessor execution effi-
ciently,” in ISCA, 2008.

[81] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, and S. Lu, “PRES:
probabilistic replay with execution sketching on multiprocessors,” in SOSP,
2009.

[82] M. Ronsse and K. De Bosschere, “Recplay: a fully integrated practical
record/replay system,” ACM Trans. Comput. Syst., vol. 17, pp. 133–152,
May 1999.

[83] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M. Chen, J. Flinn, and
S. Narayanasamy, “DoublePlay: parallelizing sequential logging and re-
play,” SIGPLAN Not., vol. 47, pp. 15–26, Mar. 2011.

[84] M. Xu, R. Bodik, and M. D. Hill, “A “flight data recorder” for enabling full-
system multiprocessor deterministic replay,” in ISCA, 2003.

[85] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg, “Thrifty
generic broadcast,” in DISC, 2000.

[86] F. Pedone and A. Schiper, “Generic broadcast,” in DISC, 1999.

[87] L. Lamport, “Generalized consensus and paxos,” Tech. Rep. MSR-TR-2005-
33, Microsoft Research (MSR), Mar. 2005.

[88] N. Budhiraja, K. Marzullo, F. Schneider, and S. Toueg, “The primary-backup
approach,” in Distributed systems (2nd Ed.) (S. Mullender, ed.), New York,
NY: ACM Press/Addison-Wesley Publishing Co., 1993.

[89] F. P. Junqueira, B. C. Reed, and M. Serafini, “Zab: High-performance broad-
cast for primary-backup systems,” in DSN, 2011.

154 Bibliography

[90] R. van Renesse, “Paxos made moderately complex,” tech. rep., Cornell Uni-
versity, 2011.

[91] D. Altinbuken and E. G. Sirer, “Commodifying repli-
cated state machines with openreplica.” Avaible at
http://openreplica.org/static/papers/OpenReplica.pdf, 2012.

[92] H. Attiya, A. Bar-Noy, and D. Dolev, “Sharing memory robustly in message-
passing systems,” Journal of the ACM (JACM), vol. 42, no. 1, pp. 124–142,
1995.

[93] K. Birman and R. Cooper, “The ISIS project: Real experience with a fault
tolerant programming system,” in SIGOPS European workshop, 1990.

	Contents
	List of Figures
	List of Tables
	Introduction
	Research Contributions
	Structure of the Dissertation

	System Model and Definitions
	System model
	Definitions
	State-machine replication
	Consensus
	Atomic broadcast
	Atomic multicast
	Consistency

	Ring Paxos
	Problem statement
	Outline

	Basic Paxos
	Ring Paxos
	Motivation and design considerations
	Multicast-based Ring Paxos (M-Ring Paxos)
	Unicast-based Ring Paxos (U-Ring Paxos)
	Handling message loss
	Handling process crashes
	Flow control
	Garbage collection

	Related work
	Experimental evaluation
	Hardware settings
	Implementation
	Ring Paxos versus other protocols
	Impact of processes in the ring
	Impact of disk writes
	Impact of message size
	Impact of socket buffer size
	Flow control
	CPU and memory usage
	Conclusions from the experiments

	Conclusion

	Speculation and State Partitioning in State-Machine Replication
	Problem statement
	Outline

	Overcoming limitations of state-machine replication
	Speculative execution
	State partitioning

	Related work
	Experimental evaluation
	Hardware settings
	Implementation and experimental setup
	The cost of replication
	Speculative execution
	State partitioning
	Speculation and partitioning
	Conclusions from the experiments

	Conclusion

	Multi-Ring Paxos
	Problem statement
	Outline

	Multi-Ring Paxos
	Overview
	Multi-Ring Paxos in detail
	Failures and reconfigurations
	Extensions and optimizations
	Additional properties of Multi-Ring Paxos

	Related work
	Experimental evaluation
	Hardware settings
	Implementation and experimental setup
	Scalability of Multi-Ring Paxos
	Impact of on Multi-Ring Paxos
	Impact of M on Multi-Ring Paxos
	Impact of on Multi-Ring Paxos
	Impact of discontinued communication
	Conclusions from the experiments

	Conclusion

	Replicating Parallel Applications with State-Machine Replication
	Problem statement
	Outline

	A Survey on Parallel State-Machine Replication
	Non-replicated setup
	Sequential State-Machine Replication (sequential SMR)
	Pipelined State-Machine Replication (pipelined SMR)
	Sequential Delivery-Parallel Execution (SDPE)
	Execute-Verify (EV)
	Parallel Delivery-Parallel Execution (PDPE)
	Summary

	Parallel State-Machine Replication (P-SMR)
	Design goals
	Client and server organization
	Protocol design
	P-SMR: algorithm in detail

	Related Work
	Experimental evaluation
	Hardware settings
	Implementation and experimental setup
	Performance of independent commands
	Performance of dependent commands
	Performance of mixed workloads
	Scalability
	Performance of skewed workloads
	Conclusions from the experiments

	Conclusion

	Experimenting with Paxos in the Cloud
	Problem Statement
	Outline

	Open-source Paxos libraries
	S-Paxos
	OpenReplica
	U-Ring Paxos
	Libpaxos
	Libpaxos+

	Experimental evaluation
	Experimental setup
	Methodology
	Peak performance
	S-Paxos under failures
	OpenReplica under failures
	U-Ring Paxos under failures
	Libpaxos and Libpaxos+under failures

	Main lessons from the experiments
	Conclusion

	Conclusion
	Summary of our findings and lessons learnt
	Future directions

	Appendices
	Proofs of Correctness
	Bibliography

