
A Self-Healing Framework for General Software
Systems

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Nicolò Perino

under the supervision of

Prof. Mauro Pezzè

August 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/43658794?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Dissertation Committee

Prof. Matthias Hauswirth Università della Svizzera Italiana, Switzerland
Prof. Nate Nystrom Università della Svizzera Italiana, Switzerland

Prof. Oscar Nierstrasz University of Bern, Switzerland
Prof. Sebastian Uchitel Imperial College London, United Kingdom

Universidad de Buenos Aires, Argentina

Dissertation accepted on 31 August 2014

Prof. Mauro Pezzè
Research Advisor

Università della Svizzera Italiana, Switzerland

Prof. Stefan Wolf Prof. Igor Pivkin
PhD Program Director PhD Program Director

i



I certify that except where due acknowledgement has been given, the work pre-
sented in this thesis is that of the author alone; the work has not been submitted
previously, in whole or in part, to qualify for any other academic award; and the con-
tent of the thesis is the result of work which has been carried out since the official
commencement date of the approved research program.

Nicolò Perino
Lugano, 31 August 2014

ii



Abstract

Modern systems must guarantee high reliability, availability, and efficiency. Their com-
plexity, exacerbated by the dynamic integration with other systems, the use of third-
party services and the various different environments where they run, challenges de-
velopment practices, tools and testing techniques. Testing cannot identify and remove
all possible faults, thus faulty conditions may escape verification and validation activ-
ities and manifest themselves only after the system deployment. To cope with those
failures, researchers have proposed the concept of self-healing systems. Such systems
have the ability to examine their failures and to automatically take corrective actions.
The idea is to create software systems that can integrate the knowledge that is needed
to compensate for the effects of their imperfections. This knowledge is usually codified
into the systems in the form of redundancy. Redundancy can be deliberately added
into the systems as part of the design and the development process, as it occurs for
many fault tolerance techniques. Although this kind of redundancy is widely applied,
especially for safety-critical systems, it is however generally expensive to be used for
common use software systems.

We have some evidence that modern software systems are characterized by a dif-
ferent type of redundancy, which is not deliberately introduced but is naturally present
due to the modern modular software design. We call it intrinsic redundancy. This
thesis proposes a way to use the intrinsic redundancy of software systems to increase
their reliability at a low cost. We first study the nature of the intrinsic redundancy to
demonstrate that it actually exists. We then propose a way to express and encode such
redundancy and an approach, Java Automatic Workaround, to exploit it automatically
and at runtime to avoid system failures. Fundamentally, the Java Automatic Worka-
round approach replaces some failing operations with other alternative operations that
are semantically equivalent in terms of the expected results and in the developer’s in-
tent, but that they might have some syntactic difference that can ultimately overcome
the failure. We qualitatively discuss the reasons of the presence of the intrinsic redun-
dancy and we quantitatively study four large libraries to show that such redundancy
is indeed a characteristic of modern software systems. We then develop the approach
into a prototype and we evaluate it with four open source applications. Our studies
show that the approach effectively exploits the intrinsic redundancy in avoiding fail-
ures automatically and at runtime.

iii



iv



Contents

Contents iii

List of Figures vii

List of Tables ix

List of Listings xii

List of Grammars xiii

1 Introduction 1
1.1 Research Hypothesis and Contributions . . . . . . . . . . . . . . . . . . . . 5
1.2 Structure of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Guaranteeing Reliability at Runtime 7
2.1 Software Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Self-Healing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Automatic Workarounds 21
3.1 SWT Library Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Approach: Java Automatic Workaround . . . . . . . . . . . . . . . . . . . . 33
3.3 Self-Healing for Web Applications . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Intrinsic Redundancy 37
4.1 Nature of Intrinsic Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Redundancy in Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Rewriting Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Code Rewriting Rules for Java . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5 Syntax and Semantics of Code Rewriting Rules for Java . . . . . . . . . . 49
4.6 Study on Intrinsic Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 State Consistency Mechanisms 55
5.1 Software Transactional Memory . . . . . . . . . . . . . . . . . . . . . . . . . 56

v



vi Contents

5.2 Checkpoint and Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3 Considerations on the State Consistency Mechanisms . . . . . . . . . . . . 62

6 Frames 65
6.1 The Frame Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.2 Originality of Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7 ARMOR – A Prototype for Java 73
7.1 Roll-Back Areas – Frames for Java . . . . . . . . . . . . . . . . . . . . . . . . 74
7.2 Preprocessing Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.3 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8 Evaluation 83
8.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.2 Real Faults in JodaTime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.3 Mutation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.5 Limitations and Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . 95

9 Conclusions 97
9.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A List of all the Code Rewriting Rules 103
A.1 Code Rewriting Rules for Guava . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.2 Code Rewriting Rules for JodaTime . . . . . . . . . . . . . . . . . . . . . . . 105

Bibliography 111



Figures

3.1 The tree structure produced by the codes in the example . . . . . . . . . . 26
3.2 General overview of the approach JAW . . . . . . . . . . . . . . . . . . . . . 35

6.1 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2 Frames infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.3 Dynamic frames activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

vii



viii Figures



Tables

4.1 Equivalent sequences found in representative Java libraries . . . . . . . . 53

8.1 Results of the preprocessing on the applications . . . . . . . . . . . . . . . 90
8.2 Classification and selection of mutants . . . . . . . . . . . . . . . . . . . . . 91
8.3 Effectiveness of ARMOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.4 Overhead incurred by ARMOR in normal non-failing executions (me-

dian over 10 runs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

ix



x Tables



Listings

3.1 Methods add and addAll exposed by ArrayList . . . . . . . . . . . . . . . . . 22
3.2 Sorting algorithms implemented with quicksort, mergesort and timsort

in the Java Arrays class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Simple program that draws a tree of items within a window . . . . . . . . 25
3.4 Program that fails to remove only some items . . . . . . . . . . . . . . . . . 27
3.5 Program that uses setItemCount as workaround . . . . . . . . . . . . . . . . 28
3.6 Program that uses dispose as workaround . . . . . . . . . . . . . . . . . . . 28
3.7 Source code of the method removeAll . . . . . . . . . . . . . . . . . . . . . . 29
3.8 Execution trace of the Listing 3.4 . . . . . . . . . . . . . . . . . . . . . . . . 30
3.9 Source code of the method setItemCount . . . . . . . . . . . . . . . . . . . . 31
3.10 Execution trace of the Listing 3.5 . . . . . . . . . . . . . . . . . . . . . . . . 31
3.11 Source code of the method dispose . . . . . . . . . . . . . . . . . . . . . . . . 31
3.12 Execution trace of the Listing 3.6 . . . . . . . . . . . . . . . . . . . . . . . . 32
3.13 Rewriting rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1 One implementation for the method getPartialValues . . . . . . . . . . . . 43
4.2 Another implementation for the method getPartialValues . . . . . . . . . . 43
4.3 Implementation of method containKey of class LinkedListMultimap . . . . 44
4.4 Implementation of method keys of class LinkedListMultimap . . . . . . . . 44
4.5 Implementation of method contains of class AbstractMultiset . . . . . . . . 45
4.6 Rewriting rule for the JodaTime getPartialValues method . . . . . . . . . . 46
4.7 Rewriting rules for the Guava containsKey method . . . . . . . . . . . . . 46
4.8 A code fragment that contains the containsKey method . . . . . . . . . . . 47
4.9 The method containsKey rewritten by means of the four rewriting rules . 47
4.10 Code rewriting rule for the JodaTime getPartialValues method . . . . . . 48
4.11 Rewriting rules for the method removeAll in two different contexts . . . . 49
4.12 Code rewriting rule that implements the two rewriting rules in Fig-

ure 4.11 for removeAll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.13 Matching condition for code rewriting rules . . . . . . . . . . . . . . . . . . 52
4.14 The rewritten program code . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.1 Example application code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.2 Encapsulation of an initialization expression . . . . . . . . . . . . . . . . . 77
7.3 Result of preprocessing (simplified) . . . . . . . . . . . . . . . . . . . . . . . 78

xi



xii Listings

7.4 Rewriting rules for the JodaTime DateTime class . . . . . . . . . . . . . . . 80
7.5 Original RBA setMidnight with two variants . . . . . . . . . . . . . . . . . . 80
8.1 Code that reproduces the issue n. 1375249 in JodaTime . . . . . . . . . . 86
8.2 Rewriting Rule for YearMonthDay in JodaTime . . . . . . . . . . . . . . . . 86
8.3 Code Rewriting Rule for YearMonthDay in JodaTime . . . . . . . . . . . . 86
8.4 Workaround that fixes the code in YearMonthDay . . . . . . . . . . . . . . 87
8.5 Code that reproduces the issue n. 3072758 in JodaTime . . . . . . . . . . 87
8.6 Rewriting Rule for parseDateTime in JodaTime . . . . . . . . . . . . . . . . 87
8.7 Code Rewriting Rule for parseDateTime in JodaTime . . . . . . . . . . . . 88
8.8 Workaround that fixes the code in ParseDateTime . . . . . . . . . . . . . . 88



Grammars

4.1 Grammar for some Java elements . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 The rewriting context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Grammar for code rewriting rules patterns with meta-variables . . . . . . 51
4.4 Grammar for code rewriting rules . . . . . . . . . . . . . . . . . . . . . . . . 51

xiii



xiv Grammars



Chapter 1

Introduction

Reliability has always been one of the major challenges for software systems, histori-
cally for safety-critical systems, and today it is amplified by the pervasiveness of soft-
ware systems in everyday activities.

High reliability is important, indeed many techniques have been proposed to in-
crease it, but very difficult to achieve, indeed software systems still fail at runtime.
The constant expanding complexity of software systems, which are intertwined with
other systems and dependent on third-party systems, challenges all the usual develop-
ment practices, tools and testing techniques, which cannot assure to release systems
without faults. The increasing dimensions and complexity of modern systems, and
thus, the growing testing costs make unrealistic the idea to avoid all failures before the
deployment.

The classic maintenance cycle, which requires a failure report, an offline fixing
by the developers, and a new release and deployment of the system, is still required
but it is becoming insufficient. Maintaining systems offline and fixing faults are still
necessary activities, but they result in a discontinuity in the services provided by the
systems. In between the time a failure is reported and the time the fix is released by
the developers, the functionalities of the system are not fully available. In this gray
time slot, the system may not be usable at all or it may be only partially usable. In
both cases, failures lead the system to unexpected behaviors, which may span from
wrong results to incomplete actions or system crashes. In such cases, the users can
avoid to use the system, or can tolerate an instable software, eluding failures with
manual workarounds. As an extreme example, consider the fault 3655 of the Firefox
browser, which was reported for the first time in March 1999, and still, after numerous
fix attempts, it is still open after fourteen years1.

To complement the classic maintenance cycle, researchers have proposed several
mechanisms to tolerate or mask failures. Since the seventies, typically for safety-critical
systems, this has been done through fault tolerance systems that increase the reliability

1https://bugzilla.mozilla.org/show_bug.cgi?id=3655

1

https://bugzilla.mozilla.org/show_bug.cgi?id=3655


2

adding redundancy into the system, either hardware or software. As software redun-
dancy, the most successful fault tolerance techniques are N-Version Programming and
Recovery Blocks, developed by Avizienies [Avi85] and Randall [Ran75], respectively.
These techniques are based on the idea that developing multiple versions of the same
component reduces the probability of introducing the same faults in every version, and
it also reduces the probability to get the same failure for the same input on the differ-
ent versions. The different versions run in parallel, for N-Version Programming, or in
sequence, for Recovery Blocks. The outcome is determined by the output of the major-
ity of the executions, for N-version, and by the first non-failing execution, for Recovery
Blocks.

In such techniques redundancy is deliberately added at design time into the sys-
tem. This approach leads to more reliable software, but it incurs higher design, devel-
opment, test, and maintenance costs, as well in a stricter and more rigorous process.
For safety critical systems, higher costs are justified by the high standards of reliability
that the systems must guarantee, but not for common use software.

For this reason, recently, autonomic computing and self-managed systems have
emerged as a possible way of coping efficiently with runtime problems, at a lower
cost. The idea has been introduced in the beginning of the year 2000 by Horn and
Kephart [Hor01, KC03]. The underlying idea of autonomic computing is that systems
are aware of themselves. They can reconfigure themselves, recover from failures, opti-
mize for better performance, and protect themselves from external attacks. To achieve
these goals, self-managed systems are built on a cycle that operates as a controller to
monitor the system, analyze its behavior, plan possible changes to adapt, and execute
the selected plan.

As part of self-managed systems, self-healing systems usually deal with failures that
deteriorate system functionality or performance. Several techniques have been studied
and proposed by many researchers. For example Demsky et al. propose an approach
based on recovery tasks. A recovery task is a function that can be executed even if a
failure causes some of its parameters to be unavailable. When a failure occurs, the
technique uses an ad-hoc written recovery algorithm and static analysis to understand
which recovery task must be taken to recover from the failure and continue the ex-
ecution [DZM10]. Samimi et al., instead, refer to formal specification as a reliable
alternative to the implementation. On a failure, they use a constraint solver to execute
the specification to allow the program to continue properly [SAM10]. Several self-
healing approaches have been proposed for the Web. Gurguis et al. propose to apply
the autonomic cycle proposed by Kephart et al. to determine problems in the execution
of a service and use Web service discovering mechanisms to select a different service
that can overtake the problem [GZ05]. Similarly, Guinea proposes an approach based
on recovery strategies to allow a system to continue its execution when a misbehavior
have been discovered. One of the proposed strategies substitutes the faulty service
with a redundant one [Gui05].



3

Most of the techniques proposed so far are less expensive in terms of design, devel-
opment, and process costs, and are usually preferred when the criticality of the system
does not concern the safety. Still, these techniques make strong assumptions, require
additional costs, or are limited in the scope. For example some techniques require
specification or to write extra code, which means additional design and development
costs. Other techniques are limited in the domain, for example the Web domain.

In this thesis we propose a new self-healing mechanism, called Java Automatic
Workaround (JAW). This mechanism does not have domain limitation, it is widely ap-
plicable to different software systems, and does not incur high additional costs. The
underlying idea is based on the intuition that the complexity of modern software sys-
tems and of their design and develop processes make them already intrinsically re-
dundant. With the term intrinsic redundancy we define that kind of software redun-
dancy that arise due to the modern methods of designing, engineering, and developing
software systems rather then the specific purpose of replicating the functionality of a
system. Thus, we can exploit the redundancy that is intrinsic in software systems to
improve systems dependability and reliability, by capturing it in a suitable form and
using it to avoid failures, instead of intentionally adding it during or after the devel-
opment phase, or looking for it outside of the systems themselves. Redundancy can
be found on different levels and can be either disadvantageous or acceptable. The
former may derive from a bad design or maintenance. In the area of code cloning
identification, several works have been done to identify and remove this kind of re-
dundancy [KSNM05, KKI02, JMSG07]. We, on the other hand, exploit the good kind
of redundancy. The reasons of the presence of the intrinsic redundancy are multiple.
The modern development process leads to the use of third-party software components:
systems may include several third-party components, and it is likely that some of them
offer the same or similar functionalities. Also, despite the best design and develop-
ment intentions, developers often implement multiple functions with the same or a
similar logic. On the other side, modern design approaches also yield to highly con-
figurable and versatile modular systems, which increase the possibility of overlapping
functionalities among modules. Maintenance is also a source of redundancy. For ex-
ample the process of functions deprecation, originated from a re-design of the system
or performance issues, leads to functions duplication. Containers or graphical libraries
are typical examples of intrinsically redundant components. For example, adding a set
of items one by one or with a single operation, re-drawing an interface or clearing and
drawing it from scratch, restarting a service or stopping and starting it again, sorting
a set with two different kind of algorithms, are all examples of operations that lead
to the same results. Our approach exploits the intrinsic redundancy at method calls
level, and we call such behaviorally equivalent methods, equivalence. Let us take two
method in a bug-free context, we say that the two methods are semantically equivalent
if their two outcome are indistinguishable.

In a previous work, we focused on Web applications [CGPP10a]. We demonstrated



4

that, in the Web domain, intrinsic redundancy, indeed, exists and can be exploited to
automatically avoid failures. We noticed that often developers, facing with failures in
Web libraries, propose to avoid such failures by applying workarounds to the faulty
code, that is using a different way to achieve the same result. We proposed an ap-
proach, called Automatic Workaround for Web Applications (AWA), to automatically
avoid failures by means of equivalent sequences. The domain we considered was com-
posed of stateless Web applications. The tool we developed involved the user as an
active actor of the healing process, thus, implying a stop in the service due to the ac-
tions taken by the user to pinpoint the failure and validate the proposed workarounds.

In this thesis we focus on the new problem of exploiting intrinsic redundancy to
create self-healing systems in the broad domain of general or common use applications,
where we cannot make assumptions of a stateless behavior, the user cannot be involved
actively in the healing process, and we cannot stop the execution of the systems, that
is a runtime healing is required. Considering a larger and more varying set of software
systems, new challenges must be faced.

We have to investigate if intrinsic redundancy is a typical characteristic of Web
applications only, or it can be found also in other domains. Since our goal is to exploit
intrinsic redundancy, we want to propose a way to identify, collect, and express it for
self-healing purposes. Once the intrinsic redundancy has been identified and collected,
we want to investigate if it can be generalized to make common use software systems
self-healing. To deal with system failures, we must be able to detect a failure, to assure
consistency in case of failure, and adapt the system behavior automatically, efficiently
and at runtime.

In this work we demonstrate that common use software systems are indeed intrin-
sically redundant. We show and discuss the results of a study conducted on several
large and widely used software libraries, where we identified and collect the intrin-
sic redundancy of those libraries, and expressed it through our representation, called
rewriting rules. We also prove that the intrinsic redundancy of software systems can
be used to avoid failures, and we propose an approach to handle failures automati-
cally and at runtime, solving the problem of the system state corruption. JAW is based
on the Automatic Workaround technique [CGP08b]and it works as follow: When the
software is running normally, the state of the system is regularly saved to assure state
consistency in case of state corruption due to a failure. We assume that a failure detec-
tion mechanism is provided, for example assertions, and when a failure is caught, the
last saved state is restored to avoid any side-effect, thus the execution is rolled back
to that point. An equivalence is selected and applied to the code. The equivalence
is selected among those that have a match in the code between the restored point
and the failed instruction. The execution is then resumed, if the equivalence works
as a workaround, the execution continues, otherwise another equivalence is applied.
When all the equivalences that can be applied to that portion of code have been tried,
the state of the system is rolled backed recursively, following the list of all saved states



5 1.1 Research Hypothesis and Contributions

backward. When all the restorable states have been restored and no more equivalences
can be applied, the system exits with an error message.

1.1 Research Hypothesis and Contributions

The hypothesis of this dissertation is that software systems are intrinsically redundant,
that is they inherently provide multiple ways to perform the same operations. This re-
dundancy can be captured, expressed and used for avoiding failures automatically and at
runtime in common use software systems, thus to achieve a better reliability in stateful
software systems. In these systems a failure may corrupt the state, so we must as-
sure system state consistency and, when the state is compromised, we must recover it
consistently.

The main contribution of this thesis is to provide an approach to exploit the in-
trinsic redundancy of software systems to add self-healing capabilities to common use
applications. To demonstrate the validity of the approach, a prototype of a framework
to automatically avoid failures at runtime is developed and validated through a set of
case studies.

We already demonstrated that a sub-domain of software systems, that is Web ap-
plications, are intrinsically redundant, therefore, we expect it is reasonable to broaden
the first part of the hypothesis to more general software systems domain. So, by pro-
viding an approach and a tool based on it, we expect to understand if common use
software systems are intrinsic redundant, how much they are intrinsically redundant and
where we can found this redundancy. The redundancy must be identified, extracted and
represented in a suitable form before being used. At this point we can exploit it to avoid
system failures. Furthermore, in stateful systems, a failure may corrupt the state, thus
we want to recover a corrupted state and avoid failures automatically and at runtime.

This work proposes an approach, JAW, that works potentially for every software
system. It keeps the state of the system consistent by recovering it when a failure
corrupts it, and uses the intrinsic redundancy, expressed as rewriting rules, to provide
an automatic workaround to avoid the failure. JAW has also been implemented into
a prototype for Java applications that can address failures automatically, efficiently,
and at runtime. The prototype does not consider concurrency problems. A set of
experimental results that demonstrate the efficacy of the approach is then proposed
and discussed.

1.2 Structure of the Dissertation

The remainder of this dissertation is structured as follows:

• Chapter 2 provides an overview of techniques to increase system reliability. We
examine several fault tolerance and self-healing techniques that rely on some



6 1.2 Structure of the Dissertation

form of software redundancy.

• Chapter 3 describes our approach to automatically exploit intrinsic software re-
dundancy. Starting with the use of intrinsic redundancy as workaround on a real
example, we explain how to automate the process.

• Chapter 4 focuses on intrinsic software redundancy. We give qualitative rea-
soning on the existence of intrinsic redundancy in reusable components and we
present some quantitative data as a result of an inspection of some large Java
libraries. We formalize the syntax of the rewriting rules and we define their
semantics.

• Chapter 5 presents a comparison between two major techniques for state han-
dling, software transactional memory and checkpoint and recovery.

• Chapter 6 focuses on how JAW applies code transformation at runtime, and how
it benefits from the state handling mechanisms to avoid faults located far from
the failure.

• Chapter 7 describes the prototypal implementation used to evaluate the ap-
proach.

• Chapter 8 presents the evaluation study on some open source applications.

• Chapter 9 summarizes the contribution of this work, delineates the conclusions
and the future directions.



Chapter 2

Guaranteeing Reliability at Runtime

Reliability is the ability of a system to consistently perform its intended or required
function, when requested and without degradation or failures. Barlow and Proschan
define reliability as the probability at specified time t, the system S is operating and
will continue to operate for an interval of duration x [BP65]. Reliability is a crucial
element in every system, for safety reasons in safety-critical systems, for business and
social consequences in business-critical systems, or even for the users’ expectation in
common use systems. Full reliability could be ideally achieved by a fault-free system,
but the current technology is far from being able to produce fault-free systems and
may never be able to.

Achieving high reliability has always been challenging for all the software engi-
neering disciplines. Researchers coped with this problem in several ways. Prevention is
a first mechanism: design diversity, formal specifications, program validation, severe
design processes and methodologies, tools to enforce programming principles and soft-
ware reuse, may help engineers reduce the faults in the system during the design and
development [Yu98, FSS02]. All the most efficient prevention techniques, however,
cannot guarantee the absence of faults.

Fault removal techniques address faults that remain in the system despite the use
of the best design and development practices. A lot of approaches, techniques and
tools have been proposed in the past decades, from manual inspection of the code,
to program verification techniques, such as automatic testing and analysis [YP08]. To
achieve high quality standards, the costs related to the testing phases inflate, and even
the most sophisticated testing approaches and tools cannot detect all the faults. Some
components or part of the systems are impossible to verify, and some faults are difficult
to reveal or may manifest themselves only under rare circumstances.

To cope with those faults that still remain in the code, researchers have proposed
failure avoidance techniques. Starting from the seventies, a lot of fault tolerance tech-
niques have been proposed to cope with failures, especially in safety-critical systems.
Fault tolerance techniques usually require some form of redundancy. Redundancy can

7



8 2.1 Software Fault Tolerance

be added in the code, in the data or in the environment. Developers might be required
to develop the system, or parts of it, in multiple copies, duplicate system data, or repli-
cate the environment. Introducing redundancy deliberately increases the reliability at
high cost: code redundancy increases design, develop and maintenance costs; data
and environment redundancy increase the cost of the infrastructures. Nonetheless, the
responsiveness of the system might also be affected by redundancy. High costs are
acceptable for systems where safety is a primary concern.

There is a large class of software systems, such as business-critical or user-critical
systems, that have less critical requirements, but still relevant reliability requirements.
For these systems, high development or running costs cannot be sustained. For this rea-
son, in the last twenty years, after Kepahrt [KC03] and the IBM manifesto [IBM06],
autonomic and self-healing approaches have been proposed to increase system relia-
bility by dealing with failures automatically and at runtime.

In the following sections we provide a small survey on the main classic fault toler-
ance and self-healing techniques.

2.1 Software Fault Tolerance

The primarily goal of fault tolerance techniques is to produce reliable systems that
are able to accomplish their tasks also under unpredicted conditions, such as a failure.
Software fault tolerance is the ability of a system to detect a failure occurrence, recover
from the effects and let the system provide the requested service.

To deal with software faults, software fault tolerance techniques took inspiration
from the experience of hardware fault tolerance technique, and achieved reliability by
deliberately introducing some redundancy in the system code. To reveal and tolerate
software faults, several techniques have been proposed since the seventies. N-Version
Programming, Recovery Blocks, and Pseudo-oracles, for example, rely on multiple ver-
sions of the same code or component [Avi85, Ran75, Wey82]. Similarly, exception
handling and Self-Checking Programming use redundancy to react to erroneous be-
havior of the system with predefined actions [Goo75, YC75]. While some techniques
make the code redundant, other focus on data redundancy, such as robust data struc-
tures and data diversity approaches [CPW72, TMB80].

The next paragraphs describe the mentioned classic fault tolerance techniques.
Smith [Smi88] and Saha [Sah06] provide more detailed surveys on fault tolerance.

N-Version Programming The technique has been borrowed by the traditional hard-
ware fault tolerance concept of N-way redundant hardware, and has been originally
proposed by Avizienis et al. [Avi85]. In the N-Version Programming approach, the
modules of the system are designed and developed with N independent versions and
are executed in parallel. Each version performs the same task in a different way and
then submits the outcome to a voter that decides the correct answer and returns it as



9 2.1 Software Fault Tolerance

the result of the task. To overcome faults, the N versions must rely on the concept of
design diversity: the different versions must be designed and develop independently,
using different design and implementation techniques, different tool sets, different
programming languages, and possibly different environments. A simple voting algo-
rithm consists of comparing the outcomes and decides for the majority. In general,
to guarantee a majority quorum, a module must be implemented in 2k + 1 different
versions, to tolerate up to k faults. N-version programming relies on multiple design
and implementation processes, and is thus an expensive technique, but does not re-
quire explicit oracles, since the approach relies on a consensus mechanism to accept or
reject an execution.

Recovery Blocks The Recovery Blocks method was proposed originally in the middle
of seventies by Randell, and Horning et al. [Ran75, HLMSR74]. The mechanism is
based on a language construct for encapsulating components or parts of programs
that must execute reliably. As for N-version programming, each block is developed
in several independent versions. The blocks are executed sequentially: when a block
fails, a redundant one is selected and executed alternatively to the failed one. This
process repeats until a block does not fail or no more alternative blocks are available.
The Recovery Blocks mechanism uses acceptance tests as an oracle to detect failures at
runtime, and relies on a rollback mechanism to recover the system to a consistent state
before trying to execute a different block. It is very important that each block executes
with the same state of the system as before the previous block has been executed.
The main differences between Recovery Blocks and N-Version Programming are the
sequential way to process the blocks and the explicit oracles to detect failures and
trigger the recovery actions.

Consensus Recovery Block In the eighties, Scott proposed to combine N-Version
Programming and Recovery Blocks to overcome the main limitations of the two ap-
proaches and proposed the Consensus Recovery Block approach [Sco83]. The major
limitations of Recovery Blocks are the development of acceptance tests without a pre-
cise guideline, the lack of a testing methodology and the high cost of acceptance com-
putation. N-Version Programming suffers from the difficulty of producing the voting
system: it may happen that different versions compute different albeit correct results,
or results with different degrees of precision. Scott proposed to implement n versions
of the program or the component and use a mix of voting mechanism and acceptance
tests for checking the results. The versions of the systems run in parallel and the re-
sults are submitted to the voting procedure. If two of the n results agree, their output
is considered correct, otherwise each result is sequentially examined for acceptance
and the first successful result is considered the correct one.



10 2.1 Software Fault Tolerance

Pseudo-oracles The underlying idea behind N-Version Programming and Recovery
Blocks has been exploited also in software testing. In 1982, Weyuker proposed the
Pseudo-oracles approach to address the problem of non-testable programs, that is pro-
grams for which oracles do not exist and the correct program output is unknown, the
results are not processable by human beings, or the implementation of such oracles
is not practically feasible [Wey82]. Pseudo-oracles are independently implemented
versions of the program, in the same way of Avizienis and Randell approaches, that
achieve the same goal and result of the one under test. The approach can reveal er-
rors when the computed outcomes of all independently versions of the program do
not agree. Although the error cannot be confidently localized in the program under
test, the validity of the result is at least questionable. The Pseudo-oracle mechanisms
requires at least two versions of the same program to be implemented, and at least
three to automate the process.

Exception Handling Exception handling is a classic mechanism to handle predefined
classes of faults, by the mean of recovery actions coded in the system at design time.
One of the first formalizations of exceptions was made by Goodenough [Goo75]. The
author classifies the exceptions into four categories: a range failure occurs when an
outcome of a procedure does not satisfy an output assertion. A failure on an input
assertion is classified as domain failure. Exceptions are not only tied to system failures,
indeed, the author proposes two classifications, classify result and monitoring, that are
raised when the invoker needs more information on the result of the procedure or on
the progress of the computation, and not when a failure occurs. Goodenough also
proposes three strategies to handle exceptions. While handling an exception, we may
require to terminate the procedure that raised the exception (escape), resume the pro-
cedure is at the end of the handler actions (notify), or allow both strategy (signal).
Reasoning on the existing exception handling mechanisms, Liskov and Snyder propose
a simpler model based on a single-level scope and that imposes the termination of
the procedure [LS79]. Relying on the concepts of exception handling and Recovery
Blocks, respectively by Goodenough and Randell, Cristian proposes a semantic and de-
fines the usage of a notation that joins mechanisms of exception handling and fault
tolerance [Cri82]. Lang et al. proposes a detailed survey on exception handling tech-
niques [LS98].

Self-Checking Programming The idea of relying on software redundancy to increase
reliability was discussed, in 1975, by Yau et al. who proposed the idea of self-checking
software. This approach uses injected redundancy to automatically check the program
behavior at runtime and verify the correctness of the running operations. The au-
thors discuss the differences of designing self-checking systems by adding redundancy
at different levels, such as at system, module, instructions or data level. The lower
the level is, the finer the correction strategy that could be applied is [YC75]. Com-



11 2.2 Self-Healing

bining Self-Checking Programming and N-Version Programming, Laprie et al. describe
an approach called N Self-Checking Programming [LBK90]. Differently from N-Version
Programming, where the components of the system that are developed in several vari-
ants are used as implicit oracles, in the N Self-Checking Programming approach, a
component consists of either a variant and an acceptance test, used as explicit oracle,
or two variants and a comparison algorithm. The variants run in parallel, and when
the main one fails, a spare one can continue to deliver the service, and if the spare
component fails, the main one can resume the execution again.

Robust Data Structures and Data Diversity A different set of strategies to improve
reliability of software systems consists in increasing the dependability of data struc-
tures with data redundancy techniques. One of the first approaches has been proposed
by Connect et al. in the early seventies [CPW72]. The authors propose to use software
error detectors and program correctors, which they call audits. Audits use redundant
software structures to detect and locate errors, and restore the memory to a consistent
state to allow a correct execution of the system. Taylor et al. proposed data redun-
dancy to increase the robustness of data structures, and increase the overall reliability
of the system [TMB80]. They identify three common forms of data redundancy to
make data structures more robust: the count of nodes in a data structure, identifier
fields, and additional pointers. For example, the robustness of a simple linear list can
be enhanced by adding identifier fields to each node, making the list circular by adding
a pointer from the last node to the first one, and tracking the total count of the nodes.
In this case an error can be easily detected by checking the consistency of this redun-
dant information. Knight et al. analyze the failures caused by some particular regions
of input, and propose a fault tolerant approach called re-expressions [AK88]. Data re-
expression is the generation of logically equivalent data sets, that when used as inputs
of an algorithm, produce the same results. The approach takes advantage of equiva-
lent data input to overcome a fault caused by the original input data set. The authors
implement data diversity borrowing the idea from the Recovery Blocks and N-Version
Programming techniques. Retry blocks are blocks of code subjected to an acceptance
test, and when the test fails a new set of input data is re-expressed and used to re-
execute the block; N-Copy Programming consists in n parallel execution of the same
program with n equivalent input data sets.

2.2 Self-Healing

The complexity of safety-critical systems challenged and is still challenging the re-
searchers to propose and develop new fault tolerance approaches and techniques.

In the last fifteen years, the increase in the dependence of the society from soft-
ware systems has emphasized the need of high reliability in a large class of systems
where requirements are not safety-critical, but where failures may have big impact on



12 2.2 Self-Healing

the human society, such as in business or social systems. For this class of software
systems, the high costs of specialized hardware, multiple designs, or multiple versions
development are not acceptable. Autonomic and self-managed systems have recently
emerged as a possible way to cope efficiently with runtime problems. In these systems,
the systems are enabled to cope with errors that are still in the code in the production
environment, and sometimes only with specific classes of errors.

IBM proposed autonomic systems as a new development paradigm, where systems
have knowledge of themselves and are aware of the environment in which they op-
erate. Autonomic systems are able to reconfigure and optimize under unpredictable
conditions, they can recover from and heal failures, as well as protect from external
attacks [Hor01, KC03]. In the IBM vision, such systems are aware of the behavior of
the components they are composed of, of their external interfaces, and how to com-
pose these components to make them cooperate to achieve the self-management goal.
Autonomic systems are usually coordinated by a control loop that automatically col-
lects the details it needs from the system, analyzes these details to decide if a change
is needed and, in that case, creates a plan of actions to react to the perturbations, and
finally performs those actions [IBM06].

Kramer and Magee tackle the architectural challenge of self-managed systems with
a three-layer reference model. The bottom layer is the controller of the components. It
consists of a set of interconnected components that accomplish the application function
of the system, sensors to interact with the environment, and a manager to support
the planning to react to stimulus. The middle layer executes the plans received from
the bottom level to handle new situations. The uppermost layer is the deliberation
layer. This layer computes long term plans to achieve high-level goals, considering the
current state of the system [KM07].

Self-managed systems deal with many properties. Here we focus on self-healing
systems that automatically recover from functional failures. Self-healing systems can
automatically detect failures, diagnosis the faults and propose one or more actions to
heal the faults, or avoid the failures.

Force This set of healing approaches try to fix the fault by forcing the system to be-
have as expected, to reach the correct goal. Meyer et al. and Zeller et al. propose two
techniques that derive bug fixes based on behavioral models. The former approach,
implemented in a tool called PACHIKA [DZM09], extracts the execution traces of pass-
ing and failing test cases and builds behavioral models by mining these traces. The
models are final state machines that abstract on the values of numbers and booleans.
The approach detects anomalies by comparing passing and failing runs, and learns
preconditions from the former, and violations of such preconditions from the latter. All
the method calls that are relevant for the failure are selected and analyzed to discover
precondition violations. If a method call violates at least a precondition, the tool gen-
erates a fix by deleting the violating call, or inserting the calls that make the state of



13 2.2 Self-Healing

the system to agree with the model mined with the passing runs. In a further work,
AutoFix-E [WPF+10], they rely on contracts and boolean query abstraction: contracts
associate specifications and methods, boolean queries abstract the object state using
boolean-valued functions with no arguments. As in the previous work, they use test
cases to derive models that describe the system and the occurring failure. They extract
the abstract object state model from the executions of the test cases using boolean
queries, and profile a fault by comparing passing and failing states of test case execu-
tions and storing all the predicates that hold in the passing run but not in the failing
ones. They derive finite state behavioral models of the classes under test from the
error-free runs, and use the models to propose candidate fixes by determine sequences
of calls which can change the object state appropriately.

Similarly, Perkins et al. propose ClearView [PKL+09]. The ClearView approach is
based on invariant checking and fixing strategies to steer and force the system to agree
to violated invariants. The tool uses Daikon [EPG+07] to observe the normal execu-
tion of the system to learn invariants, and it uses one or more detection mechanisms
to catch violations of such invariants. The captured failures are then correlated to the
relevant invariants by cross-checking those invariants that hold in the normal execu-
tions but not in the failing one, and the invariants that are violated before the failure
occurs. They propose three fixing strategies: one that enforces the state of the system
to hold the invariants correlated to the failure, one that forces the registers to hold the
related invariants and one that changes the flow of the execution.

Yet another way to handle failures is to lead the program execution to avoid cer-
tain paths. Pagano et al. propose a tool, FastFix, that generates error reports to help
developers reproduce and find the root cause of failures, and automatically generate
patches to avoid certain types of failures. By analyzing the application code, the tool
removes specific issues by applying a supervision mechanism proposed by Gaudin et
al. to exclude the faulty execution paths [GVNH11]. In their work, Gaudin et al. ap-
ply the Supervisory Control Theory to produce a supervisor system that is embedded
within the original system and that can steer the system to avoid failing situations. The
supervisor uses a finite state machine that is built from the source code of the program
and that represents the observable behavior of the program, it monitors the execu-
tion of the original program and when an unhandled failure is caught, it automatically
synthesizes an execution path from the model to avoids the failure.

Guo proposes to convert unhandled runtime exceptions into special objects called
Not Available objects (NA), that represent the exceptions [Guo11]. When an expression
throws an uncaught exception, a NA object is created and stored in to the expression
target in place of the missing result, a log file is populated with the details of the failure,
and the program execution continues. If an NA object is involved in a computation,
special rules are followed to compute the result, for example a binary operation in-
volving an NA object will return the NA object itself. With this approach, long running
programs or scripts can complete their executions and produce partial results and log



14 2.2 Self-Healing

files related to the failures, instead of quitting with no results.

Lightweight variants of N-Version Programming The underlying idea of N-Version
Programming has been recently exploited by other researchers for different kinds of
software systems.

Liskov et al. propose to mask software errors with process replicas [CRL03]. The
technique, called BASE, implements a replication technique where the implementation
details of the replicas are abstracted, to enable the reuse of off-the-shelf software.
The N-Version Programming idea of implementing several different versions, of the
software, is here exploited by using off-the-shelf software, to decrease the development
costs. Each different version runs in a different replica, and the abstraction layer masks
the discrepancies among the versions, while data consistency and determinism are
guarantee by conformance wrappers.

Gashi et al. propose a technique to increase the dependability of SQL servers by tak-
ing advantage of the well defined interfaces of such databases and relying on the par-
allel execution of different implementations of SQL databases [GPSS04]. The database
variants are executed in parallel and a voting algorithm determines the final result of
the queries in case of failure of one of them. A middleware guarantees a deterministic
behavior and data consistency among the databases.

Hoser and Cadar [HC13] tackle the problem of the introduction of new faults in
software upgrades. The authors propose to concurrently use two versions of the soft-
ware, the latest release and an old one. The two versions run synchronously and in
parallel; whenever one of the two crashes, the code of the the other version is used to
survive to the failure.

The N-Version Programming model has been exploited to increase the dependabil-
ity of Web services. Looker et al. [LMX05] and Dobson [Dob06] propose to rely on
different equivalent versions of services running in parallel, as in the original idea of
Avizienis, that can be developed singularly or reused as off-the-shelf services to de-
crease the costs, coupled with a voting system that accepts the majority of the results
as correct outcome.

Lightweight Recovery Blocks Recovery Blocks have been adapted and used in dif-
ferent domains. The variants of the original approach rely on the trend of new de-
velopment approaches to design modular systems. Randall’s Recovery Blocks are seen
as modules, that can be used as off-the-shelf components, often released by different
organizations, to gain a sufficient level of reliability and keep the cost of development
lower.

Cabral et al. augment classic exceptions handing technique with a dynamic selec-
tion of Recovery Blocks as recovery actions based on the failures. The main idea is to
provide several recovery actions and, when the system fails and an exception is caught,
select the most suitable action to cope with the type of exception [CM11].



15 2.2 Self-Healing

Similarly, Demsky et al. propose an approach that mitigates failures that break
data dependencies at runtime [DZM10]. The approach relies on recovery tasks, tasks
written by the developers that can operate and achieve partial results even if a failure
in the system computation causes some of the parameters to be unavailable. The
approach characterizes the correct behavior of the system with a static analysis based
on an Abstract State Transition graph. When a failure is reported, a recovery algorithm
uses the static analysis to determine the possible intended execution and computes a
sequence of recovery tasks to achieve the intended goal. The recovery tasks can mark
the parameters that are not available due to a failure as failed, and excludes them from
the computation [DD08].

Samimi et al. propose to use formal specifications to avoid contract violations at
runtime [SAM10]. When a contract is violated, the approach, called Plan B, uses
a constraint solver to analyze the specification of the failed code, starting from the
same dynamic program state, and produce the expected result. The authors provide a
language to let the developers write the specifications that can be executed and that
can be incorporated into the source code.

Recovery Blocks for the Web The natural architectural predisposition of Web ser-
vices as composition of several services, makes the Randell’s Recovery Blocks approach
particularly appealing in this domain. Many organizations offer services on the Web,
many of these services are similar or equivalent in terms of functionality and quality of
service offered. Services can be considered as Recovery Blocks that are designed and
developed independently.

The Dobson’s approach relies on a Recovery Blocks strategy. The developer can
decide what strategy to apply when a service fails: the parallel execution of the services
can be replaced with a retry strategy that sequentially executes different equivalent
services [Dob06].

Many authors propose to extend BPEL processes with self-healing capabilities to
monitor the behavior of Web applications and, with a reactive architecture, to select an
adequate strategy to cope with anomalous behaviors. Web services can be used as off-
the-shelf components, developed by different organizations but that, often they offer
the same functionality. A typical strategy consists in replacing a service invocation with
an invocation of a different, functionally equivalent service [MMP06, TBFM06, BG07,
BGP07, MB08, STN+08].

Workaround Redundant code has been proved to be effective in avoiding failure
in Web applications. Carzaniga et al. studied the feasibility of using the intrinsic
redundancy of software systems to overcome faults [CGP08b, CGP08a, CDP+09] and
prove its effectiveness in stateless Web applications [CGPP10a, CGPP10b]. In this
thesis, we propose a technique to automatically generate workarounds for stateful
applications by exploiting the intrinsic redundancy of software systems, thus properly



16 2.2 Self-Healing

extending the seminal work by Carzaniga et al..
At a lower level, Engel et al., propose a toolkit for weaving aspects into operat-

ing system kernel, implemented as dynamically exchangeable kernel modules. The
tool provides before, after and around point-cuts. As an example of application of
the approach, they illustrate a self-healing system that automatically adds new virtual
memory space if required [EF05].

Wrappers Component-based systems heavily rely on re-use, but sometime adapting
components to integrate them into new systems can be impossible or expensive. Wrap-
pers are specialized components inserted as bridges in between the new system and
other components, that help the integration by dealing with the communication and
the control flows.

The work of Popov et al. focuses on protective wrappers [PRRS01]. In this work,
wrappers are designed to improve the dependability of a software system by protect-
ing the system from anomalous behaviors of off-the-shelf components and integration
problems. The developers of the system have to design and implement the wrappers,
which include the acceptable behavior of the integration of the system under control
and the component. The developers also have to specify how to tolerate or mitigate
the effects of the detected failures in the boundaries between the system and the com-
ponents.

Similarly, Chang et al. propose a methodology and a technique based on healing
wrappers to reduce the failure occurrence caused by integration problems [CMP09].
In this work, unlike the one proposed by Popov et al., wrappers are written by the
developers of the components and include healing strategies for common misuses and
failures raised by the component itself. Later, the system developers who use such
components, can inject these wrappers into their system and take advantage of runtime
healing of failures provided by the components. Wrappers are composed of a detection
mechanism, one or more healing strategies, and one or more injection points. When
the wrapper catches a failure, the state of the system is analyzed to understand if the
failure has been raised by the component, and an healing strategy is invoked to solve
the problem.

Denaro et al. show an approach to develop adaptation strategies that aim to im-
prove the service interchangeability for service-oriented applications based on standard
APIs [DPT13]. The approach, called Test-and-Adapt, consists in a set of test and adap-
tation plans. Each plan consists of a set of parametric test cases and an associated set of
parametric adaptors. The test cases identify inconsistencies between the applications
and the APIs and trigger suitable adaptors to solve the identified inconsistencies.

Evolution Genetic programming is a methodology to solve problems inspired by nat-
ural evolution. Some self-healing approaches exploit genetic programming to derive,
from a failing program, a correct program that fixes the fault. Genetic programming



17 2.2 Self-Healing

uses the intrinsic redundancy to produce variants of a failing program, and selects the
variants that appear to be “more” correct. Such variants are progressively refined and
evolved in a process of mutations and recombinations, until a solution, or an accept-
able approximation of it, has been reached. To evaluate whether a variant is evolving
towards an acceptable solution or must be discarded, each variant is measured with a
fitness function. A fitness function determines if a variant “behaves well” or not. Those
variants that behave well are chosen to breed, and to evolve into a new set of programs
that are, hopefully, a step closer to the solution. There are two main strategies to create
new programs, called genetic operations: crossover and mutation. The former creates
a child by combining parts of code of two selected programs, the latter, by choosing a
code fragment of a program and altering it following a set of predefined rules.

Researchers applied genetic programming in the context of automating fault fixing.
Debroy et al. propose to use Tarantula [JH05] to localize and rank all the possible
locations of the fault in the code. Then, starting from the most highly ranked location,
they evolve the program and produce a set of variants. To evolve the program they use
a predefined set of mutation primitives, such as replacement of arithmetic and logic
operators and negation of decision making statements. When a variant is produced, it
is compared on the fitness function. The authors use the original test suite to define the
fitness function: they keep a variant if it passes all the test cases already passed with
the previous generation; in other words, a variant is killed if it fails more test cases than
its originator. The iterative evolution stops upon a certain threshold based on the effort
to produce a better variant for a certain fault location in the fault ranking [DW10].

Arcuri et al. propose a more sophisticated approach that combines genetic pro-
gramming, search-based testing and test co-evolution [AY08]. They propose a richer
set of primitives to produce the variants, compared to Debroy et al., such as mutation
of arithmetic and boolean expressions, of control flow statements, of variables and ar-
rays. They define the fitness function as the distance of the output of the computation
of a variant from the expected result. The value of the fitness function increases in
proportion to the difference of the output from the expected result. The goal of this al-
gorithm is to minimize the value of the fitness function. To decrease the computational
costs of running the test suite to evaluate the variants, the authors use a search-based
testing approach to try to find at least a test case that fails on the variant. To increase
the chances to find more faults, they also evolve the test suite to create a competitive
co-evolution between the program and the test suite.

Another genetic programming approach is proposed by Weimer et al [WNLGF09].
Similarly to Arcuri et al., test cases are used to check the program functionality and cor-
rectness. This technique uses a different genetic programming algorithm: new evolu-
tionary programs are produced by changes based on structures already present in other
parts of the program. Changes are also applied only on those regions of the program
that are relevant to the error. Those regions consist of paths, that are weighted based
on occurrences in failing and passing test cases. The fitness function is a weighted sum



18 2.2 Self-Healing

of the positive and negative executed test cases produced by an evolutionary program.
The relative fitness in the population is used to select those individuals that are candi-
dates to propagate the evolution. The evolution is done by mutation or by crossover.
The mutation consists of deletion, insertion, or swapping of statements. The crossover
considers only those statements that are visited while executing the test cases. In a
further work, Weimer et al. [LGDVFW12], enhance the approach by adding Taran-
tula [JH05] as fault localization mechanism, and by calculating an approximation of
the fitness function to minimize the number of test cases required.

Environmental Changes Long-running and computation-intensive applications suffer
particularly from age. Non-deterministic faults can make the system crash, but often
degrade the system performance because of memory leaks, memory caching, weak
memory reuse, etc, and lead to system failures only after a long time [HKKF95]. Re-
searchers proposed several approaches to tackle this situation.

Software rejuvenation periodically restarts an application to clean the environment
and re-initialize the memory and the data structures, thus preventing the system to fail
because of age [HKKF95]. The runtime costs of rejuvenation may be high. For example
restarting a Web server may result in a service downtime, or restarting a transactional
system may cause losses of the current transaction incurring in rollback costs [GT07].
Thus, rejuvenating the system at the right time is important. A strategy to select the
optimal interval is to measure some system attributes that show the symptoms of ag-
ing [GLVT06].

Similarly to rejuvenation, micro-rebooting reboots only the system components that
failed or show aging signs [CKF+04][CCF+02].

A different approach consists of re-executing failing programs under a modified
environment. Qin et al. propose a technique called Rx that dynamically changes the
environment based on the failure symptoms, and re-executes the faulty program in the
modified environment. They propose many environment changes, for instance memory
management strategies, process re-scheduling, user request dropping [QTSZ05].

Checkpoint and Recovery Rollback mechanisms are often employed to safely recover
and re-execute at runtime failing tasks. Elnozahy et al. propose a simple approach.
Upon a failure, they suggest to rollback the system to a previously saved checkpoint
and re-execute the failed code to fix temporary problems that may be related to the
particular environment or synchronization conditions [EAWJ02].

Checkpoint and Recovery approaches are also used to increase the performance of
rejuvenation. Wang et al. couple a checkpoint mechanism with memory rejuvenation
to prevent problems related to memory leaks [WHV+95]. Gang et al. start with the
observation that a checkpointing system reduces the completion time of programs that
fail, and show that it is possible to obtain further time reduction by adding rejuvena-
tion [GHKT96].



19 2.2 Self-Healing

Self-healing by design Some authors propose techniques to produce systems that
are specifically designed to have self-healing capabilities. Breitgand et al. propose a
framework called PANACEA [BGH+07]. The framework includes a methodology to
steer the design and the development of a system to include a set of healing com-
ponents that will be used at runtime. Such components are in charge of monitoring
and reconfiguring the system in case of misbehaviors. The healing components can
be application-specific, when they contain some specific knowledge of the system, or
generic, so that they can be reused across different systems. They interface with the
system through code annotations that enable healing components on specific parts of
the system.

Shehory proposes another framework to integrate self-healing capabilities into a
system called SHADOWS [She08]. To enable self-healing capabilities in a component
of the system, a model of its behavior must be included at design time. The behavioral
model enables the runtime monitoring capability and, upon a violation of such model,
a specific healing action can be opportunistically taken.

Another model-driven approach is proposed by Wei et al. [WYCL11]. The idea is
to have two separated models, one for the functional and non-functional requirements
of the system, and another one for the self-healing capabilities. The self-healing model
includes a model of the possible classes of defects of the system and their consequences,
and also a model that describes the healing strategies to deal with those classes of
defects. Then, the self-healing model is merged into the functional model using a
model composition strategy, for instance using a weaving model to link the two models
together.

In this chapter we have seen how redundancy has been exploited to increase the
reliability of software systems. We have seen that introducing redundancy deliberately
is expensive and it requires additional steps in the design and the implementation of
the systems. We have also seen that recently, researchers proposed methodologies and
techniques that try to relax these requirements and that deal with faults at runtime
by reasoning on the failure and rather that relying on multiple implementation of the
critical parts of the system.

Although researchers proposed autonomic systems as a way to conveniently exploit
some knowledge of the system, the production or the gathering of such knowledge still
requires a lot of effort. Moreover, many of the techniques described in this chapter
face the fault offline and propose a patch, thus they require the system to stop. In this
context, the open challenge is to propose a methodology that can automatically avoid
failures at runtime at low cost and with little effort from the developers.



20 2.2 Self-Healing



Chapter 3

Automatic Workarounds

System failures might be avoided by means of workarounds. Workarounds
are operations that provide the same functionality of a failing operation, but
do not suffer from the same failure. Specifically, workarounds are operations
that are observationally equivalent in their intended effect with respect to
some original operations, but when the original operation fails, they do not
fail. We propose to avoid runtime system failures by automatically apply
workarounds to a failing code.

In this chapter we introduce the concept of software redundancy. We argue that
developers release software systems with a large amount of redundancy. We propose
to exploit software redundancy to avoid system failures at runtime, and we define an
approach, Java Automatic Workaround (JAW), to do it automatically.

Modern software systems, especially modular systems and reusable components,
are designed to be easily adopted by a broad variety of applications. Therefore, they
provide interfaces with many variants of the same functionality, and many functionality
are accomplished in different ways. Such variants are often similar enough in their
semantics to be easily exchangeable, and frequently differ in their implementation. For
instance, let’s consider container libraries. Typically, they offer similar operations at the
interface level, such as add(element) and addAll(collection), which can be interchanged
with few adaptations.

Let us take, for instance, the implementation of the ArrayList class (in Java 7) that
exposes the two methods add(E e) and addAll(Collection<? extends E> c) (Listing 3.1).
The two methods are clearly implemented differently and are easily interchangeable
with with few adaptations.

Sorting libraries offer another similar example. The Arrays class exposes the method
sort, which is overloaded with different versions, such as sort(int[] a) and sort([Object[] a)
(Listing 3.2). The two different versions implement different sorting algorithms: the
former uses a tuned quicksort, while the latter a modified mergesort and timsort.

This form of software redundancy that we call intrinsic redundancy is often already

21



22

1 public boolean add(E e) {

2 ensureCapacityInternal(size + 1);

3 elementData[size++] = e;

4 return true;

5 }

6
7 public boolean addAll(Collection<? extends E> c) {

8 Object[] a = c.toArray();

9 int numNew = a.length;

10 ensureCapacityInternal(size + numNew);

11 System.arraycopy(a, 0, elementData, size, numNew);

12 size += numNew;

13 return numNew != 0;

14 }

Listing 3.1. Methods add and addAll exposed by ArrayList

1 public static void sort(int[] a) {

2 DualPivotQuicksort.sort(a);

3 }

4
5 public static void sort(Object[] a) {

6 if (LegacyMergeSort.userRequested)

7 legacyMergeSort(a);

8 else

9 ComparableTimSort.sort(a);

10 }

Listing 3.2. Sorting algorithms implemented with quicksort, mergesort and timsort in
the Java Arrays class



23 3.1 SWT Library Case Study

present in modular software systems and reusable components. In this thesis we show
that we can use the intrinsic software redundancy to increase the reliability of soft-
ware systems in a cost effective manner. In Chapters 4 we present a qualitative and
a quantitative analysis to show how intrinsic redundancy is common in modern soft-
ware systems, focusing on Java libraries. In Chapter 8 we evaluate the effectiveness
of the intrinsic redundancy we found in such Java libraries by means of a tool we de-
veloped to add self-healing capabilities to software systems that exploit the intrinsic
redundancy.

We propose an approach applicable to a broad variety of general-purpose and pos-
sibly long-running systems that is able to overcome a wide range of failures, and that
incurs low costs. JAW automatically recovers software systems from failures and relies
on the intrinsic redundancy that software systems offer to automatically avoid system
failures at runtime. With several limitations, the approach has been previously im-
plemented into a prototype and applied in the Web domain to show its effectiveness.
In this thesis we propose a general and reusable framework to automatically deploy
effective workarounds.

In the following sections we introduce the concept of the intrinsic redundancy with
a case study based on the Java library SWT, a graphical library provided by the Eclipse
Foundation (Section 3.1). We then introduce our approach (Section 3.2), and finally,
we compare it with prior results in the Web domain (Section 3.3).

3.1 SWT Library Case Study

In this section we present a case study, the SWT library, to show the presence of re-
dundancy in software systems. We use the same case study in the next sections to
demonstrate that such redundancy can be used to overcome failures.

SWT1 (Standard Widget Toolkit) is a Java graphical widget toolkit developed by
the Eclipse Foundation that provides access to the operating systems user-interface
facilities. SWT accesses the operating system native GUI, and provides a portable Java
framework, which is unique for each platform. The library is designed to provide
the developers with a wide range of graphical entities to draw GUIs, such as buttons,
labels, lists, menus, tables, bars, and so on. Each graphical widget is provided with a
full set of methods to create, customize, and manage widgets.

The documentation of the widgets witnesses the use of several programming prac-
tices in the design of the class interfaces, such as method overloading and overriding.
Method overloading is used to provide multiple behaviors of the same method, by al-
lowing the same method to have different input and output types. Method overriding is
used to implement specialized behavior of the inherited methods. Such object-oriented
programming practices foster the proliferation of semantically equivalent code vari-

1http://www.eclipse.org/swt

http://www.eclipse.org/swt


24 3.1 SWT Library Case Study

ants. For instance, in the class Table, for the method setSelection, there exist five dif-
ferent variants to select items: setSelection(int index) and setSelection(int[] indices)
select an item based on either an index or an array of indexes of the items to select,
respectively; setSelection(TableItem item) and setSelection(TableItem[] items) select an
item based on item or the items themselves to select, setSelection(int start, int end)
selects items based on the range of indexes of the items to select. These five vari-
ants are semantically equivalent, and can be exchanged with simple adaptations in the
parameters.

Another common practice is to provide methods that interact with objects at dif-
ferent granularity. For instance, it is common to provide pairs of methods such as se-
lect(item) and selectAll(), clear(item) and clearAll(), getItem(item) and getItems(items).
In most of the cases it is straightforward to replace one method, such as clearAll, with
a loop of calls to the pairing method, in this case clear. This practice leads to a prolif-
eration of methods that can be easily adapted to behave exactly in the same way.

There are also more complex forms of redundancy. Let us consider the interface
of the class TreeItem of the SWT library. A TreeItem is a selectable user interface ob-
ject that represents a hierarchy of tree items in a tree, that is, an object Tree can con-
tain many TreeItem objects, and every object TreeItem can contain many TreeItem
objects. To remove all the children of a TreeItem, the interface exposes the method
removeAll(), which removes all of the items from the receiver, and the method setItem-
Count(int count), which sets the number of child items contained in the receiver. The
two methods removeAll() and setItemCount(int count) are indistinguishable when the
parameter count of setItemCount is set to zero. The interface of the class TreeItem also
exposes the method dispose(), it disposes of the operating system resources associated
with the receiver and all its descendants, and can also be used to remove all the children
of a TreeItem object. Intuitively, the three methods present the same behavior and they
can be interchanged to obtain the same result, that is to remove all the children of a
TreeItem object. They provide three variants for the same functionality, and thus they
are redundant.

Assuming that one of three methods previously introduced fails, we can rely on the
knowledge about the redundant methods to avoid the failure, by replacing the failing
method with a redundant one. The next paragraph shows a case study of a fault that
can be avoided by using intrinsic redundancy in the SWT library.

The removeAll() method issue. The method removeAll() of the SWT implementation
for the Macintosh platform contains a fault2 in the version 3.5 of the library. The
method, which should remove all the children of a given TreeItem object, also removes
its parent TreeItem object and all the siblings of the given TreeItem object, that is
clearing a misbehave. In the following part of this section, we show how this fault
affects the program execution though a simple example.

2https://bugs.eclipse.org/bugs/show_bug.cgi?id=279313

https://bugs.eclipse.org/bugs/show_bug.cgi?id=279313


25 3.1 SWT Library Case Study

Listing 3.3 is a program that, using SWT, creates a window (lines 3-4) that contains
and displays a tree structure (line 5). The program, then, adds two main TreeItem
objects to the tree, two children to the first item, and a child to the second one (lines
7-17). Finally, it opens and displays the window (line 19). Figure 3.1(a) shows the
result produced by Listing 3.3. The window contains a tree with two items, and each
of them contain, respectively, two and one children.

1 public class Example {

2 public static void main(String[] args) {

3 Display display= new Display();

4 Shell shell = new Shell(display);

5 Tree tree = new Tree(shell, SWT.SINGLE | SWT.BORDER);

6
7 TreeItem item1 = new TreeItem(tree, SWT.NONE, 0);

8 item1.setText("Task 1");

9 TreeItem item1a = new TreeItem(item1, SWT.NONE, 0);

10 item1a.setText("Task 1.1");

11 TreeItem item1b = new TreeItem(item1, SWT.NONE, 1);

12 item1b.setText("Task 1.2");

13
14 TreeItem item2 = new TreeItem(tree, SWT.NONE, 1);

15 item2.setText("Task 2");

16 TreeItem item2a = new TreeItem(item2, SWT.NONE, 0);

17 item2a.setText("Task 2.1");

18
19 shell.open();

20 }

21 }

Listing 3.3. Simple program that draws a tree of items within a window

Let us now assume that we want to remove all the children of the first TreeItem,
called Task 1, before displaying the window. For this purpose we can use the method re-
moveAll() exposed by the class TreeItem, by calling it before the windows is displayed,
as Listing 3.4 shows. The method removeAll() is invoked at line 11. The intended
behavior of Listing 3.4 is to display a window containing a tree structure with a top
level item, Task 1, childless, and a second top level item, Task 2, with one child. Fig-
ure 3.1(b) shows the actual result of Listing 3.4: an empty window, which is clearly
different from the expected result.

We inspected the documentation of the interface of the class TreeItem, and found
that there are three equivalent ways to remove all the children of a given item: the
methods removeAll(), setItemCount(int count), and dispose(). These three methods are
equivalent in their expected behavior, so that it should be possible to exchange them
to obtain the same result. This means that we can replace method removeAll() with
setItemCount(int count) in the line 11 of Listing 3.4. The method setItemCount(int



26 3.1 SWT Library Case Study

(a) Result of the program in Listing 3.3: before
the children of Task 1 are removed

(b) Result of the program in Listing 3.4: the
entire tree structure is removed

(c) Result of the programs in Listing 3.5
and 3.6: the workarounds produce the expected
result

Figure 3.1. The tree structure produced by the codes in the example



27 3.1 SWT Library Case Study

1 public class Failure {

2 public static void main(String[] args) {

3 Display display= new Display();

4 Shell shell = new Shell(display);

5 Tree tree = new Tree(shell, SWT.SINGLE | SWT.BORDER);

6
7 //Operations to populate the tree

8 [...]

9
10 //Failing call:

11 item1.removeAll();

12
13 shell.open();

14 }

15 }

Listing 3.4. Program that fails to remove only some items

count) requires a parameter that indicates how many children the caller item will have
after the call to such method. We set the parameter to zero to achieve the same ef-
fect of method removeAll(). The resulting code is presented in Listing 3.5, with the
item1.setItemCount(0) statement at line 11. The results of executing Listing 3.5 is
shown in Figure 3.1(c) that correctly shows the tree structure as required. The method
setItemCount(int count) does not suffer from the same fault of the method removeAll(),
and can avoid the failure.

We can repeat the same experiment by replacing the faulty method removeAll()
with the redundant variant dispose(), also exposed by the class TreeItem. Such method
disposes both the caller object and all its descendants, and thus, to preserve the caller
object itself, that in this case is the TreeItem object named Task 1, we have to apply
the dispose() method only on its descendants. We can loop on all the children of the
TreeItem Task 1, and for each of them, call the method dispose(). For this purpose,
we used a for loop, as showed at line 11 to 13 of Listing 3.6. The results of executing
Listing 3.6 is shown in Figure 3.1(c).

This experiment shows that we can, indeed, rely on the redundancy to avoid a
failure. When a redundant piece of code avoids the failure, we call it a workaround.
In this particular example, we could find two workarounds by looking at the interface
of the class. Intuitively, there is not guarantee that redundancy at the interface level
reflects redundancy at the code level. If the redundant methods share exactly the same
code, in the same environmental conditions, they will follow the same execution and
they will fail in the same way. In our example, what made the two alternative methods
succeed is that the they execute different code than the original failing method.

Let us have a look at the source code of the three methods and at their execution
trace. The Listing 3.7 shows the source code of the revoveAll() method that, to recall,



28 3.1 SWT Library Case Study

1 public class Workaround1 {

2 public static void main(String[] args) {

3 Display display= new Display();

4 Shell shell = new Shell(display);

5 Tree tree = new Tree(shell, SWT.SINGLE | SWT.BORDER);

6
7 //Operations to populate the tree

8 [...]

9
10 //Workaround:

11 item1.setItemCount(0);

12
13 shell.open();

14 }

15 }

Listing 3.5. Program that uses setItemCount as workaround

1 public class Workaround2 {

2 public static void main(String[] args) {

3 Display display= new Display();

4 Shell shell = new Shell(display);

5 Tree tree = new Tree(shell, SWT.SINGLE | SWT.BORDER);

6
7 //Operations to populate the tree

8 [...]

9
10 //Workaround:

11 for (TreeItem treeItem : item1.getItems()) {

12 treeItem.dispose();

13 }

14
15 shell.open();

16 }

17 }

Listing 3.6. Program that uses dispose as workaround



29 3.1 SWT Library Case Study

fails in removing all the children of a given item on the three. At line 4, the method
removeAll() makes a call to the method setItemCount(int count), whose source code is
shown in Listing 3.9. At runtime, the caller of the revoveAll() method is an item at the
top level of the tree, in particular it is the object item1 labeled as “Task 1”. Accordingly
to the code of the method revoveAll(), the inner method setItemCount(int count) is
invoked on its parent, which is the tree itself. This means that the children of the tree
object are set to zero and thus the whole tree is removed.

1 // org.eclipse.swt.widgets.TreeItem.removeAll()

2 public void removeAll () {

3 checkWidget ();

4 parent.setItemCount (0);

5 }

Listing 3.7. Source code of the method removeAll

This behavior is more clear by looking at the execution trace of the failing program.
Listing 3.8 shows a slice section of the execution trace related to the failing statement
item1.removeAll() (at line 11 in Listing 3.4) in the failing program. In the trace, we
can identify the sequence

TreeItem.release(boolean)

TreeItem.releaseChildren(boolean)

which draws out the objects. Such sequence is recurring five times in the trace (lines
13-14, 15-16, 21-22, 31-32, and 33-34). Since we have five items on the tree, two top
level items with respectively two and one children, this means that all the items in the
tree are removed, leading to the wrong result.

The first workaround that is proposed in the Listing 3.5 contains the statement
item1.setItemCount(0), instead of item1.removeAll(). The source code of the method
setItemCount is shown in Listing 3.9. In this case, the object item1, labeled as “Task
1”, calls the method setItemCount(int count). As seen before, setItemCount(int count)
removes all the children of the caller object, so only the two children of “Task 1”. This
behavior is confirmed by the execution trace shown in Listing 3.10. Indeed, the se-
quence release/releaseChildren is recurring only twice (lines 12-13, and 18-19), which
means that only the two children of “Task 1” are removed.

A similar reasoning can be applied to the workaround proposed in the program in
Listing 3.6. The method dispose() is an inherited method, an its source code is shown
in Listing 3.11. It accesses directly the operating system facilities to draw out the items
from the tree, and in its execution trace (Listing 3.12) it is still possible to see the
pattern release/releaseChildren recurring twice (lines 4-7, and 26-29).

As we have shown in the example described in this section, the three methods
removeAll(), setItemCount(int count), and dispose(), are thus not only redundant at the



30 3.1 SWT Library Case Study

1 TreeItem.removeAll()

2 Tree.setItemCount(int)

3 Tree.checkItems()

4 Tree.setItemCount(org.eclipse.swt.widgets.TreeItem, int)

5 Tree.getItemCount(org.eclipse.swt.widgets.TreeItem)

6 TreeItem.clearSelection()

7 TreeItem.getExpanded()

8 TreeItem.clearSelection()

9 TreeItem.getExpanded()

10 Tree.getSelection()

11 Tree.outlineView_numberOfChildrenOfItem(long, long, long, long)

12 Tree.selectItems(org.eclipse.swt.widgets.TreeItem[], boolean)

13 TreeItem.release(boolean)

14 TreeItem.releaseChildren(boolean)

15 TreeItem.release(boolean)

16 TreeItem.releaseChildren(boolean)

17 TreeItem.releaseWidget()

18 Item.releaseWidget()

19 TreeItem.deregister()

20 TreeItem.releaseHandle()

21 TreeItem.release(boolean)

22 TreeItem.releaseChildren(boolean)

23 TreeItem.releaseWidget()

24 Item.releaseWidget()

25 TreeItem.deregister()

26 TreeItem.releaseHandle()

27 TreeItem.releaseWidget()

28 Item.releaseWidget()

29 TreeItem.deregister()

30 TreeItem.releaseHandle()

31 TreeItem.release(boolean)

32 TreeItem.releaseChildren(boolean)

33 TreeItem.release(boolean)

34 TreeItem.releaseChildren(boolean)

35 TreeItem.releaseWidget()

36 Item.releaseWidget()

37 TreeItem.deregister()

38 TreeItem.releaseHandle()

39 TreeItem.releaseWidget()

40 Item.releaseWidget()

41 TreeItem.deregister()

42 TreeItem.releaseHandle()

Listing 3.8. Execution trace of the Listing 3.4



31 3.1 SWT Library Case Study

1 // org.eclipse.swt.widgets.Tree.setItemCount(int)

2 public void setItemCount (int count) {

3 checkWidget ();

4 count = Math.max (0, count);

5 parent.setItemCount (this, count);

6 }

Listing 3.9. Source code of the method setItemCount

1 TreeItem.setItemCount(int)

2 Tree.setItemCount(org.eclipse.swt.widgets.TreeItem, int)

3 Tree.getItemCount(org.eclipse.swt.widgets.TreeItem)

4 TreeItem.getExpanded()

5 Tree.getSelection()

6 Tree.outlineView_isItemExpandable(long, long, long, long)

7 Tree.outlineView_isItemExpandable(long, long, long, long)

8 Tree.outlineView_child_ofItem(long, long, long, long, long)

9 Tree._getItem(org.eclipse.swt.widgets.TreeItem, int, boolean)

10 Tree.outlineView_isItemExpandable(long, long, long, long)

11 Tree.selectItems(org.eclipse.swt.widgets.TreeItem[], boolean)

12 TreeItem.release(boolean)

13 TreeItem.releaseChildren(boolean)

14 TreeItem.releaseWidget()

15 Item.releaseWidget()

16 TreeItem.deregister()

17 TreeItem.releaseHandle()

18 TreeItem.release(boolean)

19 TreeItem.releaseChildren(boolean)

20 TreeItem.releaseWidget()

21 Item.releaseWidget()

22 TreeItem.deregister()

23 TreeItem.releaseHandle()

Listing 3.10. Execution trace of the Listing 3.5

1 // org.eclipse.swt.widgets.Widget.dispose()

2 public void dispose () {

3 if (isDisposed ()) return;

4 if (!isValidThread ()) error (SWT.ERROR_THREAD_INVALID_ACCESS);

5 release (true);

6 }

Listing 3.11. Source code of the method dispose



32 3.1 SWT Library Case Study

1 TreeItem.getItems()

2 Tree.checkData(org.eclipse.swt.widgets.TreeItem)

3 Widget.dispose()

4 TreeItem.release(boolean)

5 TreeItem.clearSelection()

6 TreeItem.getExpanded()

7 TreeItem.releaseChildren(boolean)

8 TreeItem.releaseWidget()

9 Item.releaseWidget()

10 TreeItem.deregister()

11 TreeItem.destroyWidget()

12 Tree.destroyItem(org.eclipse.swt.widgets.TreeItem)

13 Tree.reloadItem(org.eclipse.swt.widgets.TreeItem, boolean)

14 Tree.getSelection()

15 Tree.outlineView_isItemExpandable(long, long, long, long)

16 Tree.outlineView_isItemExpandable(long, long, long, long)

17 Tree.selectItems(org.eclipse.swt.widgets.TreeItem[], boolean)

18 Tree.setScrollWidth()

19 Tree.setScrollWidth(boolean, org.eclipse.swt.widgets.TreeItem[], boolean)

20 TreeItem.calculateWidth(int, org.eclipse.swt.graphics.GC)

21 TreeItem.getExpanded()

22 TreeItem.calculateWidth(int, org.eclipse.swt.graphics.GC)

23 TreeItem.getExpanded()

24 TreeItem.releaseHandle()

25 Widget.dispose()

26 TreeItem.release(boolean)

27 TreeItem.clearSelection()

28 TreeItem.getExpanded()

29 TreeItem.releaseChildren(boolean)

30 TreeItem.releaseWidget()

31 Item.releaseWidget()

32 TreeItem.deregister()

33 TreeItem.destroyWidget()

34 Tree.destroyItem(org.eclipse.swt.widgets.TreeItem)

35 Tree.reloadItem(org.eclipse.swt.widgets.TreeItem, boolean)

36 Tree.getSelection()

37 Tree.outlineView_isItemExpandable(long, long, long, long)

38 Tree.outlineView_child_ofItem(long, long, long, long, long)

39 Tree.outlineView_isItemExpandable(long, long, long, long)

40 Tree.selectItems(org.eclipse.swt.widgets.TreeItem[], boolean)

41 Tree.setScrollWidth()

42 Tree.setScrollWidth(boolean, org.eclipse.swt.widgets.TreeItem[], boolean)

43 TreeItem.calculateWidth(int, org.eclipse.swt.graphics.GC)

44 TreeItem.getExpanded()

45 TreeItem.calculateWidth(int, org.eclipse.swt.graphics.GC)

46 TreeItem.getExpanded()

47 TreeItem.releaseHandle()

Listing 3.12. Execution trace of the Listing 3.6



33 3.2 Approach: Java Automatic Workaround

interface level, since it is possible to exchange them with no change in the semantics
of the program, but they also execute some different code to achieve the same result.
The developers of the library wrote these three methods to provide a more flexible and
reusable interface, not for fault tolerance purpose or as a fix for the failure produced by
the removeAll() method. This aspect suggests and supports our intuition that modern
software systems are intrinsically redundant, and that we can exploit redundant code
written for flexibility purpose, to achieve better reliability at a low cost.

This thesis intends to understand if software systems are intrinsically redundant,
how to extract the redundancy, and how to use it automatically to avoid failures at
runtime. In the next section we introduce our idea about how to recover a system
from a failure and how to exploit intrinsic redundancy automatically.

3.2 Approach: Java Automatic Workaround

Our approach, JAW, automatically recovers a system upon a failure, changes the code
accordingly to a given redundancy knowledge about the system itself, and re-executes
the failed portion of code. This section shows how the information about intrinsic
redundancy is expressed and how this information is used to enforce the system relia-
bility at runtime.

The intrinsic redundancy that we exploit is expressed in a suitable language that
we illustrate below. The effort to capture the redundancy depends on the knowledge
of the system. The developers of the system itself have a deep understanding of the
system and they know exactly how it behaves, so the effort to capture the redundancy
is small. The users of the system, for example third-party components or libraries,
may need to carefully investigate the interfaces, even though, as shown in our exper-
iments, the effort is still limited: bachelor and master students can easily inspect the
documentation of the systems for the first time and extract a large amount of intrinsic
redundancy in few days. Collecting the intrinsic redundancy is a conceptual work that
relies on a systematic reasoning on the functionality that the system exposes and their
similarities, and it is achieved, for example, by counting of the expertize on the system
or by inspecting the interfaces. The activity of gathering the intrinsic redundancy is
different than the bug fixing activity because it does not include debugging or code
inspection.

When captured, the intrinsic redundancy must be expressed in a formal way to
make it usable in our approach. For instance, in the previous section we captured the
knowledge that three methods, removeAll(), setItemCount(int count), and dispose(), are
equivalent, and also that setItemCount(int count) is equivalent to the other two when
its parameters is set to zero. To express this knowledge we need to formalize several
concepts:

• removeAll(), setItemCount(int count), and dispose() are methods of TreeItem;



34 3.2 Approach: Java Automatic Workaround

• the original method and its redundant method must be called by the same object;

• the parameter of the method setItemCount(int count) must be set to zero;

• all of the three methods are equivalent to each other.

We express these concepts by means of rewriting rules. A rewriting rule substitutes
a code fragment with a different equivalent one, that is a fragment with the same
observable behavior of the original one. Given the former example, the rewriting rules
in Listing 3.13 capture and express all the knowledge. The symbol ≡ means that
the two statements are equivalent, that is the first statements can be replaced by the
second, and vice-versa; the symbol $X is a metavariable that represents a matched
portion in the code that must be kept when the code is substituted. The formal syntax
and the semantics of rewriting rules is discussed in the Chapter 4.

Class TreeI tem :

$X .removeAll()≡ $X .set I temCount(0)

$X .removeAll()≡ $X .dispose()

$X .set I temCount(0)≡ $X .dispose()

Listing 3.13. Rewriting rules

We designed an approach applicable to potentially any kind of software systems.
A major challenge in any software system is to assure the state consistency in case of
failure. Sometimes, failures are raised when a fault corrupts the state of the system,
and the system behavior becomes unpredictable and often different from what the user
expects. Moreover, the fault and the failure can be arbitrarily far from each other, and
a corrupted state may persist for an indeterminate interval of time in the execution.
In any case, before any action to avoid the failure can be taken, the approach must
recover the state of the system to a non-corrupted instance.

JAW handles the state of the system and assures its consistency in case of failure,
by saving the state of the system periodically during the execution. The state can be
saved with several strategies: in predetermined points during the execution, with reg-
ular time frames, or after particular events. Each strategy has both advantages and
disadvantages, and may work better under particular circumstances. Any state han-
dling mechanism must face the problems of efficiency: saving the state too frequently
makes the recovery algorithm more effective, but decreases the runtime performance
of the system; few saving points have lesser impact on performance but may miss some
important states that must be saved. Our state handling strategy uses the knowledge
about the intrinsic redundancy of the system. For instance, in the rewriting rules in



35 3.2 Approach: Java Automatic Workaround

Listing 3.13, we see that all the three methods have at least one equivalence, thus we
save the state of the system before the redundant statements, where we have alter-
native executions if it is needed. In general, we save the state only before executing
statements for which we have alternative executions. With this strategy we save the
state only when it is convenient, and we minimize the code that have to be re-executed
when a failure occurs and the system is recovered. The alternative strategies and tech-
niques to handle the state are discussed in Chapter 5.

A system may fail in several different ways. Different kind of misbehaviors can be
detected by different techniques. Here we assume that a failure detection technique is
available and alerts us in case of failure. In general we do not put any limitation on the
failure detection technique, and any kind of failure detection technique can be merged
and integrated into the approach.

Figure 3.2 overviews the behaviour of JAW. During the normal execution, the state
of the system is saved before executing a redundant statement. When a failure occurs
and it is detected, JAW recovers the system to the most recent saved state (arrow
number 1 in the figure), selects and applies a rewriting rule among the ones that apply
to the redundant statement in between the recovered state and the failure point, and
executes the code with the new statement. For instance, let us consider the program
in Listing 3.4 that fails in removing only the children of a given item in a tree. We can
assume that the state of the system has been saved, for the last time, before executing
the statement item1.removeAll() (line 10), and that a failure detector raises an alert
after the execution of that statement, at line 12. JAW recovers the state of the system
at it was before the call to removeAll(), so the system is recovered as it was before
exectuing line 10. Then, given the set of rewriting rules in Listing 3.13, JAW selects
one of the two rules that apply to the portion of code included between lines 10 and 12.
We call this portion of code, frame. The code is rewritten according to the rule and the
frame is re-executed.

State
saved

State
saved

State
saved

Redundant
statement

Redundant
statement

Redundant
statement

1
2

3
Replaced 
statement

Execution

Replaced 
statementReplaced 

statement

Figure 3.2. General overview of the approach JAW



36 3.3 Self-Healing for Web Applications

If the failure detector still returns an alert signal, the approach repeats the actions
represented with arrow 1 applying a new rule, until no more rewriting rules are avail-
able. If the failure still occurs, the state of the system is recovered to a previous saved
point, if it exists, represented with arrow 2 in Figure 3.2. Now, the frame taken into
account becomes bigger: it includes all the code between the new recovered point
and the failing point. In this new frame there is at least one new rewriting rule that
applies. This process continues until it either finds a workaround or exhausts the avail-
able rewriting rules. If it does not find a valid workaround, it consider a bigger frame
(arrow 3) and repeats. Details and limitations of this mechanism are discussed later in
Chapter 6.

The novelty of Java Automatic Workaround consists in using the intrinsic redun-
dancy of software systems to generate workarounds automatically. Differently from
other techniques, our approach does not require to either develop multiple versions of
the system or part of it, or write specific code to handle failures.

In the next section we show how we applied the approach the Web applications
domain.

3.3 Self-Healing for Web Applications

We applied the approach proposed in the previous section to the domain of the Web
applications [CGPP10a]. In this domain we can make some simplifying assumptions.
Web pages are designed to avoid side-effects caused by repeated executions of the same
page, so we can assume that Web applications are stateless3. This way, a state recovery
strategy is no longer needed. Web applications are highly interactive by nature, so we
can assume that the user can identify a failure in the loaded page, and we can rely on
the users as oracles: when a page fails, the user reports the failure, and the healing
process starts. Finally, when a failure occurs, we can safely assume that the related
fault is located in the last executed page.

We developed a prototype for JavaScript Web APIs and we carried out some exper-
iments to demonstrate the efficacy and the efficiency of the approach applied to the
Web domain. The experiments show that Web applications are, indeed, intrinsically
redundant, and that we can exploit the intrinsic redundancy to automatically, even
though with some limitation, efficiently avoid failures.

In the next chapters we illustrate in details the key elements of JAW: We present
a qualitative and a quantitative study on the intrinsic redundancy, how we extract it
and express it through rewriting rules and code rewriting rules, and their formalization
in Chapter 4. We present comparison among different state handling mechanisms in
showed in Chapter 5. The process to apply rewriting rules to frame of code is discussed
in Chapter 6. Finally the Java prototype and the evaluation on several open source
application is presented, respectively, in Chapter 7 and Chapter 8.

3We do not consider AJAX code.



Chapter 4

Intrinsic Redundancy

Modern software systems are naturally redundant. Modularization, re-
engineering, and best development practices are only some causes of the pro-
liferation of redundant code. This code has not been developed for failure
avoidance purposes and is hidden in the program, it must be identified, ex-
tracted, and encoded. This chapter proposes qualitative and quantitative rea-
sons to demonstrate the presence of redundancy, and shows how redundant
code can be extracted, represented, and used within our approach.

This work is based on the hypothesis that failures might be avoided by means of
workarounds. A workaround consists of a sequence of operations that are equivalent
to a sequence of failing operations, but that do not suffer from the same failure. More
specifically, a workaround consists of operations with both the same intended behavior,
from the specifications viewpoint, and the same expected effect for the user’s perspec-
tive, of the operations that lead to a failure. Obviously, if the two equivalent sequences
of operations were identical, they would both fail. Thus, they have to differ to some
extent. A workaround requires redundancy, that is, it requires to expose the same
functionality with different code. Differently from most fault tolerance techniques,
such as N-Version Programming, where the redundancy is intentionally added by de-
signing and developing the same functionality multiple times, we argue that in modern
software systems redundancy is unintentionally added by the developers for reasons
that are completely extraneous to reliability purposes. We call this kind of redundancy
intrinsic. With our technique, we show that we can take advantage of this property of
modern software systems to improve the reliability of the system at a few cost.

In this chapter we show that modern software systems, especially modular systems,
are indeed intrinsically redundant, and to what extent. We give some qualitative and
quantitative arguments to support our intuition: we show the nature of the intrinsic
redundancy, and that its presence is significant enough to be exploited for our pur-
poses. We capture the intrinsic redundancy of software systems at the level of methods
by means of rewriting rules, by looking at their functional behavior. Rewriting rules

37



38 4.1 Nature of Intrinsic Redundancy

abstract from the internal aspects of the methods and focus on the equivalence of the
visible results, that is they relate different code fragments (method calls) that are func-
tionally equivalent, but developed with different code.

4.1 Nature of Intrinsic Redundancy

Software redundancy has already been studied in several software engineering fields.
Recent studies show that equivalent fragments of code are naturally present in software
system. For example, a study on the naturalness language of programming languages
shows that developers regularly write repetitive and predictable syntactically equiva-
lent fragments of code [HBS+12]. This kind of practice may be harmful because it can
lead to a proliferation of code clones. Developers often rely on bad programming prac-
tices, for instance copying and pasting code snippets to duplicate functionality across
the system, deteriorating the quality of the system and making its maintenance more
difficult and expensive. Notkin et al. show that, on average, 10% of the code in soft-
ware systems is cloned [KSNM05]. Because of the deleterious consequences of code
clones, many researchers propose several approaches and tools to identify and remove
them, dived by the kind of technique they use to analyze the code, for example textual
and lexical approaches, or syntactical and semantical approaches. Roy et al. classify
the kind of clones and propose a comparative survey on clone detection approaches
and tools [RCK09]. This kind of redundancy is harmful and error prone, and it cannot
be used to improve the reliability of the system in any way, so we do not consider code
clones as a good or useful form of redundancy.

But code clones are not the only form of redundancy in software systems: some
studies show that there are many semantically equivalent fragments of code that are
syntactically different [JS09]. In the rest of this section we give qualitative explana-
tions on the reasons that lead to the presence redundant code in software systems.

Backward compatibility When developers release new versions of the system, they
might assure backward compatibility. This is particularly true for software libraries
that are used as third-party components. The developers of such libraries have to
maintain different versions of the code for the same functionality to guarantee the
robustness of systems that rely on those libraries after an update. For example, in the
last three major versions of the Java Development Kit, 87 classes and 1065 methods
have been deprecated1. This means that most of those classes and methods have been
re-implemented, even though their functional behavior remains identical. To guide
the developer towards the new implementation, the old versions of such classes and
methods is kept and it is still accessible. This process duplicates the functionalities,
and thus introduces redundancy.

1http://www.oracle.com/technetwork/java/javase/documentation/api-jsp-136079.html

http://www.oracle.com/technetwork/java/javase/documentation/api-jsp-136079.html


39 4.1 Nature of Intrinsic Redundancy

For instance, let us consider the package SAX2 from the Java 7 standard library,
which provides a set of utilities to deal with XML code. The class AttributeListImpl
belongs to the SAX package and its interface, AttributeList, have been deprecated and
replaced by a new interface Attributes and its implementation class AttributesImpl. Both
classes AttributeListImpl and AttributesImpl are still present in the code and available
to the developers; they expose the same functionality, but they do not share the same
code, thus they are redundant.

The widget toolkit AWT is another example. The class List, which shows to the
user a scrolling list of text items, exposes a method called addItem(String) to add an
item to the the scrolling list. This method has been deprecated in favor of the method
add(String). Again, the two methods are still present and accessible through the APIs,
they provide the same functionality but are implemented with different code.

Portability and Reusability It often happens that within a library the developers im-
plement different variants of the same functionality to increase portability and reusabil-
ity. Application frameworks are a typical example. They are designed to make the de-
velopment of the applications faster; the functionalities they expose have to be easily
adaptable to a large variety of needs and applications. For example, in the previous
work on Web applications, we studied the intrinsic redundancy in JQuery, a framework
to develop dynamic and interactive Web applications. JQuery provides several routines
to show an element in a Web page: the functions fadeIn(), show(), fadeTo(), and ani-
mate() are all equivalent in their final result, that is to make an element to appear in
the page, and all of them can be easily exchanged.

Widget toolkits, and collections frameworks are also typical and interesting exam-
ples. Widget toolkits usually provide functionalities to draw shapes, such as rectangles
and lines. For instance, the SWT library exposes two dedicated methods for this pur-
pose, drawRectangle(Rectangle rect) and drawLine(int x1, int y1, int x2, int y2). There
exists also another method, drawPolygon(int[] pointArray), which depending on the
numbers of points given in the array as parameters, can draw the corresponding shape.
Other representative cases in SWT are the method fillRectangle(Rectangle rect) that
fills the interior of the specified rectangle, and the equivalent method fillPolygon(int[]
pointArray), or the methods drawText(String string, int x, int y) and drawString(String
string, int x, int y)that draw a given string. Intuitively, it is possible to match pairs of
methods that can be easily exchanged.

The same modus operandi is applicable to collections libraries. These libraries pro-
vide sets of utilities to handle with collections such as List, Map, and HashMap. For in-
stance, let us consider the Guava project3, a container of several Google’s core libraries
including collections, caching, and I/O. The collection package of Guava provides a
functionality to check whether a collection is empty or not, the method isEmpty().

2http://docs.oracle.com/javase/7/docs/api/org/xml/sax/helpers/package-summary.html
3https://code.google.com/p/guava-libraries

http://docs.oracle.com/javase/7/docs/api/org/xml/sax/helpers/package-summary.html
https://code.google.com/p/guava-libraries


40 4.1 Nature of Intrinsic Redundancy

Each collection also exposes the method size(), which intuitively can be used to check
the same property. Once more, functionalities such as removing all the elements of a
given collection, can be achieved by using specialized methods, such as removeAll(), or
by removing each element singularly with a remove() method.

These design and development practices are a large source of redundant code.

Third-Party Components Similarity Reusability influences not only the way compo-
nents are designed and developed, but also the way they are used. Many popular
utilities or set of utilities are often implemented by several libraries. The large va-
riety of these libraries offer unique features, such as complex mathematical analy-
sis or specific graph visualization, but they share many standard features to enable
their distinct functionalities, for example simple mathematical operations or primi-
tives to model or analyze graphs or networks. Given each library unique character-
istic, often developers include more than one library to access the different features.
Given the common set of functionalities that the libraries share, those systems include
many duplicated functionalities. Such duplicated functionalities are often easily ex-
changeable even across different libraries. For instance, let us take the function to
compute the absolute value of a number, Math.abs(double a), of the standard Java
mathematical package, java.lang.Math that “contains methods for performing basic
numeric operations such as the elementary exponential, logarithm, square root, and
trigonometric functions”4. The functionally equivalent operations abs is duplicated
in a large set of alternative mathematical libraries for Java: Apache Commons Math,
“a library of lightweight, self-contained mathematics and statistics components”5, ex-
poses the method Abs.value(double x); Apfloat, “a high performance arbitrary precision
arithmetic library”6, provides ApfloatMath.abs(Apfloat x); Colt, “a set of Open Source
Libraries for High Performance Scientific and Technical Computing”7, exposes Func-
tions.abs(); Java Ultimate Math Package, “a framework for arbitrary precision compu-
tations”8, provides IntegerNumber.abs(); JMSL, “a collection of mathematical, statisti-
cal and charting classes”9, has a Jampack.abs(Z z) method; finally, JSci,“ a set of Java
packages for linear algebra and statistics”10, exposes ArrayMath.abs(double[] v).

A similar situation occurs with graph analyzer components. There are many Java
libraries that model, analyze, and visualize graphs and networks, including JGraphT,
JUNG, yWorks, and JGraph. Such libraries are usually specialized in some particular
features, but they offer large set of common functionalities, such as creating a graph
from a matrix or vice-versa.

4http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html
5http://commons.apache.org/math
6http://www.apfloat.org
7http://acs.lbl.gov/software/colt/
8http://jump-math.sourceforge.net
9http://www.aertia.com/en/productos.asp?pid=238

10http://jsci.sourceforge.net

http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html
http://commons.apache.org/math
http://www.apfloat.org
http://acs.lbl.gov/software/colt/
http://jump-math.sourceforge.net
http://www.aertia.com/en/productos.asp?pid=238
http://jsci.sourceforge.net


41 4.1 Nature of Intrinsic Redundancy

Non-Functional Requirements Non-functional requirements are, in some domains,
a crucial factor. Efficiency, performance, or scalability problems might suggest to the
developers that some part of the system should be re-engineered, even though the
existing functionality works as expected in terms of expected functional results. For
example the sorting algorithm in the standard C++ library is implemented, among
several, in two main variants, namely, std::sort and std::qsort. The complexity of both
the algorithms is O(N · log(N)), but Meyers, in his book, claims that the std::sort
algorithm is about 670% faster than the std::qsort algorithm, because it uses inline
calls to the sorting comparison function, which are known to be faster than normal
calls to functions [Mey01].

The Apache Commons Math library offers another example. The library exposes
three methods that implement three different algorithms to compute the roots of an
equation: Regula Falsi, Illinois, and Pegasus methods. The three algorithms are func-
tionally equivalent in finding the root of an equation, but according to the documenta-
tion “the Illinois method however, should converge much faster than the original Reg-
ula Falsi” and “the Pegasus method should converge faster than the Illinois method”.

Yet another example can be found in the Ant library, a Java tools and library to
simplify the building process of big projects. The library exposes a method to break
up a path String into a Vector of path elements delimited by a separator token, to-
kenizePath(String path). Interesting, the same class exposes another method, called
tokenizePathAsArray(String path) that, as the documentation clearly explains, works
the “same as tokenizePath but faster”.

Often, developers develop specialized libraries that duplicate an entire set of func-
tionalities, already provided by some standard or third-party library, to achieve better
performance. For instance, the Java standard package java.util.Collections can be eas-
ily replaced with, at least, three other libraries that duplicate every functionality of the
standard library, but they perform better, Guava, Trove and Colt. Another common
case of a library that perform better than a standard feature of a language is Log4J,
a Java logging library. Log4J is widely used in place of the standard java.util.Logging
due to the increasing of the performance. Yet another example, the same developers of
Log4J also developed another logging library for Java, logback, which performs better
than Log4J.

So far we presented some qualitative reasons that justify the presence of intrinsic
redundancy in modern software systems, especially in libraries and reusable compo-
nents. In the rest of the chapter we present some examples of intrinsic redundancy that
we can find in modern software systems. Then we introduce rewriting rules to code
such redundancy, their implementation for Java and a formal definition of their syntax
and semantics. We will conclude this chapter with a study on the intrinsic redundancy
on some large Java libraries, with quantitative data to support our intuition.



42 4.2 Redundancy in Source Code

4.2 Redundancy in Source Code

In the previous section, we introduce some qualitative reasons that lead to redundant
systems. Redundant functionalities produce the same results, as described in the speci-
fications, and bring the system to the same state so that, independently from the version
of the functionality used to achieve the result, the user of the system will obtain the
expect behavior.

The degree of the redundancy in source code may vary and it can affect the ef-
fectiveness of JAW. Informally, starting from the lower degree of redundancy, we can
observe the code identity. In this case, the portion of code is exactly the same and
its re-execution will provide the same results, if the system is deterministic. We can
then observe the code equality, where the portion of code is replicated or cloned, for
instance as a consequence of a copy and paste. In this case we have distinguishable
pieces of code, but that represent exactly the same code and thus we expect that they
behave the same. These two instances are not interesting in our work because, since
the executed code is exactly the same, they do not provide a way to avoid a failure as
discussed in Chapter 3.

We observe that the redundancy can also originate from portions of different code
that produce the same results. This is the type of redundancy we are interested in.
Such portions of code bring the system to a state that is indistinguishable from the
user viewpoint, which means that from that point on, the system will behave exactly
the same no matter how the point was reached. The redundant portions of code may
be entirely or partially different. The more dissimilar they are, the more likely they can
provide an effective way to avoid a failure.

This intrinsic redundancy can be identified from the component interfaces. The
documentation of an interface usually provides the information to understand if two or
more methods have the same behavior. This information is essential to enable the code
substitution and preserve the original behavior of the system. What this information
does not usually say is how much the two or more methods differ in terms of source
code. The rest of this section illustrates two examples of redundant methods, one
barely and one fully redundant. The examples focus on intra-component redundancy,
that is the redundancy present within a component.

The Java library JodaTime offers an example of a poorly redundant code. Jo-
daTime is a replacement for the Java date and time classes. It provides features to
handle with different calendars, timezones, and to operate with dates and time, such
as time period calculation or conversion. The class AbstractConverter simplifies the
creation of a custom converter for time. A time type, intuitively, is specified by fields
that characterize the date, such as the hours, the minutes, the seconds, and the time-
zone. The AbstractConverter interface exposes, among the others, two methods to
extract the values of the fields of partial times (a time that does not support every
time field, such as the timezone, and is thus a local time). The two methods are get-



43 4.2 Redundancy in Source Code

PartialValues(ReadablePartial fieldSource, Object object, Chronology chrono) (from now
on, getPartialValues′) and getPartialValues(ReadablePartial fieldSource, Object object,
Chronology chrono, DateTimeFormatter parser) (from now on, getPartialValues′′), re-
spectively with three and four parameters. They differ for the last parameter, and the
documentation of the methods says that both “extract the values of the partial time
from an object of this converter’s type”, thus given a standard DateTimeFormatter as
parameter, they are functionally equivalent and can be used interchangeably.

From the implementation of these methods, reported in Listing 4.1 and 4.2, we can
see that the method getPartialValues′′ (Listing 4.2) simply calls its overloaded method
getPartialValues′ (Listing 4.1), thus, the executed code is fundamentally the same. If
a failure occurs in getPartialValues′, it is very likely that getPartialValues′′ suffers from
the same failure.

1 public int[] getPartialValues(ReadablePartial fieldSource, Object object, ←-
Chronology chrono) {

2 long instant = getInstantMillis(object, chrono);

3 return chrono.get(fieldSource, instant);

4 }

Listing 4.1. One implementation for the method getPartialValues

1 public int[] getPartialValues(ReadablePartial fieldSource, Object object, ←-
Chronology chrono, DateTimeFormatter parser) {

2 return getPartialValues(fieldSource, object, chrono);

3 }

Listing 4.2. Another implementation for the method getPartialValues

To be effective in avoiding failures by means of intrinsic redundancy, the methods
have to provide the same functionality and expected behavior, but they also have to
execute different code. For instance, let us consider the class LinkedListMultimap pro-
vided by the Guava library. A LinkedListMultimap is a collection that maps keys to
multiple values. The LinkedListMultimap class exposes the method containsKey(Object
key) that returns true if the given LinkedListMultimap contains a values for the spec-
ified key. Inspecting the interface of the LinkedListMultimap, we find two interesting
methods: keys(), which returns the collection of all the keys of the LinkedListMultimap;
keySet(), which returns the set of all keys of the LinkedListMultimap. Then the Col-
lection and Set classes expose the methods contains(Object key) and containsAll(new
Collection<T>(key)) to determine whether they contain the specified elements. Cou-
pling these last four methods correctly, we can derive four alternative ways to verify
the existence of an element in a LinkedListMultimap:

keys().contains(key)



44 4.3 Rewriting Rules

keys().containsAll(new Collection<T>(key))
keySet().contains(key)
keySet().containsAll(new Collection<T>(key))

Let us focus on the original call containsKey and the first alternative sequence, the
sequence of calls keys and contains, to understand the level of redundancy and the
differences in the executed code. Listing 4.3 is the implementation of the method
containKey in the class LinkedListMultimap.

1 import java.util.Map;

2 private transient Map<K, Node<K, V>> keyToKeyHead;

3
4 public class LinkedListMultimap<K, V> implements ListMultimap<K, V>, ←-

Serializable {

5 @Override

6 public boolean containsKey(@Nullable Object key) {

7 return keyToKeyHead.containsKey(key);

8 }

9 }

Listing 4.3. Implementation of method containKey of class LinkedListMultimap

If we compare the implementation of method containKey with the implementation
of methods keys (Listing 4.4) and then contains (Listing 4.5), we notice that they are
completely different. In this case, a failure in method containKey might be avoided by
executing the methods keys and then contains that execute different code.

1 public class LinkedListMultimap<K, V> implements ListMultimap<K, V>, ←-
Serializable {

2 @Override

3 public Multiset<K> keys() {

4 Multiset<K> result = keys;

5 if (result == null) {

6 keys = result = new MultisetView();

7 }

8 return result;

9 }

10 }

Listing 4.4. Implementation of method keys of class LinkedListMultimap

4.3 Rewriting Rules

We encode the intrinsic redundancy at the level of method calls by means of rewriting
rules. A rewriting rule substitutes a code fragment with a different redundant one,



45 4.3 Rewriting Rules

1 abstract class AbstractMultiset<E> extends AbstractCollection<E> implements ←-
Multiset<E> {

2 @Override

3 public boolean contains(@Nullable Object element) {

4 return count(element) > 0;

5 }

6
7 @Override

8 public int count(Object element) {

9 for (Entry<E> entry : entrySet()) {

10 if (Objects.equal(entry.getElement(), element)) {

11 return entry.getCount();

12 }

13 }

14 return 0;

15 }

16 }

Listing 4.5. Implementation of method contains of class AbstractMultiset

that is a fragment with the same observable behavior of the original one. We thus
abstract away from internal aspects, such as details of the internal state that do not
affect the observable behavior of the system, and non-functional properties, such as
performance or usability. A rewriting rule encodes the fragment of code to be matched
in the system, the fragment of code that substitutes, and it indicates how to rewrite
the first fragment to produce a new one, which is equivalent in the intended effects,
to the original one. Rewriting rules do not depend on any programming language, but
they must rewrite the code fragment considering actual variables and parameters used
in the original code fragments.

A rewriting rule is composed of a context and two patterns: the first pattern
matches the original code fragment, the second pattern contains the new code frag-
ment that substitutes the original one, the context restricts the applicability of the rule.
The patterns are characterized by a constant part and some meta-variables. The con-
stant part matches the pattern of the rewriting rule in the original source code, the
meta-variables stores and preserves the variable parts in the original code fragments
that must be rewritten in the new code fragment.

In the previous section we introduced two equivalences: one from the Java library
JodaTime, the method getPartialValues from the class AbstractConverter, and one from
the Java library Guava, the method containsKey in the class LinkedListMultimap. We
express the two equivalences as rewriting rules in Listing 4.6 and 4.7, respectively.

The rewriting rule in Listing 4.6 captures the equivalence between the two methods
getPartialValues of the JodaTime library in the context of the AbstractConverter class.
The rule applies to every code fragment of a source code that refers to the method



46 4.4 Code Rewriting Rules for Java

Class Abst ractConver ter :

$X .getPar t ialValues($P1, $P2, $P3)≡
$X .getPar t ialValues($P1, $P2, $P3, newDateT imeFormat ter)

Listing 4.6. Rewriting rule for the JodaTime getPartialValues method

getPartialValues. The meta-variables try to match the rest of the code by following the
rule pattern, that is some code $X before the name of the method and some code $P1,
$P2, and $P3 within brackets and separated by commas.

Class LinkedHashMap :

$X .containsKe y($P1)≡ $X .ke ys().contains($P1)

$X .containsKe y($P1)≡ $X .ke ys().containsAll(newCollec t ion($P1))

$X .containsKe y($P1)≡ $X .ke ySet().contains($P1)

$X .containsKe y($P1)≡ $X .ke ySet().containsAll(newCollec t ion($P1))

Listing 4.7. Rewriting rules for the Guava containsKey method

Listing 4.7 presents the four rewriting rules that we can derive from the description
of the equivalent codes given in the previous section for the method containsKey in the
LinkedListMultimap class of the Guava library.

To show how the rewriting rules apply to the source code, let us consider List-
ing 4.8, a method that splits a string into substrings using a delimiter, and each sub-
string into an entry for a map. If we apply the first of the four rewriting rules in
Listing 4.7, the code will be affected as follow: the constant part of the rule, con-
tainsKey, matches line 7, that is checkAr gument(!map.containsKe y(ke y), ke y), and
two metavariables match as follows: $X := map and $P1 := ke y . Thus the code can be
rewritten as checkAr gument(!map.ke ys().contains(ke y), ke y). All the four rewrit-
ing rules in Listing 4.7 can be applied to the code in example, Listing 4.9 shows the
results.

4.4 Code Rewriting Rules for Java

Rewriting rules are a general and language independent representation of the intrinsic
redundancy. To exploit this knowledge within a real system, we need to encode the
rewriting rules into a language that is compatible with a programming language. We
call such language dependent rewriting rules, code rewriting rules.



47 4.4 Code Rewriting Rules for Java

1 public Map<String, String> split(CharSequence sequence) {

2 Map<String, String> map = new LinkedListMultimap<String, String>();

3 for (String entry : outerSplitter.split(sequence)) {

4 Iterator<String> entryFields = entrySplitter.spliterator(entry);

5 checkArgument(entryFields.hasNext(), INVALID_ENTRY_MESSAGE, entry);

6 String key = entryFields.next();

7 checkArgument(!map.containsKey(key), key);

8 checkArgument(entryFields.hasNext(), INVALID_ENTRY_MESSAGE, entry);

9 String value = entryFields.next();

10 map.put(key, value);

11 checkArgument(!entryFields.hasNext(), INVALID_ENTRY_MESSAGE, entry);

12 }

13 return Collections.unmodifiableMap(map);

14 }

Listing 4.8. A code fragment that contains the containsKey method

checkAr gument(!map.containsKe y(ke y), ke y);

↓
checkAr gument(!map.ke ys().contains(ke y), ke y);

or

checkAr gument(!map.ke ys().containsAll(new Collec t ion(ke y)), ke y);

or

checkAr gument(!map.ke ySet().contains(ke y), ke y);

or

checkAr gument(!map.ke ySet().containsAll(new Collec t ion(ke y)), ke y);

Listing 4.9. The method containsKey rewritten by means of the four rewriting rules



48 4.4 Code Rewriting Rules for Java

Code rewriting rules are specialized for a specific language. In this work we focus
on Java applications, so our code rewriting rules work with Java source code. Code
rewriting rules are regular expressions: the constant parts of the rewriting rules remain
the same, the meta-variables are encoded as capturing groups, usually written as reg-
ular expression character classes. The developer can write their own character classes,
or use the Java predefined classes, such as \w for word characters, or \S for non-
whitespace characters. For instance, we can derive a code rewriting rule for the rewrit-
ing rule of method getPartialValues of JodaTime, in Listing 4.6, by transforming the
meta-variables $X and $P1..3 into regular expression capturing groups (Listing 4.10).
The expressiveness of the code rewriting rules is bounded to the expressiveness of the
regular expressions: a code rewriting rule will match a code fragment depending on
the richness of the character classes implementing the meta-variables of the rewriting
rule.

Class Abst ractConver ter :

$X .getPar t ialValues($P1, $P2, $P3)≡
$X .getPar t ialValues($P1, $P2, $P3, newDateT imeFormat ter)

⇓

([\w$.()” ]∗) \ .getPar t ialValues \ (([\S]∗), ([\S]∗), ([\S]∗))≡
$1.getPar t ialValues($2, $3, $4, newDateT imeFormat ter())

Listing 4.10. Code rewriting rule for the JodaTime getPartialValues method

Code rewriting rules might be more general than rewriting rules. Let us take two
Guava classes: ForwardingMultiSet and ForwardingList. These two methods expose a
method called removeAll. The method exposed by the former class removes all the
elements in the set, while the method exposed by the latter removes all the elements
in the list. Both classes expose also two methods called standardRemoveAll, which is
equivalent to the previous methods for both classes, respectively. We can express this
knowledge with the two rewriting rules in Listing 4.11.

We can encode the two rewriting rules in Listing 4.11 into one code rewriting rule
that is more general than each singular rewriting rule, but that expresses the same
knowledge and includes both of them (Listing 4.12).

Regular expressions have limitations: we cannot substitute code fragments based
on their dynamic context, because the dynamic information cannot be included into the
code rewriting rules, or it might be difficult to match long multi lines pattern that are
interleaved with other lines of code. But regular expressions can generally be written



49 4.5 Syntax and Semantics of Code Rewriting Rules for Java

Class ForwardingMul t iSet :

$X .removeAll($P1)≡ $X .standardRemoveAll($P1)

Class Forwarding List :

$X .removeAll($P1)≡ $X .standardRemoveAll($P1)

Listing 4.11. Rewriting rules for the method removeAll in two different contexts

([\w$.()” ]∗) \ .removeAll \ (([\S]∗)\)≡ $1.standardRemoveAll($2)

Listing 4.12. Code rewriting rule that implements the two rewriting rules in Fig-
ure 4.11 for removeAll

with a small effort and are flexible enough to allow a wide set of code matching.
Chapter 7 explains in details how we deal with techniques such as polymorphism and
subtyping.

In the code rewriting rules we wrote in this work, we assume that the source code
of the Java systems has been formatted following the style guidelines provided by Or-
acle11: for example a space divides a comma to the next parameter; or the conditional
and loop statements are separated to their condition within the parentheses by a space;
or a return-carriage comes after every bracket. This assumption can be overcame by
normalizing the source code of the target system to match the standard guidelines so
that the coding style of the developers will not affect the efficacy of the code rewriting
rules.

4.5 Syntax and Semantics of Code Rewriting Rules for Java

In this section we formalize the code rewriting rules for Java by means of Feather-
weight Java [IPW01]. We formalize Java, the patterns that occur in the code rewriting
rules and the semantics of the code rewriting rules.

Java We first define a grammar for the abstract syntax of the essential elements of
Java borrowing them from Igarashi et al. [IPW01].

Grammar 4.1 formalizes some elements of the Java language. The variable L
ranges over class declarations; K ranges over constructor declarations; and M ranges
over method declarations. The variable C spans over class names; f spans over field

11http://www.oracle.com/technetwork/java/codeconv-138413.html

http://www.oracle.com/technetwork/java/codeconv-138413.html


50 4.5 Syntax and Semantics of Code Rewriting Rules for Java

L ::= class C extends C {C̄ f̄ ; K M̄}
K ::= C(C̄ f̄ ){super( f̄ ); this. f̄ = f̄ ; }
M ::= C m(C̄ x̄){return e; }
e ::= x | s | let x = e in e | e. f | e. f = e | e.m(ē) | new C(ē)

Grammar 4.1. Grammar for some Java elements

names; m spans over method names; x spans over variables (including this); e repre-
sents expressions; s represents strings. We also borrow from Featherweight Java the
notation f̄ as shorthand for a possibly empty sequence f1, . . . , fn (and similarly for C̄ ,
x̄ , ē, etc.) and write M̄ as shorthand for M1 . . . Mn (with no commas).

We take the definition of L, K and M from Featherweight Java, while we slightly
modify the definition of the expressions e: an expression e can be a local variable x , a
let expression that introduces new local variables x in an expression e, a string literal
s, a field accesses e. f , a field assignments e. f = e, a method call with zero or more
parameters e.m(ē) or an instantiation of new objects through a call to a constructor
with zero or more parameters new C(ē).

We then define a rewriting context E for Grammar 4.1 inductively. The rewriting
context is an “expression with a hole”. The hole is filled with an expression to ob-
tain another expression, that is, the hole represents an element to be rewritten, and
therefore is the basis for the code rewriting rules.

E ::=[•] | let x = E in e | let x = e in E | E. f | x .E | x .E(ē) |
e. f = E | E.m(ē) | e.m(ē, E, ē) | new C(ē, E, ē)

Grammar 4.2. The rewriting context

Grammar 4.2 defines the rewriting context E. For each expression there can be only
one hole [•] that represents an element to be rewritten. The hole in the expression
can be located in an instantiation of a new local variable (let x = E in e), an object that
accesses a field (E. f ), a field of an object (x .E), a method called on an object (x .E(ē)),
a value stored in a field (e. f = E), an object on which a method is called (E.m(ē)), a
parameter of a method (e.m(ē, E, ē)), or a parameter of a constructor (new C(ē, E, ē)).

We will use rewriting contexts to define which parts of a program may be changed
by a code rewriting rule. Let us consider for example a source program fragment
P = ob jec t.methodA() that calls a method methodA() of an object instance variable
ob jec t, and a target program P ′ = ob jec t.methodB(). The transformation between



51 4.5 Syntax and Semantics of Code Rewriting Rules for Java

P into P ′ effectively replaces methodA() with methodB(). This replacement corre-
sponds to the rewriting context ob jec t.[•], which is consistent with Grammar 4.2 and
therefore acceptable.

Pattern The core of our code rewriting rules are pairs of patterns 〈pat tern, pat tern′〉,
where a pat tern is an expression that matches a code fragment of a Java application
and pat tern′ is the code fragment that substitutes pat tern when applying the rule. In
the code rewriting rules, in addition to normal Java expressions, pat tern can contain
meta-variables taken from a given set mv(p) = {$X1, . . . , $Xk}. Thus a pattern is a
subset of Java expressions augmented with meta-variables.

p ::= x | p.m(p̄) | s | new C(p̄) | $X

Grammar 4.3. Grammar for code rewriting rules patterns with meta-variables

A pattern p (defined in Grammar 4.3) can be a local variable x , a method call
with zero or more parameters p.m(p̄), a string literal s, a parameter in a constructor
(new C(p̄)) or a meta-variable $X .

Code Rewriting Rule We now define a code rewriting rule in Grammar 4.4. The
keywords ANY and ALL define the scope of the rule within the program code. If the
scope is ANY , the transformation is applicable to any one of the occurrences of the
substitution pattern and therefore it can produce several new programs, each differing
from the original in one specific application of the transformation. If the scope is ALL,
the rule applies to all the occurrences of the substitution pattern, and therefore may
produce only one new program.

r ::= ANY (p 7→ p′) | ALL (p 7→ p′)+

Grammar 4.4. Grammar for code rewriting rules

The mapping (p 7→ p′) defines a transformation from a pattern p, called substi-
tution pattern, to a pattern p′, called replacement pattern. The meta-variable in the
replacement pattern refers to the corresponding meta-variables in the substitution pat-
tern, thus we require for all rules p 7→ p′ that mv(p′)⊆ mv(p).

Application of Code Rewriting Rules In order to define the semantics of a code
rewriting rule, consider a general ANY rule r = ANY (p 7→ p′) of scope ANY , and
transformation patterns (p 7→ p′), and without loss of generality let mv(p) = mv(p′) =



52 4.6 Study on Intrinsic Redundancy

{$X1, . . . , $Xk}. Given a program P, rule r applies to any fragment P̃ within P if,
for each meta-variable X i in p there exists a rewriting context Ei in P̃ such that $X i

matches the hole in Ei , and the rest of P̃ matches the rest of pattern p completely, token
by token. We indicate this condition through Listing 4.13 where p[$X1 = e1, . . . , $Xn =
en] indicates pattern p in which a concrete expression ei replaces each meta-variable
$X i .

P = PL · P̃ · PR where P̃ = p[$X1 = e1, . . . , $Xn = en]

Listing 4.13. Matching condition for code rewriting rules

Listing 4.14 represents, then, the rewritten program code, that is, program frag-
ment P̃ in P is rewritten as P̃ ′ corresponding to the replacement pattern p′ in which
each meta-variables $X i is replaced with the concrete code ei bound to $X i in the
substitution pattern.

P ′ = PL · P̃ ′ · PR where P̃ ′ = p′[$X1 = e1, . . . , $Xn = en]

Listing 4.14. The rewritten program code

The semantics of a code rewriting rule with scope ANY extends naturally to rules
with scope ALL. Intuitively, the substitution applies to all disjoint program fragments P̃
where it would be applicable in an identical ANY rule. Operationally, the transforma-
tion of an ALL rule can be obtained by applying the corresponding ANY transformation
to the leftmost applicable fragment P̃, and then recursively to the rest of program to the
right of P̃. A bit more formally, let rANY and rALL be two identical rules with scope ANY
and ALL, respectively, and let r(P = PL · P̃ · PR) = PL · P̃ ′ · PR indicate the application of
the r transformation to the leftmost fragment P̃ in P, then the ALL transformation can
be defined recursively as rALL(P = PL · P̃ · PR) := PL · P̃ ′ · rALL(PR).

4.6 Study on Intrinsic Redundancy

We methodically studied the intrinsic redundancy in four large representative Java
libraries:

• Guava:12 the Google “core” library that implements a framework to work with
collections, I/O, caching, concurrency, string processing.

• SWT:13 the open source widget toolkit for Java designed to provide a portable
access to the user-interface facilities of the operating systems.

12http://code.google.com/p/guava-libraries/
13http://www.eclipse.org/swt/

http://code.google.com/p/guava-libraries/
http://www.eclipse.org/swt/


53 4.6 Study on Intrinsic Redundancy

• JodaTime:14 a library of utility functions to represent and manipulate dates and
time, designed to replace the standard Java date and time classes.

• Lucene:15 it is a search engine library, which features include fast indexing,
ranked searching, and span queries, date-range searching. Lucene’s API can in-
dex and extract information from several file formats such as PDF, HTML, XML.

We manually inspected the interfaces of the four libraries by examining the doc-
umentation of each public method considered. We did not look at the implementa-
tion, but we considered the intended behavior documented by the developers of the
libraries. We identified the equivalences within the libraries by reading the documen-
tation of the methods of the interface and then testing their behavioral equivalence
experimentally. In this study we did not applied a more insightful analysis to under-
stand the degree of redundancy of the equivalences we found, that is we do not know
how the interfaces are implemented and if two methods that we consider equivalent
also execute different code. One equivalence corresponds to a knowledge that we can
write as a rewriting rule.

Library Guava JodaTime SWT Lucene
Classes considered 116 12 252 563
Total equivalences found 1715 135 1494 686
Average per class 14.78 11.25 5.93 1.21

Table 4.1. Equivalent sequences found in representative Java libraries

Table 4.1 shows the results of our analysis. The table reports the number of the
classes we analyzed for each library (all the SWT classes and a selected set for Guava,
JodaTime and Lucene). Based on the classes we considered, the table reports the
number of the equivalences we found, as a total number and as average per class.

The analysis is not exhaustive because it considers only a subset of all the classes
for most of the libraries, although it is minimal in the sense the we did not consider
the identity function and the biunivocal property of the rules counts only once. This
means that we consider the rules e1 = e2 and id(e1) = id(e2) as a single occurrence.
In the same way, we consider as a single occurrence the rules e1= e2 and e2= e1.

14http://www.joda.org/joda-time/
15http://lucene.apache.org

http://www.joda.org/joda-time/
http://lucene.apache.org


54 4.6 Study on Intrinsic Redundancy



Chapter 5

State Consistency Mechanisms

In this chapter we discuss two approaches to assure state consistency, soft-
ware transactional memory and checkpoint and recovery. They have been
designed and implemented to address specific problems, such as concurrency
or restoration of the state of a system after an interruption. Our approach
works with stateful systems, so we need a mechanism to assure the consis-
tency of the state and to recover it after a failure. Here, we evaluate several
techniques based on the two approaches to determine the most suitable one to
include in our approach. To describe the techniques, we mainly focus on how
they handle with the data.

In this work we consider general purpose systems. These systems are generally
stateful, that is their behavior depends on the inputs and the internal state, and every
action potentially changes the state of the system. When a failure happens in such
systems, it might corrupt the state of the system. A corrupted state leads the system
to behave differently from the specifications and the user expectation, so that every
further action, or even attempts to avoid the failure are pointless or even harmful.
To avoid a failure, JAW tries to substitute a failing operation with a different and
potentially error-free one. Let us then assume that an operation modifies the state of
the system correctly, for instance it subtracts the proper amount of money from a bank
account, but it returns a failing code. JAW tries again to achieve the expected result but
with a different operation, so if the bank account is not restored to its original balance,
the same amount of money is subtracted again. If this procedure applies several times,
we repetitively add error on error. Then, it is important to handle the state of the
system, to recover it in case of failure and to assure its consistency while we try to
avoid the failure.

We considered two strategies to deal with the state of the system: software trans-
actional memory (STM) and checkpoint and recovery mechanisms. Software transac-
tional memory has been proposed by Shavit et al. in the nineties [ST95], and it is
mainly used in concurrent and shared-memory systems to support the developers and

55



56 5.1 Software Transactional Memory

provide them primitives to synchronize processes and avoid typical domain problems
such as deadlock and race conditions. Transactions in software transactional memory
borrow the same principles standardized in the database domain as the ACID proper-
ties [Gra81, GR92], especially atomicity and isolation. The atomicity property assures
that a piece of code either runs to completion, or all its effects are discarded and are
not visible to the system. The isolation property assures that the data involved in a
transaction are not touched by other transactions. Changes in the state of the system
are usually made visible when a transaction performs a commit action, or are com-
pletely discarded upon an abort or a retry. These capabilities make software transac-
tional memory attractive for building and integrating recovery mechanisms to support
self-healing approaches, but even if software transactional memory claims to able to
simplify the design and the production of such appliances, the complexity it introduces
and the performance issues observed limit its application [Her09, CBM+08, BDK+08].

Checkpoint and recovery is a common technique for saving and restoring the state
of a system [CR72]. It has been used in traditional fault tolerance methods to re-
cover after a failure interrupts the system, causing a task to fail or abort [Lyu95].
It is used primarily to save the whole state of the system to non-volatile storage so
that, upon a failure, the state of the system can be restored and the service can start
again at the point at which it was saved. This approach has been applied in a wide
range of areas such as distributed environments [KT86, JZ88], fault-tolerance [RS95,
WHV+95], debugging [SKAZ04, XRTQ07] and persistence and migration of virtual
machines [How98, Sue00]. The main pitfalls of this approach are related to the time
and the memory space required to save the state of the system along the execution. To
address these problems, researchers have proposed many approaches and techniques
that increase the performance, and limit the required memory space by following two
main strategies: optimizing the frequency of the checkpoints [CR72, You74, Gel76]
and observing which parts of the state of the system is critical to assure state consis-
tency [PCL+99, LM00, Fen05a].

The next sections of this chapter survey several software transactional memory and
checkpoint and recovery techniques, and describe the approach we decided to use to
handle with the state of the systems highlighting the motivations of the choice.

5.1 Software Transactional Memory

In the early nineties, Herlihy and Moss [Her91, HM93] introduced transactional mem-
ory (later referred as hardware transactional memory) as an alternative and simpler
way to support the synchronization of shared data structures, providing a new level of
abstraction for concurrent programs to free the developers from the complex mecha-
nisms of locks. Locks have always been difficult to use and error prone, often leading
developers to deal with deadlocks and race conditions instead of just concentrating
on the algorithm [HCU+07]. Transactional memory supports the implicit definition of



57 5.1 Software Transactional Memory

code regions that have to be considered as a transaction. A transaction is a sequence
of instructions, including the access to shared-memory, that must execute atomically
and in isolation. It can either execute completely, thus it commits, or aborts, having
no effects on the system. All the writes that a transaction does on the memory are
visible to the system only after a commit. When a transaction aborts, all the writes are
discarded.

The implementation of the hardware transactional memory by Herlihy and Moss is
based on a modification of the standard multiprocessor cache coherence protocols to
enable transaction conflicts detection. They add a transactional cache for each proces-
sor for transactional operations. Data written in that cache are propagated to the main
memory only after a commit [HM93].

While Herlihy and Moss defined the idea of transactions based on hardware sup-
port, Shavit and Touitou introduced software transactional memory. Software transac-
tional memory is more portable and applicable to different machine and more resilient
on hardware failures than the approach proposed by Herlihy. The downside is that
software transactional memory pays in performance [ST95].

To support transaction execution, software transactional memory systems need a
data versioning mechanism to store all the changes in the data made within a trans-
action and before a commit or abort operation. The two most used approaches are
either a change-log or a shadow copy mechanisms. With the change-log approach, the
transaction applies the changes directly to locked locations in memory, while a log of
all the changes is stored separately, so that in case of an abort all the changes can be
discarded (undo). On the other side, in the shadow copy approach we have two spec-
ular strategies: all the transactions, before any writes, make a private backup of the
memory locations, so that in case of abort, the backup can be restored to avoid all the
changes; or the transactions have a private buffer to store all the changes, and only in
case of commit, such changes are propagated to the main memory and visible to the
other transactions.

Adl-Tabatabai et al. [ATLM+06] and Hindman et al. [HG06] propose two approaches
based on change-log. The Adl-Tabatabai et al.’s approach tracks all the transactional
memory accesses maintaining for each transaction a read set, a write set, and an undo
log. Reads and writes are managed with two different strategies. For reads they use a
versioning optimistic concurrency control, when a transaction reads a location mem-
ory, it also reads its version number; if on a following read or write operation the
version number has changed, the transaction is aborted [KR81]. For writes, they apply
a strict two-phase locking strategy, a transaction can only acquire locks (first phase)
and then only release locks after the transaction is completed, with a commit or an
abort (second phase) [GR92]. When a transaction updates memory locations, the new
value is written in place, and the original value is logged to rollback side effects on an
abort. To integrate software transactional memory into Java, the authors propose to
add few statements into the language: some traditional transactional statements such



58 5.1 Software Transactional Memory

as atomic, retry and a specific statement, orelse, to provide alternatives for aborting
transactions.

Similarly to the former work, Hindman et al. propose a change-log approach, but
based on different locking and logging strategies. In this approach, each object can
lock itself in the sense that every object has a field that associates the object itself to
the thread that is currently owning the lock and a thread keeps the locks on the objects
until the end of the transaction. To prevent deadlocks, each thread that tries to access a
locked object, can ask the current holding thread to release it. In this case, if the current
holder thread is blocked, or no longer alive, its resources can be safely released with
a proper synchronization. The approach logs all the write operations in a conceptual
stack so that, to rollback in case of abort, it pops the elements off of the stack and re-
assigns the old values to the objects. The authors optimize the logging operations by
avoiding duplicates: when a transaction updates the same memory location multiple
times, only the first needs a log entry.

Herlihy et al. propose a software transactional memory technique based on the
shadow copy approach. The approach implements a particular lock-free synchroniza-
tion technique called obstruction-free. This strategy guarantees that a single thread
executed in isolation will end in a finite number of operations. In this particular
case, a thread is considered to execute in isolation as long as the other threads do
not progress [HLM03, HLMS03]. The authors also developed a Java library based
on their approach [HLM06]. The implementation manages the transactional location
of memory using a shadow factory pattern. The shadow factory copies each original
field into its shadow version when a transaction begins, so that the transaction writes
directly on the original fields. If the transaction commits, no conflicts have been de-
tected with other concurrent thread, so the original fields contain the final values. If
the transaction aborts, the values in the shadow fields are restored to the original fields
to rollback the transaction.

Rudys et al. provide a framework for introducing transactional rollback to pro-
grams at the language level [RW02]. They use a strict two-phase locking mechanism
to prevent conflicts and a lazy shadow copy strategy to manage the memory. When a
transaction locks a location for writing, the data structure at that memory location is
backed up in a shadow structure that is used to rollback the values on a transaction
abort. This particular implementation of software transactional memory for Java uses
Java bytecode rewriting to enable the transactional mechanisms.

We can find a different shadow copy approach in the proposal of Nierstrasz et
al. [RN07, RN09]. All the objects accessed within a transaction are copied in a work-
ing copy and all the write and read operations are redirected to the copy, so that the
transactions does not update the original memory and they can write optimistically on
the copy of the objects. Conflicts are checked only before the commits. If no conflict is
detected, the working copy can be safely used to update the original objects, otherwise
the conflict is resolved by aborting or retrying the transaction. This strategy allows



59 5.1 Software Transactional Memory

to save time in case of an abort because it does not need a state restoration. The au-
thors propose a Smalltalk implementation of their transactional mechanism. The tool
works as a transparent source-to-source transformation steered by method annotations
to control the automatic code transformation.

Noël describes a particular implementation of the shadow copies strategy [Noe10].
Every transaction has its own private map where it stores a copy of all the objects that
are involved in the transaction itself. The transactions operate on the objects that
are stored in their own private maps. When a transaction commits, its private map
is then added to a queue that is shared among all the transactions. When all the
transactions that operate on a particular area of memory terminate their execution,
the system checks for conflicts by iterating on the shared queue to see if an object has
been modified concurrently. If no conflicts are detected, the original objects are then
updated accordingly with the changes done in the transactions and the private map is
finally removed from the shared queue.

Cachopo et al. provide yet another implementation of shadow copy, called ver-
sioned boxes [CRS06]. A versioned box is a container that keeps the history of all the
updates of the value of a specific memory location in a transactional context. When a
transaction updates an object, a new local version of the object is created and linked
to the versioned box related to that object, so that the history of all the changes is
stored in the box. Beside the local values and the link to the boxes, a transaction
keeps a set of boxes that were read in the context of the transaction itself. Conflicts
are managed at commit time: a transaction commits successfully if none of the boxes
that were read during its execution changed after its start, and the final values can be
reported in memory. Otherwise, the transaction aborts, it does not have any effect on
the versioned boxes and all the local values, if any, are lost.

Software transactional memory, even if it is a promising approach to simplify con-
current access to shared resources, suffers from problems related to performance and
impurity of the transactions. Cascaval et al. observe that software transactional mem-
ory has higher sequential overhead than traditional techniques. This is due to the load
and store operations that are expanded within the transactions and because of the ad-
ditional instructions that constitute the transactional mechanism implementation. The
authors also show that, to improve performance, software transactional memory mech-
anisms typically do not expand load and store operations to non-transactional memory
accesses. This results in a more complex semantics and has the effect of weakening the
atomicity of the transactions, making them unable to detect conflicts on the edge be-
tween transactional and non-transactional memory accesses, thus this introduces the
need of a more complicated conflict detection mechanism. The authors observe that
the complexity and the overhead introduced by software transactional memory mech-
anisms limits the productivity gain given by the adoption of those techniques, and that
the incentive of a migration to such paradigm is not yet appealing [CBM+08].

Yoo et al. analyze the overhead introduced in the execution by the software trans-



60 5.2 Checkpoint and Recovery

actional memory mechanism proposed by Intel [YNW+08]. They find four main per-
formance bottlenecks: the conflict detection mechanism has a too coarse granularity
that can result in false conflicts; the compilers tend to over-instrument memory accesses;
the common practice of privatize shared objects inside critical sections to access them
outside the critical section, which increases the overall overhead because of data races;
the costs of the startup and the teardown for short transactions is generally poor amor-
tized and the system fails to scale.

Brevnov et al. [BDK+08] evaluates the performance of the software transactional
memory implementation by Adl-Tabatabai et al. [ATLM+06] and compares it to a lock
based counterpart. The authors develop a set of workloads made of collection of differ-
ent known benchmarks. They found that is it fairly quick to modify small concurrent
Java programs to use software transactions memory, while larger applications need a
non-trivial and challenging redesign. The results of the evaluation show that software
transactions memory performs slower than locking code and it often introduces an
impressive memory overhead.

Software transactional memory mechanisms provide an abstraction for concurrent
data access and developers can benefit from the composability and modularity that
software transactional memories provide. Although, they also have been proved to
be not particularly performant and to suffer from large overhead. We deal with gen-
eral and potentially interactive systems, and the overhead, in terms of time and space,
should be minimum to preserve the responsiveness of the system. The facilities that
software transactional memories provide are particularly useful for new or small ex-
isting systems, but major modifications might be necessary to adapt medium or large
size systems. In this work we want to automatically enhance existing systems with
self-healing capabilities with no limitations to small programs. For these reasons we
surveyed another way to assure the consistency of the state of a system, checkpoint
and recovery mechanisms.

5.2 Checkpoint and Recovery

Recovering error-free information upon a system failure has been studied since the
seventies. The simplest strategy consists in taking a snapshot of the system (saving the
state of the system) every fixed amount of time. This strategy is simple and safe, but it
incurs in several problems such as the large overhead due to the checkpoint operations
and the long, in some worst cases, service interruption due to the long recovery time
after a failure. The checkpoint frequency plays a key role in these problems. Many
researchers, like Chandy et al. [CR72] and Gelenbe et al. [Gel79] have studied how
to calculate the optimal checkpoint interval that both minimizes the mean overhead of
the checkpointing mechanism and maximizes the system availability.

A common way to schedule checkpoints along the execution of the system is to
place them periodically in time, at every fixed interval. To calculate the optimum



61 5.2 Checkpoint and Recovery

checkpoint interval that maximizes the system availability, many researchers refer to
the time distribution of failures, computed for instance with a Poison function [NvS90,
SG95, SKG89, OKFN97, HDO10]. A periodic scheduling of the checkpoints might be
not flexible enough for some kind of applications, thus some authors propose a non-
periodic scheduling. The scheduling can be driven by the age of the system [DKT02,
DOK02] or upon certain events [CSSS09].

Saving a snapshot of the entire system at each checkpoint may lead to space prob-
lems. An efficient checkpoint approach consists in saving the information incremen-
tally, for example by either storing only the changes in the state of the system made
since the previous checkpoint [EJZ92, WM89], or as soon as an update in the state
occurs (copy on write) [EJZ92, WP96] or saving only a partition of the state that is
relevant to consistently rollback the system [LF90].

Two common ways to implement incremental checkpoints are page-based and hash-
based approaches. In the page-based approach each memory page of the system is
augmented with a dirty bit that indicates if the system has modified that page. At
the time of the checkpoint, only dirty pages are saved and their dirty bit is set again
to zero. This approach requires the operating system support, and sometimes also
hardware support [PBKL95, LTBL97]

The dirty bit approach can also apply to the application level. Lawall et al. propose
to rely on the developers to write specialized code to optimize checkpoint actions.
The developers declares the objects that must be checkpointable, and they write the
algorithm that specifies how to save the state and what part of the state of each object
must be saved. Checkpointable objects are automatically instrumented with a dirty-bit
and the necessary code to manage it [LM00].

With the hash-based approach the memory of the system is divided into blocks. A
hash function maps a block of memory to a unique hash value. At the time of taking a
checkpoint, the hash of each block is computed and stored. At the next checkpoint, the
hash value is computed again for each block, if it differs from the value stored before,
it implies that the memory block has been modified and it needs to be saved. In this
case, the operating system support is not strictly necessary and the size of the memory
blocks affects the performance of the approach [NKHL02, AGGM04].

Code analysis can be also be used to increase the performance of incremental
checkpoints. For instance, Plank et al. combine data-flow analysis and developers
directives to automatically determine the variables that can be excluded from a check-
point [PBK95], while Cores et al. use a live analysis to select those variables that are
live at a checkpoint time, thus excluding to save dead variables [CRMG12].

Copy on write is another approach to distribute the checkpoint over the system
execution: as soon as a memory location is updated, a new checkpoint is created
and the old value of the just updated memory location is saved in the checkpoint.
This approach works under the assumption that we can detect a write operation. Re-
searchers proposed several techniques and implementations of this approach, either at



62 5.3 Considerations on the State Consistency Mechanisms

the code machine level and at the programming language level. For example, West
et al. instrument the store operations of RISC code of Sparc architectures to save ev-
ery update in the memory [WP96]. At the programming language level, Feng et al.
instrument object-oriented programs to detect all the updates to private object fields.
This particular choice of saving only private fields relies on the encapsulation princi-
ple [Fen05a, Fen05b].

Copy on write and dirty-bit approaches can be combined. Wang et al. propose a
technique to checkpoint virtual machine guest systems. At the beginning of a check-
point interval, the memory of the guest systems is saved in the checkpoint, and all
memory pages are set as read-only. When the system writes to a read-only page, it
triggers a page fault. The page is then saved into a new checkpoint and it is set as
writable [WKII10].

The readers interested in more details about checkpoint mechanisms can refer to
the surveys of Roman and Egwutuoha et al. [Rom02, ELSC13].

The checkpoint and recovery approaches are usually highly customizable. We can
decide where to take a checkpoint and what to save, and this allows us to develop and
tune a mechanism with a particular attention on the performance and on the overhead.
The checkpoint and recovery mechanisms are also easy to integrate in existing systems
as additional component.

5.3 Considerations on the State Consistency Mechanisms

Software transactional memory brings the concept of databases transaction, and some
of the ACID properties, into software systems as a new paradigm, opposed to the lock-
ing mechanism, to deal with shared memory accesses and concurrent systems. Soft-
ware transactional memory enables areas of code of the system with automatic rollback
capabilities activated by a detector that aborts a transaction when it catches a concur-
rent access to shared memory.

The checkpoint and recovery approaches provide mechanisms to recurrently save
the state of the system and to recover the execution of the system from one of the
saved points.

In the approach we presented in Section 3.2, briefly schematized in Figure 3.2 at
page 35, we divide the rollback strategy in two phases: the identification of an area
of code delimited between a failure point and a point where the state of the system
can be safely restored, and the re-execution of such area of code to exploit the avail-
able redundancy. In this context, a mix of the two approaches, software transactional
memory and checkpoint and recovery, might be preferred. Checkpoints can be taken
systematically along the execution of the system and used to dynamically identify the
area of code to re-execute. Such area can, then, be considered a transactional area
that must be executed without failures or else all the effects must be avoided.



63 5.3 Considerations on the State Consistency Mechanisms

We explain in details our recovery approach in Section 6 and its prototypal imple-
mentation in Section 7.



64 5.3 Considerations on the State Consistency Mechanisms



Chapter 6

Frames

Failures are manifestation of faults. Failures are unexpected behaviours
and may manifest as wrong results or corrupted state. A failure may be
caused by one or more faults and may manifest at an arbitrary time far from
the execution of the fault. Thus, it is not straightforward to understand when
the state has been corrupted, and thus, what is the last consistent state of the
system on which we can rely to recover the system and find a workaround to
avoid the failure. In this chapter we propose the concept of frames to tackle
these challenges.

Our approach automatically avoids system failures at runtime by exploiting the
intrinsic redundancy of software systems to find an alternative way to provide the same
functionality without incurring in a failure. In Chapter 3 we introduced the concept
of frames that are areas of code with alternative executions. Frames enable failure
detection, assure state consistency in case of failures and include the redundancy that
might avoid the failure.

Researchers have proposed several approaches and techniques to detect failures.
Exceptions [Goo75, PW76, Hoa69] have been combined with assertions automatically
derived from the system execution [Ros95, PW09, EPG+07] or from formal specifi-
cation [Mey92, GMM07]; other researches use models to observe deviation in the
behavior of the system [DZM09, LMP08, LMP09, dCBGU11]. In this work we assume
the existence of some failure detection mechanisms. Our approach is not bounded to
a specific failure detection mechanism. However in the experiments we work mostly
with assertions.

Given a failure the corresponding faults can be located anywhere before the failure
occurrence. Faults, indeed, might have latency time before they manifest themselves
as failure [SL86], and may be difficult to locate them. For this reason many fault
diagnosis approaches and techniques have been proposed to find the root cause of a
failure [HOB05, DZM09, BMP09, SSG+09, DDZS09]. Fault diagnosis techniques often
require a large amount of information and they are time consuming, thus they are not

65



66 6.1 The Frame Approach

suitable for runtime use. Our approach based on frames tries to balance precision and
speed: we do not try to locate a fault, rather we try to find a workaround for it. We
assume that it is more probable that the fault is located close to the failure, thus we
start to cope with the code executed right before the failure, and we then increase the
area of code under examination, considering larger portions of the system and dealing
with faults located far from the failures.

To assure the consistency of the state of the system we have to save the state before
the failure occurs. Saving the state only right before a failure may not be enough due
to the possible fault latency: the faults causing the failure might be arbitrary distant
from the actual failure. One way to address this problem is to regularly save the state,
to assure at least one consistent state to recover. The state saving frequency impacts on
the overall time and space performance of the approach, and the different approaches
presented in Chapter 5 try to find a good balance. We take advantage of the knowledge
we have about the intrinsic redundancy of the system to save the state only when we
can apply a recovery action that might avoid the failure.

We propose to tackle the problems of the consistency and the recovery of the state,
of the fault locality and of the failure avoidance by means of frames, a dynamic seg-
mentation of the code of the system. In the next section we present the details of the
frames and we discuss how they work.

6.1 The Frame Approach

A frame is a portion of code where the state of the system can be consistently assured
and recovered.

To assure the consistency of the state we regularly save it along the execution of
the system. Considering the potentially large size of the state of the system, saving the
whole memory incurs unacceptable costs. To reduce the costs, our strategy considers
two aspects: We save only the portion of the state of the system that has been involved
in side effects and those variables required to consistently recover the system; We as-
sure the state consistency only in proximity of potential failures that can be treated
successfully with the intrinsic redundancy of the system. For this reason, state consis-
tency and failure detection are linked by means of the knowledge about the intrinsic
redundancy of the system. For example, if we have a rewriting rule that involves a
portion of the code of the system, we know that such portion is potentially redundant
and that, if a failure occurs in that portion of the code, we can rely on some equivalent
code to avoid that failure. In this case we save the relevant part of the state of the
system before executing that code.

With such strategy that involves the knowledge we have about the redundancy of
the system, when a failure occurs we can outline three scenarios:

• The fault is located in the last executed redundant code closest to the failure.



67 6.1 The Frame Approach

• The fault is located in a previous executed redundant code.

• The fault is located in a portion of non-redundant code.

Figure 6.1 exemplifies the position of some redundant code (R1 and R2), saving
points (S1 and S2) and a failure in the flow of the code. If the fault is located in the
code R1 we fall in the first scenario. We then recover the state of the system at S1,
we substitute the code R1 according to the rewriting rules and re-start the execution
to find a workaround. We call the portion of code between S1 and the failure point, a
frame. We can repeat this process depending on how many rewriting rules apply to R1.

If the fault is located in code R2, we face the second scenario that shows the dy-
namism of the framing system. We create a first frame to cover the first scenario, but
no rewriting rules for R1 can avoid the failure. We then recover the state of the system
to S2 and we dynamically create a new frame that spans from S2 to the failure. We
now might have a rewriting rule that applies to R2 and avoids the failure. This can
be repeated up to the beginning of the code execution, thus recovering also from fails
extremely far from the failure occurrence.

In the third scenario, the fault may be located somewhere else in the code, that
is outside of the code fragments R1 and R2. This is the most general case. A faulty
statement may produce a wrong state that is not involved in any operation for a long
part of the execution. Then, it might be that a portion of code uses the corrupted part
of the state and the system fails, while a redundant code of the same failing portion
of code might not use that part of the state to compute the result and thus may not
fail. We face the third scenario in the same way we face the two previous scenarios:
we recover the system at S1 and S2 and we apply all the substitutions to R1 and R2,
respectively, since it might be possible that a change in the code will mask the effects
of the fault.

Source 
Code

State
saving point

S1

Redundant
code fragment

R1

State
saving point

S2

Redundant
code fragment

R2

Figure 6.1. Scenario

We assume that the fault is located close to the failing point with high probability,
so we first try to recover the execution and exploit the intrinsic redundancy in frames
close to the failure. But the assumption that a fault is located near the failure does
not always hold because they may manifest after an arbitrary latency, so, as showed
in the second scenario, we dynamically resize the frame to deal with the fault latency
phenomenon.



68 6.1 The Frame Approach

The third scenario also shows why we bind the knowledge about the intrinsic re-
dundancy of the system to the frequency of the state saving points. Saving the state
with a higher frequency is not necessary because when we consider a larger frame we
must assure that we also include new rewriting rules to apply. Recovering the state of
the system in between the points S1 and R2 does not add any new possibility to avoid
the failure.

Frames are distributed everywhere in the code, can be consecutive or overlapping,
and can be dynamically activated or deactivated depending on the runtime events.
Frames may also have a limited validity in time. They depend on the states of the
system saved along the system execution: a frame can only exist if there exists a valid
stored state. Thus, the validity of a frame is related to the validity of its recovery point.

Finally, we define a frame as a dynamic triple that includes three components: a
state saving point, a portion of redundant code and a failure point. While frames
are identified dynamically and online upon a failure event, the other two components
(state saving points and portions of redundant code) of the frames are identified stat-
ically and offline. The information about the components of the frames collected of-
fline are used to dynamically activate valid frames and find workarounds. In the next
sections we discuss the static identification of frame components and their runtime
activation.

Static Identification of Frame Components

We identify frame components statically exploiting the knowledge about the redun-
dancy of the system, expressed in the form of rewriting rules. As introduced in Chap-
ter 4, a rewriting rule encodes how a code fragment can be rewritten with different
operations without changing the semantics, and it is composed of two patterns, the
matching pattern and the substitution pattern. Thus, for each rewriting rule extracted
and encoded from the system:

1. We locate the matching pattern of the rewriting rule (Figure 6.2(a)).

2. We place at least one state saving point before the redundant code fragment spot-
ted in the previous step, to enable the state recovery mechanism (Figure 6.2(b)).

3. We assume a failure detection mechanism that can notify a failure occurrence.

State saving points and the code fragments matched by the rewriting rule are not
exclusively related: one state saving point may serve more than one potential failing
code fragment.

Figure 6.2 shows the two step of the offline identification of the frame components
in a system with three redundant code fragments identified by a list of given rewriting
rules.



69 6.1 The Frame Approach

Source 
Code

Redundant
code fragment

Redundant
code fragment

Redundant
code fragment

(a) Locating redundant code fragments

Source 
Code

State
saving point

Redundant
code fragment

Redundant
code fragment

State
saving point

Redundant
code fragment

(b) Placing state saving points

Figure 6.2. Frames infrastructure

Dynamic Activation of Frames

We statically build the scaffolding of the frames that are dynamically activated at run-
time upon a failure detection. Depending on where the failure event is caught, we can
dynamically identify several potential frames. Figure 6.3(a) shows all the potential
frames that can be activated at runtime depending on different location of the failure
event.

When a failure occurs and it is caught by the failure detector:

1. We dynamically create a frame that includes the code between the failing point
and the closest executed state saving point in time (Frame 1 in Figure 6.3(b)).
This strategy, which selects the closet saving point, follows the principle of local-
ity: we assume a high probability for the fault to be located close to the failure,
so we activate the shortest frame first. The procedure of creating the frames
assures that we can apply at least one rewriting rule within the active frame.

2. We recover the state of the system at the point it has been saved and we go back
to a consistent state.

3. We select a rewriting rule among the available ones for the current active frame.

4. We apply the rewriting rule to the code fragment within the current active frame.
The result is a different portion of code with the same expected behavior of the
one that failed.

5. We execute the new code. If the failure does not occurs again, the system keeps
running.

6. If the failure occurs again we apply another rewriting rule, and repeat the process
from the step 2.



70 6.1 The Frame Approach

7. If the system fails after the application of all the rules and there exists at least
another previous state saving point in the execution trace, we dynamically ac-
tivate another frame. We go back on the execution trace to the previous state
saving point and enable a new frame: its boundaries are the failing point and
the new active state saving point (Frame 2 in Figure 6.3(b)). In a bigger frame
we include new redundant code fragments and thus new rewriting rules.

8. We iterate this process until we cannot activate new frames.

Source 
Code

State
saving point

Redundant
code fragment

Redundant
code fragment

State
saving point

Redundant
code fragment

Potential Frames

(a) Potential frames that can be activated dynamically

Execution

State
saving point

Redundant
code fragment

Redundant
code fragment

State
saving point

Redundant
code fragment

1

2

(b) Two frames dynamically activated on a single failure point

Figure 6.3. Dynamic frames activation

Rewriting Rules Selection Criteria

Each frame may have several associated rewriting rules. In Chapter 4 we explained the
rationale behind the intrinsic redundancy in software systems. In Listing 4.7 at page 46
we show as an example that the method containsKey of the class LinkedHashMap of the
Guava library has four rewriting rules. Each of those rewriting rules may have different
probability to avoid a failure. We need a criterion to sort them and select the one with
the highest probability to avoid the failure.

We sort rules according to a criterion that takes in consideration the previous suc-
cess rate of the rewriting rules. The success rate is computed as the fraction of the
times the rewriting rule successfully avoided a failure over the total amount of times
the rule has been applied. If we know that a certain rewriting rule is more likely to
avoid certain kind of failure, we can also adapt this probability by associating the rule



71 6.2 Originality of Frames

with the failure context, to increase the chance to select a specific rule when a specific
failure occurs.

6.2 Originality of Frames

Even though our approach is novel, the idea of organizing redundant code into blocks
of code is not new. We can compare our framing system with other approaches in the
literature. Randell’s Recovery Blocks [Ran75] are redundant blocks of code that are
executed sequentially when a failure occurs. The Recovery Blocks technique relies on
two main principles: independent implementation and design diversity. Implementing
independently the recovery blocks deliberately adds redundancy into the system, while
we rely on intrinsic redundancy that results from some development practices and not
from an intentional deed by the developers. Moreover, recovery blocks are defined at
design time and implemented statically into the system. Given the knowledge of the
redundancy in the system, our frames are automatically injected into the system. Our
frames are also flexible, they are dynamically activated at runtime and their size is
adapted when a frame cannot avoid a failure.

Cabral et al. propose another strategy to enclose parts of the system into blocks
to provide fault tolerance capabilities called benign recovery actions [CM11]. Recovery
actions can be specifically developed for the system or they can be general to be easily
imported and adapted into different systems, but they are still deliberately developed
for reliability purpose. Recovery actions enclose portions of code that might fail in a
loop that, in case of failure, select a recovery action to execute before the re-execution
of the failed code. Examples of recovery actions are removing temporary files, reducing
the size of the swap files, moving files to a remote server or mounting an extra disk.
Recovery actions are not then based truly on redundant code, but mostly on reactions
to failures that should avoid the failure when the same code is re-executed. Recovery
actions can be selected dynamically at runtime, but the blocks of code are still statically
defined at design time.



72 6.2 Originality of Frames



Chapter 7

ARMOR – A Prototype for Java

To evaluate the effectiveness and the performance of our automatic ap-
proach to avoid failures at runtime, we designed and developed a Java pro-
totypal tool. The tool adds runtime failure avoidance capabilities to a Java
system with respect to a library that the system uses and for which there is
an available set of code rewriting rules. The tool instruments an existing Java
system and monitors the system for runtime failures transparently to the user.
This chapter provides the details of the design and the implementation of our
prototypal tool, called ARMOR.

In this chapter we present the architecture of ARMOR, the implementation for Java
of our technique to automatically recover from failures1. ARMOR works in the follow-
ing general scenario: a Java application fails because of faults in one of the libraries.
Such faults may trigger a failure in the library code or in the application code. AR-
MOR, which is embedded within the application and is notified of the failure, reacts to
the failure by first restoring the state of the application to a previously saved state, by
means of a set checkpoint, and then by selecting and executing a code rewriting rule
that might avoid the failure. If multiple code rewriting rules are available, ARMOR
selects one of them based on the selection criterion explained in Section 6.1. The tool
iterates this process until it obtains a valid workaround (i.e., a failure-free execution)
or until there are no more code rewriting rules left to try. In the first case the execu-
tion of the application proceeds as if no failure occurred. In the second case ARMOR
forwards the failure (an exception) to the application code as if ARMOR did not exist.

ARMOR works in two phases and with two main components: a preprocessing
off-line phase, and a runtime monitoring phase. In the off-line phase, the ARMOR
preprocessor analyzes the application to identify where code rewriting rules might be
applied and instruments the application with the necessary code to checkpoint and
restore the state of the system and to select those alternative sequences of code. At

1http://star.inf.usi.ch/armor/

73

http://star.inf.usi.ch/armor/


74 7.1 Roll-Back Areas – Frames for Java

runtime, ARMOR records the state of the application at chosen checkpoints that have
been set in respect with the code rewriting rules, and then reacts to failures by select-
ing and activating code rewriting rules. In the next sections we introduce the Java
implementation of the concept of the frame and we detail both the preprocessing and
the runtime activities.

7.1 Roll-Back Areas – Frames for Java

A roll-back area (RBA) is the primary structural element of the application upon which
ARMOR operates. As for frames, we define a roll-back area as a segment of the appli-
cation code within which (1) the application calls one or more operations of any of the
libraries, (2) the state of the system can be recovered, and (3) a failure can be detected
and reported. A roll-back area should also be minimal in the sense that it should be
confined to operations that might fail and that could be replaced with a code rewriting
rule. This is because the execution of any other code, before or after the library calls,
might invalidate the checkpoint (for instance, with I/O operations, see Section 7.3)
and in any case would increase its runtime overhead.

A roll-back area shares the same principles of a frame, and it may extend over
sections of the application code at any level of granularity, from a single statement to
a basic block to an entire method and across methods. If the frames are the general
and conceptual idea of enclosing part of the system in respect to some properties, roll-
back areas represent their implementation. Our current implementation of ARMOR
supports two types of extents for roll-back areas: a whole method body and a single
initialization expression for a field (static or not). The extent of a roll-back area is con-
strained by the mechanism that ARMOR implements to dynamically replace the code
of the RBA with one of its pre-compiled variants. This mechanism that we describe
in detail in Section 7.3 can replace only entire methods and thus requires RBAs to be
encapsulated as a method.

It is also conceivable to encapsulate RBAs consisting of blocks of instructions. How-
ever, the encapsulation of such RBAs poses a number of technical problems that we
ultimately decided not to address in the scope of this work. Among these problems,
the most significant one is the handling of local variables along with the application
state that those variables might refer to.

7.2 Preprocessing Phase

The preprocessor starts with the source code of the application, the binary distribution
of the libraries, and the specifications of the code rewriting rules for each library. The
preprocessor (1) identifies the units of code to which the code rewriting rules might
be applied, which we call roll-back areas (RBAs), (2) instruments them with the neces-
sary code to set checkpoints and to react to failures, and (3) compiles and stores the



75 7.2 Preprocessing Phase

RBA variants to be used as potential workarounds at runtime. The RBA variants are
RBAs where the original code fragment that matches a code rewriting rule has been
substituted with the corresponding substitution pattern. The pre-compilation phase
of the RBA variants is the strategy we decided to take to keep the runtime overhead
low. The operation of applying the code rewriting rules, which are coded as regular
expressions, to Java code at runtime is very expensive due to the compilation process
thus, we pre-compile all the possible matches of the code rewriting rules for each RBA.
We also limit the application of the code rewriting rules to one at time for each RBA:
for instance, if we find an RBA with a code fragment that matches with two different
code rewriting rules and another code fragment of the same RBA that matches with a
different code rewriting rule, we produce three different variants of such RBA.

In the following part of this section we explain the details of the three prepro-
cessing steps by means of an example that is composed of a system that uses a target
library for which a set of code rewriting rules have been provided. Listing 7.1 shows a
simple application intended to illustrate the preprocessing performed by ARMOR. This
application uses the JodaTime library, for which we derived a set of code rewriting
rules, to get the instant corresponding to midnight of the current date, and would fail
on specific dates and time zones. In May 2011 a developer reported issue n. 3304757
with the JodaTime library2. As it turns out, that issue was fixed within a short pe-
riod of time, but the issue is still interesting because of the nature of the fault and the
resulting failure. Issue n. 3304757 reported a failure resulting in an exception when
trying to get the instant corresponding to the beginning of the day on certain dates
in countries that observe daylight saving time (DST). This failure could not be easily
detected during testing since it is triggered only under particular conditions, namely
in regions where the DST leap occurs over midnight (for example, America/Sao_Paulo
every year, some years in some US regions and some Latin America regions).

Identifying Roll-Back Areas

In the first step of the preprocessing, ARMOR identifies roll-back areas. In the system
showed in Listing 7.1, ARMOR would identify three roll-back areas. These are the
initialization of field tz on line 2, the initDayAndZone method on line 5, and the setMid-
night method on line 12, since they all contain at least one invocation of the JodaTime
library. The readers should notice that ARMOR supports nested RBAs, that is, RBAs
that invoke other RBAs. Method initDayAndZone is an example of a nested RBA, since
it uses JodaTime directly, and invokes setMidnight, which is itself an RBA.

To identify RBAs we statically analyze the bytecode of the system using SOOT3, a
Java optimization framework, which also provides facilities to build and analyze the
call graph of a system. With the call graph of the entire system we can identify all the

2http://sourceforge.net/tracker/?func=detail&aid=3304757&group_id=97367&atid=617889
3http://www.sable.mcgill.ca/soot/

http://sourceforge.net/tracker/?func=detail&aid=3304757&group_id=97367&atid=617889
http://www.sable.mcgill.ca/soot/


76 7.2 Preprocessing Phase

1 class CurrentMidnight {

2 DateTimeZone tz = DateTimeZone.forID("America/Sao_Paulo");

3 DateTime midnight;

4
5 public void initDayAndZone(){

6 DateTimeZone.setDefault(tz);

7 DateTime dt = new DateTime();

8 ...

9 setMidnight(dt);

10 }

11
12 private void setMidnight(DateTime dt){

13 midnight = dt.millisOfDay().withMinimumValue();

14 }

15
16 public DateTime getMidnight(){

17 return midnight;

18 }

19 }

20
21 class Main {

22 public static void main(String args[]){

23 ...

24 CurrentMidnight cm = new CurrentMidnight();

25 cm.initDayAndZone();

26 ...

27 cm.getMidnight();

28 ...

29 }

30 }

Listing 7.1. Example application code



77 7.2 Preprocessing Phase

calls to the target library with little effort.
Once the call the library as been identified, ARMOR ensures that there is at least

one code rewriting rule that can be successfully applied to the identified code. A
code rewriting rule can be successfully applied when it matches a piece of code of the
system and the substitution pattern produces a syntactically correct code. We verify the
syntactic correctness by compiling the new code. If there is at least one code rewriting
rule that compiles, ARMOR keeps the RBA, otherwise ARMOR discards it because we
do not have chance to avoid a failure that can potentially affect that piece of code.

Thus the ARMOR preprocessor identifies RBAs consisting of a method body, which
do not need additional encapsulation, and field initialization expressions, which need
to be encapsulated through an ad-hoc additional method.

RBA Encapsulation and Proxy Methods

Once the RBAs have been identified, the preprocessor encapsulates and instruments
them to allow them to be dynamically replaced with alternative variants at runtime.
The encapsulation applies only to RBAs consisting of initialization expressions, which
must be rewritten as methods. Let us consider the initialization expression of the field
tz. ARMOR creates a new method (called tz_init()) that encapsulates the initialization
of the new object and returns it. The semantics of the program remains the same, but
now we can treat the initialization expression as a normal class method. Listing 7.2
shows the result of the encapsulation of the initialization for the field tz.

1 class CurrentMidnight {

2 DateTimeZone tz = tz_init();

3
4 public DateTimeZone tz_init() {

5 return DateTimeZone.forID("America/Sao_Paulo");

6 }

7
8 // The remaining part of the class untouched

9 ...

10 }

Listing 7.2. Encapsulation of an initialization expression

Once each RBA is encapsulated as a method, the preprocessor creates a proxy
method for each RBA method. The role of the proxy is to enclose the call to the
original RBA method within a loop of operations consisting to set the checkpoint, call
the original RBA method and respond to potential failures.

Listing 7.3 shows the proxy methods created for two of the three RBAs identified
in the example of Listing 7.1: the proxy method for the encapsulation of the initial-
ization expressions (method tz_init_original on line 3 with its proxy method tz_init on



78 7.2 Preprocessing Phase

1 class CurrentMidnight {

2 DateTimeZone tz = tz_init();

3 public DateTimeZone tz_init_original() {

4 return DateTimeZone.forID("America/Sao_Paulo");

5 }

6 public DateTimeZone tz_init() {

7 try {

8 create_checkpoint();

9 return tz_init_original();

10 } catch (Exception ex) {

11 while (more_rba_variants_available) {

12 try {

13 restore_checkpoint();

14 load_new_rba_variant();

15 return tz_init_original();

16 } catch (Exception ex1) { // record failure and adjust priorities ... }

17 } throw ex;

18 } finally {

19 discard_checkpoint();

20 }

21 }

22 DateTime midnight;

23 // initDayAndZone proxy method not shown ...

24 public void setMidnight_original(DateTime dt) {

25 midnight = dt.millisOfDay().withMinimumValue();

26 }

27 public void setMidnight(DateTime dt) {

28 try {

29 create_checkpoint();

30 setMidnight_original(dt);

31 } catch (Exception ex) {

32 boolean success = false;

33 while (!success && more_rba_variants_available) {

34 try {

35 restore_checkpoint();

36 load_new_rba_variant();

37 setMidnight_original(dt);

38 success = true;

39 } catch (Exception ex1) { // record failure and adjust priorities ... }

40 }

41 if (!success) throw ex;

42 } finally {

43 discard_checkpoint();

44 }

45 } ...

46 }

Listing 7.3. Result of preprocessing (simplified)



79 7.2 Preprocessing Phase

line 6) and the proxy method for the method setMidnight (method setMidnight_original
on line 24 with its proxy method setMidnight on line 27). For the sake of readability,
we omit some details and show a simpler code than the one produced by ARMOR.

Let us now consider the RBA that consists of the original method setMidnight. AR-
MOR renames this method to setMidnight_original and creates a proxy method called
setMidnight with the same signature as the original method. The proxy method declares
and handles the same exceptions declared and handled in the original method. In this
respect, ARMOR distinguishes between checked and unchecked exceptions. In Java,
exceptions can be either checked or unchecked. Checked exceptions are invalid or sim-
ply special conditions that are explicitly declared as potential outcomes of the calls to
library functions. These are exceptions that the application code deals explicitly, either
by handling them or by passing them up in the stack. By contrast, unchecked (or run-
time) exceptions are unexpected conditions that may or may not be handled explicitly
by the application.

ARMOR ignores checked exceptions, since it is the responsibility of the program-
mer to handle those, and in many cases those may well represent a normal path of
execution for the application. Therefore, masking those exceptions may interfere with
the correct behavior of the application. On the other hand, unchecked exceptions typ-
ically represent failures, and therefore ARMOR catches them and responds to them.
In practice, the proxy method catches all exceptions with a generic catch statement,
but must also explicitly catch all the specific exceptions thrown by the original method
only to immediately re-throw them to the application.

In addition to handling the exceptions thrown by the original RBA method, the
proxy handles the state of the application (and the library) during the execution of
the original RBA and of potential workarounds. In particular, the proxy sets a check-
point for the state of the application immediately before the execution of the RBA
itself (line 29). Then, in case of failure, the proxy restores the state to that check-
point (line 35) before trying an alternative variant. Before terminating, the proxy can
discards the checkpoint.

RBA Variants

For each identified roll-back area, the ARMOR preprocessor produces a series of alter-
native variants of the application code by applying the rewriting rules of each library
used within that roll-back area. These are variants of the original application methods
as well as of the ad-hoc methods produced by ARMOR to encapsulate initialization ex-
pressions. In practice, referring to the example of Listing 7.3, these are all the methods
with the _original name suffix. The preprocessor produces one variant for each applica-
tion of a single rewriting rule. The preprocessor then pre-compiles all the RBA variants
and stores the bytecode in a database for potential retrieval and use at runtime.

Let us consider the RBA consisting of the method setMidnight_original (reported in
Listing 7.5) and assume that the list of the available code rewriting rules includes the



80 7.2 Preprocessing Phase

two rewriting rules listed in Listing 7.4.

.mill isO f Da y().withMinimumValue()≡ .toDateMidnight().toDateT ime()

.mill isO f Da y().withMinimumValue()≡ .withT imeAtStar tO f Da y()

Listing 7.4. Rewriting rules for the JodaTime DateTime class

The RBA setMidnight_original matches both the code rewriting rules, so ARMOR
produces two variants (Listing 7.5), one for each rule, pre-compiles and stores them
for later use.

Original:

1 public void setMidnight_original(DateTime dt) {

2 midnight = dt.millisOfDay().withMinimumValue();

3 }

Variant 1:

1 public void setMidnight_original(DateTime dt) {

2 midnight = dt.toDateMidnight().toDateTime();

3 }

Variant 2:

1 public void setMidnight_original(DateTime dt) {

2 midnight = dt.withTimeAtStartOfDay();

3 }

Listing 7.5. Original RBA setMidnight with two variants

We are sure that ARMOR can produce at least one valid variant per roll-back area,
indeed, those roll-back areas that do not have any applicable rule are filtered out in the
first step of the identification. When a code rewriting rule matches a RBA and produces
a valid variant, such variant is compiled and the resulting bytecode is stored for run-
time use. When a code rewriting rule matches a RBA and produces a non-compilable
variant, such variant is then discarded. ARMOR produces non-compilable variants
because in the process of rewriting the code with the regular expressions, some con-
textual information may be lost. For instance, since ARMOR substitutes the code with
a string matching strategy, it does not check the type of the objects at code substitution
time. Polymorphism or method name similarities can then produce some erroneous
matches that lead to produce syntactically correct but semantically wrong code. The
pre-compilation process assures that the variants, produced with the code substitution,
can run, even though it is not a guarantee that it is an effective workaround.



81 7.3 Runtime

7.3 Runtime

After the preprocessing phase, the application can be compiled and deployed. ARMOR
does not run any special component alongside the application, so the execution of
the instrumented application differs from the original one only in the execution of
the proxy methods. ARMOR assumes the existence of a failure detector, which may
be implemented as a separate autonomous component. However, in our prototype
we assume a typical lightweight failure detection based on assertions and runtime
exceptions.

In practice, the most significant difference in the execution of the instrumented
application is the checkpointing of the application state performed within the proxy
methods. In the case of successful execution, this is also the only difference.

Checkpointing and Restoring Application State

ARMOR implements an ad-hoc mechanism to checkpoint and restore the state of the
application during execution. The high-level semantics of this mechanism is that of a
classic checkpointing mechanism: a checkpoint can be set during the execution of the
application, then later the checkpoint may be restored, in which case the state of the
application is brought back to what it was at the time the checkpoint was set. The
same checkpoint may be restored multiple times.

Since RBAs may be nested and several workarounds might be tried at different
levels of the execution of the application, ARMOR maintains a thread-local stack of
active checkpoints. Every time a proxy method sets a checkpoint, for instance line 29
in Listing 7.3, ARMOR pushes a new checkpoint handle on the stack.

ARMOR implements two interchangeable types of checkpoints, one based on a
snapshot taken before the execution of the RBA code, and one based on a lazy change-
log recorded during the execution of the RBA code.

The first mechanism takes a snapshot of the portion of the application state that
might be modified by the execution of a roll-back area at the time the checkpoint is
set. In its basic form, the snapshot consists of the transitive closure of all the objects
reachable from the object on which the RBA method is called (i.e., this object) plus
the parameters to the RBA method and all the static fields that are accessible by the
RBA method. The second mechanism uses a change-log whereby the first time a field
is written (static or not, primitive values as well as references) the previous value of
that field is recorded in the change-log, so that it can be restored later.

The two mechanisms have complementary advantages and disadvantages. The
snapshot saves every value that is part of the application state and that is accessible by
the RBA at the checkpoint, regardless of whether it is actually modified by the execu-
tion of the RBA. The change-log saves every value that is actually modified, regardless
of whether that value is part of the application state at the checkpoint. So, the snap-
shot incurs a potentially high cost at the time the checkpoint is set, but then incurs no



82 7.3 Runtime

cost during the execution of the RBA. Conversely, the change-log incurs no initial cost
when the checkpoint is set but may incur a high cost during the execution of the RBA.
Both mechanism may be improved through static analysis, although in our current
implementation of ARMOR we only applied such analysis to the snapshot method, in
order to exclude from the transitive closure those objects that are for sure never mod-
ified in the execution of the RBA. In Chapter 8 we analyze the performance of both
mechanisms in all our experiments.

Replacing Code

When a failure occurs within an RBA, the proxy method replaces the code of the RBA
with a variant of that RBA. ARMOR implements this dynamic code replacement by
substituting the code of the whole class that contains the RBA, since this is the only way
that code can be dynamically redefined in Java. This is done using the redefineClasses
method of the java.lang.instrument package4.

ARMOR selects one of the pre-compiled classes produced by the preprocessor for
that RBA. Each pre-compiled class is derived from the original instrumented class (with
proxy and original methods) with only the original method changed. The effect of
reloading such a class is to change the original method of the current RBA, and all
the future calls to that method. This redefinition does not affect the execution of the
active methods of the class (on the current stack). In particular, it does not affect
the execution of the proxy method, which is in fact the one that initiates the class
redefinition. In practice, referring to the example of Listing 7.3, after replacing the
RBA code (line 36), the call to the RBA method (line 37) will execute the new RBA
variant, different from that previously executed (line 30 or line 37).

4http://docs.oracle.com/javase/6/docs/api/java/lang/instrument/Instrumentation.html

http://docs.oracle.com/javase/6/docs/api/java/lang/instrument/Instrumentation.html


Chapter 8

Evaluation

We evaluated our approach with the ARMOR prototype. We first evaluated
our approach qualitatively by applying our tool on three real faults where
the workaround was already known, to see if the approach could effectively
avoid runtime failures. Then to evaluate the effectiveness and the runtime
overhead of the technique, we evaluated the approach quantitatively with
seeded fault on four open source applications and two libraries. In this chapter
we describe the evaluation process, we report and then discuss the results of
the experiments. The results show that our approach is effective, that the
tool we developed has a limited overhead, mostly related to technological
problems.

The research hypothesis of this dissertation, as state in Chapter 1, is that “software
systems are intrinsic redundant, that is they inherently provide multiple ways to perform
the same operations. This redundancy can be captured, expressed and used for avoiding
failures automatically and at runtime in common use software systems”. In Chapter 4 we
provided some qualitative and quantitative evidences that common software systems
are indeed intrinsic redundant and how we can capture and represent this redundancy.
Chapters 3, 6 and 7 describe our approach, Java Automatic Workaround, which exploits
the intrinsic redundancy to avoid failures at runtime and our tool that implements the
technique.

To validate our research hypothesis that redundancy can be used to deal with soft-
ware system failures at runtime, we studied the effectiveness of our approach in avoid-
ing failures and the efficiency of our tool to make it usable for common use software
systems. The research questions that we want to address with the evaluation are:

Q1 Can we use workarounds to cope with runtime failures in common systems?

Q2 Can the intrinsic redundancy present in common software system effectively
make such systems more resilient to faults?

83



84 8.1 Applications

Q3 Can we use the intrinsic redundancy efficiently?

The first question (Q1) explores the feasibility of our approach in successfully
avoiding failures, that is to recover a system after a runtime failure, use a worka-
round to avoid it, and let the execution of the system continue normally. To answer
to this question we surveyed the failure repository of the Java library JodaTime and
we selected and analyzed three real faults. This analysis shows the feasibility of the
approach, but not its actual effectiveness, that is the focus of the second question (Q2).
Given the evidence that we can avoid a failure using a workaround, we evaluated how
much the approach is effective by injecting a large amount of faults into a system and
applying our tool ARMOR to see how many of them can be avoided automatically. We
want to deal with runtime failures in common systems, which can be batch or interac-
tive systems. In both cases, we have not only to avoid failures automatically, but the
process should be transparent to the user and efficient enough to preserve the usability
of the system. Thus, to answer to the third question (Q3) we measure the performance
of our tool ARMOR.

In this chapter we explore the three questions by first giving an overview of the
systems we used, then we answer to the first question describing a qualitative experi-
ment on three case studies with real faults. We then answer the second and the third
question, thus we introduce the evaluation process for a quantitative experiment and
we analyze the results. Finally we discuss the limitation and the threats to validity.

8.1 Applications

Our tool ARMOR works in the scenario where a system fails because the incorrect
interaction with a library, and in Chapter 4 we presented the investigation we made
on four popular Java libraries, Guava, JodaTime, SWT and Lucene, to identify the
amount of redundancy present. For this evaluation we selected two of them: Guava
and JodaTime. From these libraries, we selected four applications that use them. The
four applications are:

• Fb2pdf:1 a command-line utility to convert files from the FB2 e-book format into
PDF. Fb2pdf originally uses the standard Java date/time library, but we modified
the application to use the fully compatible JodaTime library and we assured the
same original behavior also with the new changed library.

• Carrot2:2 an open source search results clustering engine. It organizes collec-
tions of documents into thematic categories. Carrot2 uses the Guava library.

1http://code.google.com/p/fb2pdf/
2http://project.carrot2.org

http://code.google.com/p/fb2pdf/
http://project.carrot2.org


85 8.2 Real Faults in JodaTime

• Caliper:3 a framework for writing, running and viewing the results of Java mi-
crobenchmarks and more general code measurements including memory alloca-
tion and consumption. Caliper uses the Guava library.

• Closure:4 a source-to-source optimizing JavaScript compiler. It parses JavaScript
files, analyzes it, rewrites it and minimizes it. It checks syntax, variable refer-
ences, and types. Closure uses the Guava library.

As a first step in our experiments, we wrote the rewriting rules for Guava and Joda-
Time based on their respective API documentation. The result of the study produced
1715 rewriting rules for Guava and 135 for JodaTime. The study is summarized in
Table 4.1 in Chapter 4.

Then, focusing on the relevant equivalences for our experiments, we abstracted
and formalized those equivalences through code rewriting rules. Starting from the
equivalences we extracted from study described in Chapter 4 for the libraries Guava
and JodaTime, we wrote 63 code rewriting rules for Guava and 100 for JodaTime
out of the 1715 and 135 rewriting rules, respectively. Rewriting rules may specify
particular conditions, such as types or the applicability context, that may lead to a
proliferation of rules, but many rewriting rules can be synthesized with only one code
rewriting rule because such information are abstracted. The code rewriting rules we
wrote for the libraries are listed in Appendix A.

8.2 Real Faults in JodaTime

To demonstrate that our approach can use workarounds to cope with runtime failures
in common use systems, we experimented with three case studies taken from three
real fault reports from the issue repository of the Java library JodaTime.

Issue n. 1375249 A developer reports that if a YearMonthDay object, that is a Joda-
Time class that supports the year, the month of the year and the day of the month
fields, is created with a Calendar (the java.util.Calendar standard Java class) as a pa-
rameter, the method plusDays(), which is part of the class YearMonthDay and returns
a copy of the date plus the specified number of days, throws an IllegalArgumentExcep-
tion when the resulting date is in the next year5. Listing 8.1 shows a small portion of
code that reproduces the failure. The small program fails at line 3 with the message
“java.lang.IllegalArgumentException: Fields invalid for add”.

The developer also provides a workaround for this fault: if the YearMonthDay object
is constructed by explicitly specifying an ISOChronology calendar as parameter, the
code does not fail.

3http://code.google.com/p/caliper/
4http://code.google.com/p/closure-compiler/
5http://sourceforge.net/tracker/?func=detail&aid=1375249&group_id=97367&atid=617889

http://code.google.com/p/caliper/
http://code.google.com/p/closure-compiler/
http://sourceforge.net/tracker/?func=detail&aid=1375249&group_id=97367&atid=617889


86 8.2 Real Faults in JodaTime

1 Calendar calendar = new GregorianCalendar(2005, 12, 5);

2 YearMonthDay ymd = new YearMonthDay(calendar);

3 YearMonthDay ymd1 = ymd.plusDays(28);

Listing 8.1. Code that reproduces the issue n. 1375249 in JodaTime

Class YearMonthDa y :

new YearMonthDa y($P1)≡ new YearMonthDa y($P1, ISOChronolog y)

Listing 8.2. Rewriting Rule for YearMonthDay in JodaTime

From the hint provided by the developer, we could write a rewriting rule that
enclose the knowledge to reproduce the workaround (see Listing 8.2) and the corre-
sponding code rewriting rule (see Listing 8.3)

new YearMonthDa y((? : \s∗)([a− zA− Z0− 9_.()”] ∗ [∧ ])(? : \s∗))
≡

new YearMonthDa y($1, ISOChronolog y.get Instance())

Listing 8.3. Code Rewriting Rule for YearMonthDay in JodaTime

We developed a small program that includes the failing statements in Listing 8.1
and run ARMOR on it. Our tool instrumented the system correctly, identifying as
rollback area the portion of code of the system the refers to the library JodaTime,
and produced the rollback area variant, like the one proposed by the developer as
workaround, that overcomes the failure at runtime (see Listing 8.4).

At runtime, ARMOR can detect the failure through the exception handler, recover
a consistent state of the system after the failure and substitute the code of the rollback
area to overcome the failure.

Issue n. 3072758 A developer reports that the method parseDateTime of the class
DateTimeFormatter (a JodaTime class) fails to parse a DST leaping date even if the
LenientChronology is specified. A LenientChronology should be tolerant to DST leaps, so
no exception should be raised in this case6. Listing 8.5 shows few lines of code that
exercise the bug.

At line 3 of Listing 8.5 the system fails to parse the date and it raises the follow-

6http://sourceforge.net/tracker/?func=detail&aid=3072758&group_id=97367&atid=617889

http://sourceforge.net/tracker/?func=detail&aid=3072758&group_id=97367&atid=617889


87 8.2 Real Faults in JodaTime

1 Calendar calendar = new GregorianCalendar(2005, 12, 5);

2 YearMonthDay ymd = new YearMonthDay(calendar, new ISOChronology);

3 YearMonthDay ymd1 = ymd.plusDays(28);

Listing 8.4. Workaround that fixes the code in YearMonthDay

1 DateTimeFormatter formatter = DateTimeFormat.forPattern("dd.MM.yy HH:mm:ss").←-
withLocale(Locale.getDefault()).withZone(DateTimeZone.forTimeZone(TimeZone.←-
getDefault()));

2 formatter = formatter.withChronology(LenientChronology.getInstance(ISOChronology←-
.getInstance(DateTimeZone.forTimeZone(TimeZone.getDefault()))));

3 formatter.parseDateTime("28.03.2004 02:15:00");

Listing 8.5. Code that reproduces the issue n. 3072758 in JodaTime

ing exception: “java.lang.IllegalArgumentException: Cannot parse ‘28.03.2004 02:15:00’:
Illegal instant due to time zone offset transition (Europe/Berlin)”.

Class DateT imeFormat ter :

.parseDateT ime($P1)≡ .parseLocalDateT ime($P1)

Listing 8.6. Rewriting Rule for parseDateTime in JodaTime

The developer also provides a workaround to avoid this failing behavior: using the
method parseLocalDateTime (note the Local) instead of parseDateTime avoids the issue.
Thus, we formalize this knowledge into a rewriting rule (see Listing 8.6). To work
in ARMOR, the rewriting rule must be coded into a code rewriting rule, as shown in
Listing 8.7.

ARMOR successfully instruments the system given as example in Listing 8.5 by
identifying the call to the JodaTime library and producing the code variant that can
avoid the failure (Listing 8.8). At runtime, ARMOR captures the exception, recovers
the state of the system after the failure, and replaces dynamically the code variant to
avoid the failure and continue the execution of the system.

Issue n. 3304757 A developer reports a failure resulting in an exception when try-
ing to get the instant corresponding to the beginning of the day on certain dates in
countries that observe daylight saving time (DST)7. We explain this issue in Chapter 7,
where we also provide the knowledge given by the developers, we describe how we

7http://sourceforge.net/tracker/?func=detail&aid=3304757&group_id=97367&atid=617889

http://sourceforge.net/tracker/?func=detail&aid=3304757&group_id=97367&atid=617889


88 8.3 Mutation Analysis

.parseDateT ime((? : \s∗)([a− zA− Z0− 9_.()+ : ”] ∗ [∧ ])(? : \s∗))
≡

.parseLocalDateT ime($1)

Listing 8.7. Code Rewriting Rule for parseDateTime in JodaTime

1 DateTimeFormatter formatter = DateTimeFormat.forPattern("dd.MM.yy HH:mm:ss").←-
withLocale(Locale.getDefault()).withZone(DateTimeZone.forTimeZone(TimeZone.←-
getDefault()));

2 formatter = formatter.withChronology(LenientChronology.getInstance(ISOChronology←-
.getInstance(DateTimeZone.forTimeZone(TimeZone.getDefault()))));

3 formatter.parseLocalDateTime("28.03.2004 02:15:00");

Listing 8.8. Workaround that fixes the code in ParseDateTime

coded it into rewriting rules and code rewriting rules, and how ARMOR works to re-
cover and avoid the documented failure at runtime.

In these three experiments we analyzed the issue reports to understand the faults,
the runtime failures, and the workarounds proposed by the developers. To conduct the
study, we then coded the knowledge about the workarounds into rewriting rules and
then code rewriting rules to employ our tool ARMOR, which resulted successful in all
the three cases. The three case studies described above demonstrate that our approach
can, indeed, automatically generate workarounds that avoid failures.

8.3 Mutation Analysis

To demonstrate that our approach and our tool ARMOR can effectively exploit the
intrinsic redundancy of common systems to avoid functional failures automatically
and at runtime, we need to obtain an extensive coverage of the features of the library
introduced above, to also obtain more statistically significant results. Real faults taken
from fault trackers are often difficult and expensive to reproduce in large quantity.
Thus, we apply mutation analysis to introduce a large amount of faults into the three
libraries. A study by Andrews et al. [ABL05] suggests that mutation faults can in fact
be representative of real faults.

As a systematic approach, we proceeded as follows:

1. We used the Major mutation analysis framework [JSK11] to inject faults in the
libraries. Major is a mutant injector integrated into a Java compiler. It uses
conditional expressions to encapsulate the mutants and the original version of



89 8.3 Mutation Analysis

the program in the same basic block, so that each single mutant can be triggered
by enabling its identifier at runtime. This strategy assures that a mutant that is
not reached cannot be executed under any circumstance. The operator groups
available in Major includes replacement of unary and binary arithmetic, logical,
relational and shift operators; replacement of a literal value by a positive value,
a negative value, and zero.

2. We then ran all the applications with the mutated versions of their respective
libraries but we no mutants active, and we traced those executions. For each
application we obtained an input that we deemed representative for the appli-
cation. For Fb2pdf we used a third-party e-book file, for Carrot2 and Caliper we
used inputs provided by the developers for demonstration purposes, for Closure
we used a large and popular JavaScript library (jQuery). We assumed that the
results of the execution correspond to the expected result and we used as an ora-
cle in the rest of the experiment to discern correct and incorrect results. Based on
the execution traces, we also discarded the mutants that were never executed.

3. We activated each remaining mutant individually and executed all applications
in the presence of each mutant. For each application and mutant, we observed
and categorized the outcome of the execution as error, loop, and success, when
the execution led to an error (if the outcome differs from the expected one) or
exception, an infinite loop, or a normal termination, respectively. We further ana-
lyzed the mutants in the success category to distinguish mutants whose execution
produced the expected output, which we classified as equivalent and discarded,
and mutants whose execution failed to produce the expected result, which we
classified as non-equivalent.

4. We then executed the applications instrumented with ARMOR on all error, loop,
and non-equivalent success mutants and we measured how many times we could
overcome the failure raised by the mutant. For the error mutants we simply
relied on the implicit failure detection (i.e., exceptions). For the mutants in the
loop and non-equivalent success categories, we augmented the application with
specific failure detectors that we obtained as follows:

• We used Daikon [EPG+07] to derive invariants from repeated executions
of the original program (without mutations).

• We used Daikon on each mutant (same application, same input) and se-
lected those invariants found within roll-back areas that were valid for the
original program but not for the mutant program.

• We inserted those invariants as assertions in the application code, within
the RBA where they were found.



90 8.3 Mutation Analysis

Applying ARMOR on the applications

This section presents the result of the instrumentation of the four systems by our tool
ARMOR. The results are reported in Table 8.1.

Given a set of code rewriting rules for each library, Table 8.1 shows how many
methods of the applications contain a method call to the library that matches one of
the code rewriting rules (RBAs found). We considered only the RBAs that can produce
at least one variant (RBAs with variants). The reason is that not all the method calls
that match a code rewriting rule produce valid variants. Only the substitutions that
produce a syntactical valid code, that is a code that compiles, are kept (Generated
variants). Note that some RBAs have only one variant, some other have more than one
(Average variants per RBA).

Caliper Carrot2 Closure Fb2pdf
Code Rewriting Rules 63 63 63 100
RBAs found 130 139 2099 17
RBAs with variants 60 106 687 17

Generated variants 86 191 996 53
Average variants per RBA 1.43 1.80 1.45 3.12

Table 8.1. Results of the preprocessing on the applications

Effectiveness

We evaluate the effectiveness of ARMOR running the experimental process we de-
scribed in Section 8.3 on the four applications introduced in Section 8.1: Caliper, Car-
rot2, Closure and Fb2pdf. We measure the effectiveness by counting the cases in which
ARMOR could recover from one or more failures caused by a mutant and allows the
applications to run to completion with a correct output with the selected test suite.

Table 8.2 summarizes the selection and classification of mutants, explained in
Step 3 of Section 8.3, for each selected application.

The results of the experiment are displayed in Table 8.3. The mutants executed
with ARMOR are the sum of the mutants that produce an error or an exception, those
that do not let the test suite to terminate and those that produce a different output, re-
spectively, the rows error, detected loop and detected non-equivalent success in Table 8.2.
We considered ARMOR successful when the program, despite the presence of a failure-
inducing fault, terminated completely successful; that is all the exceptions due to the
mutant are successfully handled and the output corresponds to the expected output of
the test suite. These results are very encouraging, since they demonstrate that ARMOR
is successful with between 19% and 48% of the mutants.

For each mutant and each application, we manually analyzed the results of the



91 8.3 Mutation Analysis

Caliper Carrot2 Closure Fb2pdf
Generated Mutants 21297 21297 21297 16858
Mutants executed by the test suite 309 187 344 2200

ex
ec

ut
io

n success
equivalent 210 120 177 1805

non-equivalent
detected 0 2 0 0
not detected 0 8 3 1

loop
detected 0 1 0 0
not detected 12 9 15 47

error 87 47 149 347

Table 8.2. Classification and selection of mutants

Caliper Carrot2 Closure Fb2pdf
Mutants executed with ARMOR
Detected non-equivalent success + detected loop + error

87 50 149 347

Mutants where ARMOR is successful 24 24 70 67
Success percentage 28% 48% 47% 19%

Table 8.3. Effectiveness of ARMOR

execution with ARMOR to identify the causes of the successes and failures of our tech-
nique.

An interesting case is Fb2pdf. Fb2pdf is the application with the fewest number of
RBAs, only seventeen compared to an average of almost eight hundreds for the other
three applications, but also with the largest set of mutants affecting the execution,
more than two thousands compared to the about three hundreds mutants executed by
the other three applications. Fb2pdf is also the application with the lowest success rate,
nineteen percent. Analyzing the execution trace, we found that in fact Fb2pdf uses the
library quite extensively, but does it through few access points and this explains the
low amount of RBAs. Moreover, the application exploits the library at a greater depth
than the other applications, and this justifies the large amount of mutants executed by
the test suite. We draw two conclusions from this analysis: first, there is little hope
to avoid the effects of a fault whenever a few calls use a large portion of the library
code, since that would require a large amount of redundancy. Second, workarounds
are likely to be more effective when the fault (in the library) is somehow closer to the
interface, thus, to the application code, and therefore when the alternative use of the
library would have a more direct control in steering the execution away from the fault.

Another interesting and related case is that of a failure in Carrot2 which ARMOR
could not avoid. This failure is caused by a use of the mutated Guava library from
within another library used by Carrot2. This means that ARMOR was not involved in
that particular use, because we only instrumented the application Carrot2 itself, not



92 8.3 Mutation Analysis

all the included libraries. We do not know whether ARMOR could have prevented
the failure, but once again we observe that faults at a greater depth in the call stack
have less chances of being avoided through workarounds at the interface between
application and library.

The case of Carrot2 is also interesting because it is characterized by several active
and also nested RBAs. One of the RBAs of Carrot2 is in fact in its main method, and
several others are nested up to a depth of 7. Nested RBAs are expensive because they
involve more checkpoints and also because they might induce several nested iterations
to look for a valid workaround, especially when no workarounds are found for lower-
level RBAs. This complexity might explain the overhead incurred by ARMOR with
Carrot2.

Finally, we augmented the application with specific invariants to detect the failures
in those cases where the system could not either run to completion (loop) or terminate
with no exceptions but with a wrong result (non-equivalent success). It is interesting to
realize that with this additional step of the experiment we could detect only 3 more
failures out of 98, as shown in the Table 8.2. We noticed that the set of invariants
generated running the original system was very close to the set of invariants generated
running the mutated system. This is ascribable to the fact that the changes in the
behavior produced by the injected mutants were to small to allow Daikon to generate
effective invariants.

Runtime Overhead

We evaluate the efficiency of the tool by measuring the runtime overhead of ARMOR.
We verify that the execution of an instrumented application would not suffer an unrea-
sonable penalty due to the instrumentation. We measure the overhead of ARMOR in
terms of execution time and in terms of allocated memory in a normal non-failing run
(a run with no active mutants and that run to completion correctly) on the test suite,
and we compare those measurements with the execution of the original application
code on the same test suite.

The time overhead introduced by ARMOR can be caused by three components:
the failure detection mechanism, the state recovery mechanism, and the runtime code
replacement mechanism. The implementation of the three components is detailed
in Chapter 7. The results tell us that the overhead introduced by the runtime code
replacement mechanism is negligible, so we only assessed the failure detection and
the checkpoint and recovery mechanisms.

The first part of Table 8.4 summarizes the results of the analysis on the time over-
head. The original running time of the application is compared, at first, with the
running time of the instrumented application with the check-pointing system disabled
(Exception-handling only). In this case the instrumented application differs from the
original by only the exception-handling mechanism, which is built with Java try-catch



93 8.3 Mutation Analysis

Caliper Carrot2 Closure Fb2pdf

Time
(seconds)

Original application
running time

30.13 2.43 5.40 2.26

Exception-handling
only

30.41
(1%)

4.15
(69%)

10.53
(95%)

3.79
(68%)

Snapshot-based
checkpoints

31.78
(5%)

5.32
(117%)

>1h 4.99
(121%)

Change-log-based
checkpoints

30.87
(2%)

4.75
(94%)

15.90
(194%)

4.70
(114%)

Memory
(MB)

Original application
memory allocation

1.40 8.87 30.56 17.90

Snapshot-based
checkpoints

12.30
(779%)

23.78
(168%)

— 90.94
(408%)

Change-log-based
checkpoints

10.18
(627%)

11.37
(28%)

120.58
(295%)

25.93
(45%)

Recorded checkpoints (approx.) 30 2,350 1,255,000 4
Values saved in change-log-based
checkpoints (approx.)

26,000 270,000 1,880,000 9,000

Table 8.4. Overhead incurred by ARMOR in normal non-failing executions (median
over 10 runs)



94 8.4 Discussion

blocks. Then we compare the original running time with the running time of the ap-
plications instrumented with the two different implementations of the checkpoint and
recovery mechanisms: a snapshot-based checkpoint and a change-log-based checkpoint.

The results show that, as expected, the change-log-based checkpoint strategy per-
forms better that the snapshot-based checkpoint strategy. Interesting is the case of
Closure that was not able to run to completion with the snapshot-based checkpoint
mechanism within one hour due to the large amount of checkpoints recorded during
the execution. The results also demonstrate that ARMOR incurs a noticeable but also
seemingly reasonable overhead with the change-log-based checkpoint, in all cases. In
particular, the running time overhead ranges from 2% to 194%.

Interestingly, we initially assumed that the runtime overhead would be attributable
to the checkpoint mechanism, since that is essentially the only active code executed by
ARMOR in normal non-failing runs. However, a further analysis shows that a signifi-
cant portion of the total overhead is instead due to the instrumentation alone, which
in practice consists of the time needed to execute a try-block in the proxy method. The
results show that this overhead counts for more that half of the total overhead.

The somewhat extreme case of the Closure compiler in which RBAs are executed in
very hot loops, as evidenced by the high number of recorded checkpoints, also shows
that the checkpoint mechanism is quite efficient, since the execution of over 1.2 million
checkpoints (with a total of over 1.8 million saved values), incurs only a relatively
low 99% overhead (excluding the overhead of the exception-handling mechanisms),
corresponding to a bit more than 5 seconds of execution time (on a 2.53GHz Intel Xeon
E5630 CPU).

The second part of Table 8.4 confirms that the change-log-based checkpoint per-
forms better than the snapshot-based checkpoint also in terms of memory allocation in
all cases. The extreme case of Fb2pdf shows the large difference of the two checkpoint-
ing approaches: with only four checkpoints, the change-log-based checkpoint outper-
forms the snapshot-based one of almost one fourth.

8.4 Discussion

Differently from other approaches, JAW aims to temporary mask the effects of a fail-
ure instead of fixing the fault permanently. This allows the technique to automatically
and quickly respond to a runtime failure and keep the system running to successfully
achieve the users’ requests. The study about the three real case studies, presented
in Section 8.2, demonstrates that workarounds are indeed a valuable way to address
problems. In those three cases the developers were aware of the problem and of the
possible workaround, and our technique successfully avoided the problem transpar-
ently to the user, automatically and at runtime. In Section 8.3 we validate our tech-
nique and we demonstrate its effectiveness by injecting faults into medium size well
known and used libraries. As the results show, we could avoid between the 19% and



95 8.5 Limitations and Threats to Validity

the 48% of the failures and run the systems to a correct completion. The runtime cost
of JAW is also limited: the performance test shows that, in terms of time, our tool
ARMOR adds between the 2% and the 194% of overhead time, but also reveals that
half of the overhead is due to the Java exception-handling mechanisms.

8.5 Limitations and Threats to Validity

The main limitation of JAW is our hypothesis that users or developers would be able
to correctly identify the intrinsic redundancy and encode it into code rewriting rules,
which we could not confirmed with a proper experiment.

The tool ARMOR is limited primarily by technological limitation of the Java lan-
guage. The roll-back areas are an implementation for Java of the concept of frame, and
are not that flexible: we bounded the size of the RBAs to the granularity of methods,
therefore, the active frame cannot span everywhere in the code (as stated in Chap-
ter 6), but it is delimited by those region in the code identified as RBAs. Moreover, due
to another technological limitation of Java, we can dynamically resize the frames only
among RBAs that are still on the JVM activation stack.

Another limitation of ARMOR depends on the implementation of the RBA variants.
RBAs variants are pre-compiled at instrumentation time and each variant contains one
rewriting rule. Therefore, if different rewriting rules can be applied to different state-
ments of the same RBA, those variants cannot be activated simultaneously and we can
only have one single point of variation currently active.

Our implementation of the checkpoint and recovery mechanism suffers from two
main limitations: it does not deal with I/O and concurrency. I/O operations might
invalidate a checkpoint in some cases. If the Java system reads or writes from or to
a network stream, the information in the channel cannot be saved and will be lost.
Similarly if the Java system writes on a local file, our checkpoint mechanism cannot
rollback the content of the file and this might affect the rest of the execution. This
limitations might affect correct operation of ARMOR in recovering an execution after a
detected failure. Differently, this issue should not affect the case when the system reads
from a local file using the facilities provided by the Java framework, in fact we are able
to restore all the fields (public and private) of Java objects, including file pointer fields.

The limitation of the experimental work is in the instrumentation process. We
extract the information about the intrinsic redundancy from a target library and then
we instrument the application that uses such library. The application is usually part
of a larger system that includes the Java application itself and several libraries. Thus,
it might be the case that a system failure is induced by one of the many libraries in
the system that might be caused by the target library. This is a limitation of the actual
implementation of the tool, not of the methodology itself. We gathered, coded, and
used the intrinsic redundancy of the libraries to instrument the boundaries between
the application and the libraries themself. Following the same principle, we can collect



96 8.5 Limitations and Threats to Validity

the intrinsic redundancy of the application and of all the components and libraries
integrated in the system and recursively harmonize the whole system.



Chapter 9

Conclusions

This thesis explores software redundancy to increase the reliability of software systems.
In particular, we propose to exploit a specific type of redundancy that we call intrinsic
redundancy. Intrinsic redundancy is naturally present in software systems for several
reasons. A newly upgraded system should often guarantee a certain grade of back-
ward compatibility with older systems thus, for example in the case that an updated
functionality might require a new interface to work, the same old functionality is often
kept to assure the correct operation of older systems. Systems, especially frameworks,
are often developed to provide a wide range of functionalities to serve a large vari-
ety of different other systems. To increase the portability and the reusability of such
systems, functionalities are often duplicated and tailored for different needs. The pro-
liferation of third-party components and libraries also lead to a growth of redundancy
in software systems. Many systems integrates several similar third-party components
that often provide large sets of overlapped functionalities. Yet another reason relies
on the multiple implementation of the same functionalities that have to meet different
non-functional requirements.

All of the above provided reasons induce the developers to introduce redundancy in
their systems. This redundancy can be found at the interface level, where for example a
component might expose the same functionality through multiple equivalent methods,
and this often leads to a redundancy at the implementation level, which means that
the same functionality is also implemented, thus executed, with different code. This
kind of redundancy, that is intrinsically present in software systems, can be exploited
at low cost to avoid failures at runtime.

This thesis introduces an approach, JAW, that exploits the intrinsic redundancy,
automatically and at runtime, to find workarounds to avoid failures. The idea of the
approach is to monitor the system for a failure, recover it to a consistent state to discard
all the side effects that the failure might have produced and select a possible sequence
of operations that is equivalent in the intent to the failed operations, but that does not
fail.

97



98 9.1 Contributions

We implemented a prototype, ARMOR, to demonstrate that intrinsic redundancy
can be effectively used to avoid failures automatically and at runtime in common use
software systems. We tested the prototype on three real bugs and on injected bugs on
four medium size applications, showing that the approach is effective and introduces
a small overhead.

9.1 Contributions

The main contribution of the thesis is to provide an approach for augmenting systems
with self-healing capabilities. The aim is to increase the reliability of software sys-
tems by exploiting their intrinsic redundancy. The approach automatically recovers
the systems from failures and avoids them by finding an alternative way to achieve the
requested and failed functionality. We now summarize in more detail some aspects of
the contributions:

• A fully automated mechanism to augment software systems with self-healing
capabilities. The mechanism, that implements our approach called Java Auto-
matic Workaround (JAW), enables general systems to automatically avoid func-
tional failures at runtime. An augmented system can automatically recover from
a failure and find a way, at runtime, to restore the expected behavior by exploit-
ing its intrinsic redundancy.

• A qualitative and quantitative analysis of the potential use of our approach
due to the intrinsic redundancy of software systems. We give some qual-
itative arguments to support the thesis that intrinsic redundancy is present in
modern software systems, and we quantitative analyzed four large, well known
and used Java libraries. We informally express the knowledge of the intrinsic re-
dundancy as rewriting rules. We also formulate a syntax and a semantics, called
code rewriting rules, to code the rewriting rules and make them available to use
at runtime.

• An experimental evaluation to show the effectiveness of JAW. We perform
the evaluation with a prototypal tool for Java systems, called ARMOR. Given a
set of code rewriting rules for a target library, ARMOR instruments the systems to
enable the approach and then, at runtime, it catches failures, recovers the state
of the system and finally finds and applies an equivalence to avoid the failure. We
evaluate JAW on four Java applications using the intrinsic redundancy extracted
from two libraries. The results of the evaluation show that our approach is ef-
fective in avoiding a large number of failures and that the prototype, even with
some limitations, performs well and it adds a small overhead to the execution.



99 9.2 Future Directions

9.2 Future Directions

The work presented in this dissertation opens problems and ideas for future research.
We introduce possible future directions to improve the effectiveness of the approach,
and some long-term developments.

• Improving the failure detection mechanism. The failure detection mecha-
nisms we use are based on assertions. Even though such mechanisms are inter-
esting, they have some limitations. We are interested in more efficient detection
mechanisms that can detect a failure earlier in the execution or give us more
information about the fault location to help our approach to find a workaround
faster.

• Fault removal support. Our approach prevents the system to halt when a fault
leads the system to a failure. JAW provides a quick and responsive workaround
to fix the problem at runtime by switching the execution to some portion of code
that does not fail. Thus, we do not provide a final patch for the fault, but only
a temporary fix. We believe that, while we recover and heal a failing execution,
we can collect many useful information about the failure and the workaround. It
is interesting to understand how this information can improve the ultimate fault
removal process.

• Automatic identification of intrinsic redundancy. This thesis assumes that the
knowledge of the intrinsic redundancy is available and expressed though a set
of code rewriting rules. In this work, the process of discovering and collecting
the intrinsic redundancy and coding it into code rewriting rules has been carried
manually. Even if such process can be done with a reasonable effort by the de-
velopers, an automatic or semi-automatic identification of intrinsic redundancy
and generation of code rewriting rules is desirable.

• Exhaustive extraction of the intrinsic redundancy. The manual process of
discovering, collecting, and expressing the intrinsic redundancy of a system re-
quires, as we have shown in this thesis, little effort but it also results in a rather
small, yet effective, set of rules. Extracting the intrinsic redundancy extensively,
with the support of an automatic or a semi-automatic technique, we could show
interesting information such as the degree of coverage of intrinsic redundancy
in general systems or the actual coverage of the intrinsic redundancy as repre-
sented by the code rewriting rules. Correlating such information would give a
better indication on the general probability for a defect or a random failure to
have a workaround and thus, we could also provide an estimation of the chances
of success for a given system.

• Design for self-healing. This work proposes to augment software systems by
means of a skeleton of code that enables self-healing capabilities. A long-term



100 9.2 Future Directions

plan is to propose a set of guiding principles on how to design software systems
that enclose a self-healing behavior. The idea is to keep the redundancy as a
key element in the design and develop a set of design principles around the
notion of redundancy. We then propose to include such design principles at the
programming language level by extending an existing language with ad-hoc self-
healing constructs or proposing a new programming language.



Appendices

101





Appendix A

List of all the Code Rewriting Rules

In this Appendix, we present the entire set of code rewriting rules of the three Java
libraries that we used in our evaluation. In total, we compiled 63 code rewriting rules
for Guava and 100 for JodaTime.

Each rule is written using the Java regular expressions syntax1 and it follows the
following convention: 〈patternToBeReplaced〉%〈replacement〉, where 〈patternToBeReplaced〉
indicates the pattern that has to be found and replaced in the code of the system when
the rule is applied, and 〈replacement〉 indicates the new code that is used to create a
new variant.

A.1 Code Rewriting Rules for Guava

1 \.contains\(([\S ]*)\)%.count($1) > 0

2 (.*)\.contains\(([\S ]*)\)\)%$1.count($1) > 0)

3 ([\S]*)\.contains\((?: *)([\S &&[^\&*]]*)(?: *)\)%($1.count($2) > 0)

4 \.contains\((?: *)([\S &&[^\&*]]*)(?: *)\)%.elementSet().contains($1)

5 (.*)\.contains\((?: *)([\S &&[^\&*]]*)(?: *)\)\)%.elementSet().contains($1))

6 (.*)\.contains\(([\S ]*)\)\)%.elementSet().contains($1))

7 \.containsEntry\(([\S ]*), ([\S ]*)\)%.get($1).contains($2)

8 (.*)\.containsEntry\(([\S ]*), ([\S ]*)\)\)%.get($1).contains($2))

9 \.containsEntry\(([\S ]*), ([\S ]*)\)%.get($1).equals($2)

10 (.*)\.containsEntry\(([\S ]*), ([\S ]*)\)\)%.get($1).equals($2))

11 \.containsKey\(([\S ]*)\)%.keySet().contains($1)

12 (.*)\.containsKey\(([\S ]*)\)\)%.keySet().contains($1))

13 \.isEmpty\(\)%.size() == 0

14 !([\S]*)\.isEmpty\(\)%$1.size() != 0

15 \.add\(([\S ]*)\)%.add($1, 1)

16 \.add\(([\S ]*)\)%.setCount($1, 1)

17 ([\S ]*)\.add\(([\S ]*)\)%$1.setCount($2, $1.count($2), $1.count($2) + 1)

18 ([\S ]*)\.add\(([\S ]*), ([\S ]*)\)%for (int _i = 0; _i < $3; _i++) { $1.add($2)←-
; }

1http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

103

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html


104 A.1 Code Rewriting Rules for Guava

19 ([a-zA-Z0-9_.()\$"]*)\.add\(([\S ]*), ([0-9]*)\)%int __i = 0;while (__i++ < $3) ←-
{ $1.add($2); }

20 ([\S ]*)\.setCount\(([\S ]*), ([\S ]*), ([\S ]*)\)%$1.remove($2, $3); $1.add($2,←-
$4)

21 \.remove\(([\S ]*)\)%.remove($1, 1)

22 ([\S]*)\.clear\(\)%$1 = $1.create()

23 ([\S]*)\.clear\(\)%for (int _i = 0; _i < $1.keySet().size(); _i++) { $1.←-
removeAll($1.keySet().toArray()[_i]); }

24 \.remove\(([a-zA-Z0-9_.()\$"]*)\)%.standardRemove($1)

25 \.remove\(([\S ]*), ([\S ]*)\)%.get($1).remove($2)

26 ([a-zA-Z0-9_.()\$"]*)\.removeAll\(([\S ]*)\)%List __c=$1.get($2); while($1.get(←-
$2).size()> 0) { $1.remove($2, c.get(0)); }

27 ([a-zA-Z0-9_.()\$"]*)\.removeAll\(([\S ]*)\)%for (Iterator __iterator = $2.←-
iterator(); __iterator.hasNext();) { $1.remove(__iterator.next()); }

28 \.size\(\)%.keys().size()

29 \.size\(\)%.toArray().length

30 ([a-zA-Z0-9_.()\$"]*)\.putIfAbsent\(([\S ]*), ([\S ]*)\)%if (!$1.containsEntry(←-
$2, $3)) { $1.put($2, $3); }

31 \.create\(\)%.create(100, 100)

32 \.create\(([0-9]*), ([0-9]*)\)%.create()

33 \.create\(\)%.create(100)

34 \.create\(([0-9]*)\)%.create()

35 ([a-zA-Z0-9_.()\$"]*)\.create\(([\S ]*)\)%$1.create(); $1.putAll($2);

36 \.retainAll\(([\S ]*)\)%.standardRetainAll($1)

37 \.apply\(([\S ]*)\)%.contains($1)

38 ([a-zA-Z0-9_.()\$"]*)\.setCount\(([\S ]*), ([0-9]*)\)%int __i = $1.count($2); if←-
(1 < __i) { while ($3 < __i--) { $1.remove($2); } } else { while (__i++ < ←-

1) { $1.add($2); } }

39 \.toArray\(([\S ]*)\)%.toArray()

40 \.of\(\)%.builder()\.build()

41 \.of\(([\S ]*)\)%.builder()\.add($1)\.build()

42 \.copyOf\(([\S ]*)\)%.copyOf($1.toArray())

43 \.copyOf\(([\S ]*)\)%.copyOf($1.iterator())

44 \.newStrongInterner\(\)%.newWeakInterner()

45 \.newWeakInterner\(\)%.newStrongInterner()

46 ([a-zA-Z0-9_.()\$"]*)\.clear\(\)%for (Iterator iterator = $1.keys().iterator(); ←-
iterator.hasNext();) { $1.removeAll(iterator.next()); }

47 ([a-zA-Z0-9_.()\$"]*)\.replaceValues\(([\S ]*), ([\S ]*)\)%$1.removeAll($2); $1.←-
putAll($2, $3)

48 ([\S]*) ([\S]*) = ([\S]*)\.newLinkedList\(([\S]*)\)%$1 $2 = $3.newLinkedList(); ←-
$2.addAll($4)

49 \.newLinkedList\(\)%.newArrayListWithExpectedSize(100)

50 \.newArrayListWithExpectedSize\(([0-9]*)\)%.newArrayList()

51 \.newArrayListWithCapacity\(([0-9]*)\)%.newArrayList()

52 \.newHashMap\(\)%.newHashMapWithExpectedSize(100)

53 \.newHashMap\(([\S ]*)\)%.newHashMap().putAll($1)

54 \.newLinkedHashMap\(([\S ]*)\)%.newLinkedHashMap().putAll($1)

55 \.newTreeMap\(\)%.newTreeMap(com.google.common.collect.Ordering.natural())

56 \.newTreeMap\(([\S ]*)\)%.newTreeMap().putAll($1)

57 \.newLinkedHashSet\(\)%.newLinkedHashSetWithExpectedSize(100)

58 ([\S]*) ([\S]*) = ([\S]*)\.newLinkedHashSet\(([\S]*)\)%$1 $2 = $3.←-



105 A.2 Code Rewriting Rules for JodaTime

newLinkedHashSet(); $2.addAll($4)

59 \.newTreeSet\(\)%.newTreeSet(com.google.common.collect.Ordering.natural())

60 ([\S]*) ([\S]*) = ([\S]*)\.newTreeSet\(([\S]*)\)%$1 $2 = $3.newTreeSet(); $2.←-
addAll($4)

61 \.newHashSet\(\)%.newHashSetWithExpectedSize(100)

62 \.newHashSetWithExpectedSize\(([?:\S ]*)\)%.newHashSet()

63 ([\S]*) ([\S]*) = ([\S]*)\.newHashSet\(([\S]*)\)%$1 $2 = $3.newHashSet(); $2.←-
addAll($4)

A.2 Code Rewriting Rules for JodaTime

1 \.plusDays\((?:\s*)([a-zA-Z0-9_.() \+"]*[^ ])(?:\s*)\)%.plus(org.joda.time.←-
Period.days($1))

2 \.plusDays\((?:\s*)([a-zA-Z0-9_.() \+"]*[^ ])(?:\s*)\)%.withFieldAdded(org.joda.←-
time.DurationFieldType.days(), $1)

3 new YearMonthDay\((?:\s*)([a-zA-Z0-9_.()"]*[^ ])(?:\s*)\)%new YearMonthDay($1, ←-
org.joda.time.chrono.ISOChronology.getInstance())

4 \.parseDateTime\((?:\s*)([a-zA-Z0-9_.() \+:"]*[^ ])(?:\s*)\)%.parseLocalDateTime←-
($1)

5 \.forTimeZone\(([a-zA-Z0-9_.\+\-]*\(\))%.forID($1.getID()

6 \.millisOfDay\(\)\.withMinimumValue\(\)%.toDateMidnight().toDateTime()

7 \.millisOfDay\(\)\.withMinimumValue\(\)%.withTimeAtStartOfDay()

8 ([a-zA-Z0-9_.()]*)\.isAfter\((?:\s*)([a-zA-Z0-9_.() \+"]*[^ ])(?:\s*)\)%(!$1.←-
isBefore($2))

9 ([a-zA-Z0-9_.()]*)\.isBefore\((?:\s*)([a-zA-Z0-9_.() \+"]*[^ ])(?:\s*)\)%(!$1.←-
isAfter($2))

10 ([a-zA-Z0-9_.()]*)\.isEqual\((?:\s*)([a-zA-Z0-9_.() \+"]*[^ ])(?:\s*)\)%$1.←-
getMillis() == $2.getMillis()

11 ([a-zA-Z0-9_.()]*)\.isShorterThan\((?:\s*)([a-zA-Z0-9_.() \+"]*[^ ])(?:\s*)\)%$1←-
.getMillis() < $2.getMillis()

12 ([a-zA-Z0-9_.()]*)\.isLongerThan\((?:\s*)([a-zA-Z0-9_.() \+"]*[^ ])(?:\s*)\)%$1.←-
getMillis() > $2.getMillis()

13 ([a-zA-Z0-9_.()]*)\.isAfter\((?:\s*)([a-zA-Z0-9_.() \+"]*[^ ])(?:\s*)\)%$1.←-
getMillis() > $2

14 ([a-zA-Z0-9_.()]*)\.isBefore\((?:\s*)([a-zA-Z0-9_.() \+"]*[^ ])(?:\s*)\)%$1.←-
getMillis() < $2

15 ([a-zA-Z0-9_.()]*)\.isEqual\((?:\s*)([a-zA-Z0-9_.() \+"]*[^ ])(?:\s*)\)%$1.←-
getMillis() == $2

16 new DateTime\(\)%new DateTime(org.joda.time.chrono.ISOChronology.getInstance())

17 new DateTime\(([a-zA-Z0-9_.()]*)\)%new DateTime($1, org.joda.time.chrono.←-
ISOChronology.getInstance())

18 new DateTime\((?: *)([a-zA-Z0-9_.()]*)(?: *),(?: *)([a-zA-Z0-9_.()]*)(?: *),(?: ←-
*)([a-zA-Z0-9_.()]*)(?: *),(?: *)([a-zA-Z0-9_.()]*)(?: *),(?: *)([a-zA-Z0-9_←-
.()]*)(?: *)\)%new DateTime($1, $2, $3, $4, $5, org.joda.time.chrono.←-
ISOChronology.getInstance())

19 new DateTime\((?: *)([a-zA-Z0-9_.()]*)(?: *),(?: *)([a-zA-Z0-9_.()]*)(?: *),(?: ←-
*)([a-zA-Z0-9_.()]*)(?: *),(?: *)([a-zA-Z0-9_.()]*)(?: *),(?: *)([a-zA-Z0-9_←-
.()]*)(?: *),(?: *)([a-zA-Z0-9_.()]*)(?: *)\)%new DateTime($1, $2, $3, $4, ←-
$5, $6, org.joda.time.chrono.ISOChronology.getInstance())

20 new DateTime\((?: *)([a-zA-Z0-9_.()]*)(?: *),(?: *)([a-zA-Z0-9_.()]*)(?: *),(?: ←-



106 A.2 Code Rewriting Rules for JodaTime

*)([a-zA-Z0-9_.()]*)(?: *),(?: *)([a-zA-Z0-9_.()]*)(?: *),(?: *)([a-zA-Z0-9_←-
.()]*)(?: *),(?: *)([a-zA-Z0-9_.()]*)(?: *),(?: *)([a-zA-Z0-9_.()]*)(?: *)\)←-
%new DateTime($1, $2, $3, $4, $5, $6, $7, org.joda.time.chrono.ISOChronology←-
.getInstance())

21 ([a-zA-Z0-9_.()]*)\.minus\((?: *)([a-zA-Z0-9_.() \+"]*)(?: *)\)%$1.minus($2.←-
getMillis())

22 ([a-zA-Z0-9_.()]*)\.minus\((?: *)([a-zA-Z0-9_.() \+"]*)(?: *)\)%$1.minusMillis(←-
$2.getMillis())

23 ([a-zA-Z0-9_.()]*)\.plus\((?: *)([a-zA-Z0-9_.() \+"]*)(?: *)\)%$1.plus($2.←-
getMillis())

24 ([a-zA-Z0-9_.()]*).plus\((?: *)([a-zA-Z0-9_.() \+"]*)(?: *)\)%$1.plusMillis($2.←-
getMillis())

25 \.now\(\)%.now(org.joda.time.chrono.ISOChronology.getInstance())

26 \.toDateTime\(\)%.toDateTime(org.joda.time.chrono.ISOChronology.getInstance())

27 \.toDateTimeISO\(\)%.toDateTime(org.joda.time.chrono.ISOChronology.getInstance()←-
)

28 \.getCenturyOfEra\(\)%.centuryOfEra().get()

29 \.getDayOfMonth\(\)%.dayOfMonth().get()

30 \.getDayOfWeek\(\)%.dayOfWeek().get()

31 \.getDayOfYear\(\)%.dayOfYear().get()

32 \.getHourOfDay\(\)%.hourOfDay().get()

33 \.getMillisOfDay\(\)%.millisOfDay().get()

34 \.getMillisOfSecond\(\)%.millisOfSecond().get()

35 \.getMinuteOfDay\(\)%.minuteOfDay().get()

36 \.getMinuteOfHour\(\)%.minuteOfHour().get()

37 \.getMonthOfYear\(\)%.monthOfYear().get()

38 \.getSecondOfDay\(\)%.secondOfDay().get()

39 \.getSecondOfMinute\(\)%.secondOfMinute().get()

40 \.getWeekOfWeekYear\(\)%.weekOfWeekYear().get()

41 \.getYear\(\)%.year().get()

42 \.getYearOfCentury\(\)%.yearOfCentury().get()

43 \.getYearOfEra\(\)%.yearOfEra().get()

44 \.getYearOfEra\(\)%.getYear()

45 \.getYear\(\)%.getWeekyear()

46 \.centuryOfEra\(\)\.get\(\)%.getCenturyOfEra()

47 \.dayOfMonth\(\)\.get\(\)%.getDayOfMonth()

48 \.dayOfWeek\(\)\.get\(\)%.getDayOfWeek()

49 \.era\(\)\.get\(\)%.getEra()

50 \.hourOfDay\(\)\.get\(\)%.getHourOfDay()

51 \.millisOfDay\(\)\.get\(\)%.getMillisOfDay()

52 \.millisOfSecond\(\)\.get\(\)%.getMillisOfSecond()

53 \.minuteOfDay\(\)\.get\(\)%.getMinuteOfDay()

54 \.minuteOfHour\(\)\.get\(\)%.getMinuteOfHour()

55 \.monthOfYear\(\)\.get\(\)%.getMonthOfYear()

56 \.secondOfDay\(\)\.get\(\)%.getSecondOfDay()

57 \.secondOfMinute\(\)\.get\(\)%.getSecondOfMinute()

58 \.weekOfWeekYear\(\)\.get\(\)%.getWeekOfWeekYear()

59 \.year\(\)\.get\(\)%.getYear()

60 \.yearOfCentury\(\)\.get\(\)%.getYearOfCentury()

61 \.getYearOfEra\(\)\.get\(\)%.yearOfEra()

62 \.getYear\(\)\.get\(\)%.getYearOfEra()



107 A.2 Code Rewriting Rules for JodaTime

63 \.getWeekyear\(\)\.get\(\)%.getYear()

64 \.getYear\(\)%.minusYears(1).getYear() + 1

65 \.getDayOfMonth\(\)%.minusDays(1).getDayOfMonth() + 1

66 \.getHourOfDay\(\)%.minusHours(1).getHours() + 1

67 \.getMillisOfSecond\(\)%.minusMillis(1).getMillisOfSecond() + 1

68 \.getMinuteOfHour\(\)%.minusMinutes(1).getMinuteOfHour() + 1

69 \.getMonthOfYear\(\)%.minusMonths(1).getMonthOfYear() + 1

70 \.getSecondOfMinute\(\)%.minusSeconds(1).getSecondOfMinute() + 1

71 \.getWeekOfWeekYear\(\)%.minusWeeks(1).getWeekOfWeekYear() + 1

72 \.getYear\(\)%.plusYears(1).getYear() - 1

73 \.getDayOfMonth\(\)%.plusDays(1).getDayOfMonth() - 1

74 \.getHourOfDay\(\)%.plusHours(1).getHours() - 1

75 \.getMillisOfSecond\(\)%.plusMillis(1).getMillisOfSecond() - 1

76 \.getMinuteOfHour\(\)%.plusMinutes(1).getMinuteOfHour() - 1

77 \.getMonthOfYear\(\)%.plusMonths(1).getMonthOfYear() - 1

78 \.getSecondOfMinute\(\)%.plusSeconds(1).getSecondOfMinute() - 1

79 \.getWeekOfWeekYear\(\)%.plusWeeks(1).getWeekOfWeekYear() - 1

80 Period\((?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *)←-
,(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *)\)%←-
Period().plusHours($1).plusMinutes($2).plusSeconds($3).plusMillis($4)

81 Period\((?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *)←-
,(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?:←-
*)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)←-

([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *)\)%Period()←-
.plusYears($1).plusMonths($2).plusWeeks($3).plusDays($4).plusHours($5).←-
plusMinutes($6).plusSeconds($7).plusMillis($8)

82 Period\((?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *)←-
,(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?:←-
*)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)←-

([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a←-
-zA-Z0-9_.()]*)(?: *)\)%Period().plusYears($1).plusMonths($2).plusWeeks($3).←-
plusDays($4).plusHours($5).plusMinutes($6).plusSeconds($7).plusMillis($8).←-
withPeriodType($9)

83 Period\((?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *)←-
,(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *)\)%←-
Period().withHours($1).withMinutes($2).withSeconds($3).withMillis($4)

84 Period\((?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *)←-
,(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?:←-
*)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)←-

([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *)\)%Period()←-
.withYears($1).withMonths($2).withWeeks($3).withDays($4).withHours($5).←-
withMinutes($6).withSeconds($7).withMillis($8)

85 Period\((?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *)←-
,(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?:←-
*)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)←-

([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a←-
-zA-Z0-9_.()]*)(?: *)\)%Period().withYears($1).withMonths($2).withWeeks($3).←-
withDays($4).withHours($5).withMinutes($6).withSeconds($7).withMillis($8).←-
withPeriodType($9)

86 Period\((?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *)←-
,(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *)\)%←-



108 A.2 Code Rewriting Rules for JodaTime

Period().withField(org.joda.time.DurationFieldType.hours(), $1).withField(←-
org.joda.time.DurationFieldType.minutes(), $2).withField(org.joda.time.←-
DurationFieldType.seconds(), $3).withField(org.joda.time.DurationFieldType.←-
millis(), $4)

87 Period\((?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *)←-
,(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?:←-
*)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)←-

([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *)\)%Period()←-
.withField(org.joda.time.DurationFieldType.years(), $1).withField(org.joda.←-
time.DurationFieldType.months(), $2).withField(org.joda.time.←-
DurationFieldType.weeks(), $3).withField(org.joda.time.DurationFieldType.←-
days(), $4).withField(org.joda.time.DurationFieldType.hours(), $5).withField←-
(org.joda.time.DurationFieldType.minutes(), $6).withField(org.joda.time.←-
DurationFieldType.seconds(), $7).withField(org.joda.time.DurationFieldType.←-
millis(), $8)

88 Period\((?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *)←-
,(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?:←-
*)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)←-

([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a←-
-zA-Z0-9_.()]*)(?: *)\)%Period().withField(org.joda.time.DurationFieldType.←-
years(), $1).withField(org.joda.time.DurationFieldType.months(), $2).←-
withField(org.joda.time.DurationFieldType.weeks(), $3).withField(org.joda.←-
time.DurationFieldType.days(), $4).withField(org.joda.time.DurationFieldType←-
.hours(), $5).withField(org.joda.time.DurationFieldType.minutes(), $6).←-
withField(org.joda.time.DurationFieldType.seconds(), $7).withField(org.joda.←-
time.DurationFieldType.millis(), $8).withPeriodType($9)

89 Period\((?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *)←-
,(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *)\)%←-
Period().withFieldAdded(org.joda.time.DurationFieldType.hours(), $1).←-
withFieldAdded(org.joda.time.DurationFieldType.minutes(), $2).withFieldAdded←-
(org.joda.time.DurationFieldType.seconds(), $3).withFieldAdded(org.joda.time←-
.DurationFieldType.millis(), $4)

90 Period\((?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *)←-
,(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?:←-
*)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)←-

([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *)\)%Period()←-
.withFieldAdded(org.joda.time.DurationFieldType.years(), $1).withFieldAdded(←-
org.joda.time.DurationFieldType.months(), $2).withFieldAdded(org.joda.time.←-
DurationFieldType.weeks(), $3).withFieldAdded(org.joda.time.←-
DurationFieldType.days(), $4).withFieldAdded(org.joda.time.DurationFieldType←-
.hours(), $5).withFieldAdded(org.joda.time.DurationFieldType.minutes(), $6).←-
withFieldAdded(org.joda.time.DurationFieldType.seconds(), $7).withFieldAdded←-
(org.joda.time.DurationFieldType.millis(), $8)

91 Period\((?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *)←-
,(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?:←-
*)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)←-

([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a←-
-zA-Z0-9_.()]*)(?: *)\)%Period().withFieldAdded(org.joda.time.←-
DurationFieldType.years(), $1).withFieldAdded(org.joda.time.←-
DurationFieldType.months(), $2).withFieldAdded(org.joda.time.←-
DurationFieldType.weeks(), $3).withFieldAdded(org.joda.time.←-



109 A.2 Code Rewriting Rules for JodaTime

DurationFieldType.days(), $4).withFieldAdded(org.joda.time.DurationFieldType←-
.hours(), $5).withFieldAdded(org.joda.time.DurationFieldType.minutes(), $6).←-
withFieldAdded(org.joda.time.DurationFieldType.seconds(), $7).withFieldAdded←-
(org.joda.time.DurationFieldType.millis(), $8).withPeriodType($9)

92 MutablePeriod(?: *)([a-zA-Z0-9_]*)(?: *)=(?: *)new(?: *)MutablePeriod\((?: *)([ ←-
a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA←-
-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *)\)(?: *);%←-
MutablePeriod $1 = new MutablePeriod(); $1.add(org.joda.time.←-
DurationFieldType.hours(), $2); $1.add(org.joda.time.DurationFieldType.←-
minutes(), $3); $1.add(org.joda.time.DurationFieldType.seconds(), $4); $1.←-
add(org.joda.time.DurationFieldType.millis(), $5);

93 MutablePeriod(?: *)([a-zA-Z0-9_]*)(?: *)=(?: *)new(?: *)MutablePeriod\((?: *)([ ←-
a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA←-
-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *)\)(?: *);%←-
MutablePeriod $1 = new MutablePeriod(); $1.addHours($2); $1.addMinutes($3); ←-
$1.addSeconds($4); $1.addMillis($5);

94 MutablePeriod(?: *)([a-zA-Z0-9_]*)(?: *)=(?: *)new(?: *)MutablePeriod\((?: *)([ ←-
a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA←-
-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *)\)(?: *);%←-
MutablePeriod $1 = new MutablePeriod(); $1.setHours($2); $1.setMinutes($3); ←-
$1.setSeconds($4); $1.setMillis($5);

95 MutablePeriod(?: *)([a-zA-Z0-9_]*)(?: *)=(?: *)new(?: *)MutablePeriod\((?: *)([ ←-
a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA←-
-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0←-
-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_←-
.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *)\)(?: *);%MutablePeriod ←-
$1 = new MutablePeriod(); $1.add(org.joda.time.DurationFieldType.years(), $2←-
); $1.add(org.joda.time.DurationFieldType.months(), $3); $1.add(org.joda.←-
time.DurationFieldType.weeks(), $4); $1.add(org.joda.time.DurationFieldType.←-
days(), $5); $1.add(org.joda.time.DurationFieldType.hours(), $6); $1.add(org←-
.joda.time.DurationFieldType.minutes(), $7); $1.add(org.joda.time.←-
DurationFieldType.seconds(), $8); $1.add(org.joda.time.DurationFieldType.←-
millis(), $9);

96 MutablePeriod(?: *)([a-zA-Z0-9_]*)(?: *)=(?: *)new(?: *)MutablePeriod\((?: *)([ ←-
a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA←-
-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0←-
-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_←-
.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *)\)(?: *);%MutablePeriod ←-
$1 = new MutablePeriod(); $1.addYears($2); $1.addMonths($3); $1.addWeeks($4)←-
; $1.addDays($5); $1.addHours($6); $1.addMinutes($7); $1.addSeconds($8); $1.←-
addMillis($9);

97 MutablePeriod(?: *)([a-zA-Z0-9_]*)(?: *)=(?: *)new(?: *)MutablePeriod\((?: *)([ ←-
a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA←-
-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0←-
-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_←-
.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *)\)(?: *);%MutablePeriod ←-
$1 = new MutablePeriod(); $1.setYears($2); $1.setMonths($3); $1.setWeeks($4)←-
; $1.setDays($5); $1.setHours($6); $1.setMinutes($7); $1.setSeconds($8); $1.←-
setMillis($9);

98 MutablePeriod(?: *)([a-zA-Z0-9_]*)(?: *)=(?: *)new(?: *)MutablePeriod\((?: *)([ ←-
a-zA-Z0-9_.()\+\-]*)(?: *)\)(?: *);%MutablePeriod $1 = new MutablePeriod(); ←-



110 A.2 Code Rewriting Rules for JodaTime

$1.add($2);

99 MutablePeriod(?: *)([a-zA-Z0-9_]*)(?: *)=(?: *)new(?: *)MutablePeriod\((?: *)([ ←-
a-zA-Z0-9_.()\+\-]*)(?: *)\)(?: *);%MutablePeriod $1 = new MutablePeriod(); ←-
$1.setPeriod($2);

100 MutablePeriod(?: *)([a-zA-Z0-9_]*)(?: *)=(?: *)new(?: *)MutablePeriod\((?: *)([ ←-
a-zA-Z0-9_.()\+\-]*)(?: *),(?: *)([ a-zA-Z0-9_.()\+\-]*)(?: *)\)(?: *);%←-
MutablePeriod $1 = new MutablePeriod(); $1.setPeriod($2, $3);



Bibliography

[ABL05] J.H. Andrews, L.C. Briand, and Y. Labiche. Is mutation an appropriate
tool for testing experiments? In Proceedings of the 27th International
Conference on Software Engineering, ICSE ’05, pages 402–411, 2005.

[AGGM04] Saurabh Agarwal, Rahul Garg, Meeta S. Gupta, and Jose E. Moreira.
Adaptive incremental checkpointing for massively parallel systems. In
Proceedings of the 18th Annual International Conference on Supercomput-
ing, ICS ’04, pages 277–286, 2004.

[AK88] Paul E. Ammann and John C. Knight. Data diversity: An approach to
software fault tolerance. IEEE Transactions on Computers, 37(4):418–
425, 1988.

[ATLM+06] Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon, Brian R. Murphy,
Bratin Saha, and Tatiana Shpeisman. Compiler and runtime support for
efficient software transactional memory. In Proceedings of the 27th ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI ’06, pages 26–37, 2006.

[Avi85] Algirdas Antanas Avizienis. The N-version approach to fault-tolerant
software. IEEE Transactions on Software Engineering, 11(12):1491–
1501, 1985.

[AY08] Andrea Arcuri and Xin Yao. A novel co-evolutionary approach to auto-
matic software bug fixing. In Proceedings of the IEEE Congress on Evolu-
tionary Computation, CEC ’08, pages 162–168, 2008.

[BDK+08] Evgueni Brevnov, Yuri Dolgov, Boris Kuznetsov, Dmitry Yershov, Vyach-
eslav Shakin, Dong-Yuan Chen, Vijay Menon, and Suresh Srinivas. Prac-
tical experiences with java software transactional memory. In Proceed-
ings of the 13th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’08, pages 287–288, 2008.

[BG07] Luciano Baresi and Sam Guinea. Dynamo and self-healing bpel compo-
sitions. In Companion to the Proceedings of the 29th International Con-

111



112 Bibliography

ference on Software Engineering, ICSE COMPANION ’07, pages 69–70,
2007.

[BGH+07] David. Breitgand, Mark Goldstein, Ealan Henis, Onn Shehory, and Yaron
Weinsberg. Panacea towards a self-healing development framework. In
Proceedings of the 10th International Symposium on Integrated Network
Management, IM ’07, pages 169–178, 2007.

[BGP07] Luciano Baresi, Sam Guinea, and Liliana Pasquale. Self-healing bpel
processes with dynamo and the jboss rule engine. In Proceedings of the
International Workshop on Engineering of Software Services for Pervasive
Environments, ESSPE ’07, pages 11–20, 2007.

[BMP09] Anton Babenko, Leonardo Mariani, and Fabrizio Pastore. Ava: Auto-
mated interpretation of dynamically detected anomalies. In Proceedings
of the 18th International Symposium on Software Testing and Analysis,
ISSTA ’09, pages 237–248, 2009.

[BP65] Richard E. Barlow and Frank Proschan. Mathematical Theory of Relia-
bility. John Wiley & Sons, Inc., New York, 1965.

[CBM+08] Calin Cascaval, Colin Blundell, Maged Michael, Harold W. Cain, Peng
Wu, Stefanie Chiras, and Siddhartha Chatterjee. Software transactional
memory: Why is it only a research toy? Queue - The Concurrency Prob-
lem, 6:46–58, 2008.

[CCF+02] George Candea, James Cutler, Armando Fox, Rushabh Doshi, Priyank
Garg, and Rakesh Gowda. Reducing recovery time in a small recursively
restartable system. In Proceedings of the 32th International Conference
on Dependable Systems and Networks, DSN ’02, pages 605–614, 2002.

[CDP+09] Antonio Carzaniga, Giovanni Denaro, Mauro Pezzè, Jacky Estublier, and
Alexander L. Wolf. Toward deeply adaptive societies of digital systems.
In Companion to the Proceedings of the 31st International Conference on
Software Engineering, ICSE COMPANION ’09, pages 331–334, 2009.

[CGP08a] Antonio Carzaniga, Alessandra Gorla, and Mauro Pezzè. Healing web
applications through automatic workarounds. International Journal on
Software Tools for Technology Transfer, 10(6):493–502, 2008.

[CGP08b] Antonio Carzaniga, Alessandra Gorla, and Mauro Pezzè. Self-healing
by means of automatic workarounds. In Proceedings of the International
Workshop on Software Engineering for Adaptive and Self-Managing Sys-
tems, SEAMS ’08, pages 17–24, 2008.



113 Bibliography

[CGPP10a] Antonio Carzaniga, Alessandra Gorla, Nicolò Perino, and Mauro Pezzè.
Automatic workarounds for web applications. In Proceedings of the 18th
ACM SIGSOFT International Symposium on Foundations of Software En-
gineering, FSE ’10, pages 237–246, 2010.

[CGPP10b] Antonio Carzaniga, Alessandra Gorla, Nicolò Perino, and Mauro Pezzè.
Raw: Runtime automatic workarounds. In Proceedings of the 32nd Inter-
national Conference on Software Engineering, ICSE ’10, pages 321–322,
2010.

[CKF+04] George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman, and
Armando Fox. Microreboot &#8212; a technique for cheap recovery.
In Proceedings of the 6th Conference on Symposium on Opearting Systems
Design & Implementation, OSDI ’04, page 3, 2004.

[CM11] Bruno Cabral and Paulo Marques. A transactional model for auto-
matic exception handling. Computer Languages, Systems and Structures,
37:43–61, 2011.

[CMP09] Herve Chang, Leonardo Mariani, and Mauro Pezzè. In-field healing of
integration problems with COTS components. In Proceedings of the 31st
International Conference on Software Engineering, ICSE ’09, pages 166–
176, 2009.

[CPW72] John R. Connet, Edward J. Pasternak, and Bruce D. Wagner. Software
defenses in real-time control systems. In Proceedings of the 2nd Interna-
tional Symposium on Fault-Tolerant Computing, FTCS ’72, pages 94–99,
1972.

[CR72] K. Mani Chandy and V. Chittoor Ramamoorthy. Rollback and recov-
ery strategies for computer programs. IEEE Transactions on Computers,
21:546–556, 1972.

[Cri82] F. Cristian. Exception handling and software fault tolerance. IEEE Trans-
actions on Computers, C-31(6):531–540, 1982.

[CRL03] Miguel Castro, Rodrigo Rodrigues, and Barbara Liskov. Base: Using
abstraction to improve fault tolerance. ACM Transactions on Computer
Systems, 21(3):236–269, 2003.

[CRMG12] Iván Cores, Gabriel Rodriguez, Maria J. Martin, and Patricia González.
Reducing application-level checkpoint file sizes: Towards scalable fault
tolerance solutions. In Proceedings of the 10th International Symposium
on Parallel and Distributed Processing with Applications, ISPA ’12, pages
371–378, 2012.



114 Bibliography

[CRS06] João Cachopo and António Rito-Silva. Versioned boxes as the basis for
memory transactions. Science of Computer Programming - Special Issue:
Synchronization and Concurrency in Object-Oriented Languages, 63:172–
185, 2006.

[CSSS09] Shao Changheng, Fengjing Shao, Xiaoning Song, and Rencheng Sun.
A dynamic checkpointing and rollback recovery solution based on task
switching. In Proceedings of the International Symposium on Intelligent
Information Systems and Applications, IISA’09, pages 354–358, 2009.

[dCBGU11] Guido de Caso, Víctor Braberman, Diego Garbervetsky, and Sebastián
Uchitel. Program abstractions for behaviour validation. In Proceedings
of the 33rd International Conference on Software Engineering, ICSE ’11,
pages 381–390, 2011.

[DD08] Brian Demsky and Alokika Dash. Bristlecone: A language for robust
software systems. In Proceedings of the 22nd European Conference on
Object-Oriented Programming, ECOOP ’08, pages 490–515, 2008.

[DDZS09] Laura Dietz, Valentin Dallmeier, Andreas Zeller, and Tobias Scheffer.
Localizing bugs in program executions with graphical model. In Pro-
ceedings of the 24th Annual Conference on Neural Information Processing
Systems, NIPS ’09, pages 468–476, 2009.

[DKT02] Tadashi Dohi, Naoto Kaio, and Kishor S. Trivedi. Availability models
with age-dependent checkpointing. In Proceedings of the 21st Sympo-
sium on Reliable Distributed Systems, SRDS ’02, page 130, 2002.

[Dob06] Glen Dobson. Using WS-BPEL to implement software fault tolerance
for web services. In Proceedings of the 32nd Euromicro Conference on
Software Engineering and Advanced Applications, Euromicro ’06, pages
126–133, 2006.

[DOK02] T. Dohi, H. Okamura, and N. Kaio. Optimal age-dependent checkpoint
strategy with retry of rollback recovery. In Proceedings of the 2nd Inter-
national Workshop on Autonomous Decentralized System, ADS ’02, pages
113–118, 2002.

[DPT13] Giovanni Denaro, Mauro Pezzè, and Davide Tosi. Test-and-adapt: An
approach for improving service interchangeability. ACM Transactions on
Software Engineering and Methodology, 22(4):28:1–28:43, 2013.

[DW10] Vidroha Debroy and W. Eric Wong. Using mutation to automatically
suggest fixes for faulty programs. In Proceedings of the 3rd Interna-
tional Conference on Software Testing, Verification and Validation, ICST
’10, pages 65–74, 2010.



115 Bibliography

[DZM09] Valentin Dallmeier, Andreas Zeller, and Bertrand Meyer. Generating
fixes from object behavior anomalies. In Proceedings of the 24th Inter-
national Conference on Automated Software Engineering, ASE ’09, pages
550–554, 2009.

[DZM10] Brian Demsky, Jin Zhou, and William Montaz. Recovery tasks: An au-
tomated approach to failure recovery. In Proceedings of the 1st Interna-
tional Conference on Runtime Verification, RV ’10, pages 229–244, 2010.

[EAWJ02] Mootaz Elnozahy, Lorenzo Alvisi, Yi-min Wang, and David B. Johnson. A
survey of rollback-recovery protocols in message-passing systems. ACM
Computing Surveys, 34(3):375–408, 2002.

[EF05] Michael Engel and Bernd Freisleben. Supporting autonomic comput-
ing functionality via dynamic operating system kernel aspects. In Pro-
ceedings of the 4th International Conference on Aspect-Oriented Software
Development, AOSD ’05, pages 51–62, 2005.

[EJZ92] E.N. Elnozahy, D.B. Johnson, and W. Zwaenepoel. The performance
of consistent checkpointing. In Proceedings of the 11st Symposium on
Reliable Distributed Systems, SRDS ’11, pages 39–47, 1992.

[ELSC13] Ifeanyi P. Egwutuoha, David Levy, Bran Selic, and Shiping Chen. A sur-
vey of fault tolerance mechanisms and checkpoint/restart implementa-
tions for high performance computing systems. The Journal of Super-
computing, 65(3):1302–1326, 2013.

[EPG+07] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant,
Carlos Pacheco, Matthew S. Tschantz, and Chen Xiao. The Daikon sys-
tem for dynamic detection of likely invariants. Science of Computer Pro-
gramming, 69(1–3):35–45, 2007.

[Fen05a] Thomas Huining Feng. Extending java with checkpointing. Ptolemy
Group, EECS, UC Berkeley, 2005.

[Fen05b] Thomas Huining Feng. Incremental checkpointing based on java source
code refactoring. Technical report, Ptolemy Group, CHESS (Center for
Hybrid and Embedded Software Systems) EECS, UC Berkeley, 2005.

[FSS02] Robert T. Futrell, Donald F. Shafer, and Linda I. Shafer. Quality Software
Project Management. Prentice Hall, 2002.

[Gel76] Erol Gelenbe. A model of roll-back recovery with multiple checkpoints.
In Proceedings of the 2nd international conference on Software engineer-
ing, ICSE ’76, pages 251–255, Los Alamitos, CA, USA, 1976. IEEE Com-
puter Society Press.



116 Bibliography

[Gel79] Erol Gelenbe. On the optimum checkpoint interval. Journal of the ACM,
26(2):259–270, 1979.

[GHKT96] Sachin Garg, Yennun Huang, Chandra Kintala, and Kishor S. Trivedi.
Minimizing completion time of a program by checkpointing and reju-
venation. SIGMETRICS Performance Evaluation Review, 24(1):252–261,
1996.

[GLVT06] M. Grottke, Lei Li, K. Vaidyanathan, and K.S. Trivedi. Analysis of soft-
ware aging in a web server. IEEE Transactions on Reliability, 55(3):411–
420, 2006.

[GMM07] Carlo Ghezzi, Andrea Mocci, and Mattia Monga. Efficient recovery of
algebraic specifications for stateful components. In Proceedings of the
9th International Workshop on Principles of Software Evolution, IWPSE
’07, pages 98–105, 2007.

[Goo75] John B. Goodenough. Exception handling: Issues and a proposed nota-
tion. Communications of the ACM, 18:683–696, 1975.

[GPSS04] Ilir Gashi, Peter Popov, Vladimir Stankovic, and Lorenzo Strigini. On
designing dependable services with diverse off-the-shelf sql servers. In
Rogério de Lemos, Cristina Gacek, and Alexander Romanovsky, editors,
Architecting Dependable Systems II, volume 3069 of Lecture Notes in Com-
puter Science, pages 191–214. Springer Berlin Heidelberg, 2004.

[GR92] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Tech-
niques. Morgan Kaufmann Publishers Inc., 1992.

[Gra81] Jim Gray. The transaction concept: Virtues and limitations. In Proceed-
ings of the 7th International Conference on Very Large Databases, VLDB
’81, pages 144–154, 1981.

[GT07] M. Grottke and K.S. Trivedi. Fighting bugs: Remove, retry, replicate,
and rejuvenate. Computer, 40(2):107–109, 2007.

[Gui05] Sam Guinea. Self-healing web service compositions. In Proceedings
of the 27th International Conference on Software Engineering, ICSE ’05,
pages 655–655, 2005.

[Guo11] Philip J. Guo. Sloppy python: Using dynamic analysis to automatically
add error tolerance to ad-hoc data processing scripts. In Proceedings of
the 9th International Workshop on Dynamic Analysis, WODA ’11, pages
35–40, 2011.



117 Bibliography

[GVNH11] Benoit Gaudin, Emil Iordanov Vassev, Patrick Nixon, and Michael
Hinchey. A control theory based approach for self-healing of un-handled
runtime exceptions. In Proceedings of the 8th ACM International Confer-
ence on Autonomic Computing, ICAC ’11, pages 217–220, 2011.

[GZ05] Sherif A. Gurguis and Amir Zeid. Towards autonomic web services:
Achieving self-healing using web services. ACM SIGSOFT Software En-
gineering Notes, 30(4):1–5, 2005.

[HBS+12] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar
Devanbu. On the naturalness of software. In Proceedings of the 34th
International Conference on Software Engineering, ICSE ’12, pages 837–
847, 2012.

[HC13] Petr Hosek and Cristian Cadar. Safe software updates via multi-version
execution. In Proceedings of the 35th International Conference on Soft-
ware Engineering, ICSE ’13, pages 612–621, 2013.

[HCU+07] T. Harris, A. Cristal, O.S. Unsal, E. Ayguade, F. Gagliardi, B. Smith, and
M. Valero. Transactional memory: An overview. Micro, IEEE, 27(3):8–
29, 2007.

[HDO10] Shunsuke Hiroyama, Tadashi Dohi, and Hiroyuki Okamura. Compari-
son of aperiodic checkpoint placement algorithms. In G.S. Tomar, Ruay-
Shiung Chang, Osvaldo Gervasi, Tai-hoon Kim, and SamirKumar Bandy-
opadhyay, editors, Advanced Computer Science and Information Technol-
ogy, volume 74 of Communications in Computer and Information Science,
pages 145–156. Springer Berlin Heidelberg, 2010.

[Her91] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Pro-
gramming Languages and Systems, 13(1):124–149, 1991.

[Her09] Maurice Herlihy. Transactional memory today: A status report. In Pro-
ceedings of the 13th International Conference on Principles of Distributed
Systems, OPODIS ’09, page 1, 2009.

[HG06] Benjamin Hindman and Dan Grossman. Atomicity via source-to-source
translation. In Proceedings of the 2006 Workshop on Memory System
Performance and Correctness, MSPC ’06, pages 82–91, 2006.

[HKKF95] Yennun Huang, Chandra Kintala, Nick Kolettis, and N. Dudley Fulton.
Software rejuvenation: Analysis, module and applications. In Proceed-
ings of the 25th International Symposium on Fault-Tolerant Computing,
FTCS ’95, page 381, 1995.



118 Bibliography

[HLM03] Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free
synchronization: Double-ended queues as an example. In Proceedings
of the 23rd International Conference on Distributed Computing Systems,
ICDCS ’03, page 522, 2003.

[HLM06] Maurice Herlihy, Victor Luchangco, and Mark Moir. A flexible frame-
work for implementing software transactional memory. In Proceedings of
the 21st Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, OOPSLA ’06, pages 253–
262, 2006.

[HLMS03] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer,
III. Software transactional memory for dynamic-sized data structures.
In Proceedings of the 22nd Symposium on Principles of Distributed Com-
puting, PODC ’03, pages 92–101, 2003.

[HLMSR74] James J. Horning, Hugh C. Lauer, P. M. Melliar-Smith, and Brian Ran-
dell. A program structure for error detection and recovery. In Proceed-
ings of an International Symposium on Operating Systems, pages 171–
187, 1974.

[HM93] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architec-
tural support for lock-free data structures. In Proceedings of the 20th In-
ternational Symposium on Computer Architecture, ISCA ’93, pages 289–
300, 1993.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12:576–580, 1969.

[HOB05] Reza A. Haydarlou, Benno J. Overeinder, and Frances M.T. Brazier. A
self-healing approach for object-oriented applications. In Proceedings of
16th International Workshop on Database and Expert Systems Applica-
tions, DEXA ’05, pages 191– 195, 2005.

[Hor01] Paul Horn. Autonomic computing: IBM’s perspective on the state of
information technology. Technical report, IBM Research, 2001.

[How98] Jon Howell. Straightforward java persistence through checkpointing.
In Proceedings of the 8th International Workshop on Persistent Object Sys-
tems and of the 3rd International Workshop on Persistence and Java: Ad-
vances in Persistent Object Systems, POS-PJW ’98, pages 322–334, 1998.

[IBM06] IBM. An architectural blueprint for autonomic computing. Technical
report, IBM Research, 2006.



119 Bibliography

[IPW01] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight
java: a minimal core calculus for java and gj. ACM Transactions on
Programming Languages and Systems, 23(3):396–450, 2001.

[JH05] James A. Jones and Mary Jean Harrold. Empirical evaluation of the
tarantula automatic fault-localization technique. In Proceedings of the
20th International Conference on Automated Software Engineering, ASE
’05, pages 273–282, 2005.

[JMSG07] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane
Glondu. Deckard: Scalable and accurate tree-based detection of code
clones. In Proceedings of the 29th International Conference on Software
Engineering, ICSE ’07, pages 96–105, 2007.

[JS09] Lingxiao Jiang and Zhendong Su. Automatic mining of functionally
equivalent code fragments via random testing. In Proceedings of the
18th International Symposium on Software Testing and Analysis, ISSTA
’09, pages 81–92, 2009.

[JSK11] Rene Just, Franz Schweiggert, and Gregory M. Kapfhammer. MAJOR:
An efficient and extensible tool for mutation analysis in a java compiler.
In Proceedings of the 26th International Conference on Automated Soft-
ware Engineering, ASE ’11, pages 612– 615, 2011.

[JZ88] David B. Johnson and Willy Zwaenepoel. Recovery in distributed sys-
tems using asynchronous message logging and checkpointing. In Pro-
ceedings of the 7th Symposium on Principles of Distributed Computing,
PODC ’88, pages 171–181, 1988.

[KC03] Jeffrey O. Kephart and David M. Chess. The vision of autonomic com-
puting. IEEE Computer, 36:41–50, 2003.

[KKI02] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. Ccfinder: A
multilinguistic token-based code clone detection system for large scale
source code. IEEE Transactions on Software Engineering, 28(7):654–670,
2002.

[KM07] Jeff Kramer and Jeff Magee. Self-managed systems: an architectural
challenge. In Proceedings of the Future of Software Engineering, FOSE
’07, pages 259–268, 2007.

[KR81] H. T. Kung and John T. Robinson. On optimistic methods for concur-
rency control. ACM Transactions on Database Systems, 6(2):213–226,
1981.



120 Bibliography

[KSNM05] Miryung Kim, Vibha Sazawal, David Notkin, and Gail Murphy. An em-
pirical study of code clone genealogies. In Proceedings of the 10th Eu-
ropean Software Engineering Conference held jointly with 13th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering,
ESEC/FSE ’05, pages 187–196, 2005.

[KT86] Richard Koo and Sam Toueg. Checkpointing and rollback-recovery for
distributed systems. In Proceedings of 1986 ACM Fall Joint Computer
Conference, ACM ’86, pages 1150–1158, 1986.

[LBK90] Jean-Claude Laprie, Christian Béounes, and Karama Kanoun. Defini-
tion and analysis of hardware- and software-fault-tolerant architectures.
Computer, 23(7):39–51, 1990.

[LF90] C.-C.J. Li and W.K. Fuchs. Catch-compiler-assisted techniques for check-
pointing. In Proceedings of the 20th International Symposium on Fault-
Tolerant Computing, FTCS ’90, pages 74–81, 1990.

[LGDVFW12] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley
Weimer. A systematic study of automated program repair: Fixing 55
out of 105 bugs for $8 each. In Proceedings of the 34th International
Conference on Software Engineering, ICSE ’12, pages 3–13, 2012.

[LM00] Julia L. Lawall and Gilles Muller. Efficient incremental checkpointing
of java programs. In Proceedings of the 30th International Conference on
Dependable Systems and Networks, DSN ’00, pages 61–70, 2000.

[LMP08] Davide Lorenzoli, Leonardo Mariani, and Mauro Pezzè. Automatic gen-
eration of software behavioral models. In Proceedings of the 30th Inter-
national Conference on Software Engineering, ICSE ’08, pages 501–510,
2008.

[LMP09] David Lo, Leonardo Mariani, and Mauro Pezzè. Automatic steering of
behavioral model inference. In Proceedings of the 7th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering, ESEC/FSE ’09, pages
345–354, 2009.

[LMX05] Nik Looker, Malcolm Munro, and Jie Xu. Increasing web service de-
pendability through consensus voting. In Proceedings of the 29th Annual
International Computer Software and Applications Conference, COMPSAC
’05, pages 66–69, 2005.

[LS79] B. H. Liskov and A. Snyder. Exception handling in clu. IEEE Transactions
on Software Engineering, 5(6):546–558, 1979.



121 Bibliography

[LS98] Jun Lang and David B. Stewart. A study of the applicability of existing
exception-handling techniques to component-based real-time software
technology. ACM Transactions on Programming Languages and Systems,
20(2):274–301, 1998.

[LTBL97] Michael Litzkow, Todd Tannenbaum, Jim Basney, and Miron Livny.
Checkpoint and Migration of UNIX Processes in the Condor Distributed
Processing System. Technical report, University of Wisconsin, Madison,
1997.

[Lyu95] Michael R. Lyu. Software Fault Tolerance. John Wiley & Sons, Inc., 1995.

[MB08] Adina Mosincat and Walter Binder. Transparent runtime adaptability
for bpel processes. In Proceedings of the 6th International Conference on
Service-Oriented Computing, ICSOC ’08, pages 241–255, 2008.

[Mey92] Bertrand Meyer. Applying "design by contract". IEEE Computer, 25:40–
51, 1992.

[Mey01] Scott Meyers. Effective STL: 50 Specific Ways to Improve Your Use of the
Standard Template Library. Addison-Wesley Longman Ltd., 2001.

[MMP06] Stefano Modafferi, Enrico Mussi, and Barbara Pernici. Sh-bpel: a self-
healing plug-in for ws-bpel engines. In Proceedings of the 1st Workshop
on Middleware for Service Oriented Computing, MW4SOC ’06, pages 48–
53, 2006.

[NKHL02] H. Nam, J. Kim, S. J. Hong, and S. Lee. Probabilistic checkpointing.
IEICE Transactions, Information and Systems, E85-D:1093–1104, 2002.

[Noe10] Cyprien Noel. Extensible software transactional memory. In Proceedings
of the 3rd C* Conference on Computer Science and Software Engineering,
C3S2E ’10, pages 23–34, 2010.

[NvS90] Victor F. Nicola and J.M. van Spanje. Comparative analysis of different
models of checkpointing and recovery. IEEE Transactions on Software
Engineering, 16(8):807–821, 1990.

[OKFN97] Shunji Osaki, Naoto Kaio, Satoshi Fukumoto, and Sayori Nakagawa.
Optimal checkpoint policies attending with unsuccessful rollback recov-
ery. International Journal of Reliability, Quality and Safety Engineering,
4(4):427–439, 1997.

[PBK95] James S. Plank, Micah Beck, and Gerry Kingsley. Compiler-assisted
memory exclusion for fast checkpointing. IEEE Technical Committee on
Operating Systems and Application Environments, 7(4):10–14, 1995.



122 Bibliography

[PBKL95] James S. Plank, Micah Beck, Gerry Kingsley, and Kai Li. Libckpt: Trans-
parent checkpointing under unix. In Proceedings of the USENIX Technical
Conference, TCON ’95, page 18, 1995.

[PCL+99] James S. Plank, Yuqun Chen, Kai Li, Micah Beck, and Gerry Kingsley.
Memory exclusion: Optimizing the performance of checkpointing sys-
tems. Software: Practice and Experience, 29(2):125–142, 1999.

[PKL+09] Jeff H. Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe,
Jonathan Bachrach, Michael Carbin, Carlos Pacheco, Frank Sher-
wood, Stelios Sidiroglou, Greg Sullivan, Weng-Fai Wong, Yoav Zibin,
Michael D. Ernst, and Martin Rinard. Automatically patching errors in
deployed software. In Proceedings of the 22nd ACM SIGOPS Symposium
on Operating Systems Principles, SOSP ’09, pages 87–102, 2009.

[PRRS01] Peter Popov, Steve Riddle, Alexander Romanovsky, and Lorenzo Strig-
ini. On systematic design of protectors for employing OTS items. In
Proceedings of the 27th Euromicro Conference on Software Engineering
and Advanced Applications, Euromicro ’01, pages 22–29, 2001.

[PW76] David Lorge Parnas and Harald Würges. Response to undesired events
in software systems. In Proceedings of the 2nd International Conference
on Software Engineering, ICSE ’76, pages 437–446, 1976.

[PW09] Mauro Pezzè and Jochen Wuttke. Automatic generation of runtime fail-
ure detectors from property templates. In Betty H. C. Cheng, Rogério
de Lemos, Holger Giese, Paola Inverardi, and Jeff Magee, editors, Soft-
ware Engineering for Self-Adaptive Systems, volume 5525 of Lecture Notes
in Computer Science, pages 223–240. Springer-Verlag, 2009.

[QTSZ05] Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and Yuanyuan Zhou.
Rx: Treating bugs as allergies—a safe method to survive software fail-
ures. In Proceedings of the 20th ACM SIGOPS Symposium on Operating
Systems Principles, SOSP ’05, pages 235–248, 2005.

[Ran75] Brian Randell. System structure for software fault tolerance. In Proceed-
ings of the International Conference on Reliable Software, pages 437–449,
1975.

[RCK09] Chanchal K. Roy, James R. Cordy, and Rainer Koschke. Comparison and
evaluation of code clone detection techniques and tools: A qualitative
approach. Science of Computer Programming, 74(7):470–495, 2009.

[RN07] Lukas Renggli and Oscar Nierstrasz. Transactional memory for
smalltalk. In Proceedings of the 15th International Conference on Dy-
namic Languages, ICDL ’07, pages 207–221, 2007.



123 Bibliography

[RN09] Lukas Renggli and Oscar Nierstrasz. Transactional memory in a dynamic
language. Computer Languages, Systems and Structures, 35(1):21–30,
2009.

[Rom02] Eric Roman. A survey of checkpoint/restart implementations. Technical
report, Lawrence Berkeley National Laboratory, Tech, 2002.

[Ros95] David S. Rosenblum. A practical approach to programming with asser-
tions. IEEE Transactions on Software Engineering, 21:19–31, 1995.

[RS95] Mark Russinovich and Zary Segall. Fault-tolerance for off-the-shelf ap-
plications and hardware. In Proceedings of the 25th International Sym-
posium on Fault-Tolerant Computing, FTCS ’95, pages 67–71, 1995.

[RW02] Algis Rudys and Dan S. Wallach. Transactional rollback for language-
based systems. In Proceedings of the 32th International Conference on
Dependable Systems and Networks, DSN ’02, pages 439–448, 2002.

[Sah06] Goutam Kumar Saha. Software based fault tolerance: A survey. Ubiq-
uity, 2006, 2006.

[SAM10] Hesam Samimi, Ei Darli Aung, and Todd Millstein. Falling back on ex-
ecutable specifications. In Proceedings of the 24th European Conference
on Object-Oriented Programming, ECOOP ’10, pages 552–576, 2010.

[Sco83] Roderick Keith Scott. Data Domain Modeling of Fault-Tolerant Software
Reliability. PhD thesis, 1983.

[SG95] Ushio Sumita and Paulo B. Goes. Stochastic models for performance
analysis of database recovery control. IEEE Transactions on Computers,
44(4):561–576, 1995.

[She08] O. Shehory. Shadows: Self-healing complex software systems. In Pro-
ceedings of the 23th International Conference on Automated Software En-
gineering, ASE ’08, pages 71–76, 2008.

[SKAZ04] Sudarshan M. Srinivasan, Srikanth Kandula, Christopher R. Andrews,
and Yuanyuan Zhou. Flashback: A lightweight extension for rollback
and deterministic replay for software debugging. In Proceedings of the
Conference on USENIX Annual Technical Conference, ATEC ’04, page 3,
2004.

[SKG89] Ushio Sumita, Naoto Kaio, and PauloB. Goes. Analysis of effective
service time with age dependent interruptions and its application to
optimal rollback policy for database management. Queueing Systems,
4(3):193–212, 1989.



124 Bibliography

[SL86] Kang G. Shin and Yann-Hang Lee. Measurement and application of fault
latency. IEEE Transactions on Computers, 35(4):370–375, 1986.

[Smi88] Jonathan M Smith. A survey of software fault tolerance techniques.
Technical report, Department of Computer Science, Columbia Univer-
sity, 1988.

[SSG+09] Saurabh Sinha, Hina Shah, Carsten Görg, Shujuan Jiang, Mijung Kim,
and Mary Jean Harrold. Fault localization and repair for java runtime
exceptions. In Proceedings of the 18th international Symposium on Soft-
ware Testing and Analysis, ISSTA ’09, pages 153–164, 2009.

[ST95] Nir Shavit and Dan Touitou. Software transactional memory. In Pro-
ceedings of the 14th Symposium on Principles of Distributed Computing,
PODC ’95, pages 204–213, 1995.

[STN+08] Sattanathan Subramanian, Philippe Thiran, Nanjangud C. Narendra,
Ghita Kouadri Mostefaoui, and Zakaria Maamar. On the enhancement
of bpel engines for self-healing composite web services. In Proceedings of
the 8th International Symposium on Applications and the Internet, SAINT
’08, pages 33–39, 2008.

[Sue00] Takashi Suezawa. Persistent execution state of a java virtual machine. In
Proceedings of the Conference on Java Grande, JAVA ’00, pages 160–167,
2000.

[TBFM06] Yehia Taher, Djamal Benslimane, Marie-Christine Fauvet, and Zakaria
Maamar. Towards an approach for web services substitution. In Pro-
ceedings of the 10th International Database Engineering and Applications
Symposium, IDEAS ’06, pages 166–173, 2006.

[TMB80] David J. Taylor, David E. Morgan, and James P. Black. Redundancy in
data structures: Improving software fault tolerance. IEEE Transactions
on Software Engineering, 6(6):585–594, 1980.

[Wey82] Elaine J. Weyuker. On testing non-testable programs. The Computer
Journal, 25(4):465–470, 1982.

[WHV+95] Yi-Min Wang, Yennun Huang, Kiem-Phong Vo, Pe-Yu Chung, and C. Kin-
tala. Checkpointing and its applications. In Proceedings of the 25th
International Symposium on Fault-Tolerant Computing, FTCS ’95, pages
22–31, 1995.

[WKII10] Long Wang, Zbigniew Kalbarczyk, Ravishankar K. Iyer, and Arun Iyen-
gar. Checkpointing virtual machines against transient errors. In Pro-



125 Bibliography

ceedings of the 16th International On-Line Testing Symposium, IOLTS ’10,
pages 97–102, 2010.

[WM89] P. R. Wilson and T. G. Moher. Demonic memory for process histories.
In Proceedings of the 10th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’89, pages 330–343, 1989.

[WNLGF09] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie For-
rest. Automatically finding patches using genetic programming. In Pro-
ceedings of the 31st International Conference on Software Engineering,
ICSE ’09, pages 364–374, 2009.

[WP96] Darrin West and Kiran Panesar. Automatic incremental state saving. In
Proceedings of the 10th Workshop on Parallel and Distributed Simulation,
PADS ’96, pages 78–85, 1996.

[WPF+10] Yi Wei, Yu Pei, Carlo A. Furia, Lucas S. Silva, Stefan Buchholz, Bertrand
Meyer, and Andreas Zeller. Automated fixing of programs with con-
tracts. In Proceedings of the 19th International Symposium on Software
Testing and Analysis, ISSTA ’10, pages 61–72, 2010.

[WYCL11] Lu Wei, Zhu Yian, Ma Chunyan, and Zhang Longmei. A model driven
approach for self-healing computing system. In Proceedings of the 7th
International Conference on Computational Intelligence and Security, CIS
’11, pages 185–189, 2011.

[XRTQ07] Guoqing Xu, Atanas Rountev, Yan Tang, and Feng Qin. Efficient check-
pointing of java software using context-sensitive capture and replay. In
Proceedings of the 6th Joint Meeting of the European Software Engineer-
ing Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, ESEC/FSE ’07, pages 85–94, 2007.

[YC75] S. S. Yau and R. C. Cheung. Design of self-checking software. In Proceed-
ings of the International Conference on Reliable Software, pages 450–455,
1975.

[YNW+08] Richard M. Yoo, Yang Ni, Adam Welc, Bratin Saha, Ali-Reza Adl-
Tabatabai, and S. Hsien-Hsin Lee. Kicking the tires of software transac-
tional memory: Why the going gets tough. In Proceedings of the 20th
annual Symposium on Parallelism in Algorithms and Architectures, SPAA
’08, pages 265–274, 2008.

[You74] John W. Young. A first order approximation to the optimum checkpoint
interval. Communications of the ACM, 17(9):530–531, 1974.



126 Bibliography

[YP08] Michal Young and Mauro Pezzè. Software Testing and Analysis: Process,
Principles and Techniques. John Wiley & Sons, Inc., 2008.

[Yu98] Weider D. Yu. A software fault prevention approach in coding and root
cause analysis. Bell Labs Technical Journal, 3(2):3–21, 1998.


	Contents
	List of Figures
	List of Tables
	List of Listings
	List of Grammars
	Introduction
	Research Hypothesis and Contributions
	Structure of the Dissertation

	Guaranteeing Reliability at Runtime
	Software Fault Tolerance
	Self-Healing

	Automatic Workarounds
	SWT Library Case Study
	Approach: Java Automatic Workaround
	Self-Healing for Web Applications

	Intrinsic Redundancy
	Nature of Intrinsic Redundancy
	Redundancy in Source Code
	Rewriting Rules
	Code Rewriting Rules for Java
	Syntax and Semantics of Code Rewriting Rules for Java
	Study on Intrinsic Redundancy

	State Consistency Mechanisms
	Software Transactional Memory
	Checkpoint and Recovery
	Considerations on the State Consistency Mechanisms

	Frames
	The Frame Approach
	Originality of Frames

	ARMOR – A Prototype for Java
	Roll-Back Areas – Frames for Java
	Preprocessing Phase
	Runtime

	Evaluation
	Applications
	Real Faults in JodaTime
	Mutation Analysis
	Discussion
	Limitations and Threats to Validity

	Conclusions
	Contributions
	Future Directions

	List of all the Code Rewriting Rules
	Code Rewriting Rules for Guava
	Code Rewriting Rules for JodaTime

	Bibliography

