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AUTHORS'SUMMARIES

Combining Prehension and Propulsion:
The Foot of Ardipithecus ramidus

C. Owen Lovejoy, Bruce Latimer, Gen Suwa, Berhane Asfaw, Tim D. White

he special foot adaptations that
I enable humans to walk upright
and run are central to under-
standing our evolution. Until the dis-
covery of Ardipithecus ramidus, it was
generally thought that our foot evolved
from one similar to that of modern
African apes. Apes have feet that are
modified to support their large bodies
and to facilitate vertical climbing, thus
allowing them to feed, nest, and seek
safety in trees. Our foot differs from
theirs in myriad ways, and its evolu-
tion from theirs would consequently
have required an extensive series of
structural changes. Some mid—20th-
century comparative anatomists were
so impressed with the profound differ-
ences between human and extant ape
feet that they postulated a deep, pre-
ape origin for hominids.

Ar. ramidus brings a new perspec-
tive to this old controversy. Its foot
turns out to be unlike those of the
African apes in many ways. The par-
tial skeleton of Ar. ramidus preserves
most of the foot and includes a special
bone called the os peroneum that is
critical for understanding foot evolu-
tion. This bone, which is embedded
within a tendon, facilitates the mechanical action of the fibularis
longus, the primary muscle that draws in the big toe when the foot is
grasping. Until now, we knew little about this bone’s natural history,
except that it is present in Old World monkeys and gibbons but gen-
erally not in our more recent ape relatives. Monkeys are very accom-
plished at leaping between trees. They must keep their feet fairly rigid
during takeoff when they hurl themselves across gaps in the tree
canopy; otherwise, much of the torque from their foot muscles would
be dissipated within the foot rather than being transferred to the tree.

The African apes are too large to do much leaping. They have
therefore given up the features that maintain a rigid foot and have
instead modified theirs for more effective grasping—almost to the
point of making it difficult to distinguish their feet from their hands.
Indeed, very early anatomists argued that the “quadrumanus” apes
were not related to humans because of their hand-like feet. Extant
apes lack the os peroneum, and their fibularis tendon, which draws

Foot skeleton of Ar. ramidus (bottom; reconstruction based on
computed tomography rendering shown) lacked many features
that have evolved for advanced vertical climbing and suspension
in extant chimpanzees (Pan, top left). Chimpanzees have a highly
flexible midfoot and other adaptations that improve their ability
to grasp substrates. These are absent in Ar. ramidus.

the great toe closed during grasping,
has been relocated more toward the
front of the foot. This makes the ten-
don run more parallel to other joints
that cross the midfoot, and allows
apes to grasp with great power with-
out stiffening these other, flexible
joints. Apes can thus both powerfully
grasp and mold their feet around
objects at the same time. However,
their feet have become less effective
as levers, making them far less useful
in terrestrial propulsion.

The foot of Ar. ramidus shows that
none of these ape-like changes were
present in the last common ancestor
of African apes and humans. That
ancestor, which until now has been
thought to be chimpanzee-like, must
have had a more monkey-like foot.
Not only did it still have an os per-
oneum, it must also have had all of the
other characteristics associated with
it (subsequently abandoned in chim-
panzees and gorillas). We infer this
because humans still have these char-
acteristics, so we must have retained
them from our last common ancestor.
The mid—20th-century anatomists
were correct to worry about the human
foot as they did: Ours turns out to have evolved in one direction,
while those of African apes were evolving in quite another.

One of the great advantages of our more rigid foot is that it works
much better as a lever during upright walking and running (as it also
does in monkeys). However, Ar. ramidus still had an opposable big
toe, unlike any later hominid. Its ability to walk upright was there-
fore comparatively primitive. Because it had substantially modified
the other four toes for upright walking, even while retaining its
grasping big toe, the Ardipithecus foot was an odd mosaic that
worked for both upright walking and climbing in trees. If our last
common ancestor with the chimpanzee had not retained such an
unspecialized foot, perhaps upright walking might never have
evolved in the first place.

When citing, please refer to the full paper, available at DOI 10.1126/science.1175832.
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Combining Prehension and Propulsion:
The Foot of Ardipithecus ramidus

C. Owen Lovejoy,” Bruce Latimer,? Gen Suwa,® Berhane Asfaw,* Tim D. White*

Several elements of the Ardipithecus ramidus foot are preserved, primarily in the ARA-VP-6/500
partial skeleton. The foot has a widely abducent hallux, which was not propulsive during terrestrial
bipedality. However, it lacks the highly derived tarsometatarsal laxity and inversion in extant
African apes that provide maximum conformity to substrates during vertical climbing. Instead, it
exhibits primitive characters that maintain plantar rigidity from foot-flat through toe-off,
reminiscent of some Miocene apes and Old World monkeys. Moreover, the action of the fibularis
longus muscle was more like its homolog in Old World monkeys than in African apes. Phalangeal
lengths were most similar to those of Gorilla. The Ardipithecus gait pattern would thus have been
unique among known primates. The last common ancestor of hominids and chimpanzees was
therefore a careful climber that retained adaptations to above-branch plantigrady.

he modern human foot is unique among
I mammals because it exhibits a series of
adaptations that allow it to dissipate ki-
netic energy during foot strike in walking and
running (and thus preserve its structural integrity),
and to then transform into a rigid lever for pro-
pulsion during toe-off. Until now, the natural
history of these adaptations has been shrouded
because Australopithecus already exhibits most
of them. Ardipithecus ramidus (1) now reveals
much more about their evolution.

Well-preserved foot elements recovered from
the Lower Aramis Member include a talus, me-
dial and intermediate cuneiforms, cuboid, first,
second, third, and fifth metatarsals, and several
phalanges (2) (Fig. 1). Other Ar. ramidus foot
elements are fragmentary and less informative.
Here we describe these key foot elements, fo-
cusing on their implications for the locomotion
of early hominids.

Talus. Hominoid tali vary extensively, limit-
ing their value for inferring locomotor habitus
(3). Even so, a deep, anteromedially projecting
cotylar fossa is frequently generated by habitual
tibiotalar contact during extreme ankle dorsiflex-
ion [cartilage modeling; type 4 (4)]. Such mor-
phology is typical of extant African apes and
some Miocene hominoid taxa [e.g., KNM-RU
2036 F (5)], but is only minimally expressed in
ARA-VP-6/500-023 (Ar: ramidus) and A.L. 288-
las (Au. afarensis) (6).
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Trochlear geometry, absent a calcaneus or
distal tibia to provide talar orientation, does not
specify foot placement (7), but several characters
are possible correlates of talocrural and subtalar
mobility. The talar axis angle (fig. S1) (7-9) is
both remarkably low and minimally variable in
Au. afarensis and other early hominids, con-
sistent with their stereotypically pronounced knee
valgus during terrestrial bipedality (/0). By con-
trast, this angle in ARA-VP-6/500-023 lies within
the ranges of quadrupedal primates (Table 1). In
addition, the flexor hallucis longus groove on
the posterior aspect of the talus is both substan-
tially more angulated and more trapezoidal in
form (i.e., its superior surface is broader than
its inferior), indicating a much greater range
of tendon obliquity during locomotion than in
A.L. 288-1, in which the groove is both more ver-
tical and more parallel-sided (8). Together, these
suggest more knee rotation during stance phase
than was likely the case in Au. afarensis (10), even
though the Ardipithecus pelvis implies full
extension of both the knee and hip during upright
gait (/7). A prominent tubercle marks the pres-
ence of an anterior talofibular ligament in 4ARA4-
VP-6/500-023. This landmark is absent in African
apes but is usually present in Homo sapiens.
However, bony evidence of local joint capsule
expansion is remarkably variable (/2).

Medial cuneiform and first metatarsal. ARA-
VP-6/500-088 is a medial cuneiform (Fig. 2).
Although damaged, a portion of its proximal
joint surface articulates with the intact interme-
diate cuneiform (ARA-VP-6/500-075). The first-
ray metatarsal (Mtl) (ARA-VP-6/500-089) is
preserved for its entire length. Its superoproximal
surface is intact. This allows direct examination
of first-ray abducence (Fig. 2), which was sub-
stantial and similar to that shown by extant Pan.
As in African apes, the proximal Mt facet ex-
hibits substantial spiral concavity for conjunct
rotation on the hemicylindrical medial cunei-
form facet (/3). The ARA-VP-6/500 proximal

Mt1 base is therefore unlike its counterpart in
Australopithecus, in which it is reniform and
faces directly distally (/4), indicating that it was
permanently adducted [(/5, 16); for a contrary
view, see (17, 18)].

Cuboid. The human midtarsus is much lon-
ger than are those of extant African apes. Tarsal
elongation increases lever arm length during
toe-off (/9-21). Elongation of the metatarsals
would have also accomplished this goal, but
would subject them to frequent midshaft fracture
or failure of their tarsometatarsal joints [both are
still common in modern humans, and their cause
may be as simple as a misstep (22)]. It has been
reasonably assumed that the human cuboid is
highly derived from a more chimpanzee-like one
for powerful plantarflexion during upright walk-
ing and running. Indeed, the eccentric placement
of the modern human cuboid’s calcaneal process
is uniquely derived for enhanced midfoot rigidity
during plantarflexion (7, 9).

The morphology of the African ape lateral
midfoot contrasts greatly with that of humans.
Their cuboids, naviculars, and lateral cuneiforms
are greatly foreshortened. Associated soft tissues
permit substantial laxity at their midtarsal and
tarsometatarsal joints (9, 23—27). Such laxity fa-
cilitates plantar conformity to substrates during
pedal grasping and vertical climbing (9, 28). How-
ever, it greatly compromises any plantarflexor
torque about their metatarsal heads. The African
ape cuboid’s facets for the fourth and fifth
metatarsals (Mt4 and Mt5) are, in addition,
mildly concave, permitting such potential motion
(9, 23, 24). That such morphology is highly
derived can be established by the midfoot mor-
phology of Old World monkeys, which rely on
plantarflexor torque during above-branch running
and leaping—behaviors largely abandoned by
great apes.

When normalized for body size, the Old
World monkey cuboid is longer than are those
of African apes (Table 1 and fig. S2). It is there-
fore notable that the 4RA-VP-6/500 cuboid is
equally long (Fig. 3). Moreover, its Mt4 facet is
sinusoidal (suggesting immobility), and its Mt5
facet is virtually flat (also suggesting immobil-
ity). Was Ar. ramidus morphology derived for
bipedality from a shortened African ape-like
midfoot, or was it primitive? Resolution of this
important issue is provided by another character
of the Ar. ramidus midfoot that also varies strik-
ingly among extant taxa.

The Ar. ramidus cuboid exhibits an expan-
sive facet for an os peroneum: a large sesa-
moid in the fibularis longus (= peroneus longus)
tendon (29, 30). An obvious homolog is virtu-
ally constant in humans and Old World mon-
keys, because both taxa exhibit a constant,
prominent underlying articular facet (Fig. 3).
However, the os peroneum is usually cartilag-
inous or only partially calcified in humans,
which accounts for routine reports of its absence
in radiographic surveys. Both the sesamoid
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and its facet are absent in extant great apes
3D.

The fibularis longus, in whose tendon this
ossicle resides, performs substantially different
functions in Old World monkeys, African apes,
and humans. In Old World monkeys, in addition
to adducting the hallux, it is also poised to pre-
vent laxity in the cuboid, Mt4, and Mt5 joints.
The mass, location, and breadth of the muscle’s
tendon [as judged from its contained os peroneum
(Fig. 3)] suggest that it readily resists plantar
cavitation of the tarsometatarsal joints, which
would dissipate plantarflexor torque. In stark
contrast, any supportive function in either Afri-
can ape has been eliminated along with the os

peroneum, and these taxa exhibit substantial
midtarsal laxity even during plantigrade pro-
pulsion (9, 23-27, 31).

In humans, the fibularis longus tendon sup-
ports the longitudinal arch and controls pedal
inversion, both critical to successful bipedal-
ity [reviewed in (7-9)]. Moreover, the human
fibularis longus no longer resides in the cuboid’s
prominent groove as it does in Old World mon-
keys and African apes. Instead, it (and its
contained os peroneum) has become relocated
more proximolaterally, outside and essentially
perched above (in plantar view) the sometimes
still-present cuboidal groove (32). The latter
likely continues to be generated by retained

Fig. 1. Digitally rendered composite foot of ARA-VP-6/500. () Plantar view. (B to D) Dorsal, medial, and
anteromedial oblique views, respectively. Better-preserved elements from both sides were assembled as
the left foot of Ar. ramidus. Mirror-imaged elements are the talus, cuboid, Mt2 shaft, and some phalanges.
The intermediate and terminal phalanges are provisionally allocated to position and side. Note the
anteroposteriorly strongly abducent first ray (Fig. 2), elongate cuboid (Fig. 3), and large os peroneal facet
located more distolaterally than in Homo. Cuboids of African apes generally lack an os peroneum. Scale
bars, 5 cm. Imagery is based on CT scans taken at 50- to 150-um voxel resolution.
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elements of pattern formation that still underlie
cuboid osteogenesis [genetically derived but
selectively neutral; type 2B (4)] (33).

These are not trivial anatomical shifts in
African apes (elimination of the sesamoid) or
humans (relocation of the tendon’s pathway).
Elimination of the os peroneum in African apes,
coupled with the marked anteroposterior short-
ening of their cuboid, causes the fibularis longus
tendon to pass immediately behind and parallel
to the axis of their cuboidometatarsal joints
(9, 23, 24). This allows substantial plantar con-
formity to the substrate even during powerful
grasping of the great toe by the fibularis longus.

In contrast, translation of the tendon poste-
riorly in derived hominids, along with its new
additional attachment to the medial cuneiform,
reroutes the tendon’s course so that it crosses the
plantar foot more obliquely, thereby improving
resistance to flexion in the cuboidometatarsal
and especially the cuneiform-metatarsal joints.
Both the transverse and longitudinal arches
increase the tendon’s moment arm to provide
such resistance. Relocation of the os peroneum
is thus a morphological signal of the presence of
these arches. The elimination of any first-ray
abduction in humans has allowed the os
peroneum to vary substantially (and become
merely cartilaginous), because most of the
translation of the tendon has been eliminated by
permanent adduction of the great toe.

Ar. ramidus morphology is clearly primitive.
Its fibularis longus tendon passed over an ex-
ceptionally broad, shallow facet underlying
what must have been a relatively massive os
peroneum similar in size to those of most Old
World monkeys (Fig. 3). Its fibularis longus
could thus both adduct the great toe and
plantarflex the foot, but still aid, to some extent,
in support of the cuboidometatarsal joints. Not
until an abducent first ray was abandoned could
the os peroneum then be relocated as it is in
later hominids, thereby enhancing its supportive
function. It is notable, therefore, that the os
peroneum facet in OH-§ is highly derived in
location and morphology (Fig. 3).

Navicular. ARA-VP-6/503 is only a small
fragment of navicular, but is sufficiently pre-
served to further illustrate the natural history of
the hominid midfoot. Despite its fragmentary
condition, it suggests a primitive anteroposterior
length intermediate between its homologs in ex-
tant African apes and humans. This suggests
that there has been substantial midtarsal abbre-
viation since the common ancestor of gorillas,
chimpanzees, and humans (outlined in fig. S3),
and subsequent elongation of the midtarsus dur-
ing hominid evolution. Indeed, a substantial por-
tion of measurable cuboidal elongation in humans
can be attributed to proximal extension of its cal-
caneal process, which is now located more
eccentrically to further stabilize the calcaneocuboid
joint during toe-off (7). Although the Ar. ramidus
cuboid’s calcaneal process is moderately elongate,
it retained a primitive, more centroidal position.
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Fig. 2. First-ray abduction in Ar. ramidus. Abduction of the first ray is dependent on soft tissue structures
operating about the joint, but can be readily inferred from preserved joint structure. (A) Dorsal view of
female gorilla (CMINH-B1801) with Mt1 articulated with the medial and intermediate cuneiforms, showing
maximum abduction without joint cavitation. (B) ARA-VP-6/500 articulated in a similar fashion (casts). Note
that the two Mt1s differ in axial orientation. This difference may be a consequence of habitual bipedality in
Ar. ramidus, which did not exhibit ape-like midtarsal laxity. Abduction is measured as the angle between a
tangent to the distal surface of the intermediate cuneiform and the centroidal axis of the Mt1. It is 68° in
ARA-VP-6/500. (C and D) CT rendering of ARA-VP-6/500 in similar (C) and exploded (D) views. (E)
Approximate posterior, medial, and anterior views of the medial cuneiform. (F) Medial view in dorsoplantar
orientation. Although its inferior portion has suffered extensive damage, its posterosuperior portion is intact
and articulates perfectly between the intermediate cuneiform and the dorsoproximal joint surface of the
Mt1. Note the intact posterior portion of the plateau-like projection of the medial cuneiform’s Mt1 facet
distomedially. This is rare in Pan but occasional in Gorilla. Note the nonsubchondral isthmus [white arrow in
(O] separating the two articular facets on the dorsum of the Mt1. These likely record rotation of the proximal
phalanx in the MP joint during grasping and terrestrial bipedality (see text). They are notably absent in Au.
afarensis but usually present in African apes. Scale bars, 2 cm [(A) to (E)], 1 cm (F). (G) Abduction angle in
ARA-VP-6/500, humans, and African apes [N = 15 each taxon; boxes show median, quartiles, and extreme
cases in each taxon (asterisk indicates case >1.5 box lengths from quartile box boundary)].

Lateral metatarsals. ARA-VP-6/1000 is a
right Mt2 lacking its head and the plantar por-
tion of its base (Fig. 4). However, both plantar
cornua are preserved, thereby permitting reason-
able reconstruction of its length. The base is
large. The ratio of basal height as preserved (no
reconstruction or estimation) to metatarsal length
lies in the upper range of Homo (fig. S4). ARA-
VP-6/1000 exhibits only minimal longitudinal
curvature (Fig. 4) but exhibits substantial shaft
torsion, which orients it for opposition with the
Mtl, as in extant Aftican apes (fig. S5). ARA-VP-
6/500 lacks an intact Mt2, but its intermediate
cuneiform also allows comparison of the joint’s
dorsoplantar Mt2 facet height with an estimate of
body size. This ratio lies near the upper limit of
the human range and outside the ranges of the
African apes (fig. S6), suggesting a similarly
robust base size in ARA-VP-6/500.

The Mt2’s large base is readily explicable in
light of its role as the foot’s medial mainstay
during bipedal toe-off. The dorsal edge of ARA-
VP-6/1000’s proximal joint surface exhibits
paired chondral invaginations (Fig. 4) that are
rare in the Mt2s of either gorillas or chimpan-
zees [one single (lateral) facet in N = 50]. These
cannot reflect habitual contact with the inter-
mediate cuneiform, as this would require impos-
sible joint cavitation. Nor does the intermediate
cuneiform of ARA-VP-6/500 or any other higher
primate bear matching projections; there are,
instead, slight corresponding invaginations of
its dorsal surface as well. Each invagination of
the Mt2’s dorsal surface lies just proximal to
medial and lateral rugosities. In humans, these
mark receipt of medial and lateral expansions
of the joint’s dorsal capsule [(34); this study].
Habitual, intermittent pressure against these
local tarsometatarsal joint expansions almost
certainly induced the paired subchondral de-
pressions in the Aramis bone’s dorsal surface.
Their probable etiology [chondral modeling;
type 4 (4)] is therefore informative. Substantial
spiraling of the Mt2 shaft places the bone’s
distal end into functional opposition to the Mt1
in African apes and would have done so in Ar:
ramidus (35). Such torsion is most pronounced
in the Mt2 because it lies adjacent to the hallux,
and because Mt2 rotation is restricted by the
mortising of its base between the medial cunei-
form and lateral cuneiform/Mt3 laterally. The
bases of the more lateral rays are less restricted
and thus have (progressively) less prestructured
torsion.

The developmental biology of tendon and
ligament attachments is complex (36), but a
markedly rugose insertion likely signals sub-
stantial Sharpey fiber investment via pattern
formation (37). This is especially the case for
eutherian tarsometatarsal joints, which appear to
have sacrificed their proximal metapodial growth
plate to encourage a more rigid syndesmosis
(38). The markedly rugose tarsometatarsal joint
capsule in the Ar: ramidus Mt2 suggests that it
was an adaptation [direct selection acting on
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morphogenetic fields; type 1 (4)] to upright walk-
ing and running, absent any substantial load-
sharing by a still abducent great toe. Moreover,
the total morphological pattern of the Ar: ramidus
foot suggests that it exhibited a noninverted foot-
flat during midstance [i.e., unlike that of Pan
(23-27)]. The primary terrestrial role of the hal-
lux, as in apes, would have been for balance
rather than for propulsion (but see below).
Powerful fulcrumation occurred only on the lat-
eral metatarsal heads in Az ramidus, especially
that of the Mt2, whose role in humans remains
especially prominent in bipedality even after
having been reinforced by the addition of a
permanently adducted Mtl.

ARA-VP-6/505 is a virtually intact left Mt3
(Fig. 4). Its preserved head shows two particu-
larly important characters. First, it exhibits dorsal
doming in excess of African ape metatarsals.
Second, a deep-angled gutter isolates the head

from the shaft at the dorsal epiphyseal junction.
Although a similar gutter is also found in ape
metatarsals, it is considerably shallower, consist-
ent with substantially less loading and excursion
during metatarsophalangeal joint (MP) dorsiflex-
ion [cartilage modeling; type 4 (4)]. Moreover, in
ARA-VP-6/505, the angle between the head’s
dorsoplantar axis and the dorsoplantar axis of its
base shows slight external torsion of the shaft,
which would have optimized MP joint alignment
during toe-off. This implies that growth plate
loading during terrestrial bipedality predomi-
nated over that generated during grasping (i.e.,
it exhibits far less torsion than the Mt2, and also
lacks the medial and lateral joint capsule com-
pression facets present in ARA-VP-6/1000). The
gutter also implies that loading during terrestrial
bipedality was applied during substantial toe-out
during and after heel-off, coupled with external
rotation of the foot during late toe-off. Pro-

RESEARCH ARTICLES

nounced doming is entirely absent in the 4ARA-
VP-6/500 Mtl, confirming that the first ray did
not participate substantially in propulsion (fig.
S12). Doming is present in the Au. afarensis Mtl,
again implying terrestrial bipedality with a
permanently adducted great toe.

The shaft of the ARA-VP-6/505 Mt3 is only
slightly curved (Fig. 4) and its base is well pre-
served, lacking only a minor portion of its supero-
medial corner. Its base morphology is remarkably
similar to that of the human Mt3 in having a
dorsoplantarly tall proximal articular surface
(Fig. 4 and fig. S7). African ape Mt3 bases are
instead regularly subdivided into distinct upper
and lower portions by deep semicircular notches
of their medial (for Mt2) and lateral (for Mt4)
surfaces (Fig. 4 and Table 1). These serve as
passageways and surfaces for tarsometatarsal
and transverse intermetatarsal ligaments. The ab-
breviated dorsoplantar height and distinctly rhom-
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Fig. 3. Natural history of the hominoid midfoot. (A) The os peroneum. This sesamoid
(white arrow in a ligamentous preparation of Papio anubis) is a large and prominent
inclusion in the fibularis longus tendon of Old World monkeys, residing on an appropriately
large inferolateral facet of the cuboid. In Old World monkeys, the muscle inserts at the Mt1
base, acting as both plantarflexor and hallucal adductor. Because some flexion can occur at
both the calcaneocuboid and tarsometatarsal joints during climbing and terrestrial walking
(9, 23, 24, 27), the fibularis longus tendon also aids plantar rigidity during plantarflexion.
(B to E) Plantar surfaces of hominoid cuboids. (B) Chimpanzee ((MINH-1726). In apes, the
cuboid is anteroposteriorly short and the groove in which the fibularis longus tendon lies is
narrow and deep, usually with high walls. It is converted to a retaining tunnel by a homolog
of the human short plantar ligament (56—58). Ape cuboids essentially lack functional os
peronei [they occasionally contain small, nonfunctional, chondral bodies (31)]. (C) ARA-VP-
6/500-081. In Ar. ramidus the surface medial to the facet over which the tendon must pass
is rugose and subperiosteal, confirming that a laterally placed os peroneum elevated its
travel on the facet. (D) Human (KSU-01206). (E) OH-8 (cast; reversed). In these later
hominids, the fibularis longus no longer lies in the cuboidal groove, but is instead elevated above and posterior to it by the os peroneum residing on a facet located
proximolateral on the groove’s proximal wall (white arrows) (32). Unlike Ar. ramidus, the fibularis longus inserts into the medial cuneiform and no longer adducts the
first ray. Scale bar, 2 cm. (F) Natural log-log scatterplot of medial cuboid length and cube root of estimated body mass in extant anthropoids (42). A regression line
(reduced major axis; y = 1.184x + 1.666; r = 0.836, N = 26) has been fitted to the combined cercopithecines and colobines. The most parsimonious interpretation of
these data is that cuboid length in Ar. ramidus is primitive, and that the bone was elongated in later hominids (including elongation of its calcaneal process) but
shortened in African apes in order to enhance hallucal grasping and plantar compliance to substrates during vertical climbing. The ranges and medians for a similar
metric clarify these relationships in fig. S2.
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boidal form of African ape Mt2 and Mt3 bases
[direct selection acting on morphogenetic fields;
type 1 (4)] permit more plantar conformity and
tarsometatarsal laxity during grasping, consistent
with recent observations that the midtarsal break
combines motion at both the lateral tarsometa-
tarsal and midtarsal joints (figs. S4 and S6 to S9)
9, 23, 24, 27). ARA-VP-6/505 lacks this dis-
tinctive central notching morphology. This pre-
sumably reflects retention of soft tissue structures
similar to those of humans. These enhance mid-
tarsal and tarsometatarsal bending resistance from
foot-flat through toe-off, ultimately culminating
in the emergence of the proximal part of the long
plantar ligament, which is likely derived in hu-
mans (/3, 33). These conclusions receive strong
support from geometric analysis of joint surface
section moduli of the Mt3 (figs. S8 and S9).
Phalanges. Several proximal pedal phalanges
from the lateral rays of Ar ramidus preserve a
base. Three are complete with proximal ends
evincing clear, typically hominid dorsiflexive
cants (figs. S10 and S11). Canting is more pro-
nounced in modern humans as a consequence of
the reduction of phalangeal curvature (39) (fig.
S10) and abbreviation of the intermediate pha-
lanx (figs. S12 and S13). Phalangeal shape ratios
(40) are not particularly informative, but they do
show that Ar. ramidus phalanges are moderately
robust (i.e., like those of Pan and Proconsul and
unlike those of Ateles or Hylobates), with
moderately deep trochleas. Midshaft robusticity
is similar to that in Pan, Proconsul, and most Old
World monkeys. Manual/pedal phalangeal ratios
are like those in extant hominoids and unlike
those in Proconsul [for discussion see (40, 41)].
When complete phalanges from ray 4 of
ARA-VP-6/500 are normalized by body size,
their lengths fall near the Gorilla mean but below
values in Pan, which may have therefore wit-
nessed substantial phalangeal elongation since
the last common ancestor of African apes and
humans (fig. S13) [for further discussion, see
(42)]. Pedal phalanges in Ar. ramidus are rela-
tively shorter than those of New World monkeys

(regardless of locomotor pattern), orangutans,
and gibbons. Phalangeal curvature is moderate to
large. The included angle of ARA-VP-6/500-094,
an intact proximal phalanx of the fourth pedal ray,
is 58°. However, its base is substantially canted,
which obscures its joint angulation in lateral view.
Expansion of the apical tufts of the terminal pha-
langes is moderate.

The first ray during terrestrial gait. The
dorsal articular margin of the Mt1 head of ARA-
VP-6/500 preserves detailed evidence of how Ar.
ramidus used its foot in some locomotor settings.
Its dorsal surface bears two symmetrically placed
and equal-sized V-shaped facets separated by a
central nonarticular isthmus (Fig. 3). Each facet
appears to have been generated by axial rotation
of the ray’s proximal phalanx at its MP joint
[cartilage modeling; type 4 (4)].

The Mtl1’s dorsolateral facet was presumably
generated during grasping by external rotation
of both the Mtl and its proximal phalanx, which
would have brought the hallux into opposition
with the lateral foot. The Mtl’s dorsomedial
facet would then have been generated by inter-
nal rotation that occurred when the foot was
emplaced on a terrestrial substrate with the first
ray in substantial abduction (because it exhibits
no doming; see above). This 4r. ramidus mor-
phology is especially notable because of its re-
markable symmetry. Although similar rotation
facets occur regularly on the Mtls of both Pan
and Gorilla, they are most often asymmetrical
and also appear to be generally deeper. In some
Gorilla specimens, the medial facet is more
prominent than the lateral, which suggests that
during terrestrial locomotion, greater relative
loads were imposed on its Mtls than in Ar
ramidus.

This would at first seem to be a paradox,
because the African apes are not habitual bipeds.
However, Ar. ramidus retained primitive features
[a prominent os peroneum, substantial tarsometa-
tarsal joint rigidity, a long midtarsus, and soft
tissue characters that likely accompanied these
(Table 2)] that allowed powerful plantarflexion

about its lateral metatarsal heads, including what
must have been a substantial contribution by its
peroneal compartment. The African apes, by
contrast, have lost such capacity in favor of sub-
stantial midtarsal laxity. This has greatly compro-
mised the plantarflexor impulse on their lateral
metatarsal heads. Partial accommodation appears
to be provided by occasional or even regular
impulse by their Mtl during terrestrial gait. The
Mtls of Australopithecus lack any evidence of
comparable facets (/5). This, and the prominent
doming of their Mtl, now serve as further con-
firmation that the taxon lacked any first-ray abduc-
tion, and almost certainly exhibited a longitudinal
arch—features that are consistent with their de-
rived ankle morphology (8, 9, 15, 23, 24) and the
Laetoli footprints (43).

Interpretations and dynamics. Ar. ramidus
is the only known hominid with an abducent
great toe (15, 16, 44). Its foot, along with other
postcranial elements, indicates that the Late
Miocene hominid precursors of Ar ramidus
practiced mixed arboreal and terrestrial locomo-
tion during which the lateral forefoot became
extensively adapted to upright walking, even as
the medial forefoot retained adaptations for ar-
boreal exploitation.

During the gait cycle, fibularis longus con-
traction would also have stabilized the proximal
ankle joints. The moderate to strong talar dec-
lination of the angle between the trochlea and
that of the ankle’s axis of rotation, in combina-
tion with clear evidence of abductor stabilization
of the hip during stance phase (/7), together sug-
gest that the foot was placed near midline. The
knee may have been in greater external rotation
than is typical in human and Australopithecus-
like (i.e., accentuated) valgus (/0), with compen-
sation by means of a more extensive range of
knee rotation throughout stance phase. Ar: ramidus
therefore may have lacked the consistently ele-
vated bicondylar angle of Australopithecus.

Ar. ramidus likely relied on situationally de-
pendent lordosis to generate functional hip ab-
duction (minimum pelvic tilt) during stance

Table 1. Talus, cuboid, Mt1, Mt5, and Mc5 (fifth metacarpal) metrics in Ar. ramidus and other anthropoids. Values in parentheses, except for the

leftmost column, denote standard deviation.

Angle between trochlear Max. cuboid
Taxon (N) axis and talocrural lengtht/body Mtl/body sizet Mc5/body sizef Mt5/body sizef Mc5/Mt5
rotation axis (°)* sizef
Old World monkeys (27) 13.2 (2.2)8 1.51 (0.13) 4.4 (0.40) 4.2 (0.30) 6.6 (0.43) 0.73 (0.07)
New World monkeys (11) 1.48 (0.12) 4.7 (0.22) 4.5 (0.85) 6.6 (0.14) 0.80 (0.06)
Homo (30) 10.2 (2.3) 1.81 (0.10) 3.9 (0.18) 2.6 (0.17) 4.6 (0.13) 0.75 (0.04)
Australopithecus 7.4 (1.4)
and early Homo (12)
ARA-VP-6/500 14.59] 141 4.1 3.2 4.9 0.87
Pan (26) 15.5 (2.9) 1.15 (0.06) 4.1 (0.31) 4.3 (0.26) 5.1 (0.07) 1.12 (0.07)
Gorilla (29) 17.8 (2.7) " 1.14 (0.08) 3.6 (0.25) 3.8 (0.24) 4.9 (0.10) 1.02 (0.03)
Pongo (16) 18.4 (3.5) 1.18 (0.16) 3.6 (0.22) 5.3 (0.39) 6.7 (0.11) 1.03 (0.05)

*Data from (9); Australopithecus and early Homo sample is composed of Stw-102, Stw-363, Stw-486, Stw-88, TM-1517, A.L. 288-1, Omo323-76-898, KNM-ER 813, 1464, 1476, 5428, and

OH-8.

taxa for trochlear angle are from Papio (9).

tIn Homo this usually includes the calcaneal process.
monkey taxa include Papio, Mandrillus, Macaca, Trachypithecus, Semnopithecus, Colobus, Cercocebus, and Presbytis. New World monkey taxa are Ateles and Alouatta.
9ISee fig. S1.

1Body size estimated as equal contributions of the geometric means of metrics of the wrist and talus (42). Old World

§0ld World monkey

|Data for Gorilla (9) are a weighted mean for both species.
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Fig. 4. Metatarsals of Ar. ramidus and extant hominoids, right Mt2 (top) and left Mt3 (bottom). (A) Enlarged
CT rendering of dorsal surface of ARA-VP-6/1000. Facets interpreted to be induced by rotation of its base during
toe-off and grasping are indicated by arrows. These facets are shown to the right in proximal view [provided to
the right in all panels except (E)]. (B) Medial view of entire original specimen (photograph). Although the head
is missing, both cornua are preserved, allowing reasonable estimation of original length. Areas of postmortem
damage are indicated by hatching. (C) Mt2 of Pan (CMNH-B1718). Note distinctive notching for centrally
located tarsometatarsal ligaments. Damage to this area in ARA-VP-6/1000 prevents interpretation of its
complete basal form. (D) Modern human Mt2. Proximal surface is superoinferiorly elongate and lacks dorsal
facets, consistent with adaptation to bipedality absent an abducent great toe. (E and F) Dorsal (CT) and lateral
(photograph) views of ARA-V/P-6/505, an Mt3. Hatching shows minor postmortem damage. (G and H) Mt3s of
Pan and Homo specimens whose Mt2s are shown in (C) and (D). As is typical of the chimpanzee, the Mt3 shows
bilateral notching, although it is not as pronounced in this specimen as in most. Note the striking similarity in
the basal morphology of the two hominid Mt3 bases, which suggests that this morphology is likely primitive
rather than derived, given the exceptionally great differences in locomotor behavior. CT methods: ARA-V/P-6/
1000, pQCT at 150 um; ARA-VP-6/505, microCT at 80 um. Scale bar, 2 cm.
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phase (/7). Combined with the pedal characters
described here, this suggests a form of primitive
terrestrial bipedality in which the foot was em-
placed at or only slightly lateral to midline, with
the great toe typically in abduction (as often
occurs in African apes) and the lateral forefoot
in external rotation. Fulcrumation occurred along
the oblique axis (fig. S12) and was obviously
achieved by the triceps surae, likely substantially
aided by a powerful and particularly robust
fibularis longus. Balance before and during
propulsion was achieved by the opposing actions
of (i) a medially emplaced great toe, and (ii)
plantarflexion by the fibularis longus, which
would also tend to evert the foot. Thus, the lat-
eral compartment must have been very powerful
and central to its gait pattern. Indeed, the large os
peroneum suggests that once the great toe was
restrained by friction against the substrate, con-
traction of the fibularis longus could further
enhance plantarflexion during heel-off through
toe-off, while simultaneously maintaining rigid-
ity in the midtarsal and tarsometatarsal joints and
preventing inversion induced by substrate dis-
conformities. At the same time, the symmetric
rotary facets of the Mt1’s distal joint surface, in-
duced by MP joint motion, suggest that any
eversion was prevented by a broadly abducted
first ray.

Indeed, by the time of emergence of Au.
afarensis, hominids had evolved substantially
more advanced adaptations to bipedality than
were present in Ardipithecus. In the former, the
knee had become tibial dominant (/0) with accen-
tuated valgus (exceeding even that of modemn
humans). Hip abduction had been established
with a human-like distribution of proximal fem-
oral cortical and trabecular bone (45—47). More-
over, in all known subsequent hominids, the
more posterior location and elevation of the os
peroneum facet on the cuboid [direct selection
acting on morphogenetic fields; type 1 (4)] sig-
nals the presence of longitudinal and transverse
arches, and thereby the addition of the transverse
axis of fulcrumation (fig. S12). The facet’s po-
sition in the OH-§ cuboid is virtually human, as is
the length of its calcaneal process (Fig. 2). Dom-
ing and the simpler unnotched dorsal surface of
the Mtl head characterize both Au. afarensis
(4.L. 333-21) (15, 48) and Au. africanus, con-
firming an immobile first ray with fundamentally
human-like propulsion during toe-oft (43).

The feet of extant African apes are so pre-
hensile that some early anatomists regarded them
as hand homologies [reviewed and refuted in
(49)]. Compared to the primitive condition of a
long midtarsus as seen in taxa such as Proconsul
(5), enhanced grasping required the abandon-
ment of forceful plantarflexion on the lateral
metatarsal heads in favor of increased plantar
laxity at the midtarsal and tarsometatarsal joints.
Primitive morphology was replaced by a short-
ened hindfoot and a talocrural joint modified for
enhanced dorsiflexion and inversion. African apes
eliminated the os peroneum, plantaris (50), and a
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Table 2. Primitive and derived states of the foot in extant taxa.

Extant state

Structure

Primitive* Old World monkey Chimpanzee Gorilla Human
Plantaris (51) Present Constant 43% Absent 90% present
Quadratus plantae (51) Present Constant 50% (diminutive 29% (diminutive Constant with novel

Plantar aponeurosis
Structure and
distribution of long
tibial and fibular
flexor tendons to
digits 1 to 5 (51)t
Frequency of an os
peroneumi
Central notching
morphology of Mt3

Posterior part of long
plantar ligament
Substantial abbreviation

Thick and dense

Fused

Fib. to toes 1, 2, 3, 4, 5
Tib. to toes 1, 2, 3, 4, 5

See discussions in
(29, 30, 55)
Present but with
inferior facets

Probably absent

Absent

of cuboid length

Thick and dense
Separate

Fib. to toes 1, 3, 4
Tib. to toes 1, 2, (4), 5

0.97 (29)

Present but with
inferior facets

Absent

Absent

if present)
Minimal
Separate
Fib. to toes 1, 3, 4
Tib. to toes 2 and 5

<0.04%

86%%
No inferior facets

Absent

Present

if present)
Minimal
Separate
Fib. to toes 1, 3, 4
Tib. to toes 2 and 5

<0.04%

80%$%
No inferior facets

Absent

Present

medial head
Thick and dense
Fused
Fib. to toes 1, 2, 3
Tib. to toes 2, 3, 4, 5

0.93+ (30)

Absent$

Usually no
inferior facets

Present

Absent

*The term “primitive” here refers to underived in either African apes or hominids for locomotor patterns established after the last common ancestor of African apes and humans (vertical

climbing, suspension, knuckle-walking in African apes, and terrestrial bipedality in hominids).

flexor is termed the flexor hallucis longus.

functional quadratus plantae (57). This character
constellation (Table 2) suggests shifts in genes
encoding regulatory and signaling molecules
modifying fields underlying pedal structure
(52). The human plantaris is hardly functional,
but its retention and association with the plantar
aponeurosis as in Old World monkeys (53)
signals retention of primitive features from which
specialized aspects [e.g., medial head of the
quadratus plantae; posterior part of the long
plantar ligament (33)] could have been readily
derived under selection for advanced terrestrial
bipedality.

Hominid morphology has often been pre-
sumed to have evolved from ancestral morpho-
types like those of extant Afiican apes. Ar
ramidus now establishes that this was not the
case. The hominid foot was instead derived from
one substantially less specialized.
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