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Abstract We provide a survey of hyperbolic orbifolds of minimal volume, starting
with the results of Siegel in two dimensions and with the contributions of Gehring,
Martin and others in three dimensions. For higher dimensions, we summarise some
of the most important results, due to Belolipetsky, Emery and Hild, by discussing
related features such as hyperbolic Coxeter groups, arithmeticity and consequences of
Prasad’s volume, as well as canonical cusps, crystallography and packing densities.
We also present some new results about volume minimisers in dimensions six and
eight related to Bugaenko’s cocompact arithmetic Coxeter groups.
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1 Introduction

Let n ≥ 2, and consider a hyperbolic orbifold Q of dimension n, that is, Q is the
quotient ofHn by a discrete group of hyperbolic isometries. By a theorem of Kazhdan
and Margulis, it is known that the volume of Q is bounded from below by a universal
constant νn > 0.Anatural problem is to determine νn and to find orbifolds Q∗ such that
voln(Q∗) = νn . This problem splits up in a natural way with respect to compactness,
orientability, arithmeticity and dimension parity.
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For n = 2, the above problem was solved by Siegel [27] who showed that the
arithmetic Coxeter triangle group [3,7], defined over the field Q[cos(2π/7)] (resp.
[3,∞], defined overQ) provides the unique compact (resp. non-compact) hyperbolic
two-orbifold of minimal area π/42 (resp. π/6). Siegel’s proof is based on a careful
analysis of his formula for the Euler characteristic.
For n = 3, the minimal volume problem has a longer history of development to full

solution. In the arithmetic case, Chinburg and Friedman [6] proved that the Coxeter
tetrahedral group [3, 5, 3] provides, in a unique way, the smallest representative in the
class of orientable arithmetic three-orbifolds. The group [3, 5, 3] is defined over the
field k1 = Q[(3+2√5)1/2]with discriminant−275. ByBorel’s formula, its covolume
is given by

vol3
(
H3/[3, 5, 3]

)
= 275

3/2

8π2
ζk1(2) � 0.03905. (1.1)

In the non-compact case, Meyerhoff [25] proved that the singly cusped quotient
of H3 by the orientation preserving subgroup of the Coxeter simplex [3, 3, 6] is of
minimal volume among all oriented non-compact hyperbolic 3-orbifolds. This orbifold
can also be represented as quotient space by the arithmetic group P SL(2,O3), where
O3 is the ring of integers of the field k2 = Q[√−3]. The volume can be computed, first
by considering an ideal regular hyperbolic tetrahedron and by using Milnor’s formula
[26, Lem. 2], and secondly by Humbert’s volume formula (corrected by Grunewald
and Kühnlein [15]) applied to P SL(2,O3). In this way, one obtains the interesting
identity

vol3
(
H3/P SL(2,O3)

)
= 1
4
JI
(π

3

)
= 3

3/2

8π2
ζk2(2) � 0.08456, (1.2)

where JI(x) is the Lobachevsky function [see (2.8)]. The proof of Meyerhoff is based
on several ingredients, ranging from Jørgensen’s trace inequality for discrete two-
generator subgroups in P SL(2, C), Euclidean crystallography and wall-paper groups
to (horo-) sphere packings and Böröczky’s local density bound.
Recently, in a series of articles, Martin together with Gehring [13,14], Marshall

[24] and with Maclachlan and Reid [12], settled the minimal volume problem in a
complete and unified way. The works of Martin and his coauthors, put together, prove
that the space H3/[3, 5, 3] is the unique three-orbifold of minimal volume. The proof
consists of several different parts, beginning with the fact that the rotation subgroup
of [3, 5, 3] is a two-generator, discrete, non-elementary subgroup of P SL(2, C) of
restricted order elliptics.
In this work, we shall give a survey of hyperbolic n-orbifolds ofminimal volume for

dimensions≥4. We present some of the most important results, in particular those due
to Belolipetsky, Emery and Hild, and we discuss related concepts such as hyperbolic
Coxeter groups, arithmeticity and the impact of Prasad’s volume, as well as canonical
cusps, crystallography and packing densities. Our focus will be on the geometric-
combinatorial side. For the arithmetic side, with its involved techniques, we refer to
[3,7] and the bibliographies therein. Finally, we present some new results by identify-
ing orientable compact arithmetic volumeminimisers in dimensions six and eight with
the quotient spaces of the correspondent Coxeter groups discovered by Bugaenko.

2

ht
tp

://
do

c.
re

ro
.c

h



2 Candidates for Minimal Volume

Promising candidates for hyperbolic orbifolds of minimal volume are orbit spaces by
discrete groups of hyperbolic isometries with simplest presentations, that is, with a
set of few generators related by simple relations. Beside this algebraic-combinatorial
aspect, minimal volume realisations seem to be arithmetic, at least in low dimensions.
Since each hyperbolic isometry is a product of finitely many reflections in hyperplanes
of hyperbolic space, it is natural to look at discrete hyperbolic reflection groups, their
fundamental polytopes and arithmetic examples.

2.1 Hyperbolic Coxeter Groups with Few Generators

Denote by Xn, n ≥ 2, either the hyperbolic space Hn , the unit sphere Sn , or the
Euclidean space En , and let Hn be embedded in the Lorentz-Minkowski vector space
En,1 of signature (n, 1). A geometric Coxeter group G = (W, S) ⊂ Isom(Xn) is a
discrete group W generated by finitely many reflections s ∈ S in hyperplanes Hs of
Xn subject to s2 = 1 and to relations of the form

(ss′)m = 1 for an integer m = m(s, s′) ≥ 2, (2.1)

for distinct generators s, s′ ∈ Swithmirrors Hs, Hs′ intersecting inXn . A fundamental
polytope for G is called a Coxeter polytope PS ⊂ Xn . It arises as a convex polytope
bounded by an isometric set of images of the mirrors Hs, s ∈ S,which either intersect
in Xn under the dihedral angle 
 (Hs, Hs′) = π/m, s 
= s′, or—if there is no relation
as in (2.1)—they are parallel if X 
= Sn , or admit a common perpendicular, in the
case Xn = Hn only. We are particularly interested in hyperbolic Coxeter n-polytopes
of small volume. Such polytopes and Coxeter groups are related to small cardinality
|S|. For |S| = n + l, l ≤ 3, there is a complete classification (cf. [32, Part II, Cha. 5]
and [29]). In particular, for l = 1, the list of compact Coxeter simplices is due to
Lannér and contains examples up to dimension 4 while the list of non-compact finite
volumeCoxeter simplices, sometimes termed quasi-Lannér simplices, was established
by Koszul and contains examples up to dimension 9 (cf. [32, Part II, Cha. 5, Sec. 2.3]).
For l = 2, Coxeter polytopes of finite volume are combinatorially either products of
two simplices or pyramids over a product of simplices. This fact is the background
for their classification performed by Kaplinskaja, Esselmann and Tumarkin (cf. [28],
for example). The corresponding list ends in dimension 17 where the non-compact
Coxeter pyramid P∗ (see Fig. 1), discovered by Vinberg [31, p. 65], is intimately
related to the automorphism group P O(II17,1) of the even unimodular Lorentzian
lattice II17,1 in R18 (see also 4.3.1).

Fig. 1 The Coxeter pyramid P∗ in H17
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Coxeter polytopes PS and Coxeter groups G = (W, S) with small |S| are most
conveniently described by their Coxeter graph �. To each bounding hyperplane Hs

indexed by a generator s ∈ S corresponds a node νs of the graph �. An edge with
weightm is drawn between two nodes νs, νs′ in� if the associated hyperplanes Hs, Hs′
intersect under the angle π/m for m ≥ 3 [see (2.1)]. For m = 3, an instance arising
very frequently, the edge carries no weight. If Hs, Hs′ are perpendicular (parallel, or
admitting a common perpendicular), the nodes νs, νs′ are not joined (or joined by an
edge with weight∞, or joined by a dotted edge). In order to encode the shape of a
Coxeter graph in an abbreviated way we often use the Coxeter symbol. For example,
[p, q, r ] is associated to a linear Coxeter graph with 3 edges of consecutive markings
p, q, r . The Coxeter symbol [3i, j,k] denotes a group with Y-shaped Coxeter graph
with strings of i , j and k edges emanating from a common node. Notice that dotted
edges are not encoded. Consider the following examples. The Coxeter graphs �k

�2 = [7, 3] : •—7–——•–—— • (2.2a)

�3 = [3, 5, 3] : •—–——•—5–——•–—— • (2.2b)

�4 = [5, 3, 3, 3] : •—5–——•–——•–——•–—— • (2.2c)

�5 = [5, 3, 3, 3, 3] : •—5–——•–——•–——•–——•–—— • · · · · • (2.2d)

describe arithmetic compact Coxeter orthoschemes (described by linear graphs) inHk

for k = 2, 3, 4, while �5 describes an arithmetic compact straight simplicial Coxeter
5-prism with basis given by the hyperbolic 4-Coxeter simplex with graph �4. Of
particular interest is the hyperbolic arithmetic Coxeter group �∗ = [32,1, 313, 32,1]
with 19 generators and Coxeter graph given by Fig. 1. A fundamental domain is the
non-compact Coxeter pyramid P∗ ⊂ H17 with apex q ∈ ∂H17 over a product of two
(Euclidean) Coxeter simplices (of type Ẽ8). In this context, notice that Tumarkin [28]
classified all non-compact, finite volume Coxeter pyramids and proved that they exist
in Hn for n ≤ 17, only.
Finally, let us point out that efficient arithmeticity criteria for hyperbolic Coxeter

groups were described by Vinberg and are comparatively easy to apply (cf. [32, Part
II, Cha. 6, Sec. 3.1], for example).

2.2 Volumes of some hyperbolic Coxeter polytopes

The volumes of all hyperbolic Coxeter simplices (existing in Hn for n ≤ 9) have
been calculated in [18] by the application of several methods, ranging from analytical,
combinatorial to arithmetic techniques. In Table 1, we present the minimal (and some
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Table 1 Some small volume hyperbolic Coxeter n-simplices

Dim n Coxeter symbol Compact, arithmetic Volume

3 [4, 3, 5] Yes, Yes �0.03588
3 [3, 5, 3] Yes, Yes �0.03905
3 [3, 3, 6] No, Yes �0.04229
4 [3, 3, 3, 5] Yes, Yes π2

10,800 � 0.00091
4 [4, 32,1] No, Yes π2

1,440 � 0.00685
5 [3, 3, 3, 4, 3] No, Yes 7ζ(3)

40,800 � 0.00018
5 [4, 3, 32,1] No, Yes 7ζ(3)

15,360 � 0.00055

small) volume hyperbolic Coxeter n-simplices, for n ≤ 5, by distinguishing with
respect to compactness and arithmeticity. Observe that, in the list, hyperbolic Coxeter
polytopes with many dihedral angles of type π/2 and π/3 occur. This is compatible
with the volume growth with respect to infinitesimal dihedral angle decay as given by
Schläfli’s volume differential formula (see [32, Part I, Cha. 7, Sec. 2.2], for example).
For hyperbolic n-simplices S, this formula says that

dvoln(S) = −1
n − 1

∑
F⊂S

voln−2(F)dαF , (2.3)

where F ranges over all codimension 2 faces of S, with attached dihedral angleαF , and
where vol0 := 1. Observe that the volume of the compact Coxeter tetrahedron [3, 5, 3]
is larger than the volume of [4, 3, 5]. However, the symbol [3, 5, 3] and its graph �3
have an internal symmetry indicating that the tetrahedron [3, 5, 3] admits a symmetry
plane H dissecting it into two isometric copies of half of its volume. By extending the
Coxeter group G = [3, 5, 3] by the group generated by the corresponding half-turn
γH ∈ Isom(H3), one obtains a new discrete group G ′ ⊂ Isom(H3) of smaller volume
than [4, 3, 5]. Notice that G ′ is not a Coxeter group anymore.
Consider the cocompact arithmetic Coxeter group associated to theCoxeter 5-prism

with graph given by �5 [see (2.2d)]. Its covolume has been determined in [10, (5.1)],
in a twofold way. One approach is based on Schläfli’s formula (2.3), suitably adapted
for hyperbolic five-polytopes. It allows us to express vol5(�5) as a sum of simple
integrals over dilogarithmic functions as follows (see [19] and [22, Sec. 4.2]).

vol5(�5) = 1
4

2π/5∫
π/3

F(t)dt + ζ(3)

3200
� 0.00076729618, (2.4)

where the integrand F(t) = vol3([5, 3, β(t)]) is the volume of the hyperbolic
orthoscheme [5, 3, β(t)]) with (non-right) dihedral angles π/5, π/3, β(t) where

β(t) = arctan
√
2− cot2 t ∈]0, π

2
[. (2.5)
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Put

θ(t) = arctan
√
1− 4 sin2 π

5 sin
2 β(t)

2 cos π
5 cosβ(t)

∈]0, π

2
[. (2.6)

Then, F(t) = vol3([5, 3, β(t)]) is given by Lobachevsky’s formula (see [32, Part
I, Cha. 7, Sec. 3.3], for example) according to

F(t) = 1
4

{
JI
(π

5
+ θ(t)

)
− JI

(π

5
− θ(t)

)
− JI

(π

6
+ θ(t)

)
+ (2.7)

+JI
(π

6
−θ(t)

)
+ JI(β(t)+θ(t)) − JI(β(t)−θ(t)) + 2JI

(π

2
−θ(t)

)}
.

Here,

JI(ω) = 1
2

∞∑
r=1

sin(2rω)

r2
= −

ω∫
0

log | 2 sin t | dt, ω ∈ R, (2.8)

isLobachevsky’s function. For the second approach,we exploit the fact that theCoxeter
group�5 is arithmetic with defining field k0 = Q(

√
5) so that we can use the number

theoretical machinery around Prasad’s volume formula. In Section 4.2.1, we explain
how to derive by arithmetic means the interesting identity [see (2.4–2.8)]

vol5(�5) = 1
4

2π/5∫
π/3

F(t)dt + ζ(3)

3200
= 9

√
5
15

215π15
ζk0(2)ζk0(4)L�0/k0(3) � 0.00076,

(2.9)

where the fields involved are k0 and �0 ∼= Q[x]/(x4− x3+ 3x − 1). Here, the symbol
ζk denotes the Dedekind zeta function associated with k, and L�/k = ζ�/ζk is the
L-function corresponding to a quadratic extension �/k.
For the computation of someof the hyperbolicCoxeter pyramids,we refer to [11,19,

20]. For the (single) top-dimensional Coxeter pyramid P∗ ⊂ H17, which is, moreover,
non-compact, with Coxeter symbol �∗ = [32,1, 313, 32,1] and graph according to
Fig. 1, Emery [8] determined recently its volume by arithmetic tools (see also 4.3.1).
He obtained

vol17(P∗) = 691× 2617
238 × 310 × 54 × 72 × 11× 13× 17ζ(9) � 2.072451981× 10−18.

(2.10)

3 Minimal Volume in the Presence of Cusps

Consider a non-compact n-orbifold Q = Hn/ of finite volume. Then,  contains
at least one parabolic isometry γ , and a fundamental polyhedron P ⊂ Hn for  has
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at least one ideal vertex q ∈ ∂Hn stabilised by the subgroup q ⊂  generated by
the parabolic element γ . The subgroup q is a crystallographic group of Euclidean
isometries containing, by results of Bieberbach, a translational lattice� of rank n −1.
We identify � with a full rank Z-module of vectors in En−1. By passing to the upper
half space model forHn inU n = (En+, ds2 = (dx21 +· · ·+ dx2n−1+ dt2)/t2), we can
identify, without loss of generality, q = ∞ and analyse the actions of ∞ and�∞ on
each (Euclidean) horosphere Sh = {(x, t) ∈ En+ | t = h}, h > 0, based at infinity and
bounding the horoball Bh = {(x, t) ∈ En+ | t > h}.
Inspired by the approach of Meyerhoff, Kellerhals [21], Hild-Kellerhals [17] and

Hild [16] extended these ideas to and developed suitable methods for arbitrary dimen-
sions, and this in the orientation free context. In [16,17], respectively, they applied
these methods for n = 4 and for 5 ≤ n ≤ 9, respectively, in order to derive the
following volume minimality results, and by retrieving the results of Siegel for n = 2
and of Meyerhoff for n = 3 (see Sect. 1).
Theorem 1 For 4 ≤ n ≤ 9, let Qn = Hn/n be a cusped hyperbolic n-orbifold
of minimal volume. Then, up to isomorphism, n is the hyperbolic Coxeter simplex
group according to Table 2, and as such it is uniquely determined.

The values in Table 2 are expressed in terms of the Riemann zeta function ζ , the
Lobachevsky function JI (see [2.8)] and a Dirichlet L-series (see [18]).
In what follows, we summarise the methods and sketch the proof (for details and

references, see [16]). Start from a finite volume hyperbolic n-orbifold Q = Hn/

such that ∞ 
= 1 as above and consider the projection η : ∞ → O(n − 1) which
sends a Euclidean isometry x �→ Ax + a to A. The image �∞ = im(η), called finite
point group, is a subgroup of ∞, and i∞ := [∞ : �∞] = |�∞|, if and only if
∞ is symmorphic, that is, the ∞-orbit of 0 ∈ En−1 equals the translational lattice
�∞. Denote by D ⊂ En−1 a fundamental polytope for �∞, and suppose without
loss of generality that the minimal translation length of vectors in �∞ equals 1. For
the associated horoball B∞ := B1 ⊂ U n , the -images of B∞ (and their orthogonal
projections to {xn = 0}) provide a horoball packing of U n (and a sphere packing of
En−1) where the upper bound dn(∞) for local densities (and classical maximal density
results up to dimension n −1 = 8) is at our disposal. Furthermore, it is known that B∞
projects to an embedded cusp neighborhood C∞ ⊂ Q, and that C∞ is disjoint from
all cusp neighborhoods arising from different, non-conjugate parabolic subgroups in
. Due to this fact, each of these cusp neighborhoods is called a canonical cusp and
denoted byCcan. They form the set C of canonical cusps of Q. These observations lead
to the following volume relations. For our preferred canonical cusp Ccan = B∞/∞,
we derive the expression

voln(Ccan) = voln−1(D)

(n − 1)i∞ ,

while globally,

voln(Q) ≥ 1

dn(∞)

∑
Ccan∈C

voln(Ccan).
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Table 2 Minimal volume cusped hyperbolic n-orbifolds

Dim n n Volume

2 ∞ π
6 � 0.5236

3 6 1
8 JI(

π
3 ) � 0.0423

4 4 π2

1,440 � 6.85× 10−3

5 4 7ζ(3)
46,080 � 1.82× 10−4

6
4 π3

777,600 � 3.98× 10−6

7
√
3L(4,3)
1,720,320 � 9.46× 10−7

8 π4

4,572,288,000 � 2.13× 10−8

9 ζ(5)
22,295,347,200 � 4.65× 10−11

Therefore, the volume bound depends on the crystallographic data such as D and
i∞ on each canonical cusp boundary.
Crystallographic groups acting onEk are completely classified up to dimension k =

4 by Brown, Bülow, Neubüser, Wondratschek and Zassenhaus. For 5 ≤ k ≤ 8, they
were studied intensively by Plesken and Pohst who determined allZ- andQ-classes of
maximal, finite, absolutely irreducible subgroups of GL(k, Z). In this context, let ϕk

be the maximal point group order of elements in a fixed Q-class in dimension k. The
identification of the associated inequivalent lattices together with their fundamental
domains is then possible and shows that there is a single lattice of minimal volume
vk underlying the densest Euclidean lattice packing in Ek . The symmorphic group Sk

corresponding to its Z-class is related to a Euclidean Coxeter simplex group�k . With
this background, declare a cusped hyperbolic n-orbifold Q = Hn/, n ≤ 9, to be
small if

voln(Qn) < 2
vn−1

(n − 1)dn(∞)ϕn−1
. (3.1)

Then, one can show that a small cusped n-orbifold has only one cusp and that full-
sized horoballs (images of B∞) are permuted by the lattice�∞. For aminimal volume
orbifold Qn = Hn/n , these facts allow one to identify the (unique up to conjugacy)
crystallographic group in n with an isomorphic copy of Sn−1, and to show that the
associated canonical cuspCcan ismaximal, that is, inflating the canonical horoball B∞
covering Ccan leads to bigger horoballs whose projections to Qn fail to be embedded.
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This last property implies that the reflection σ with respect to the bisector H0 of B∞
and its image B0 based at 0 ∈ En is an element of the group n . A crucial step
is the determination of the combinatorial structure of the Ford domain PF of n .
To this end, observe that PF is the intersection of the Dirichlet-Voronoı̆ cell of B∞
with the straight cylinder Zn = �n−1 × (0,∞) over the Euclidean Coxeter simplex
�n−1. Then, one proves—by a case-by-case analysis with respect to n—that PF is the
simplex of finite volume with vertex at∞ arising from Zn by a cut along the bisector
H0. The construction of PF reveals that the reflection in each boundary hyperplane
of PF belongs to n and that the intersection angle of H0 with the hyperplane H1
bisecting B∞ and one full-sized horoball touching B∞ equals π/3. As a result, the
group n can be identified with the hyperbolic Coxeter simplex group arising from
the Euclidean Coxeter graph �n−1 by adding one node for H0 together with an edge
(without weight).

4 Minimal volume of arithmetic quotients

Consider an orientable hyperbolic n-orbifold Q = Hn/ of dimension n ≥ 4 and
suppose that the discrete subgroup  ⊂ Isom+(Hn) is arithmetic with defining field
k. For the definition of arithmeticity, we refer to [3, Sec. 2] and [7].

4.1 The even-dimensional case

For even dimensions n = 2r ≥ 4, and by distinguishing between the compact case
and the non-compact case, Belolipetsky [1,2] showed that there is a corresponding
unique orientable arithmetic hyperbolic n-orbifold O = Hn/ of minimal volume. In
the compact case, he proved the remarkable fact that the defining field is always equal
to k0 = Q[√5]. Furthermore, by exploiting Prasad’s fundamental volume formula
for arithmetic lattices and Bruhat-Tits theory, he determined the explicit values for
their Euler characteristic χ(O)which, by the theorem of Gauss-Bonnet, are related to
volume according to

voln(O) = (2π)r

1× 3× · · · × (2r − 1) × |χ(O)|. (4.1)

The uniqueness aspect is not trivial and based on delicate Galois cohomological
arguments. For n = 4, it allowed him to identify the minimal volume compact orb-
ifold Oc with the oriented double cover of the Coxeter orbifold H4/[5, 3, 3, 3] since
(compare [1, Tab. 2] and Table 1)

vol4(Oc) = 4
3
χ(Oc) = 1

5,400
= 2× vol4([5, 3, 3, 3]). (4.2)

Here are the precise statements of the results of Belolipetsky, followed by some
explicit χ -values (see [1, Tab. 2]). We start with the compact case.
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Theorem 2 For each dimension n = 2r ≥ 4 there is a unique orientable compact
arithmetic hyperbolic n-orbifold Oc of minimal volume. It is defined over the field
k0 = Q[√5] and has Euler characteristic

|χ(Oc)| = λ(r)

4r−1
r∏

i=1
|ζk0(1− 2i)|,

where λ(r) = 1 if r is even, and λ(r) = (4r − 1)/2 if r is odd.

In the non-compact case,where thefield of definition is always equal toQ, Belolipet-
sky’s result is expressible in terms of Riemann’s zeta function as follows.

Theorem 3 For each dimension n = 2r ≥ 4 there is a unique orientable non-compact
arithmetic hyperbolic n-orbifold Onc of minimal volume. It has Euler characteristic

|χ(Onc)| = μ(r)

2r−2
r∏

i=1
|ζ(1− 2i)|,

where μ(r) = 1 if r ≡ 0, 1 (mod 4), and μ(r) = (2r − 1)/2 if r ≡ 2, 3 (mod 4).

n = 2r ≥ 4 4 6 8 10 · · ·
|χ(Oc)| 1

7,200
67

576,000
24,187

8,709,120,000
309,479,461,547
3,483,648,000,000 · · ·

|χ(Onc)| 1
960

1
207,360

1
348,364,800

1
91,968,307,200 · · ·

4.1.1 Minimal volume realisation in dimensions six and eight

In general, it is difficult to construct a compact (arithmetic) hyperbolic orbifold of
dimension n > 3 whose volume is not only computable but also very small. In the
even-dimensional cases, volume computation can be reduced to a lower dimensional
spherical volume computation which—in the algebraic-topological setting—can be
performed by looking at the Euler characteristic.
For n = 6, 7 and 8, Bugaenko [4,5] constructed compact hyperbolic Coxeter groups

Bn ⊂ Isom(Hn) by arithmetic considerations. More precisely, in [4], he studied the
quadratic form fn of signature (n, 1) over the ring Z[ω], ω = (

√
5+ 1)/2, given by

fn(x) = x21 + · · · + x2n − ωx2n+1, (4.3)

and proved, by applying Vinberg’s algorithm, that the automorphism group O( fn,

Z[ω]) is reflective for n ≤ 7, only. Furthermore, the associated Coxeter groups Bn are
all cocompact. The fundamental polytope PB6 of B6 has 9 facets, and the polytope
PB7 of B7 has 11 facets.
For n = 8, he constructed in [5, Thm. 3.4] a quadratic form h of signature (8, 1)

with discriminant−(1+√
5) over Z[ω] for which the group O(h, Z[ω]) is reflective.
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Fig. 2 The Bugaenko group B6 5 5

4 4

The associated Coxeter group B8 is cocompact with fundamental polytope PB8 having
11 facets (see Fig. 3).
Bugaenko’s polytopes PBn , 6 ≤ n ≤ 8, are highly remarkable. Indeed, in [29],

Tumarkin classified all compact Coxeter polytopes in Hn with n + 3 generators and
proved that these polytopes exist only up to dimension n = 8. Furthermore, for n = 6
and n = 8, there is precisely one such n-polytope, the Bugaenko polytope PBn , while,
for n = 7, there is no compact Coxeter polytopewith ten facets at all. In [30], Tumarkin
and Felikson studied the related classification problem for compact Coxeter polytopes
in Hn with n + 4 generators. They proved that such polytopes do not exist for n ≥ 8
and that, for n = 7, there is precisely one such polytope, and it equals PB7 .
For n = 6, the Coxeter graph of Bugaenko’s group B6 is given by Fig. 2.
Notice that the Coxeter graph of B6 has an internal twofold symmetry, a fact which

holds for all Bugaenko groups Bn with n = 6, 7, 8. Denote by B ′
n the corresponding

Z2-extension of the group Bn .

Proposition 1 The orientable double cover of the orbifold H6/B ′
6 is the unique ori-

entable compact arithmetic 6-orbifold Oc of minimal volume.

Proof We first compute the group Euler characteristic χ of the cocompact Coxeter
group B6 with generating set S consisting of 9 reflections by using Steinberg’s formula
(see [23, (1.2)], for example), that is,

χ =
∑

BT ⊂B6
finite

(−1)|T |

|BT | , (4.4)

which allows us to expressχ in terms of the orders |BT | of the finite Coxeter subgroups
BT , T ⊂ S, of B6. Each such Coxeter subgroup BT ⊂ B6 arises as the stabiliser of a
certain face of PB6 . The orders of their irreducible components have been determined
by L. Schläfli (see [19, Sec. 2], for example). Furthermore, the irreducible components
given by • · · · • and by the triangle subgroup [4, 5] of B6 are hyperbolic and therefore
infinite. A careful analysis, and by countingmultiplicities of the finite subgroups of B6,
leads to the following results. First, the f -vector of PB6 equals (23, 69, 95, 75, 35, 9)
where the components fk are equal to the numbers of k-dimensional faces of PB6 and
satisfy Euler’s equation f0 − f1 + f2 − f3 + f4 − f5 = 0 as well as the simplicity
condition f1 = 3 f0. Next, we compute

χ = − 67

576,000
. (4.5)

Finally, cut the polytope PB6 along the hyperplane H , with associated half-turn γH ,
into two isometric pieces as indicated in 2.2. The isometry γH generates a copy of Z2
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Fig. 3 The Bugaenko group B8 55

so that each piece is a fundamental domain of the (arithmetic) Z2-extension B ′
6 of B6.

It follows that the oriented double cover O6 of H6/B ′
6 has Euler characteristic given

by (4.5) which coincides with the minimal one for n = 6 (see the table following
Theorem 3). By the uniqueness statement in Theorem 3, the orbifold O6 is isometric
Oc. ��

In a similar way, and by collecting existing results, we can treat the case of eight
dimensions. Consider Bugaenko’s polytope PB8 ⊂ H8 associated to the group B8
whose Coxeter graph (with a twofold symmetry) is given in Fig. 3.
In [33, Ex. 3], Zehrt showed that the polytope PB8 has combinatorial f -vector

(41, 164, 316, 374, 294, 156, 54, 11)

and determined the covolume of the group B8 in terms of

χ(H8/B8) = 24,187

8,709,120,000
. (4.6)

Consider the (arithmetic)Z2-extension B ′
8 of B8. Then, the orientable double cover

of H8/B ′
8 has Euler characteristic given by (4.6) which coincides with the minimal

one for n = 8 as given above, that is,

χ(H8/B8) = χ(Oc). (4.7)

Again, by the uniqueness result of Theorem 2, we can conclude the following.

Proposition 2 The orientable double cover of the orbifold H8/B ′
8 is the unique ori-

entable compact arithmetic 8-orbifold Oc of minimal volume.

4.2 The odd-dimensional compact case

In [7, Thm. 1.3], Emery considered orientable arithmetic hyperbolic n-orbifolds of
minimal volume for odd n ≥ 5. He exploited Prasad’s volume formula by using
techniques similar to [1,2] but he had to overcome additional obstacles arising for
Isom+(Hn) ∼= P O(n, 1)◦ with n odd since its algebraic simply connected covering is
a 4-covering and since it is of type D having outer forms. His results were made more
precise in [3, Thm. 2] with respect to uniqueness and the (non-trivial) determination
of certain subgroup indices. In this way, volume minimality results for orientable
arithmetic orbifolds of odd dimensions n ≥ 5 arise which, in the compact case, can
be stated as follows (see also Theorem 6).
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Theorem 4 For each dimension n = 2r −1 ≥ 5, there is a unique orientable compact
arithmetic hyperbolic n-orbifold Oc of minimal volume. It is defined over k0 = Q[√5]
and of volume given by the formula

voln(Oc) = 5
r2−r/2 × 11r−1/2 × (r − 1)!

22r−1πr
L�0|k0(r)

r−1∏
i=1

(2i − 1)!2
(2π)4i

ζk0(2i),

where �0 is the quartic field with a defining polynomial x4 − x3 + 2x − 1.
Based on this result, we shall first present concrete results in dimension five and

then discuss small volume in seven dimensions.

4.2.1 Minimal volume realisation in dimension five

Consider the cocompact arithmetic Coxeter prism group �5 = [5, 3, 3, 3, 3] [see
(2.2d)] with defining field k0 = Q[√5], and let �0 ∼= Q[x]/(x4 − x3 + 3x − 1) as in
Theorem 4. The following result has been proved in [10].

Theorem 5 The orientable double cover of the Coxeter orbifold H5/�5 is the unique
orientable compact arithmetic hyperbolic 5-orbifold Oc of minimal volume. Its value
equals

vol5(Oc) = 9
√
5
15

215π15
ζk0(2)ζk0(4)L�0/k0(3) � 0.00076729618. (4.8)

For the proof, and inspired by the numerical coincidence of the prism volume
vol5(�5) with the composed L-values in (4.8) [see also (2.9)], the three smallest
compact arithmetic hyperbolic five-orbifolds were determined by adapting suitably
the techniques developed in [3,7]. In this way, it was possible to identify—in a rigorous
way—the rotation subgroup �′

5 of �5 = [5, 3, 3, 3, 3] with the covolume minimiser
as stated above.

4.2.2 About minimal volume in dimension seven

Consider Bugaenko’ s cocompact arithmetic Coxeter group B7 with 11 generators and
with Coxeter graph given by Fig. 4. Recall that B7 is the Coxeter group associated to
the automorphism group O( f7, Z[ω]), ω = (

√
5+ 1)/2, of the quadratic form f7 as

given by (4.3).
Again, the Coxeter graph of B7 has an internal symmetry, and we denote by B ′

7 the
Z2-extension of the group B7, accordingly. As already mentioned in 4.1.1, the group
B7 is the unique Coxeter group, with compact fundamental polytope in H7, having

Fig. 4 The Bugaenko group B7 5 5

4 4
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(the minimal number of) 11 natural generators. Now, all the results discussed so far
indicate that minimal volume hyperbolic orbifolds are built upon (halves of) Coxeter
polytopes with a minimum number of facets (and large dihedral angles), and that they
are all arithmetic. However, as indicated to us by Emery [9], the orientable double
cover of H7 by the group B ′

7 cannot be equal to the (unique) orientable arithmetic
seven-orbifold Oc. In fact, on the one hand side, the orbifold Oc stems from a certain
algebraic group G0, with splitting field �0 of discriminant of absolute value 275 (see
Theorem 4), and which can be related to the quadratic form

x21 + · · · + x26 − (2
√
5− 3)x27 . (4.9)

On the other hand side, the “splitting field” �1 of the algebraic group G1 related to
the form f7 is the field Q[√ω] with discriminant of absolute value 400. Since these
discriminants do not coincide, the algebraic groups G0 and G1 are not isomorphic
which implies that the fundamental group of Oc and Bugaenko’s group B ′

7 are not
commensurable. Consequently, the following natural questions arise.

Question 1 Is the fundamental group of the orientable compact arithmetic hyperbolic
7-orbifold Oc of minimal volume commensurable to a hyperbolic Coxeter group at
all?

Question 2 What is the precise volume, necessarily larger than vol7(Oc), of the ori-
entable double cover OB′

7
of H7 by the group B ′

7?

Notice that, for dimensions n ≥ 9, we do not know about any concrete compact
hyperbolic n-Coxeter polytope. What we do have, however, is the non-existence result
of Vinberg (see [32, Part II, Cha. 5, Sec. 2.5], for example) stating that compact
hyperbolic Coxeter n-polytopes do not exist for n ≥ 30!

4.3 The odd-dimensional non-compact case

In [7, Thm. 1.4], and with the improvement in [3, Thm. 2], Emery and Emery-
Belolipetsky provide an analogousminimality result for orientable non-compact arith-
metic orbifolds of odd dimensions n ≥ 5.
Theorem 6 For each dimension n = 2r − 1 ≥ 5, there is a unique orientable non-
compact arithmetic hyperbolic n-orbifold Onc of minimal volume. Its volume is given
by the following formula.

(1) If r ≡ 1 (mod 4):

voln(Onc) = 1

2r−2 ζ(r)

r−1∏
i=1

(2i − 1)!
(2π)2i

ζ(2i);

(2) If r ≡ 3 (mod 4):

voln(Onc) = (2r − 1)(2r−1 − 1)
3× 2r−1 ζ(r)

r−1∏
i=1

(2i − 1)!
(2π)2i

ζ(2i);
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Fig. 5 The graph �∗ of the non-compact Coxeter pyramid P∗ ⊂ H17

(3) If r is even:

voln(Onc) = 3
r−1/2

2r−1 L�1|Q(r)

r−1∏
i=1

(2i − 1)!
(2π)2i

ζ(2i),

where �1 = Q[√−3].

4.3.1 The absolute minimal volume orbifold is 17-dimensional

Consider the even unimodular lattice II17,1 in R18 equipped with the standard
Lorentzian form

q17,1(x) = x21 + · · · + x217 − x218. (4.10)

It is well-known that the group P O(II17,1) of automorphisms leaving invariant q17,1
and the lattice II17,1 is a discrete group of hyperbolic isometries. It is reflective with
subgroup of index two given by the Coxeter group�∗ described by the graph in Fig. 5.
Observe that�∗ has an internal order 2 symmetry, giving rise to the Z2-extension�′∗,
as usual.
By passing to the subgroup P SO(II17,1) = P O(II17,1)/{±I } of special automor-

phisms, Emery proved in [8, Thm. 1] that the quotient space H17/P SO(II17,1) is the
orientable non-compact arithmetic hyperbolic 17-orbifold of minimal volume. As a
bi-product of this result and of Theorem 6, (1), the volume of the non-compact Coxeter
pyramid P∗ ⊂ H17 associated to �∗ can be expressed as follows (see [8, Sec. 3]).

vol17(P∗) = 691× 2617
238 × 310 × 54 × 72 × 11× 13× 17ζ(9).

Furthermore, by comparing the differentminimal values in even andodddimensions
n ≥ 2 (see [1,3]), Emery’s results [8] imply that the orientable double cover O∗ of
the non-compact arithmetic 17-orbifold H17/�′∗ is an absolute volume minimiser in
the following sense.

Theorem 7 Any orientable arithmetic hyperbolic n-orbifold O of dimension n ≥ 2
satisfies

voln(O) ≥ vol17(O∗) = 691× 2617
238 × 310 × 54 × 72 × 11× 13× 17 ζ(9) � 2.072451981× 10−18,

with equality if and only if O is isometric to O∗.
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