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The recent marine carbonate world comprises two major compartments: (1) the surface domain of the
photozoan carbonates, confined in space by water depth and by the penetration of light, and (2) a deep domain,
where heterozoan mound-builder guilds directly forage on fluxes of nutrients, which primarily percolate from
the photic zone and/or are generated by in situ benthic processes. Locally, giant cold-water coral mounds
tower up to heights of 150 to 250 m above the sea floor, in general between 500 and 1300 m water depth and
within sharply delineated provinces. Some 15 years of research on these giant mound provinces conveys a pic-
ture of their distribution in space and possibly sheds light on controls, acting in concert. Globally, there is no coun-
terpart for the prolific North Atlantic Mound Basin (NAMB). A chemical control is seen by an overlay of the
mound provinces on a map of the aragonite saturation horizon (ASH). An external physical control is inferred
from the position of the mound provinces, girdling a vigorous North Atlantic subtropical gyre system and cluster-
ing close to the roof of the intermediate to deep water masses of a dynamically stratified ocean. On the eastern
boundary of the NAMB, nutrient fluxes are enhanced by mixing processes, driven either by internal waves be-
tween Galicia and the Shetlands, or by the vast and heterogeneous Eastern Boundary Upwelling System along
the Iberian/African margins down to 10°N. Early diagenesis by carbonate dissolution and re-precipitation driven
by convecting or advecting internal fluids can contribute to stabilize such constructions, facilitating an exuberant
vertical accretion. It is speculated that in the North Atlantic Ocean, the deep-water carbonate factory outclasses in
size the shallow water coral reefs.

Giant mound formation is a recurrent play of Life since the dawn of the metazoans (Nama Group, Upper
Neoproterozoic), however with actors and plots, varying from act to act. Remarkably, literature reports only
three occurrences of deep-water mounds in the Phanerozoic: the modern ocean, possibly the Danian, and the
Carboniferous. Some striking parallelisms in the development of the Atlantic and the Paleo-Tethys oceans, com-
bined with the developing insights in the controls on deep-water mounds in the present ocean, invite for a com-
parative study. This has the potential to eventually shed light on the full circulation pattern of the Paleo-Tethys
Ocean, surface and deep. Comparative studies will build upon (1) modeling of ocean circulation constrained by
the record of deep-water carbonate systems and supported by advances in tracer and proxy tools, and (2) field
studies on representative and accessible continental locations. The mound route that develops in Morocco
under the auspices of IOC-UNESCO will provide to multi-disciplinary teams with marine and continental experi-
ence opportunities for confronting observations from the modern ocean and on key records of past oceanic ba-
sins. It has the potential to eventually qualify for a UNESCO recognition as World Heritage.

1. Introduction

In his foreword of the comprehensive source book “The History and
Sedimentology of Ancient Reef Systems” edited by George D. Stanley in
2001, Noel P. James states that ever since Darwin reported on his inves-
tigations of far-flung reefs, these structures have held an unending
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fascination for Earth scientists. For James, the very word “reef” conjures
up restful, tropical images wrapped in warmth and displayed in shim-
mering colors. A particular phrase from Stanley's volume however
stuck in James's mind: “reefs are a plethora of paradoxes”.

What James might have overlooked is that over half a century before
Charles Darwin published “The structure and distribution of coral reefs”
(1842), his grandfather Erasmus Darwin (1731-1802) had already
commented on the hazardous “calcareous earth” in the additional
notes to his opus “The botanic garden” (1791, Note XVI, p. 32): “... ma-
rine animals named coralloids raised walls and even mountains by the
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congeries of their calcareous habitations, these perpendicular coralline
rocks make some parts of the Southern Ocean highly dangerous, as ap-
pears in the journals of Capt. Cook”. The fascination of Earth scientists
for tropical images in shimmering colors had clearly been preceded by
concerns of navigators.

As a matter of fact, Stanley (2001) refers to two possible origins of
the word reef, both related to navigation hazards: either an old German
or Norse term (“rif”) for a ridge of rock that lay as an obstruction near
the surface of the water, or “Er Rif”, an Arabic term given to “hills”
found by traders in shallow waters between Tangier and Melilla. He fur-
thermore endorses the requirement of warm, well-lighted, shallow ma-
rine conditions: “reefs are restricted to tropical and subtropical settings,
primarily on western parts of oceans, ranging today between 20° and
30° north and south of the equator” (Stanley, 2001, p. 1-2). Understand-
ably, when Hovland et al. (1994) reported carbonate build-ups in the
cold and dark waters of Porcupine Seabight west of Ireland, about 52°
north in the eastern North Atlantic, in depths ranging between 750
and 900 m, labeling them as “reefs” was not straightforward. Hovland
et al. (1994) referred to “seabed mounds (carbonate knolls?)”.

In the wake of the publication of Hovland et al. (1994), a vast mo-
mentum of European projects set off in 1997 to unveil thousands of
giant deep-water carbonate mounds on the northwest European conti-
nental margin, buried or surfacing. They range in general between 30
and 250 m in height and sometimes coalesce to complex ridges
(Henriet et al.,, 1998; De Mol et al., 2002; Huvenne et al., 2003;
Wheeler et al., 2007). The surface mounds are commonly covered by
thriving cold-water coral ecosystems rivaling in color and luxuriance
anything tropical reefs can offer. That very same year, the seminal
SEPM Special Publication No. 56 on cool-water carbonates was intro-
duced with the statement “Cool-water carbonates have always been
part of sedimentary geology, but never at the forefront” (James, 1997,
p. 1). On the European margins, deprived of warm-water reefs, the
vast provinces of cold-water coral ecosystems would soon move to
the forefront, to get high visibility in particular at the 2nd International
Symposium on Deep-Sea Corals held in Erlangen, September 2003
(Freiwald and Roberts, 2005). While the name cold-water coral “reefs”
was still opportunistically used by scientists towards European policy
to spur - not without success - the protection of those deep-water eco-
systems in Irish waters which by miracle had escaped deep-water
trawls, the term “cold-water coral mounds” soon gained widespread ac-
ceptance in scientific literature.

Biogenic deep-water mounds have also been reported on the west-
ern margin of the North Atlantic, from water depths of 1000-1300 m
(Paull et al., 2000). “Modern deep-water coral mounds north of Little
Bahama Bank: criteria for recognition of deep-water coral bioherms in
the rock record” (Mullins et al., 1981) possibly set the stage for
confronting the emerging insights in the world of deep carbonate
mounds of the modern ocean with the vast fossil record of carbonate
build-ups. This exercise is presently continued and amplified by the in-
ternational network COCARDE (“Cold-water Carbonate Reservoir Sys-
tems in Deep Environments”, Henriet et al., 2011) which, for the
analysis of the fossil record, in particular draws from the vast Paleoreef
data base developed in the comprehensive SEPM Special Publication No.
72 — “Phanerozoic Reef Patterns” (Kiessling et al., 2002).

In the introduction of that volume, reefs are defined as “laterally con-
fined biogenic structures, developed by the growth or activity of sessile
benthic organisms and exhibiting topographic relief and (inferred) ri-
gidity” (Fligel and Kiessling, 2002, p. 3). This definition is quite close
to that of Wood (1999, p. 5): “areef is a discrete carbonate structure
formed by in-situ or bound organic components that develop topo-
graphic relief upon the sea floor”. Such broad and simple definitions
allowed both Wood (1999) and Fliigel and Kiessling (2002) to trace
the evolution of reefs through Earth history, highlighting the ways in
which reef communities can differ, and illuminating processes common
to the formation of all reefs. Fliigel and Kiessling (2002) acknowledge
that some authors might use terms such as bioconstructions, buildups

or bioherms, and consider these as synonymous with their reef defini-
tion. In the present review paper, mounds may be regarded as a subset
of reefs sensu Fliigel and Kiessling (2002), further individualized by a
distinct context and significance.

The question of reefs and mounds indeed transcends semantics. The
historical context of “reefs” as shallow water hazard, the longstanding
fascination for the images of tropical reefs, and even a tenacious indus-
trial bias for shallow water processes in the development of geomodels,
reservoir models and porosity distribution in reef carbonates have long
cast a shadow on the nature and significance of carbonate constructions
in deeper water. Yet, ocean drilling on the Irish margin soon revealed
the extraordinary significance of cold-water coral mounds, for instance
as high-resolution environmental archive (IODP Exp. 307, Ferdelman
et al,, 2006; Foubert and Henriet, 2009; Thierens et al., 2010). As devel-
oped later, they may hold - far more than the shallow-water carbonate
factory - a key to the dynamics of deep and intermediate water circula-
tion, heartbeat of the Earth's climate machine. Furthermore, on a back-
ground of new discoveries of giant hydrocarbon accumulations in
ancient mounds, the confrontation with the modern world of carbonate
mound systems — in particular revealed by ocean drilling - becomes an
eye opener and spurs new exploration insights and strategies (Philippe
Lapointe, Total E&P, COCARDE Oviedo workshop 2009, in Henriet et al.,
2011).

Such confrontation of ideas between the academic and industrial
world in carbonate research, and between researchers of the modern
systems and those of the fossil record calls for a forum, a broadband
field laboratory which can be turned into a meeting place and a refer-
ence site. This paper narrates how a unique reference route is being
developed for such purposes in Morocco, with the potential to qualify
as a UNESCO World Heritage Route. In parallel, it invites for a ramble
through some processes and possible controls on mound nature and
origin, without any pretension to comprehensiveness, but with an
avowed zest for the deeper realm of the carbonate world, in particu-
lar the Atlantic one. As regards the Mediterranean, the present paper
will only evoke the cold-water coral mounds in the gateway region
between the Atlantic and the Mediterranean, in relation to the pro-
posed Moroccan mound Heritage Route. The specific nature of the
Mediterranean as a confined basin justifies a stand-alone review of
its deep carbonate world.

2. Cold-water coral reefs in canyons and on glacial margins

The world of cold-water coral habitats comprises build-ups which
qualify for a definition of reefs, yet that we shall not discuss here.
These are on one side the vast cold-water coral fields thriving in inter-
glacial times on former glaciated shelves, such as the Norwegian Sula,
Rost, Traena, Fugloy, Iver and Stjernsund reefs (Freiwald et al., 2004;
Fossa et al., 2005; Riiggeberg et al., 2011), or the small and patchy
reefs on rocky spurs off Scotland (Mingulay reef, Roberts et al., 2009).
Though some of them feature an internal facies, comparable to that of
deep-water coral mounds, the position of these shelf reefs within the
reach of waxing ice sheets does not allow them to develop to the excep-
tional dimensions in space and time, such as observed in the mound
provinces on the deeper slopes of northeastern Atlantic margins.

The other habitats not discussed in this paper are the deep cold-
water coral colonies in canyons (De Mol et al., 2011; Huvenne et al.,
2011, 2012). Perched under overhanging cliffs or high on rocky spurs
in highly stressed environments, they form significant refuges, but
again they are in general not in a position to develop to the giant
build-ups further considered here. The development of a canyon head
with its associated zones of sediment instability may however impact
on mound provinces. On the western flank of Porcupine Bank, for in-
stance, mounds are concentrated along the edges of a canyon head or
are associated with a complex fault system, traced around the canyon
head (Mazzini et al., 2011).
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3. Small mounds and giant mounds in the recent ocean

The remarkable resolution achieved in seismic imaging, multibeam
bathymetry and habitat mapping in Porcupine Seabight, in the Bay of
Biscay and on the Moroccan North-Atlantic margin in water depths
ranging between 300 and 1300 m has shed light on vast fields of small
cold-water coral capped hummocks, barely a few meters in amplitude
(Masson et al., 2003; Wheeler et al., 2008; Huvenne et al., 2009; De
Mol et al., 2011; Foubert et al., 2011; Wheeler et al., 2011), or coral-
capped giant ripples, up to 10 to 20 m in amplitude (Mienis, 2007;
Correa et al., 2012). In the early days of modern mound exploration on
the Irish margin, the frequent spatial association of such fields of
coral-capped hummocks and giant cold-water coral mounds fuelled
the hypothesis that those small mounded features possibly could repre-
sent the embryonic stage of giant mounds, and still recently, contrasting
views persist on this matter (Wilson et al., 2007; Foubert et al., 2011;
Wheeler et al,, 2011). In a depression between outcropping giant car-
bonate mounds in the Belgica Mound province in Porcupine Seabight,
small mounded features abound on sediment waves and small ridges
and furrows: the Moira Mounds (Fig. 1) (Wheeler et al., 2008, 2011).
Foubert et al. (2011) argue that they can be explained by the interaction
of cold-water coral growth and sediment baffling, in response to strong
bottom currents and high sediment fluxes. The targeted coring of mini-
mounds on Odet Spur, south of the Guilvinec Canyon in the Bay of Biscay
(De Mol et al., 2011) furthermore revealed that the debris of skeletal
benthos, in general cold-water corals, formed no more than a centime-
ter- to decimeter-thick veneer at the surface of those small topographic
elevations, which apparently had been shaped in a clayey substratum by
strong bottom currents. Likewise, Masson et al. (2003 ) had demonstrat-
ed that corals, though prominent at the surface, are not a major contrib-
utor to the building of the small Darwin Mounds in Rockall Basin.

In a way, one might argue that such hummocky or wave-shaped
fields of small mounded features or ridges form a biologically stabilized,
and possibly even the biologically enhanced expression of a boundary
layer, a shear zone, where strong oceanic bottom currents have draped
the seabed with large sediment waves. It should be noted that such
fields of sediment waves topped with corals can also climb the flanks
of larger mound structure (e.g. Thérése Mound, Belgica Mound prov-
ince, Foubert et al., 2011). The patchy settlement of opportunistic
cold-water corals on the highs and the concurrent sediment baffling
could actually mold small hummocks on these wave fields, and stabilize
them. Differential erosion can contribute to the further shaping and en-
hancement of individualized hummocks. Current velocities decrease by

Fig. 1. The Moira Mounds in Porcupine Seabight (Foubert et al,, 2011; Wheeler et al., 2011)
were, jointly with the Darwin mounds in Rockall Basin (Masson et al., 2003), among the
earliest described “small mounds” on the North-West European continental margin.
They are coral-capped, circular in shape with a cross section up to 30-50 m, and a few
meters high.

Sidescan sonar image is from Wheeler et al. (2011).

drag over the coral-capped highs and concurrently increase in the
gullies separating the small mounds (Bernoulli effect), as argued by
the coarse-grained lag deposits (Odet Spur, De Mol et al,, 2011).

The extensive multibeam coverage already available on European
and North African margins corroborates that within such hummocky
ridge fields, none of the small mounds appears to compete in height
with adjacent ones. The most likely limiting factor in the baffling pro-
cess is the maximal height of saltation of the sediment grains within
the bedload transport layer. As Foubert et al. (2011) already had con-
cluded for the Moira Mounds, such small buildups should be regarded
as simple responses to stressed conditions in strong bottom currents
and high sediment fluxes, rather than as an initial phase of extensive
mound growth. The giant mounds, which started to grow some 2.5
Ma (Exp. 307, Kano et al., 2007), are also often molded by moderate to
strong currents (Magellan mounds, Huvenne et al., 2007) and draped
by contourite drifts (Van Rooij et al., 2003) (Fig. 2). A long-term, persis-
tent or recurrent high-energy environment may consequently have
been the possible common control for the spatial co-occurrence in Por-
cupine Seabight of both giant mounds and large-scale sediment wave
fields and/or erosional furrows on the present sea floor, on which
small mounded features abound.

4. From stromatolites to giant mounds: a prelude of 1.5 to
2 billion years

Itis commonly accepted that the stromatolites of the late Precam-
brian provide the earliest record of carbonate build-up processes.
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Fig. 2. High-resolution seismic section through Challenger Mound, Belgica Mound prov-
ince (top), Porcupine Seabight (Foubert and Henriet, 2009). This mound, draped by
contourites and drilled by IODP Exp. 307, has a total height of 155 m and exemplifies a
medium-sized “giant mound”. The depth model (bottom) illustrates how the mound
roots on the crest of an erosional escarpment, some 30 m high (Henriet et al., 2002).
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Stromatolites were first defined by Kalkowsky (1908) in the German
Buntsandstein and are widely regarded as layered, early lithified,
authigenic microbial structures, commonly domical or columnar in
form, that develop at the sediment-water interface in freshwater, ma-
rine and evaporitic environments (Riding, 2011). Stromatolites are
spotted in up to 3.5 Ga old strata, but many Precambrian examples, es-
pecially those older than about 1 Ga, appear to contain, and in some case
may entirely consist of, precipitated abiogenic crust (Riding, 2011).In a
way, the early marine stromatolite record can be read as long-term
change from less to more biogenic. The players in the biogenic deposits
remained unchanged for at least 2.5 billion years. The first identifiable
cyanobacteria - the Earth's oldest “living fossils” (Schopf, 1999) - are
recognized in about 2.5 Ga old strata, at the dawn of the Proterozoic
Eon, when stromatolites became abundant and diverse (Wood, 1999),
and they are still alive today.

Recent domical to columnar forms are indeed well documented
along the shoreline of the seasonally hypersaline Shark Bay in Western
Australia. Externally, these recent columnar microbial carbonates can
closely resemble very ancient examples, however internally they are
less well layered and coarser grained. The decimetric to metric domes
in the fossil record are in general more distinctly laminated than the
Shark Bay example. Described by Aitken (1967, p. 1171) as “thrombolitic
stromatolites”, the Shark Bay stromatolites are largely composed of fine
sand (Logan et al., 1974). The high accretion rates which shaped these
domes are likely due to the combined presence of thick soft microbial
mats that contain abundant extracellular polymeric substance (EPS)
(Decho et al., 2005), and rapid sediment grain supply. The early lithifica-
tion necessary to support such large columns mainly occurs in, or below,
the lower part of the mat. Thus, grainy current-swept conditions, thick
soft surface mats, and early subsurface lithification help the decimetric,
and locally metric, columns to develop (Riding, 2011).

The availability of both modern and fossil examples allowed
unraveling the fine mechanism of growth of stromatolites, and shed
light on a fundamental driver. Cyanobacteria, acclaimed by Andrew
Knoll (2003) as Life's microbial heroes, took advantage over primitive
anoxygenic photosynthesizers by an aggressive technological innova-
tion, using chlorophyll to capture light energy and giving off oxygen
by oxygenic photosynthesis. While in the primitive process, the hydro-
gen needed to combine with carbon dioxide to build glucose was ex-
tracted in an economic way from hydrogen sulfide, in the advanced
photosynthesis the much more available water molecules are split,
however, at a much higher energy cost. In modern stromatolites, oxy-
genic cyanobacteria and anoxygenic photosynthetic bacteria live appar-
ently harmoniously in layered communities, further able to coexist
because they have different light-capturing pigments. Though much of
the sunlight is soaked up by cyanobacterial chlorophyll, this does not
snuff out the underlying bacterial photosynthesizers because their bac-
teriochlorophyll is sensitive to wavelengths of light that seep through to
where they live (Schopf, 1999). The cyanobacterial sheaths further trap
sediment by the slimelike extracellular polymeric substance. But when
surface is flooded with mud, the filamentous cyanobacteria respond
by sloughing off their mucilage investments and swiftly gliding upward
to the sunny surface. Since the photosynthetic bacteria in the undermat
need to harvest light too, if the cyanobacteria move upward the
undermat microbes follow suit. This in turn frees space soon occupied
by anaerobes that move up from below to feed on whatever organic
matter was left behind.

While being constrained to a boundary layer, stromatolites were
able to reasonably catch up with a rising sea level, which could lead to
the build-up of impressive thicknesses of hundreds of meters in trans-
gressive system tracts. Thick carbonate platforms with most of the
essential features of those found during the Phanerozoic Eon were al-
ready well developed by 2.6-2.3 Ga, at the onset of the Proterozoic
Eon (Grotzinger, 1989). Knoll's (2003) preferred example of the
“Great Wall” in the Bil'yakh Group along the Kotuikan River in northern
Siberia is a breathtakingly well exposed, two-dimensional stratified

stack, a slender mesa of carbonate beds of approximately constant
thickness, as flat today as when formed nearly 1.5 billion years ago.

5. Neoproterozoic mounds: heralding the social conquest of the Earth

The cliffs of the Namibian Skeleton Coast offer one of the best show-
cases of a great Neoproterozoic ice age: a warm-water cap carbonate se-
quence, blanketing glacial deposits of the first major ice advance of the
middle of the Neoproterozoic. The cap carbonates would become a cor-
nerstone for the Snowball Earth hypothesis, a name coined by Joseph
Kirschvink (Caltech) in the early 1990's (Harland and Rudwick, 1964;
Hoffman et al., 1998; Hoffman and Schrag, 2000; Lenton and Watson,
2011). This Sturtian glaciation, which ended about 700 Ma, would be
followed by two more glacial episodes, the Marinoan (also called
Varangar) glaciation, ending 635 Ma, and the less severe and shorter ad-
vance, the Gaskiers, which took place about 580 Ma (Halverson et al.,
2005).

It has been speculated that the rise of the metazoans and the spec-
tacular radiation of animals following Snowball Earth, the so-called
Cambrian explosion which effectively stretched between 575 and
525 Ma, was intimately linked to an intrinsic adaptation of Life towards
cooperative behavior. This came into being not after, but during the
extreme conditions of ice ages (Lenton and Watson, 2011). Extreme gla-
ciations, environments in which many small populations of proto-
animals may have been isolated from one another for very long periods
of time, would have produced the conditions in which altruistic traits
most readily evolved (Boyle et al.,, 2007). This might exemplify a radical
move from Dawkins' (1976) “selfish gene” to Wilson's (2012) “Social
Conquest of the Earth”. The development of altruistic genes would
have been to these animals and their cells' long-term advantage, be-
cause it would help the entire community to survive, including them-
selves. The hypothesis of Boyle et al. (2007) leads to a clear prediction
that evidence of the first ancestors of modern animals should appear
during or straight after the interval of global glaciations (Lenton and
Watson, 2011). This apparently found support when Love et al. (2009)
reported the first biomarker evidence of the presence of sponges before
the end of the second great glaciation (the Marinoan), about 635 Ma.

That very same year however, Neuweiler et al. (2009) pushed back
evidence of the earliest animals by some 200 Myr. In the Mackenzie
Mountains, north-western Canada, coalescing small microbial reefs of
Neoproterozoic age (1100-780 Ma) of the Little Dal Group, each 1-8
m thick, had built composite, three-dimensional reefs up to 500 m in
height and 3 km in diameter (Wood, 1999). Neuweiler et al. (2009)
found that the reefs of the Little Dal Group contain a carbonate rock tex-
ture, already familiar from sponge-rich Phanerozoic carbonate mud
mounds. It is characterized by authigenic calcium carbonate and irregu-
lar, secondary voids containing internal sediment with a so-called
polymud fabric. This observation suggests that metazoans were already
present in reefs before Snowball Earth, or at least matched the earliest ex-
cursion towards icehouse conditions, a cooling spike at about 810 Ma
(Halverson et al., 2005), and they persisted through the Late Proterozoic
glaciations.

A second clue to the presence of metazoans in large Neoproterozoic
reefs is found in Namibia, where spectacular pinnacle reefs occur in the
Nama Group in South and West Namibia (Fig. 3). They reach up to 100
m in height and 3 km in width (Wood, 1999) and range in age from ap-
proximately 550 to 543 Ma (Grotzinger et al., 2000), just antedating the
Cambrian. Their spatial pattern has been interestingly surveyed and
modeled in 3D (Adams et al., 2005). Skeletal grainstones may have pro-
vided firm sites for initial mound nucleation (Schroder et al., 2001). The
basic facies is still dominantly microbial, comprising stromatolites and
thrombolites. However, skilled niche-players, maybe carefully avoiding
to cast shadow on the photosynthetic surfaces, apparently started to
grow in sheltered depressions between thrombolite heads of the Huns
Member pinnacle reefs (middle Nama Group) (Wood, 1999). An al-
ternative, more trivial scenario is that these calcified organisms were
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Fig. 3. The pinnacle-shaped Late Neoproterozoic Nama Group mounds, Namibia, are considered as the oldest giant mounds in the geological record, providing direct evidence of microbial

build-up and metazoan presence. They reach up to 100 m high and 3 km wide.
(Picture: S. Schroder, University of Manchester).

attached as epibionts to algae and upon death or dislocation of the algal
components; they were simply swept as detrital particles into the de-
pressions between thrombolites (Grotzinger et al., 2005). These organ-
isms featured goblet-shaped forms of unknown affinity, but possibly
poriferan. They are preserved as molds and were either non-skeletal
or only weakly mineralized. In the Omkyk Member mounds (basal
Nama Group), thickets of Cloudina, weakly skeletonized, sponge-like
suspension-feeders of global distribution, became abundant espe-
cially in the upper parts of the reefs (Wood, 1999). Remarkably, many
Cloudina specimens reported in Neoproterozoic seas show holes that
have been bored trough their shells by predators (Bengtson and Zhao,
1992). A popular view is that the shells evolved as an innovative means
of defense, which the predators then evolved a way to drill through.
The co-evolutionary arms race had begun (Lenton and Watson, 2011).
Bio-erosion of cold-water corals by predators is still a prominent process
in modern cold-water coral mounds (Beuck and Freiwald, 2005; Beuck
et al,, 2007; Wisshak and Tapanila, 2008).

Most researchers so far have identified the onset of metazoan
reefs near the start of the Cambrian (Copper, 2001; Stanley, 2001),
concurrent with the rise of the archaeocyathid sponges. The Little
Dal and Nama Groups bring evidence of early courting of microbes
and metazoans, yet with little evidence that metazoans in
Neoproterozoic times already contributed in a significant way to
reef building, neither as framework builders nor as sediment bafflers
(Grotzinger et al., 2005).

6. The evolution of the Phanerozoic reef ecosystem

Large mounds of the Phanerozoic apparently built upon a higher
complexity, a higher level of diversity, a “social” organization ruled by
consortia of microbes and metazoans, functionally organized in “guilds”
(Fagerstrom, 1991) as constructors, bafflers and binders. To these
builders, one should add the destroyers and dwellers. Through mecha-
nisms yet to elucidate, this more complex organization seems to have
conferred to mounds the power to transgress the confinement of any
boundary layer. There is little doubt that the vibrant ecosystem studies
that presently develop on recent cold-water coral mounds, adding
to the vast studies on warm-water reef ecosystems and completed
with ex-situ experimentation in continuous high-pressure bioreactors

(Zhang et al., 2010), will in some future shed more light on the intricate
interactions and exchanges of services within such a complex ecosys-
tem, which control the initiation, growth and demise of giant carbonate
mounds.

A genetic model for metazoan-ruled mounds, displaying the ele-
gance of the growth model outlined by Schopf (1999) for stromatolites,
is still remote. Somewhere in the “Cradle of Life”, Schopf (1999) pon-
dered if stromatolites argue for a “Volkswagen Syndrome” — a lack of
change of external form that masks internal evolution of the working
parts. The constancy of actor and plot in the cyanobacterial ecosystem
(Schopf's “status quo evolution”) however argues for very little internal
evolution over 2.5 billion years. This simplifies the analysis of the func-
tioning of the working parts. In contrast, Phanerozoic mounds might
possibly over-qualify for the cited syndrome. Since the terminal Prote-
rozoic, the external shape of giant mounds does prove remarkably sim-
ple and constant, while the working parts show an evolution, with a
sense of turbulence that might defy the most elementary common
sense in car engineering. The evolution of working parts considered
here implies in particular an evolution of ecosystems and their internal
functional exchange processes, rather than an evolution of species. The
challenge is to identify the red thread, the Grand Engineering Scheme in
these consecutive experiments of Nature, which secured the longevity
of the giant mound building phenomenon.

Some innovative strategies of collaboration/competition of species
did prove highly productive, leading to relatively long-lived, stable eco-
systems which boosted reef growth. But either through a failure of some
internal “working parts”, or through foreign invaders or severe environ-
mental changes, the whole reef ecosystem could suddenly collapse. The
switch to altruism and inter-dependency in the complexity revolution,
which had heralded the Phanerozoic Eon, may also have introduced
an intrinsic weakness: cheaters or weak links in the association may
fragilize the ecosystem, as suggested by Lenton and Watson (2011).
But in parallel, the new complexity added to an incredible resilience.
Throughout Phanerozoic times, collapses and eclipses were in general
followed by a rebound of ecosystems and strategies, which resulted in
resumed reef buildup. Evolutionary innovations can however not be
uncoupled from environmental changes: “the evolution of the Phanero-
zoic reef ecosystem reflects changes triggered by evolutionary innova-
tions and variations in global controls and regional controls at different
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scales” (Fliigel and Kiessling, in Kiessling et al., 2002). Incidentally, also
in this statement the word “reef” may be readily substituted for
“mound”.

In the following sections, some key moments in evolutionary in-
novation in reefs are briefly reviewed, largely following Kiessling's
(2001) template and not seeking comprehensiveness, but simply with
the aim to draw a relevant evolutionary framework as background for
the planned mound World Heritage Route. Next follows a discussion
of some insights in regional controls on mound development at differ-
ent scales, gained in particular through the study of recent carbonate
mound provinces.

7. Evolutionary innovation and global controls: a play in seven acts,
with varying actors and guilds

The evolution of reef ecosystems during the Phanerozoic Eon shows
a long-term trend, modulated by harmonics, and punctuated by mass
extinctions (Fig. 4). The microbial carbonate world, which had steadily
waxed towards Proterozoic times, when the reign of the cyanobacteria
came to an apogee, seems to irreversibly wane during the Phanerozoic
Eon. This trend is illustrated on Fig. 4. The width of the dark gray spindle
is a measure of microbial carbonate abundance, after Riding (2005). In
parallel, metazoan diversity would in general steadily amplify, as
shown by the width of the light-gray spindle. These long-term trends
are punctuated by repeated episodes of ecosystem collapse and recov-
ery. It has been suggested that the collapse of metazoan ecosystems
set the clock back to bacterial carbonates, as disaster forms (Schubert
and Bottjer, 1992), as a default option sometimes lasting for several mil-
lions of years, but this is questioned by Riding (2005). The notch in the
composite spindle diagram on Fig. 4, midway the Phanerozoic, high-
lights the Early (and/or Late — depending on authors) Permian-Triassic
Reef Eclipse, that splits the record of Phanerozoic reef ecologies in two
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THE EVOLUTION OF MOUNDS AND REEFS

sets of three to four acts each (Wood, 1999; Kiessling, 2001; Stanley,
2001; Kiessling et al., 2002; Kiessling, 2009).

Act 1. While stromatolites first declined, complex reef communities
evolved in the Early Cambrian with the rise of the archaeocyathid
sponges. With the near extinction of the latter at the end of the Early
Cambrian, stromatolites and calcimicrobes would nearly be the only
reef builders, until the Early Ordovician (Tremadocian).

Act 2. In the Middle to Late Ordovician, tabulate and rugose corals as
well as stromatoporoids diversified and dominated many reef struc-
tures. Silurian and Devonian reefs exhibit a high degree of similarity.
Shallow water reefs were dominated by tabulate-rugose corals,
stromatoporoids, calcimicrobes, bryozoans and calcareous algae.
The mass extinction terminating the Middle Ordovician to Late De-
vonian reef interval, the Frasnian-Famennian or Kellwasser event
(Mc Ghee et al., 1986), can be seen as the Phanerozoic biotic event
with the greatest impact on reef ecosystems. The majority of
Famennian reefs were dominated by calcimicrobes and stromatolites.

Act 3. Reefs which formed subsequent to this event were completely
different in biotic composition and constructional reef type. Starting
in the Famennian and proliferating in the Tournaisian to Early
Visean, a distinct type of reef structure developed, the so-called
Waulsortian bank (de Dorlodot, 1909). It dominated in deep-water
ramp settings and is characterized by abundant micrite and marine
cement, and few traces of macroscopic skeletal organisms. The
Pennsylvanian started with a major decline in global reef abundance
and a subsequent takeover of various calcareous algae as main reef
builders. During the Permian, sponges gradually became more im-
portant reef builders.
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Fig. 4. The evolution of Phanerozoic mound and reef ecosystems can be described in 3 + 4 acts, separated by the Permian-Triassic Reef Eclipse. The steady evolution from microbial dom-
inance to metazoan prominence in mounds and reefs is evoked through superposition of (1) metazoan diversity (dark gray spindle) and (2) microbial carbonate abundance (light gray
spindle) (modified after Riding and Liang, 2005a,b). (3) Numbers of reef sites of reservoir quality and (4) the frequency of reef occurrence (sites per Myr) are derived from Kiessling et al.
(2002). The red ribbons flag the two intervals of documented deep-water mounds (5). The Pulse of the Earth: environmental conditions are illustrated by (6) mean sea level relative to
present day (Haq et al.,, 1987; Hardenbol et al., 1998; Haq and Shutter, 2008; compiled by Snedden and Liu, 2010), (7) the volcanism megacycles after Alfred Fisher (in Van Andel, 1985),
(8) seawater saturation state of calcite (Riding and Liang, 2005a), (9) secular variations in the mineralogy of non-skeletal marine carbonates (Stanley and Hardie, 1998) and (10) periods of

cold climate (dark gray) and warm climate (light gray) (Frakes et al., 1992).
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The Permian-Triassic mass extinction set the clock back to microbial,
mostly stromatolitic reefs, for some 10 Myr, followed by a period of
metazoan diversification.

Act 4. Recovery of the reef ecosystem was surprisingly rapid in the
Triassic. Middle Triassic microbe-sponge to Late Triassic sponge-
coral reefs feature many aspects in common with Middle and Late
Permian reefs. Some authors wonder to what extent Permian organ-
isms survived in small and isolated refuges (Stanley, 2001).

Act 5. Late Triassic reefs experienced a major innovation with the
rise of the scleractinians, in particular zooxanthellate corals. This
enhanced the growth potential of reefs in the photic zone and
allowed them to thrive in nutrient-limited environments. Corals be-
came increasingly dominant in Late Triassic reefs. This trend contin-
ued in the Jurassic, assisted by widespread bivalve mounds in the
Early Jurassic and siliceous sponge-microbe reefs during the entire
Jurassic. Late Jurassic shallow-water reefs are abundant and mostly
dominated by scleractinian corals. Schmid et al. (2001) saw remark-
able parallels in growth dynamics between Late Jurassic mounds and
Mid-Paleozoic mounds.

Act 6. A poorly understood and sudden reef decline occurred in the
earliest Cretaceous, accompanied neither by a mass extinction, nor
by any major change in ecosystem structure. These times do, howev-
er, concur with the onset of repeated periods of the so-called Oceanic
Anoxic Events (OAEs, Schlanger and Jenkyns, 1976), when black
shales accumulated in the deep ocean. During the Cretaceous, a
gradual shift occurred from coral-dominated to rudist-dominated
reefs. Corals would, however, survive the ill-fated rudist experiment,
and continue to thrive. The shift towards a predominance of the
skeletal factory, paralleled by a strong diversification of plankton-
ic foraminifers, led to a fundamental change from predominantly
biologically-induced calcification (predominantly microbial —
organomineralization s.l., Dupraz et al., 2009) to biologically con-
trolled calcification (bio-mineralization) (Pomar and Hallock, 2008).
The total extinction of rudistid bivalves preceded the K/Pg extinction
by 1.5 to 3 Ma (Wood, 1999; Stanley, 2001).

Act 7. Just after the K/Pg boundary carbonate platform sediments
and small bryozoan mounds of Danian age are exposed in the Danish
Basin at Stevns Klint (Surlyk, 1997; Bjerager and Surlyk, 2007). From
mid-Danian non-symbiotic scleractinian coral mounds interbedded
with low-diversity bryozoans mounds are exposed primarily in Faxe
Quarry (Lauridsen et al., 2012; Lauridsen and Bjerager, 2014). The
rise of modern-type coral-algal reefs was further underway in the
Paleocene. At the Paleocene-Eocene Thermal Maximum (PETM)
short-term warming may have led to eutrophic conditions on the
shelves and acidification of the oceans, hampering the growth of
aragonitic corals, while calcitic larger foraminifera flourished. In
the absence of other successful carbonate-producing organisms,
larger foraminifera were able to take over the role as the domi-
nant carbonate platform inhabitant (Scheibner and Speijer, 2008).
Most of the reef-building coral genera are present by the end Eo-
cene, but reefs are rare until the Oligocene. Reef abundance in-
creases significantly by the Late Oligocene and especially the early
Miocene. During the Neogene, a robust coral-dominated reef ecosys-
tem emerged in most oceans. Emergence of the Isthmus of Panama
in Pliocene times subdivided a previously broad ocean into today's
Pacific and Atlantic Oceans and caused extinctions through changes
in nutrients and ocean circulation patterns (Stanley, 2001). Exactly
after the closure of the Panama seaway, cold-water coral mounds,

built by azooxanthellates, appeared on continental slopes in the
North Atlantic, matching the onset of northern hemisphere glacia-
tions at some 2.5 Ma (IODP Exp. 307, Ferdelman et al., 2006).

The development of reef and mound ecosystems through Phaner-
ozoic times can be confronted with global controls (Fig. 4). The
two first-order cycles of reef evolution, split by the Early Triassic
Reef Eclipse, are mirrored by first-order cycles in sea level (Vail
et al., 1977), volcanism and CO, concentration in the atmosphere
(GEOCARB III model, Came et al., 2007), and calcite saturation in
the oceans. The latter is a primary control in particular on microbial
carbonate accumulation (Riding and Liang, 2005a,b). Higher values
of saturation state and carbonate accumulation occur during times
of ‘calcite seas’, and lower values during times of ‘aragonite seas’,
which suggests an integrated pattern of variation in marine CaCO3
precipitation, and consequently in CO, sequestration, reflecting
global geochemical cycles. The differentiation in “calcite” seas and
“aragonite seas” is probably linked to secular variations of oceanic
Mg/Ca ratios (Stanley and Hardie, 1998; Kiessling, 2009). Some cau-
tion should, however, be taken when this concept is discussed in the
context of carbonate factories in deeper waters, as this classification
is primarily based on the mineralogy of inorganic calcium carbonate
precipitates, marine ooids and cements collected from carbonate
platforms and ramps (Sandberg, 1983). On the diagram of global
controls (Fig. 4), attention is drawn to the terminal phase of both
first order cycles: the Carboniferous to Permian on one side, and on
the other side the trend of lowering sea levels, lowering of the CO,
concentration in the atmosphere and global cooling, which looms
large since Cenozoic times.

8. New views on old mounds

Remarkably, the literature covering the Phanerozoic record, and by
extension the whole story of Life, brings evidence of only three episodes
of deep-water mounds — mounds that had not been forced to the deep
by platform or ramp subsidence, but could be born in depths beyond
300 m. The first, complex episode is reported in the Carboniferous. Re-
cent data suggest that the Faxe mounds of Danian age might have
grown in depths of 200 to 400 m (Lauridsen and Bjerager, 2014). The
third episode started recently, at the onset of Quaternary times. Estimat-
ing paleo-water depth from the physical rock record is however a
complex issue (Immenhauser, 2009), and it is no surprise that few in-
vestigators of the fossil world may ever have envisaged that mounds
could nucleate in waters much deeper than the shelf edge or upper
slope. As recent ocean studies bring increasing evidence of the wealth
of mounds in water depths over 500-600 m, some carbonate scientists
might possibly re-visit the record of the past, and consider that also in
deep time, the genesis of carbonate build-ups in deeper waters might
be more frequent than hitherto presumed. In industrial data sets,
seismic dip lines following a carbonate ramp from basin edge down
to the occurrence of mounds may provide a fair control on paleo-
water depth of the mounds.

The Carboniferous episode of deep-water mounds seems to concur
with a period of decline of the calcite saturation, when a calcite sea
switched to an aragonite sea. The Quaternary episode concurs with a
well developed aragonite sea. Considering the occurrence of cold-
water corals in Danian mounds (Lauridsen and Bjerager, 2014), the
modern aragonite sea might have found its origin at the onset of the
Tertiary. In terms of carbonate factory however, there barely could be
a stronger contrast than between Carboniferous mounds and Quaterna-
ry ones. The Waulsortian mud mounds of Tournaisian to Early Visean
times are characterized by a core sediment containing many genera-
tions of micrite, micrite-supported cavity systems infilled by marine ce-
ments (including stromatactis), and fenestrate bryozoans that are
generally considered to lack any skeletal framework (Wood, 1999).
Waulsortian mounds formed over a considerable bathymetric range,
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extending from subphotic depths of 300 m or more to relatively shallow
photic conditions in perhaps no more than a few tens of meters of water
(Devuyst and Lees, 2001). Schlager (2003) takes the Waulsortian mud
mounds as example for the benthic mud-mound factory dominated
by biotically induced (mainly microbial) and abiotic precipitates.
Lees and Miller (1995) postulate a sequence of polygenic muds or
“polymuds”: bacterial cells, together with fungal/cyanobacterial fila-
ments and bacterial extracellular polymeric material (BEPM) would
produce a mucus-like biofilm which induced precipitation of lime
mud at the surface of Waulsortian mounds. It is interesting that already
in 1791, Erasmus Darwin had speculated on the role of mucus in car-
bonate precipitation: “It is probable that animal mucus is a previous
process towards the formation of calcareous earth” (Erasmus Darwin,
1791, The botanic garden, Note XVI, p. 32). Devuyst and Lees (2001)
found at the base of several buildups in Ireland grumous, clotted and/or
peloidal carbonate muds, they consider as a precursor to the formation
of Waulsortian polymuds. Neuweiler et al. (1999) concluded that many
mud mounds were essentially organomineralic in origin, i.e. formed by
mineralization in close association with non-living organic substrates.
They further speculated that resulting fabric of polygenetic muds
might actually represent ancestral metazoan reef ecosystems, probably
sponges. The bryozoans and crinoids present on Waulsortian mounds
were probably capable of baffling and trapping locally fine-grained
muds, especially from slightly turbid water (Wood, 1999). However, it
is difficult to understand how bryozoans baffling alone could create
slopes up to 50° and reefs up to 100 m high, and Wood (1999, p. 84)
suggests that an unrecognized reef framework must have been present.

In the Early Carboniferous, the dominating carbonate platform ge-
ometry is a ramp system with deep-water mud mounds that developed
after a major transgression (Ahr, 1989). In the Late Carboniferous, the
amplitude of high frequency sea-level changes increased significantly
up to 100-150 m (Colpaert, 2007) due to intensified waxing and wan-
ing of the continental ice sheets, leading to a wider range of platform ge-
ometries, yet ramp systems were still the most abundant. They are
identified in the Ural and the Donetz Basin, Northern Europe, North
America and the Middle East (Della Porta, 2003).

Mud mounds have been identified not only in Early Carboniferous
deeper water successions, but as a most common carbonate factory in
a variety of settings and water depths, from the earliest Cambrian to
the Late Cretaceous. Global distributions illustrate that mud mounds
spanned the planet ranging from tropical to polar circles (Krause et al.,
2004). Carbonate mud mounds form the core of the larger, deeper-
water Silurian pinnacle reefs of northern Michigan (Sears and Lucia,
1979). Among the many mound occurrences described around the
world (Bosence and Bridges, 1995; Monty, 1995; Pratt, 1995), the
Frasnian carbonate mounds of Belgium were most likely the first ones
to be studied (Dewalque, 1868; synthesis in Boulvain, 2007). The inter-
national meeting organized in September 2005 in Paris, on ‘Climatic and
Evolutionary controls on Paleozoic reefs and bioaccumulations’ lead to
the publications of two volumes (Alvaro et al., 2007; Vennin et al.,
2007). In a theme session “Carbonate mounds: sedimentation, organis-
mal response, and diagenesis” at the 1999 Annual Meeting of the Geo-
logical Session of America, Wood (2001) interestingly questioned to
what extent reefs and mud mounds are really so different.

The mud mound factory would currently be out of fashion (Schlager,
2003). Mullins et al. (1981), however, suggested that the deep coral-
capped mounds in water depths of 1000-1300 m north of Bahama
Bank on the Blake Plateau could be regarded as modern equivalents of
mud mounds, and when the research on modern carbonate mounds
in the deeper realms of Porcupine and Rockall basins took momentum,
in the late nineties, it was tempting to speculate that in the core of these
coral-capped mounds of the North Atlantic, the microbial world of the
mud-mounds might surface again, if only to corroborate an evoked
resilience (Henriet et al., 2002). IODP Exp. 307, however, revealed
cold-water corals from bottom to top of Challenger Mound, and little
solid evidence of microbial control. Ironically, a few months later,

Exp. 310 of IODP drilled the tropical coral reefs in the blue lagoons
of Tahiti, providing evidence of up to 30% of microbialites (Camoin
et al.,, 2012).

IODP Exp. 307 unequivocally settled the nature of the recent cold-
water coral carbonate mounds, which clearly contrasts with Carbonifer-
ous mound factories. What however got confirmed from drilling Chal-
lenger Mound off Ireland and coring Alpha Mound off Morocco was
for instance that the aragonite of cold-water coral skeletons indeed
can readily be dissolved (Frank et al., 2010), in particular within a
sulfate-methane transition zone (Wehrmann et al., 2011). Aragonite ei-
ther readily vanishes from such ‘open’ diagenetic systems (Foubert and
Henriet, 2009), or it induces re-precipitation within short reach of the
dissolution zone. James's rhetoric question “where has all the aragonite
gone?” (2005, p. 454), inspired by observations in superficial seabed
sediments, might apply to deep-water coral mounds as well. It is tempt-
ing to speculate that if in a remote future, one or two hundreds of mil-
lions of years from now, petrologists investigate cores from the deeply
buried Porcupine mounds, they might echo Wood (1999, p. 84) in spec-
ulating that “an unrecognized reef framework must have been present”.
With all caution to be taken in an actualistic approach, one might con-
sider that the absence of evidence of aragonite framework elements in
Paleozoic carbonate systems born in aragonite seas might not necessar-
ily be an evidence of absence (Cherns and Wright, 2000).

9. Oceanic control on mound provinces: the uniqueness of the North
Atlantic Mound Basin (NAMB)

What recent cold-water coral mounds and Waulsortian mud
mounds most likely have in common is an external oceanic control on
their setting, which was capable of enhancing the flux of nutrients. In
the absence of photosynthesis, substantial fluxes of nutrients are simply
crucial for feeding deep-water carbonate factories. Stanton et al. (2000)
have convincingly postulated that the Waulsortian mounds of New
Mexico are related to the dynamics of internal waves in a stratified
ocean, which would have caused mixing of an oxygen minimum zone,
rich in organic matter, with better oxygenated waters. The possible con-
trol of a stratified ocean on the distribution of deep water carbonate
mounds calls for an analysis of mound occurrences in function of the
physiography of ocean basins and gateways, in relation to climate
drivers and controls, at relevant times in Earth's history to begin with
the present.

Whenever the state of knowledge of the distribution of cold-water
coral mound provinces in the modern ocean was presented in scientific
forums, over the past ten years, the audience was warned that the
remarkable concentration of mound provinces in the North Atlantic
was an exploration bias, an artifact. Today, it can be considered it is a
fact. The intensive charting of continental margins worldwide in partic-
ular in the framework of the revision of continental shelf boundaries
under the regulation of the United Nations Convention on the Law of
the Sea (UNCLOS), and the exploration for mineral and energy resources
makes it unlikely that major recent, outcropping cold-water coral
mound provinces would have remained unspotted today. This gets con-
firmed for the North-American west coast (C.K. Paull, pers. comm.
2012).

Any speculation about the privileged occurrence of cold-water
coral mounds in the present North Atlantic invites for a reflection on
possible causes and controls. What makes the North Atlantic basin
unique is a highly dynamic stratified structure. A strong subtropical
gyre in the upper water mass, supplied with additional heat from the
South Atlantic, produces relatively dense surface water (Fig. 5), which
can readily cool in the boreal waters to generate a substantial North
Atlantic Deep Water (NADW) that is both cold and relatively saline.
This is not the case in the Pacific. Notwithstanding the presence of
well-developed subpolar gyral circulation in the North Pacific, surface
salinities are significantly lower than in the Atlantic, particularly in the
northern part of the basin, and in addition the North Pacific has
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Fig. 5. A strong subtropical gyre in the upper water mass of the North Atlantic, supplied with additional heat from the South Atlantic, produces relatively dense, saline surface water in the
North Atlantic, which can readily cool in high latitudes to generate a substantial North Atlantic Deep Water (NADW) that is both cold and relatively saline (Fig. 7). Surface salinities are
significantly lower in the North Pacific, which, combined with low sea-surface temperatures, prevents the surface layers from becoming sufficiently dense to sink and form a North Pacific

Deep Water.

Modified after Marshall and Plumb (2008). Background map: copyright by Ron Blakey, Colorado Plateau Geosystems, Arizona, USA.

relatively low sea-surface temperatures. Paradoxically, therefore, in the
North Pacific, a cool sea-surface prevents the surface layers from becom-
ing sufficiently dense to sink and form a North Pacific Deep Water
(Brown et al., 1989a).

In addition, the global circulation driven at its origin by the forma-
tion of North Atlantic Deep Water causes a chemical differentiation
between the Atlantic and Pacific. As the originally nutrient-poor deep
water flows southward in the Atlantic and eastward across the Indian
Ocean to the Pacific, it is steadily enriched in nutrients derived from
the rain of particulate organic matter sinking from the surface and dis-
solved in the deep ocean. The enrichment in total dissolved organic
and inorganic carbon of the waters reaching the Pacific basin and re-
surfacing in upwelling zones impacts on the acidity of the water, and
hence on the dissolution of carbonate. Calcium carbonate will more
readily dissolve in a depth-dependent way in Pacific waters than in
Atlantic waters (Brown et al., 1989b).

Scleractinian corals build their skeletons of aragonite, a metasta-
ble form of calcium carbonate that dissolves at shallower depths than
calcite. The base of the saturated water mass in which scleractinian
mound building corals (Lophelia pertusa, Madrepora oculata, etc.) can
thrive is given by the aragonite saturation horizon (ASH).

The distribution of cold-water coral mound provinces identified
so far in the modern ocean is plotted on a background of ASH depth
in 1995 (Fig. 6a) (Orr et al., 2005; Guinotte et al., 2006). The vast ma-
jority of cold-water coral mound provinces plots in the seabed areas
above a deep ASH (dark blue fields, ASH depth range 1000-2000 m
or more), with a focus on the North Atlantic. Diversity contours for
azooxanthellate scleractinians are added (Cairns, 2007). These contours
confirm that the North Atlantic is a focus of diversity in azooxanthellate
scleractinians in the Atlantic domain, though the highest diversity is still
found in the SW Pacific. Guinotte et al. (2006) reported that the deep-
sea scleractinians found in the North Atlantic are bioherm-forming, ro-
bust and prolific, covering areas several square kilometers. In the Central
to North Pacific, ASH depths largely range between 100 and 400 m
(Fig. 6a, orange to yellow fields). North Pacific scleractinians tend to be
found in solitary colonies and the region is dominated by octocorals
(soft corals, stoloniferans, sea fans, gorgonians, sea pens) which use cal-
cite to build their spicules and skeletons (Cairns and Macintyre, 1992).
The only mound occurrence unequivocally documented on the eastern

North Pacific margin is the siliceous hexactinellid sponge mound prov-
ince in the Queen Charlotte Basin, Canada (Conway et al., 2005).

The virtual absence of large cold-water coral mound provinces in the
North Pacific and other parts of the global ocean hence can be simply ex-
plained by a chemical control on the mound-builders. An interesting ob-
servation in Guinotte et al.'s (2006) modeling of the decrease of
seawater pH and aragonite saturation due to an influx of anthropogenic
CO0, to the atmosphere is the robustness of the North Atlantic ASH de-
pression. In a projection for 2080, the North Atlantic mound provinces
in water depth of 800 to 1000 m depth would still be at the threshold
of aragonite saturation, while the ASH dramatically shallows in other
seas (Fig. 6b). This remarkable robustness possibly argues for a conjunc-
tion of controls acting in concert in the North Atlantic, rather than a
unique one. Fig. 7 illustrates some relevant current patterns in the
North Atlantic Mound Basin. The mound provinces literally girdle the
subtropical gyres. In their vertical distribution, mound provinces tend
to cluster either right above the present-day base of the warm upper
water masses, or just below. A number of observations are summarized
below.

On the American margin of the North Atlantic, where surface waters
reach depths, greater than on the European margin, the mounds of the
Florida-Hatteras slope and Blake Plateau occur in depths from 440 m
to 1300 m and are fully bathed by the Florida current, which merges
with the Gulf Stream, the main component of the North Atlantic Current
(NAC) in that region (Teichert, 1958; Stetson et al., 1962; Neumann
et al., 1977; Reed, 1980; Mullins et al., 1981; Paull et al., 2000; Correa
et al., 2012). The larger mounds described by Mullins et al. (1981)
occur in the lower interval of this surface water layer, between 1000
and 1300 m. Strong benthic currents are reported.

On the north-west European margin, west of Ireland, the mound
provinces in Porcupine Seabight range in depth from 750 to 1050 m
and are bathed by Mediterranean Outflow Water (MOW), which grades
upward into Eastern North Atlantic Water (ENAW) at a depth between
800 and 700 m (White, 2007; Foubert and Henriet, 2009; Wheeler et al.,
2011). Strong internal waves guided by the permanent thermocline
have been reported and modeled in the depth interval of the mounds
(White, 2007), which also coincides with an oxygen minimum zone
(Freiwald, 1998). In Rockall Trough, cold-water coral mounds occur in
a depth range of 600 to 1000 m, within the lower interval of warm
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Fig. 6. a) The distribution of cold-water coral mound provinces identified so far in the modern ocean is plotted on a background of aragonite saturation horizon (ASH) depth (modified after
Guinotte et al,, 2006). The vast majority of cold-water coral mound provinces plots in the seabed areas above a deep ASH (dark blue fields, ASH depth range 1000-2000 m or more), with a
focus on the North Atlantic. Diversity contours for azooxanthellate scleractinians have been added (modified after Cairns, 2007). b) A projection of ASH depth for 2080, modified after
Guinotte et al. (2006), suggests the North Atlantic mound provinces in water depth of 800 to 1000 m depth would still be at the threshold of aragonite saturation, notwithstanding a dra-

matic global rise in the ASH.

and saline ENAW, overlying the cooler Labrador Sea Water (LSW) at
some 1200 m (Mienis et al., 2007). Rockall Channel (Bonnin et al.,
2006) and the Faeroe-Shetland Channel (Van Raaphorst et al., 2001)
are sites of intense mid-slope resuspension by internal waves.

On the north-west African margin, the carbonate mounds on the Pen
Duick Escarpment off Larache occur in water depths of 530 to 580 m, in
North Atlantic Central Water (NACW) containing several nepheloid
layers, and overlying Antarctic Intermediate Water (AAIW) found at a
depth of 600 m (Van Rooij et al., 2011). Further south, an elongated car-
bonate mound range occurs in Mauritanian waters at depths of 450 to
550 m, over a linear extent of at least 190 km (Colman et al., 2005).
Warm and saline Tropical Surface Water (TSW) overlies low salinity
South Atlantic Central Water (SACW) down to 600 m, where a sharp
halocline marks the boundary with fresher AAIW (Stramma and
Schott, 1999; Eisele et al., 2011). The SACW forms an oxygen minimum
layer and is the nutrient-rich source of upwelling water in the region
(Colman et al., 2005).

In the South Atlantic, cold-water coral ecosystems and elongated
patches of deep-water coral mounds have been reported on the slopes
of the Campos Basin, off Brasil, clustering between 570 m and 850 m
within the upper horizons of the AAIW, right below the South Atlantic
Central Water (SACW) (Viana, 1994; Viana et al, 1998). On the
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Patagonian slope off Argentina, cold-water coral mounds occur mainly
between 400 and 1000 m depth, in the basal horizons of the AAIW
which flows in northward direction over the Upper Circumpolar Deep
Water (UCDW) (Mufioz et al., 2012).

The already dynamically stratified North Atlantic basin is further
stirred by oscillations at various frequencies. At the pace of the gla-
cial-interglacial rhythm, shifts of polar fronts force north-south dis-
placements of cold nutrient-rich intermediate waters and surface
productivity (Frank et al., 2011). These shifts stimulate coral growth
on the European margins in interglacial times (Dorschel et al., 2005;
Roberts et al.,, 2006; Riiggeberg et al., 2007), and on the African margins
in the arid times (Wienberg et al., 2010) that coincide with glacial con-
ditions further north. Furthermore, at the pace of the North Atlantic
Oscillations, the upwelling on the north-west African margin can be sig-
nificantly enhanced (NAO + phases, Meincke, 2002).

A general observation is consequently that the deep carbonate
mound provinces seem to closely fringe the roof of the intermediate
to deep water masses of the present, dynamically stratified Atlantic
Ocean. It should however be kept in mind that the large deep-water car-
bonate mounds in the Atlantic may well have been born over 2.5 Ma ago
(IODP Exp. 307, Kano et al., 2007) in a water mass architecture differing
from the present one. On the east Atlantic margin, mound provinces
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Fig. 7. Overview of surface, intermediate and deep water circulation, discussed in the description of the oceanographic setting of some main mound provinces in the North Atlantic Mound
Basin. The mound provinces girdle the North Atlantic subtropical gyre system. On the eastern Atlantic margin, from Galicia Bank to the Shetlands, mound provinces occur in zones of in-
tense mixing through internal waves. The Iberian margin and the African margin till 10°N, south of Dakar, belong to the Eastern Boundary Upwelling Zone.

concentrate in the nutrient-rich, low-oxygen horizons either just above
or just below the base of the surface circulation layer. These horizons are
within the beat zone of internal waves guided along an interface with
significant density contrast (Porcupine-Rockall basins), or in zones of
upwelling. The vast and heterogeneous Eastern Boundary Upwelling
System (EBUS) stretches along the Atlantic margin from the northern
tip of Iberia at 43°N to south of Dakar at about 10°N.

Interestingly, density stratification may also impact on the genesis of
mounds in another way, by a control on the migration pathways of lar-
vae of mound-building metazoans. Dullo et al. (2008) showed the im-
portance of a narrow sea water density envelope for living Lophelia
reefs.

Seen from an energy sourcing and energy processing perspective,
the modern ocean's carbonate world essentially splits in two boundary
layers, one at the top and one at the base of the upper ocean water mass,
in which gyral circulation is forced by atmospheric dynamics. Inciden-
tally, the classic open shelf to ramp cool-water carbonate facies, defined
by Lees and Buller (1972) as “Foramol”, might fit as a transitional facies.

The upper carbonate world directly thrives on light as a main source
of energy: it is the domain of the Photozoan carbonates, confined by
water depth and the penetration of light (James, 1997). In the mechan-
ically stirred lower carbonate world, heterozoan mound-builder guilds
directly forage on fluxes of nutrients, which percolate from the photic
zone as pelagic rain, and/or get generated by in situ benthic processes,
and/or rise from the lower compartment through deep-sourced upwell-
ing, although not all authors concur with this view (Lees and Miller,
1995). While the lower carbonate world appears to be commonly
coupled to a major interface between water masses, it is not confined

11

in space. Deep water mounds can grow in a virtually unconstrained
way, to the dimension of giants. Yet, the subtle functioning of the work-
ing parts that underpins the performance of the mound engine remains
to be elucidated.

Size-wise, Paull et al. (2000) already speculated that the area cov-
ered by the deep-water mounds in the Straits of Florida and inner
Blake Plateau might be greater than their better known shallow coun-
terparts in the region. This statement is certainly valid on the eastern
margin of the North Atlantic. The cool, dark and turbulent carbonate
world of the deep Atlantic might well outclass the restful surface car-
bonate factory, wrapped in warmth and displayed in shimmering
colors.

10. New views on old oceans: a case for a Paleo-Tethys conveyer belt?

A comparison of the present distribution of cold- and warm-water
carbonate factories with some relevant scenery of the past may provide
inspiring clues to the wider perspective on oceanic controls. In a way, a
plot of warm- and cold-water carbonate basins in the modern ocean
would nicely complete the compilation of Fliigel and Kiessling (2002)
for Phanerozoic times, which ends at Time Slice 32, as it would repre-
sent the missing Time Slice 33 (2.5 Ma — present). In coherence with
earlier statements (Section 8), there is a logic to compare the present
basin configuration of deep carbonate mound provinces - Time Slice
33 - with that in the Carboniferous to Permian, as illustrated by
Golonka's (2002) Time Slices 11 to 15 (in Kiessling et al., 2002)
(Fig. 8). Quite a few characteristics of climate and ocean in the Carbon-
iferous already do match Late Cenozoic environmental conditions (sea
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Late Carboniferous
(300 Ma)

Early Carboniferous
(340 Ma)

Fig. 8. (Top) Mound distribution of the Late Carboniferous (Bashkirian-Kasimovian) plotted on a Late Carboniferous (300 Ma) reconstruction. Geographic distribution of biogenic mounds
from Wahlmann (2002). Locality numbers on map refer to following regions: 1. lllinois and Kansas; 2. Arkansas, Oklahoma, Texas, New Mexico, and Arizona; 3. Colorado and Utah; 4.
Canadian Arctic Archipelago; 5. northeast Greenland and Spitzbergen; 6. Timan to Subpolar Urals, Russia; 7. central Urals to Kazakhstan; 8. Guizhou, South China; 9. Serbia; and 10.
Cantabrian Mountains, northern Spain. Paleomap provided by Ron Blakey, NAU Geology. (Bottom) Mound distribution of the Early Carboniferous (Tournaisian-Visean) plotted on an
Early Visean (340 Ma) reconstruction. Geographic distribution of Tournaisian (circles) and Visean (squares) mounds from Webb (2002). Locality numbers on map refer to following re-
gions: 1.Indiana, Kentucky, Tennessee, Missouri, Oklahoma, Arkansas; 2. New Mexico; 3. California; 4. Montana; 5. Alberta, Canada; 6. Great Britain, Ireland; 7. Belgium, Germany, Poland;
8. middle Urals to North Caspian Depression, Russia, northwestern Kazakhstan; 9. Polar Urals, Pechora, Russia; 10. western Algeria and Morocco; 11. Lybia, eastern Algeria; 12. Afghanistan;

13. Guangxi, Guizhou, South China; and 14. New South Wales, Australia.
Background maps: copyright by Ron Blakey, Colorado Plateau Geosystems, Arizona, USA.

level, CO, concentration, carbonate saturation trend, high amplitude eu-
static sea-level changes driven by the waxing and waning of continental
ice sheets), so, what about the ocean basins? In Carboniferous to Perm-
ian times, the great tropical oceanic basin of the Paleo-Tethys devel-
oped, recessed within the continent of Pangaea to the west, which in
many aspects evokes the western Atlantic Ocean margin, and girdled
by a string of micro-continents to the east. This string remarkably mir-
rors the present Indonesian archipelago, a gateway between Pacific
and Indian Ocean circulations. Between Gondwana and the Avalonia—
Baltica assembly, the Rheic Ocean narrowed. High to the northeast, be-
tween Laurentia-Baltica and Siberia, the Ural Seaway connected to
high-latitude seas. In a way, the Carboniferous Paleo-Tethys resembles
in its confines a compound Atlantic-Indian Ocean system. Fig. 8 (top)
and (bottom) represent the distribution of major reef provinces respec-
tively in the Late Devonian to Early Carboniferous and in the Upper Car-
boniferous. Fig. 8 (top) shows Famennian to Serphukovian reefs
projected on a Visean paleogeography (340 Ma, Webb, 2002). Fig. 8

12

(bottom) shows Bashkirian to Kasimovian reefs projected on a paleoge-
ography at the end of the Carboniferous (300 Ma, Wahlmann, 2002).

Not only the configurations of the Atlantic and Paleo-Tethys do-
mains present some remarkable common traits, but also the history of
both oceans shows interesting parallelisms. As the Panamian Gap closed
some 5 Ma ago, separating the Atlantic and Pacific oceans, the intensifi-
cation of the Gulf Stream may have triggered the glaciations of the
northern hemisphere, about 2.7 Ma ago. The encroaching of the Armor-
ican and Iberian assembly on the Rheic Ocean floor in the Early Carbon-
iferous, which finally closed and separated the last realms of the Rheic
Seaway from the widening Paleo-Tethys Ocean, may have triggered
the onset of the large Gondwana glaciation, in the Serphukovian
(330 Ma) (Salzmann, 2003; Roscher and Schneider, 2006).

As the Rheic seaway closed in the equatorial realm, warm surface
waters of the Paleo-Tethys engulfed in the northern seaway. It is tempt-
ing to speculate that an underflow of boreal waters could have cascaded
in return in the Paleo-Tethys, as happens in the northern Atlantic today,
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potentially giving rise to water mass differentiation and the develop-
ment of a conveyer belt, mirroring recent Atlantic and global conditions.
On the margins of this seaway, cold water carbonates developed, from
the Canadian Arctic, North Greenland and Svalbard-Barents Sea regions
(Beauchamp and Desrochers, 1997; Stemmerik, 1997; Colpaert, 2007;
Colpaert et al., 2007) over the Ural foredeep, down to the Pre-Caspian
basin. The basal sequences of the giant Karachaganak carbonate build-
up of northern Kazakhstan, one of the world's largest gas condensate
reservoirs (Elliott et al., 1998), developed in the Visean to Serpukhovian
on the margin of this boreal seaway. The intensification of continental
glaciations from the Serpukhovian onwards would have resulted in a
change in ramp geometry (Read, 1998). This impact argues for
basinwide changes in ocean circulation, from the surface to the depths
of the Paleo-Tethys, paced by the waxing and the waning of the ice
sheets. The Paleo-Tethys mirrors the bi-polar control on deep waters
of the Atlantic, with sources of cold bottom waters both in the north
and the south. The upper sequences of the Karachaganak build-up de-
veloped in Permian times (Elliott et al., 1998), when the Ural seaway
started to close and the boreal waters got covered by sea ice. High-
latitude warm surface water deposition of carbonate in the Carbonifer-
ous and Early Permian gradually shifted to cool- and cold-water de-
posits in the Late Permian. Beauchamp and Baud (2002) hypothesized
a thermohaline circulation and upwelling on the western margin of
Laurentia-Baltica in the Panthalassa domain, leading to a shift to
biosiliceous deposition, the Permian Chert Event. This circulation came
to termination at the end of Permian times. James et al. (2009) docu-
mented three discrete periods of Permian deglaciation (Late Sakmarian,
late Arkinsian and Wordian) in a Permian high-latitude, subpolar car-
bonate depositional realm in Queensland, Australia, and demonstrated
a strong parallelism with coeval high-latitude carbonate deposition in
the northern hemisphere.

The point made here is that, besides well-documented and vast car-
bonate factories in low-latitude, warm-water and shallow seas, both in
the Carboniferous Paleo-Tethys and the modern Atlantic, giant mounds
may have thrived in deeper waters of a compartmentalized ocean. In
the Paleo-Tethys, mixing processes must have occurred at the boundary
between an upper water mass, stirred by strong subtropical gyres, and
deep water masses featuring a thermohaline circulation driven by gla-
cial dynamics, as is the case in the Atlantic. Independently, investigators
of Early Carboniferous (Stanton et al., 2000) and of Quaternary mounds
(White, 2007) have inferred that internal waves guided by ocean strat-
ification could have enhanced such mixing processes, thus acting as a
possible control on deep mound genesis.

If deep mounds and their adjacent sediments do offer a window on
deep water dynamics, vast opportunities open for integrated, large-
scale comparative studies and modeling, where academic and industrial
research can meet. The deepening insights acquired in the coupled
ocean/climate dynamics of the modern ocean may soon, when
confronted with the vast data base of industrial research on the Paleo-
Tethys margins, elucidate some fundamental keys to deep-water car-
bonate factories. Revisiting the world of Paleo-Tethys deep-water
mounds may significantly boost insights in the complex and fascinating
world of a hitherto poorly documented Paleozoic deep circulation sys-
tem, and possibly shed light on a great Carboniferous Conveyer Belt.

11. From the ocean basin scale to the regional scale: the role of em-
bayments, banks and gateways

The Waulsortian mound population and the recent mound distribu-
tion display each a remarkable singularity or ‘hotspot’. Krause et al.
(2004) tentatively quantified the Waulsortian mounds of the Shannon
Basin, where the total thickness of the Waulsortian Mound Complex
reaches more than 900 m, and the Midland-Dublin Basin, with a thick-
ness of more than 500 m. Counts ranged between 2.300 (1 km? grid
cell) and 21.000 (0.33 km? cell size). Counts of recent giant mounds
from the multibeam coverage of the Irish Seabed Survey (Dorschel
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et al.,, 2010) and from 3D seismic data volumes in Porcupine Basin
(Huvenne et al.,, 2007) yielded a similar range. Lees and Miller (1995)
showed how the mounds in the Shannon and Midland-Dublin Basins
appear to have formed offshore in the deeper water of an approximately
200 km wide and 300 km deep embayment, a size strikingly similar to
Porcupine Seabight. A comparative modeling of the energy enhance-
ment through trapping and resonance of internal waves in such basin
geometries may yield interesting insights.

This observation highlights the importance of regional paleo-topog-
raphy, in particular where internal waves may play a role in mixing pro-
cesses. Embayments such as the Shannon and Midland-Dublin Basin
and Porcupine Seabight, banks such as Little Bahama Bank, Rockall
Bank, Porcupine Bank and Galicia Bank, and straits such as Florida Strait,
the Rifian Corridor, the Betic Corridor and Rockall Basin prove privileged
sites for mound growth.

12. Mounds as paleo-environmental recorders

Man's capacity to read the record of deep-water mounds in terms of
water mass properties has impressively progressed in recent years.
Paleo-environmental research boosted by hundreds of oceanic cruises
and vast programs of ocean coring and drilling, paralleled by ice coring,
has turned a crucible for a wealth of new proxy tools, which help to bet-
ter constrain paleo-temperatures, paleo-density, paleo-salinity and
paleo-pH. New tracers allow tracking circulation patterns, and this op-
portunity no doubt amplifies with recent programs like GEOTRACES,
aiming to improve the understanding of biogeochemical cycles and
large-scale distribution of trace elements and their isotopes in the ma-
rine environment. Very-high resolution seismic reflection profiles re-
veal the dynamic nature of the mound environment, frequently
consisting of contouritic deposits (Van Rooij et al.,, 2003, 2009).
Nepheloid plumes of particles and nutrients re-mobilized by impacting
internal waves or transported from river sources are imaged in the
modern ocean, and their signals identified in the mound record. The
challenge is now to proceed from these new insights and tools, devel-
oped in the modern ocean, to deeper time, in a stepwise mode, allowing
a close control on levels of uncertainty. The challenge is grand, as the
track follows an evolutionary tree of Life, and physico-chemical process-
es of diagenesis may have blurred original signals. Promising analyses
have already been made on Lower Mississippian rocks (Stanton et al.,
2000, 2002). New tools have however been developed, including mo-
lecular ones, which increase the power of paleo-environmental analysis.
Clumped-isotopes (isotopologues of CO,) provide a powerful tool in
reconstructing temperatures of carbonate precipitation, potentially
deep in Paleozoic times (Eiler, 2011), as long as the message has not
been blurred by diagenetic processes, in particular dolomitization.

The coring of Challenger Mound in Porcupine Seabight with a recov-
ery rate close to 100% in IODP Exp. 307 and the analysis of the core re-
cord at centimeter-scale resolution has revealed the temporal pattern
of sedimentation, including astronomic controls (Foubert and Henriet,
2009). A minute analysis of ice-rafted debris has shed light on a stun-
ning record of all glacial advances on the Irish mainland. Where the gla-
cial record on land did not extend further than the two last episodes, all
earlier traces having been erased by subsequent ice sheets, the deep-
water mound succession faithfully recorded all ice rafting phases and
allowed back-tracking the origin of the sediment load (Thierens et al.,
2012).

The record of paleoenvironment in carbonate mounds may however
be interrupted by significant hiatus, ranging from 0.6 Myr in Challenger
Mound (from 1.67 to 1.03 Ma, Kano et al., 2007) to at least 33 Myr in the
Karachaganak carbonate buildup (Elliott et al., 1998). The latter gap
spans the whole Late Carboniferous between Late Serpukhovian and
the beginning of the Asselian (Lower Permian). If mound-building is
linked to processes bound to an interface between water masses, it is
tempting to read such major gaps as the expression of significant shifts
in water masses, unless bound to a change in water chemistry
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stratification (ASH depth) which impacted on mound-builders. By the
same token, the rebound of mound growth after such major gaps can
form an eloquent demonstration of the resilience of giant carbonate
mounds, when a suitable architecture of controlling water masses
and/or chemical stratification is restored.

Fossil mounds have so far largely been sampled in a fragmentary
way, on occasional outcrops, on quarry faces and in industrial wells.
The successful practice of continuous coring and high-resolution
sampling, generalized in modern mound research in the marine envi-
ronment, calls for extension to fossil mounds on continents, with com-
parable analytical protocols wherever applicable, to fully exploit the
power of comparative studies.

13. Mounds at the cross-roads of external and internal fluxes of mat-
ter and energy

Upwelling is not a sufficient explanation for mound growth, as it
functions at a scale that should promote broadly distributed carbonate
production, rather than growth of individual mounds (Lees and Miller,
1995; Stanton et al., 2000). Upwelling may be a means to increase re-
gional phytoplankton productivity, but it is not clear how it can be fo-
cused to cause microbial carbonate mud production at the local scale
and at rates vastly greater than on the adjacent sea floor.

A similar caveat could be stated about internal waves, and in the
modern ocean, about the distribution of the main metazoan mound
builders, cold-water corals. All of these controls occur and operate at
scales, difficultly matching the focused occurrence of clusters of giant
mounds. Deep-water mounds typically are clustered in provinces,
razor-sharply delineated from the adjacent seafloor (Fig. 9). On the
European margin, a targeted search for mound provinces between
Porcupine Seabight and the Gulf of Cadiz, systematically screening for-
merly prolific occurrences of cold-water corals (Le Danois, 1948),
proved so far unsuccessful. Only some isolated mounds were spotted
on the slopes of Galicia Bank. Yet, Mediterranean Outflow Water flows
all along those margins (Hernandez-Molina et al., 2011), cold-water
corals are ubiquitous (Reveillaud et al., 2008) and internal waves have
been documented at a vast scale in the Gulf of Biscay (New, 1987).

External controls are consequently not a sufficient explanation for
mound occurrences and mound growth. From the beginning of the
vast European research on deep-water carbonate mounds initiated in
the late nineties, a balanced attention has been paid to both potential
external and internal controls, to external fluxes of energy as well as
to internal, sub-seafloor fluid flow. The latter interest arose in parallel
with the emerging research on the sub-seafloor hydrosphere and the
deep biosphere. The results of this research could make the object of

another overview paper, but they can be summarized for the present
purpose in a few statements.

First, prior to burial, a positive relief on the seafloor of any size, from
a small hummock or ripple to a giant mound, is the seat of convective
transport, coupled to the bottom currents. The coupling of surface
(Navier-Stokes) and sub-surface (Darcy) flow across an interface such
as a river bed or a rippled sediment surface is already well studied,
both theoretically and experimentally (Thibodeaux and Boyle, 1987).
It rules for instance pollutant transport, oxygen and nutrient fluxes
across the seabed. In mounds, such transport is an important factor of
early diagenesis. Pirlet et al. (2010) demonstrated that a bottom
current-induced convective flow of oxidizing fluids in the shallow sub-
surface of a mound led to the formation of authigenic gypsum and to an
early lithification of sediments close to the sediment-water interface.
Modeling of full-mound flushing by Depreiter (2009) can explain the
observed removal of a significant carbonate fraction, mainly aragonite,
from recent mounds. Such process underpins the vision of mounds as
open diagenetic systems, prior to burial (Foubert and Henriet, 2009).

Second, where giant carbonate mound provinces occur, surface
expressions of deep-sourced, advective fluxes of geofluids have been
repeatedly reported, in proximal or in remote position, including pock-
mark fields (Porcupine Seabight, Van Rensbergen et al., 2007), mud vol-
canoes (Alboran Sea, Comas et al., 2009; Gulf of Cadiz, Van Rensbergen
et al., 2005), sulfate-methane transition zones, both within a mound
(Alpha Mound, Pen Duick Escarpment, Morocco, Maignien et al.,
2010) and below a mound (Challenger Mound, IODP Exp. 307, Frank
et al.,, 2010). In the latter setting, advanced basin modeling shows how
deep fluids can migrate along stratigraphic pathways, to surface in the
Belgica Mound province where Challenger Mound was drilled (Naeth
et al., 2007). The Mauritanian mounds occur in basins of active hydro-
carbon exploitation (Colman et al., 2005), and commercial or non-
commercial hydrocarbon accumulations have been reported below
the mound provinces off Larache and off Melilla. In the fossil record, as-
sociations of mounds and internal, quasi-contemporaneous fluid flow
have also been documented, and the proposed Heritage Route in
Morocco features some outstanding examples (Belka, 1998; Mounji
et al., 1998; Peckmann et al., 1999; Belka and Berkowski, 2005;
Peckmann et al., 2005; Cavalazzi et al., 2007).

In none of the recent mounds cored so far, however, neither on the
Irish margin nor on the Morocco margin, a direct control of methane
on the mound build-up process itself could be conclusively proven.
The role of internal fluid flow in giant mounds seems to be subtle, acting
more on diagenesis than on genesis. A three-phase model has been pro-
posed for the development of mounds on the Moroccan margin,
comprising coral colonization, sediment baffling and fluid seepage af-
fecting the initial structures by diagenetic processes, resulting in cold-

Fig. 9. Rockall Bank Mound Province (Mienis et al., 2006).
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water coral dissolution and carbonate precipitation (Foubert et al.,
2008; Foubert and Henriet, 2009). The Alpha Mound on Pen Duick
Escarpment, featuring a shallow zone of anoxic oxidation of methane
(AOM) (Maignien et al., 2010), comprises up to 40% of microbial dolo-
mite (Templer et al.,, 2011; Wehrmann et al., 2011; Pirlet et al., 2012).

An interesting experiment would be to drill a sequence of mounds
from exposed ones to recently buried ones, to track in particular the dia-
genetic expression of the switch from open diagenetic system (the
“mound flushing” stage of exposed mounds) to encapsulation, both in
a proven pathway of advecting fluids (Melilla mound province, Alboran
Sea, Morocco, Comas et al., 2009) and in a setting, possibly not affected
by migrating fluids (Magellan — Perseverance mound suite, Porcupine
Seabight, Huvenne et al., 2007; Pirlet et al,, 2010).

What can be stated so far from observations both in Porcupine
Seabight and on the Atlantic and Mediterranean Moroccan margins, is
that major mound provinces seem to concentrate at the crossroads of
fluxes of energy of oceanic and of deep subsurface origin (Van Rooij
etal, 2011).

14. Morocco: a room with a view

The confrontation of observations and insights between researchers
of the modern carbonate systems and those of the fossil record calls for a
common forum and stage, a broadband field laboratory, which can be
turned into a meeting place and reference site. A most remarkable and
accessible spectrum of carbonate factories, which strikingly illustrate
the successive phases of rise and demise of carbonate mounds over
the total span of Phanerozoic times, is offered in Morocco.

Morocco indeed occupied repeatedly through Phanerozoic times a
privileged position, a room with a view on key oceanic basins and gate-
ways, where major reef and mound provinces developed. Meanwhile, it
migrated through all climatic belts from boreal waters, across the equa-
tor to its present latitude (Fig. 10). From Cambrian to Ordovician times
(500 to 480 Ma), when the huge island archipelago Avalonia was
wrenched away from the edge of the Gondwana megacontinent, until

Carboniferous

Fig. 11. Detail of the dual Miocene gateway between the Atlantic and the Mediterranean,
comprising the Betic Corridor and the Rifian Corridor. Map modified after Benson et al.
(1991). Tortonian mound locations (blue dots) after Perrin and Bosellini (2012). The
drill sites of IODP Exp. 339 (Mediterranean Outflow) (green dots) document the environ-
mental significance of the Mediterranean Outflow Water and its global implications.

deep in the Devonian, Morocco was located on the high-latitude, south-
ern margin of the Rheic Ocean. In the continued wrenching of the Gond-
wana margin, Morocco eventually lost the Meguma Terrane, which
around 350 Ma in the Early Carboniferous collided with the Avalonia
margin of Laurentia to form the present submarine Scotian Bank, next
to Grand Bank of Newfoundland (Redfern, 2000). In the Carboniferous,
the Moroccan margin of Gondwana kept facing the eastern section of
the moribund Rheic seaway, which definitively would close when the
Armorican and Iberian assembly east of Morocco encroached on the

1Fig. 11

Fig. 10. Preliminary outline of a proposed mound Heritage Route in Morocco. The route segment circling the High Atlas encompasses outstanding examples of Paleozoic to Mesozoic
mound sites. The route segment centered on Gibraltar encompasses the Miocene Rifian and Betic Corridors, flanked by the offshore Pen Duick and Melilla mound sites, focus of oceano-

graphic research (detail on Fig. 11).

Paleomaps: copyright by Ron Blakey, Colorado Plateau Geosystems, Arizona, USA. Morocco background satellite image: copyright Geology.com.
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Rheic Ocean floor to finally dock with Laurentia-Baltica, in the great
continental collision known as the Variscan orogeny (350 to 286 Ma).

The Jurassic mounds of the High Atlas interestingly document the
switch from Tethyan to Atlantic influence between Early and Mid
Jurassic, after Morocco and Nova Scotia had started to drift apart. The re-
cent mounds off Melilla in the Alboran Sea and off Larache on the Atlan-
tic margin stand as sentinels on either side of the Rifian corridor
(Fig. 11), which together with the Betic corridor in the north formed
the gateways between Mediterranean and Atlantic, prior to the onset
of the Messinian event. The Rifian corridor hosts a variety of Tortonian
(Late Miocene) coral reefs (Perrin, 2002; Perrin and Bosellini, 2012).
As to the present Gibraltar Strait, it is a hotspot of cold-water coral eco-
systems (Alvarez-Pérez et al., 2005).

15. The Moroccan Mound Heritage Route

The October 2011 COCARDE workshop in Rabat and the subsequent
field seminar in the High Atlas and Eastern Anti-Atlas surveyed signifi-
cant sections of a mound route, which — when properly documented -
may qualify for a UNESCO recognition as World Heritage. The UNESCO
World Heritage Convention indeed allows the recognition and pres-
ervation of outstanding examples representing major stages of Earth's
history, including the record of Life, significant on-going geological
processes in the development of landforms, and significant geomor-
phic and physiographic features (UNESCO, 2008). The Jurassic Coast
of Dorset and East Devon is an example of a carbonate factory already
recognized as UNESCO World Heritage Site (Brunsden, 2003), and
the application of the Danish Stevns Klint Danian bryozoan mound
site (Dambholt and Surlyk, 2012) is under evaluation.

Fig. 10 shows an initial concept. A southern circuit circling the High
Atlas and the Eastern Anti-Atlas massives between the valleys of the Ziz
and the Draa comprises the interesting stromatolite series of the earliest
Phanerozoic times in the Draa valley, the small but intriguing mounds
of the glacial world of the Upper Ordovician of Eastern Maider north
of Alnif (Hamoumi, 1999), a Silurian cold-seep mound of the Meseta
domain between Mrirt and Azrou in the Middle Atlas (Barbieri et al.,
2004), the famous Early Devonian Kess Kess mounds of the Hamar
Laghdad Ridge in the Eastern Anti-Atlas (Fig. 12; Brachert et al., 1992;
Belka, 1998; Aitken et al., 2002) and the exhumed underwater scenery
of the Visean mounds with Waulsortian facies of the Zrigat Range
(Fig. 13; Wendt et al., 2001), between the giant dunes of Erg Chebbi
east of Merzouga and the Algerian border. Where the route further fol-
lows the gorge of the Ziz between Errachidia and Midelt, mound

o

sequences of the Tethys realm from Early Jurassic (Sinemurian) and
mounds of Atlantic signature from Mid Jurassic (Bajocian) are exposed
in a spectacular way (Ait Addi, 1998; Neuweiler et al., 2001; Chafiki
et al., 2004). North of Fez, the route crosses the former Rifian corridor
with its Miocene reefs. In an appropriate setting, a visitor's center
could further evoke the two major mound provinces that form the
focus of modern mound research on the Moroccan margins: the Pen
Duick Escarpment mounds off Larache on the Atlantic margin, and the
Melilla mound province in the Alboran Sea, the region that possibly
gave birth to the name “reef”. This northern sector exemplifies mound
development and environmental controls in the recent (Neogene-
Quaternary) ocean.

A Moroccan mound route offers an attractive added value of cul-
tural and societal relevance. It extends the routes of the Almoravides
and the Almohades in Andalusia, identified as Grand Cultural Itinerary
of the Council of Europe, across Gibraltar, to the imperial cities of
Fez and Marrakech, which already enjoy the status of UNESCO World
Heritage. Where the route branches through the High Atlas between
Midelt and Errachidia, it follows the narrow gorge of the Ziz that
was the umbilicus between the Al Andalus world and Sijilmasa, the
legendary caravanserail that for centuries acted as the turn-table
of the Saharan trade routes of gold and slaves. The Tafilalt region,
where the most spectacular Paleozoic mound provinces are found,
is a true little Mesopotamia, cradle of the Alaouite dynasty. A vintage
“Route Royale des Monts Carbonatés du Maroc”, as introduced in the
COCARDE 2011 Workshop in Rabat, can take shape.

16. Epilogue

In the mid-nineteenth century, an iconic cruise - the voyage of the
Beagle - sparked the first comparisons between modern warm-water
coral reefs and possible examples from the fossil record. Shortly after
the publication in 1878 of the French translation of Charles Darwin's
“The Structure and Distribution of Coral Reefs”, Eduard Dupont (1881)
highlighted the analogy between the Keeling Atoll, described in detail
by Darwin, and the Devonian “Atoll of Roly” in South Belgium, some
hundred years later to be described as mud mounds by Monty et al.
(1982). By those years, the technique of microscopical petrography,
pioneered by Henry Clifton Sorby in Scotland (1858), had spread over
the continent to develop soon into a powerful geological tool for reef
research, adding to paleontology. For over a century, the study of car-
bonate rocks could thus largely build upon concepts of microfacies

it o

Fig. 12. The Devonian “Kess Kess” mounds of the Hamar Laghdad, Tafilalt, Morocco (picture: J.P. Henriet). They reach up to 30 m high.
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Fig. 13. The Carboniferous “Waulsortian” mounds of the Zigrat range, Tafilalt, Morocco, some 30 m high.
(Picture: A. Riiggeberg).

and microfabric, applied in various carbonate classification schemes
(Wilson, 1975; Fliigel, 2004).

Again a century after Dupont's (1881) paper, Mullins et al. (1981)
described modern deep-water coral mounds north of Little Bahama
Bank, and spurred comparison with deep-water coral bioherms in the
fossil record. When Hovland et al. (1994) reported deep carbonate
build-ups west of Ireland, the vast momentum of Europ
ean research that followed has contributed to clarify the environmental
setting of this important deep carbonate factory. Once again, ocean
exploration meets rock science. In the meantime however, new tech-
niques have emerged to boost our insight in both modern and an-
cient carbonate systems. In modern ocean research, the power and
resolution of acoustic and 3D seismic imaging from the seabed to
the deep subsurface, combined with advances in physical and chem-
ical oceanography and state-of-the-art ocean drilling, shed a new
light on the setting of these deep-water carbonate factories. At the
analytical level, isotopic and molecular techniques, rock imaging
beyond the micrometer scale and ex-situ experimentation in contin-
uous high-pressure bioreactors have dramatically developed our ca-
pacity to characterize the physical and chemical controls, processes,
products and fate of the carbonate factory — modern carbonate
research has definitively moved into multi-disciplinarity. No single
proxy allows uniquely reconstructing paleo-bathymetry, -density,
-temperature or -salinity, paleo-productivity or paleo-circulation.
Combining multi-scale imaging with fingerprinting through multi-
ple proxies and tracers provides the keys, and dedicated protocols
will control their portability into deep time.

There is however one fundamental difference of the present move,
compared to the comparative studies initiated in the nineteenth centu-
ry. Today's convergence of visions “from the ocean” and “from the rock”
is a balanced, two-way track.

* The new insights in modern deep-water carbonate systems, and the
perspective to even move to large-scale experimentation in real-
world oceanic field laboratories, offer to carbonate scientists new
views on old mounds. Mounds are giant biogeochemical reactors,
turning energy into geology. In terms of energy sourcing and process-
ing, the carbonate world parts into two worlds: a surface world, tight-
ly coupled to light as energy source, and a deep world, where the
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fluxes of nutrients are to a significant extent controlled by the dynam-
ics at the boundary between the upper water masses and the lower,
thermohaline circulation cell. This subdivision largely meets James's
(1997) classification into a photozoan and a heterozoan world, in
terms of key players, however revised in depth, the heterozoan car-
bonate factory extending to much deeper reaches than previously
ever considered.

» The new insights in the coupling between deep-water mounds and
water mass boundaries can offer to ocean scientists new views on
old oceans, in particular on the stratification and compartmentaliza-
tion of past oceans into upper masses, driven by atmospheric circula-
tion, and deeper water masses, driven by thermohaline circulation.

Ocean Mound

dynamics controls

Recent North Atlantic “ Atlantic
Mound Basin Mound Lab

M ing H ge

Past Palaeo-Tethys Ancient

Mound Basin Mounds

Fig. 14. Mound research will progress through comparative studies between mound ba-
sins and provinces in the modern ocean - true experimental laboratories offering full
access to environmental controls - and mound basins in targeted time slices in deep
time. A prime step ahead is the comparison between the deep mound factories of the
North Atlantic, increasingly documented by ocean coring and drilling, and those of the
Paleo-Tethys, commonly of industrial interest. Strategic mound routes will provide the
forum for the confrontation of ideas and concepts between academic and industrial com-
munities, between the science of the ocean and the science of the rocks. Modeling of the
dynamics of past oceans, constrained by the mound record and advanced oceanographic
research, may shed light on past scenarios of thermohaline circulation, and enhance op-
portunities to assess the fate of the present global circulation.
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Reversely, this exercise can spur new views on the present ocean: the
identification of the North Atlantic Mound Basin as an individualized
entity can further foster an integrated, cross-Atlantic and targeted re-
search program on both American and Euro/African margins, with
well-coordinated drilling initiatives.

The exchange of ideas within such an expanding, multi-disciplinary
community and in the developing project architecture will take benefit
of an accessible continental field laboratory, offering to mixed parties of
ocean and rock scientists a diversity of inspiring case studies (Fig. 14).
The mound route that develops in Morocco may serve this objective,
as a forum for discussions and as a reference site for academic and in-
dustrial training and research.

The completion of the scientific documentation of this route,
which should include scientific drilling and high-resolution study
meeting current standards of ocean drilling research, will leverage
local academic development and capacity building. A visitor's center
in the Tafilalt, covering both the natural and cultural richness of this
fascinating region, would fill a major gap. The renaissance of the Al
Andalus heritage in South Spain, which has enjoyed in recent de-
cades active support from the EU, has generated high quality out-
reach material about the Almoravides and Almohades world,
readily available for add-on valorization in the Tafilalt. The “Route
Royale des Monts Carbonatés du Maroc” will serve science and soci-
ety, equally.
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