
1. Introduction

In recent years, growing research attention has been devoted 

to electronic transport in nanoscale systems with potential 

technological applications. In addition to the experimental 

work in this area, intense effort has gone into the development 

of efficient computational methods. Those proposed so far fall 

into two broad classes: methods investigating the evolution 

of electronic charge density in a system perturbed by a time-

dependent potential [1–6], and methods calculating the cur-

rent balance in a steady-state system [1, 7–17]. The latter are 

conceptually simpler and computationally much less demand-

ing than the former. One of the most efficient of these steady-

state approaches is SMEAGOL [16, 17], which combines the 

non-equilibrium Green's function formalism (NEGF) [18–21] 

with density functional theory (DFT) [22, 23], as implemented 

in SIESTA [24]. SMEAGOL owes its efficiency largely to its 

algorithm for calculating the surface Green's functions of the 

leads through which currents enter and leave the system; this 

algorithm combines generalized singular value decomposi-

tion with decimation, and avoids the well-known problems 

of recursive methods [18]. Also, SMEAGOL's extensively 

parallel architecture facilitates large-scale simulation of elec-

tronically complex atomic and molecular systems. Systems 

to which it has been applied include parallel-plate capacitors, 

gold nanowires, molecular spin valves, Ni point contacts, H2 

molecules between platinum electrodes and carbon-based 

nanostructures [16, 25–37].

A family of systems that continue to attract intense 

research on their electronic properties is that composed of 

graphene and its derivatives [38, 39]. Graphene nanoribbons 

constitute an important subfamily because of properties due to 

Spin-dependent electronic conduction 
along zigzag graphene nanoribbons bearing 
adsorbed Ni and Fe nanostructures

A García-Fuente1,2, L J Gallego3 and A Vega1

1 Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, E-47011 Valladolid, Spain
2 Department of Chemistry, University of Fribourg, CH-1700 Fribourg, Switzerland
3 Departamento de Física de la Materia Condensada, Facultad de Física, Universidad de Santiago de 

Compostela, E-15782 Santiago de Compostela, Spain

E-mail:  avega@fta.uva.es

Abstract
Using SMEAGOL, an ab initio computational method that combines the non-equilibrium 

Green's function formalism with density-functional theory, we calculated spin-specific 

electronic conduction in systems consisting of single Fen and Nin nanostructures (n = 1−4) 

adsorbed on a hydrogen-passivated zigzag graphene nanoribbon. For each cluster we 

considered both ferromagnetically and antiferromagnetically coupled ribbon edges  

(Ferro-F and Ferro-A systems, respectively). Adstructures located laterally on Ferro-A 

ribbons caused significant transmittance loss at energies 0.6–0.25 eV below the Fermi level 

for one spin and 0.2–0.4 eV above the Fermi level for the other, allowing the potential use of 

these systems in transistors to create a moderately spin-polarized current of one or the other 

sign depending on the gate voltage. Ni3 and Ni4 clusters located at the centre of Ferro-F 

ribbons exhibited a strong spin-filtering effect in a narrow energy window around the  

Fermi level.

Keywords: density functional theory (DFT), electronic transport, spin filtering

1

Published in 
which should be cited to refer to this work.

ht
tp

://
do

c.
re

ro
.c

h
CORE Metadata, citation and similar papers at core.ac.uk

Provided by RERO DOC Digital Library

https://core.ac.uk/display/43658681?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


the existence of their edges. In particular, special attention has 

been afforded to hydrogen-passivated zigzag graphene nanor-

ibbons (ZGNRs), i.e. ZGNRs with hydrogen atoms bound to 

the carbons at their edges. In these nanoribbons all the edge 

carbons on the same edge have the same magnetic moment. 

The Ferro-F form, in which the moments on the two edges are 

the same, is metallic, while the Ferro-A form, in which the 

edges have opposite moments, is semiconducting [40]. The 

Ferro-F form is marginally the less stable because in this con-

figuration antiferromagnetic coupling between nearest neigh-

bors is frustrated at the center of the ribbon.

Several recent studies have shown that the properties of 

ZGNRs are modified in potentially useful ways by adsorption 

of adstructures such as organic magnets [41], atoms or small 

clusters of transition metals (TMs) [42–49] (see also [50, 51] 

and references therein). However, such studies have generally 

modeled the modified ZGNR as an infinite periodic system, 

and their results may therefore not be valid for the correspond-

ing finite structures, at least as regards electronic transport. 

As far as we know, scattering in a finite TM-modified ZGNR 

segment has only been studied in a few cases, including single 

Ni atoms adsorbed at lateral sites on a Ferro-F ribbon [52] 

and single Co atoms adsorbed at central or lateral sites on a 

Ferro-A ribbon [53]. In both these cases spin-selective depres-

sion of transmittance was observed at certain energies (in the 

latter case more markedly with Co at lateral sites, where it 

binds more strongly). In the case of Ni, however, these ener-

gies were too far from the Fermi level for spin-polarized elec-

tron transport at low bias.

In view of the above findings with single Ni and Co atoms, 

we decided to investigate whether more pronounced or more 

exploitable effects might result from the use of small clus-

ters of ferromagnetic elements instead of single atoms, since 

the total magnetic moments of such clusters are considerably 

larger than those of single adatoms when all the atoms in the 

cluster have similarly oriented spins. An additional reason for 

investigating the transport-modulating effects of clusters was 

that, in regard to their preparation, ZGNRs bearing clusters are 

more feasible and stable than ZGNRs bearing single atoms. 

In the work described here we used SMEAGOL to investigate 

electronic transport in hydrogen-passivated ZGNRs bearing 

isolated Fen or Nin(n = 1−4), i.e. in systems in which a finite 

ZGNR segment bearing a single adstructure was sandwiched 

between two semi-infinite ZGNR leads. Calculations with 

Figure 1. Schematic representations of the system used for electronic transport calculations (upper panel), and of the locations of the relaxed 
Fen and Nin adstructures (n = 1−4) on the hydrogen-passivated 10-ZGNR (lower panels, with lateral views included).
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single Fe or Ni adatoms were included for comparison with 

the larger clusters and with the results of Rigo et al [52]. Since 

our aim was to explore the possibilities of clusters rather than 

to carry out an exhaustive analysis, and given the heavy com-

putational burden of these calculations, we did not perform 

calculations for all possible cluster configurations at all pos-

sible adsorption sites, but instead concentrated on lateral sites 

(where the adstructures bind more strongly) and configurations 

obtained in previous work [42, 44]. However, we did consider 

central adsorption sites for Ni3 and Ni4, and we systematically 

investigated adsorption on both the Ferro-A and Ferro-F forms 

of the ZGNR. Computational details are briefly described in 

section 2, our results are presented and discussed in section 3, 

and our main conclusions are summarized in section 4.

2. Method

We considered systems consisting of an Fen or Nin cluster 

(n  =  1  −  4) borne by a hydrogen-passivated 10-ZGNR, i.e. 

a ZGNR ten zigzag C chains wide (figure 1). The specific 

adsorption sites and initial cluster configurations considered 

(the lower panel of figure 1 shows the corresponding relaxed 

configurations) were selected from among the sites considered 

and configurations obtained by Longo et al [42, 44] for infi-

nite periodic Fen/ZGNR and Nin/ZGNR systems. Apart from 

the single-adatom system Ni/ZGNR, the selected systems were 

not chosen as being likely to relax to ground-state structures, 

but probably do lead to metastable forms in which the system 

might be trapped under favorable experimental conditions: as 

noted above, most of the adsorption sites considered are in the 

lateral region, where TM atoms generally bind most strongly 

to ZGNRs [42, 44]. Calculations were in each case performed 

with the ZGNR initially in both Ferro-A and Ferro-F configura-

tions; in what follows the magnetic moments of the C atoms of 

the edge nearer the adstructures are treated as positive (spin up).

In the present work, only the finite cluster-bearing segment 

(the scattering region) was relaxed, not the leads on either side 

(see figure 1). Relaxation was performed within SMEAGOL 

[16, 17] using SIESTA [24] with the same components as 

used by Longo et al [42, 44]: the Perdew–Burke–Ernzerhof 

form of the generalized gradient approximation (GGA) [54], 

Troullier–Martins pseudopotentials [55] generated using the 

valence configuration 4s1 3d9 for Ni and 4s1 3d7 for Fe, triple-

ζ doubly polarized basis sets, and an energy cutoff of 250 Ry 

to define the real-space grid for calculations involving elec-

tron densities.

Electronic transport calculations were likewise performed 

using SMEAGOL [16, 17], which for this purpose employs 

the retarded Green's function of an extended molecule com-

prising the scattering region together with short adjacent lead 

segments on either side:

ε Σ Σ= − − −+ −G E S H E E( ) [ ( ) ( ) ] ,M
R

M M L
R

R
R 1

 (1)

where HM and SM are the Hamiltonian and overlap matrices of 

the extended molecule and Σ E( )L
R  and Σ E( )R

R  are the retarded 

self-energies of the left- and right-hand leads, respectively. 

Since G E( )M
R  contains all the information about the electronic 

structure of the extended molecule in equilibrium with the 

leads, application of the Fisher–Lee relation [18, 56] directly 

affords the zero-bias conductance G:

Γ Γ= †G Tr G G[ ],e

h L M
R

R M
R2 2

 
(2)

where e is the electron charge, h the Planck constant, and 

Γ Σ Σ= −α α α
†E i E E( ) [ ( ) ( ) ]

R R . All the quantities in equation (2) 

are evaluated at the Fermi energy EF, and Γ Γ†Tr G G[ ]L M
R

R M
R  is 

the energy-dependent total transmission coefficient T(E).

3. Results and discussion

Figure 2 shows the spin-specific electronic transmittances of 

the Fen/ZGNR systems (n = 1 − 4), in each case together with 

the transmittance of the pristine nanoribbon, a step-like func-

tion giving the number of bands (transmission channels) at 

each energy. Figure 3 shows the corresponding projections of 

the density of states (DOS) on the s, p and d orbitals of the Fe 

atoms. In the Ferro-A configuration, all the Fen/ZGNR systems 

retain the semiconducting nature of the pristine nanoribbon. 

The Fe clusters acquire strong positive atomic spin magnetic 

moments [42] because most Fe states near the Fermi level are 

spin-down while the corresponding spin-up states are well 

below the Fermi level. Fe d-type DOS peaks are associated 

Figure 2. Spin-up (↑) and spin-down (↓) electronic transmittances 
of the Fen/ZGNR (n = 1 − 4) systems in Ferro-A and Ferro-F 
configurations (continuous red lines), and of the pristine ZGNR 
(dashed black lines).
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with reduced transmittance with respect to pristine Ferro-A 

ZGNR, while the size of the reduction and the energy inter-

val affected depend on the intensity of the Fe sp contribution: 

the greater this contribution, the greater the delocalization of 

the electronic states and hence the greater the interaction with 

the ribbon and the efficiency of electron capture. The broadest 

energy intervals affected in this way cover the regions near 

the Fermi level where the leads provide two conduction chan-

nels for each spin component, −0.6–−0.25 eV and 0.2–0.4 eV. 

However, above the Fermi level it is only the spin-down com-

ponent that is affected, and below the Fermi level mainly the 

spin-up component. Thus these systems could potentially be 

used as substrates in a transistor to create a moderately spin-

polarized current of one or the other sign depending on the 

gate voltage. As mentioned above, spin transport selectivity in 

Ferro-A ZGNRs bearing a Co adatom, attributed to backscat-

tering from localized Co states, has been predicted by Cocchi 

et al [53], who found this effect to be more pronounced at 

lateral than at central adsorption sites.

The Ferro-F Fen/ZGNR systems also all retain the conduc-

tivity type of the pristine ZGNR, which in this case is metallic. 

As in the Ferro-A systems, transmittance is reduced mainly 

where more than one channel is provided by the leads, namely, 

between −0.6 eV and −0.3 eV for the spin-up component and 

between 0.25 eV and 0.40 eV for the spin-down component. 

As in the Ferro-A systems, other transmittance reductions, 

associated with Fe d-type states (mainly spin-down), are nar-

row and too far from the Fermi level to produce significant 

spintronic effects, at least at low bias.

Since the Fe atom has three unpaired d electrons and the Ni 

atom only one, the adstructure atoms of the Nin/ZGNR sys-

tems have much smaller spin magnetic moments than those of 

the Fen/ZGNR systems, e.g. 0.51 as against 3.08μB for the sin-

gle adatom, and 0.42/0.44 as against 3.40/3.43μB for the dimer 

[42]. Figure 4 shows the spin-specific electronic transmittance 

curves of the Nin/ZGNR systems and the pristine nanoribbon, 

and figure 5 the DOS projections on the Ni s, p and d orbitals. 

Ferro-A Ni/ZGNR and Ferro-A Ni2/ZGNR behave very like 

their Fe analogs, but not so Ferro-A Ni3/ZGNR and Ferro-A 

Ni4/ZGNR, possibly because, unlike Fe3 and Fe4, Ni3 and Ni4 

are located near the centre of the ribbon. In these cases the 

reduction in transmittance in the energy window −0.5–0.5 eV 

is much smaller than in the Fe analogs because of the smaller 

contribution of the TM sp states. Thus Ferro-A Ni3/ZGNR 

and Ferro-A Ni4/ZGNR behave much more like the pristine 

Ferro-A ZGNR than do Ferro-A Fe3/ZGNR and Ferro-A  

Fe4/ZGNR, at least at low bias.

Like Ferro-A Ni/ZGNR and Ferro-A Ni2/ZGNR, Ferro-F 

Ni/ZGNR and Ferro-F Ni2/ZGNR behave quite like their 

Figure 4. Spin-up (↑) and spin-down (↓) electronic transmittances 
of the Nin/ZGNR (n = 1−4) systems in Ferro-A and Ferro-F 
configurations (continuous red lines), and of the pristine ZGNR 
(dashed black lines).
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Figure 3. Density of states of the Fen/ZGNR (n = 1−4) systems 
projected on the s, p and d orbitals of the Fe atoms.

-1 -0.5 0 0.5 1
10

5

0

5

10

0

0

Ferro-A

-1 -0.5 0 0.5 1
10

5

0

5

10

0

0

s
p
d

Ferro-F

-1 -0.5 0 0.5 1
10

5

0

5

10

0

0

-1 -0.5 0 0.5 1
10

5

0

5

10

0

0

-1 -0.5 0 0.5 1
10

5

0

5

10

0

0

-1 -0.5 0 0.5 1
10

5

0

5

10

0

0

-1 -0.5 0 0.5 1
E-E

F
 (eV)

10

5

0

5

10

0

0

-1 -0.5 0 0.5 1
E-E

F
 (eV)

10

5

0

5

10

0

0

D
en

si
ty

 o
f 

S
ta

te
s 

(a
rb

. u
ni

ts
)

Fe
4

Fe
3

Fe
2

Fe

4

ht
tp

://
do

c.
re

ro
.c

h



Fe analogs; the only difference of note is that around the 

Fermi level there is a somewhat wider energy window with 

no loss of transmittance, there being no Ni states closer than 

0.2 eV to the Fermi level (similar behavior was reported by 

Rigo et al [52] for a Ferro-F Ni/ZGNR system). However, 

although Ferro-F Ni3/ZGNR and Ferro-F Ni4/ZGNR behave 

like Ferro-A Ni3/ZGNR and Ferro-A Ni4/ZGNR at energies 

at which the pristine ZGNR has multiple transmission chan-

nels, showing little or no transmittance loss at these energies, 

their spin-down transmittance is significantly reduced near or 

around the Fermi level due to d-type spin-down DOS peaks. 

In particular, at the Fermi level of Ni4/ZGNR the spin-up and 

spin-down transmittances are respectively 1.0 and about 0.01 

G0, where G0 = e2/h is the quantum of conductance for mag-

netic systems. In these systems there will therefore be strong 

spin selection at low bias, although this effect will tend to dis-

appear at higher bias.

4. Conclusions

In this work we investigated spin-specific electronic transmit-

tance in Fen/ZGNR and Nin/ZGNR systems (n  =  1−4) using 

SMEAGOL [16, 17], an ab initio computational package that 

combines the NEGF formalism [18–21] with the DFT method 

SIESTA [24]. In all these systems there were energies at which 

transmittance was less than in the pristine ZGNR. In those in 

which the Fe or Ni atom or cluster was located in the lateral 

region of the ribbon (Ni/ZGNR, Ni2/ZGNR and all the Fen/

ZGNR systems), these losses were most significant in energy 

windows in which the pristine ribbon has more than one trans-

mission channel, which in Ferro-A ribbons made spin-down 

transmittance greater than spin-up transmittance 0.6–0.25  eV 

below the Fermi level and vice versa 0.2–0.4 eV above the Fermi 

level. This behavior would potentially allow the use of these sys-

tems in transistors to create a moderately spin-polarized current 

of one or the other sign, depending on the gate voltage. When 

Ni3 or Ni4 clusters were centrally located on Ferro-F ribbons, 

a large concentration of spin-down Ni d-type states around or 

close to the Fermi level produced a strong spin-filtering effect.
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