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The angular overlap model extended for
two-open-shell f and d electrons

Harry Ramanantoanina,a Werner Urland,*ab Fanica Cimpoesu*c and Claude Daul*a

We discuss the applicability of the Angular Overlap Model (AOM) to evaluate the electronic structure of

lanthanide compounds, which are currently the subject of incredible interest in the field of luminescent

materials. The functioning of phosphors is well established by the f–d transitions, which requires the

investigation of both the ground 4fn and excited 4fn�15d1 electron configurations of the lanthanides. The

computational approach to the problem is based on the effective Hamiltonian adjusted from ligand

field theory, but not restricted to it. The AOM parameterization implies the chemical bonding concept.

Focusing our interest on this interaction, we take the advantages offered by modern computational tools

to extract AOM parameters, which ensure the transparency of the theoretical determination and convey

chemical intuitiveness of the non-empirical results. The given model contributes to the understanding of

lanthanides in modern phosphors with high or low site symmetry and presents a non-empirical

approach using a less sophisticated computational procedure for the rather complex problem of the

ligand field of both 4f and 5d open shells.

Introduction

Before entering the central issues of our computational and
modelling approaches we mention several topics where the simula-
tion is important as a property engineering tool. The functioning
of phosphor-converted-light-emitting-diodes (pc-LEDs) deserves
strong interest since the ban on incandescent light bulbs. At the
first stage of the development of LEDs, white light is produced by
lanthanide Ce3+ doped inorganic phosphors,1 taking advantages
of the strong dipole allowed f–d transitions in Ce3+.

Given the limit of the trial-and-error experiments of new
phosphor synthesis, the future of our domestic lighting relies
also on the theoretical modelling. The theoretical modelling
gives the prospect of the optical manifestations of the phos-
phors together with a reliable understanding of their micro-
scopic origin. Ergo, it contributes to the design of modern
phosphors. Attention is particularly paid to the optical proper-
ties of the lanthanide ions Pr3+ or Eu2+ especially as activators
for the warm-white light source.2–4 The theoretical modelling of
such phosphors is not free of puzzling technical concerns.
Numerous studies related not only to the gigantic size-problem
encountered,5 like in the case of Eu2+, but also the non-negligible

issues due to low symmetry constraints.6–8 We mention also
the situation of non-aufbau occupation9–12 of the 4f orbitals
inasmuch as convergence problems may frequently occur in
the self-consistent field (SCF).

The calculation of the f–d transitions in lanthanide phosphors
is addressed with respect to the ligand field theory13,14 but not
restricted to its classical empirical frame.15 The model Hamilto-
nian is parameterized in terms of a few quantities such as the
Slater–Condon parameters, the spin–orbit coupling constants and
the ligand field potential. The Slater–Condon parameters repre-
sent the many electron interaction in the Hamiltonian, while the
spin–orbit coupling and ligand field potential account for the one-
electron part. The task of computational approach consists in the
determination of these parameters in a non-empirical way.16–20

Therefore, we do not aim in this paper to describe the electrostatic
interaction part of the Hamiltonian, i.e. the Slater–Condon para-
meters relevant for the multi-electron problem, for which our
theoretical model has been already improved19 and revised21 in
previous studies. The calculation of the spin–orbit coupling is
placed in the growing efforts devoted nowadays to the relativistic
quantum chemistry tools.22–25

On the other hand, the formulation of the one-electron
ligand field interaction may be partly confusing since effective
two-electron components may effectively participate to the
parameters. A simple representation of the ligand field inter-
action is obtained by the perturbation approach of the one-
electron wave function of the lanthanide ion (|l,mli). Within
this approach the actual system of two-open-shell f and d
electrons has a ligand field Hamiltonian, which is constructed
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on the basis of the merged 4f (l = 3) and 5d (l = 2) orbitals of the
lanthanide ion, i.e. seven plus five |l,mli functions (see Fig. 1).

Dorenbos26 has taken the relative simplicity of this repre-
sentation (Fig. 1), and the related eigenvalues, to create a model
widely applied in some empirical-to-semi-empirical studies.
One can recognize from Fig. 1 the shape of the actual ligand
field Hamiltonian, where diagonal sub-blocks of 7 by 7 (VLF(4f))
and 5 by 5 elements (VLF(5d)) are a direct perturbation of the 4f
and 5d orbitals of the lanthanide ion. An off-diagonal sub-block
of 7 by 5 elements is also present. This VLF(4f,5d) block matrix
is a perturbation in a second order, whose presence is governed
by basic group theory rules, i.e. VLF(4f,5d) vanishes if the
local symmetry of the lanthanide coordination exhibits inver-
sion center. Without going into details since the theory has
been already described in different textbooks,27,28 Wybourne
has defined the ligand field potential as a linear combination
of spherical harmonics Yk,q up to a given order. Accordingly,
a general expansion expression of each sub-block in Fig. 1 is
presented in eqn (1):

VLFð4fÞ ¼
X

k¼0;2;4;6

Xk
q¼�k

Bk
qð4fÞCðkÞ

q ; (1a)

VLFð5dÞ ¼
X

k¼0;2;4

Xk
q¼�k

Bk
qð5dÞCðkÞ

q ; (1b)

VLFð4f; 5dÞ ¼
X

k¼1;3;5

Xk
q¼�k

Bk
qð4f ; 5dÞCðkÞ

q ; (1c)

where C(k)
q are the solid spherical harmonic tensor operators

(eqn (2)) and Bk
q’s are the Wybourne-normalized crystal field

parameters:

CðkÞ
q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p

2kþ 1

r
Yk;q (2)

Analogous representations related by simple convention factors
with the above formalism also exist e.g. following the definition
of Ak,q’s given by Stevens27,29 for instance. However the
main idea of the representation in eqn (1) is the treatment of
the interaction having an electrostatic origin, avoiding any
overlap between the 4f and 5d orbitals of the lanthanide ion
with the ligands. Eqn (1) resemble the initial electrostatic form
of crystal field theory30 but the parameters tacitly incorporate
other contributions into the metal–ligand bonding. A formal
drawback of spherical Harmonics expansion is that the total
Hamiltonian cannot be formulated as the sum of contributions
eqn (1a) + eqn (1b) + eqn (1c) but must conceive separate
operators for the 4f and 5d blocks. This is because we cannot
prevent a given C(k)

q (with k r 4) from eqn (1a) (4f block)
to interact with the spherical harmonics with appropriate sym-
metry originating from the 5d block. This would make the 5d
(Bkq(5d)) parameters identical to the k r 4 subset of the 4f ones.
However this formal drawback is tacitly neglected, considering
directly the parameterized blocks instead of a primordial com-
mon Hamiltonian. A part of such conceptual drawbacks is
circumvented working with models explicitly based on different
types of bonding effects, as is the case of the Angular Overlap
Model (AOM).

In this paper, we extend the traditional concept of the AOM
designed by Schäffer and Jørgensen31 and Urland32 for single-
open-shell d and f electrons, respectively, to tackle the actual
ligand field potential for two-open-shell f and d electrons
necessary for the reliable understanding of the f–d transitions
in lanthanide phosphors. We use the advances of our previously
developed Ligand Field Density Functional Theory (LFDFT)19

method extending it to the f–d transitions. We take the advan-
tages given by the AOM formalism to reconsider more explicitly
the ligand field interaction in the LFDFT Hamiltonian to provide
general information about the chemistry of the interaction
between the lanthanide ion and the ligands. This outline treat-
ment due to AOM implies chemical intuitiveness and allows
validation of the theoretical work.

Theory

In our conceptual formulation of the ligand field theory
into Density Functional Theory (DFT),16–20 LFDFT presents
an effective Hamiltonian, which acts only in the subspace of
the microstates originating from the ground 4fn and excited
4fn�15d1 electron configurations of the lanthanide ion subject
to perturbations due to (1) electrostatic interaction inter-
electron repulsion, (2) spin–orbit coupling interaction and (3)
ligand field interaction from the chemical environment. Every
interaction is parameterized according to the LFDFT methodol-
ogy in the way detailed in ref. 19. Considering especially
the ligand field interaction, its representation as shown in
eqn (1) yields 28 Bk

q(4f), 15 Bk
q(5d) and 21 Bk

q(4f,5d) parameters
(altogether, 64 parameters), where most of them may vanish
due to symmetry. For instance within the octahedral ligand
field, like in the case of Pr3+ doped into the trivalent site of the

Fig. 1 Schematic representation of the ligand field matrix VLF corres-
ponding to the merged 4f and 5d orbitals in the problem of two-open-
shell 4f and 5d electrons.
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Cs2KYF6 crystallizing in the elpasolite structure type,19 the
ligand field potential (eqn (1)) reduces to the following scheme
(eqn (3)):

VLFð4fÞ ¼ B4
0ð4fÞ C

ð4Þ
0 þ

ffiffiffiffiffi
5

14

r
C

ð4Þ
4 þ C

ð4Þ
�4

� �" #

þ B6
0ð4fÞ C

ð6Þ
0 �

ffiffiffi
7

2

r
C

ð6Þ
4 þ C

ð6Þ
�4

� �" # (3a)

VLFð5dÞ ¼ B4
0ð5dÞ C

ð4Þ
0 þ

ffiffiffiffiffi
5

14

r
C

ð4Þ
4 þ C

ð4Þ
�4

� �" #
(3b)

VLF(4f,5d) = 0 (3c)

In fact, only the parameters B4
0(4f), B6

0(4f) and B4
0(5d) are

symmetry independent in the Oh ligand field, since B4
4(4f), B

6
4

(4f) and B4
4(5d) can be defined in terms of the previous ones

(eqn (3)).
Because we are often confronting with low site symmetry of

the lanthanide coordination obtained from the experimental
synthesis of modern phosphors,33–35 the tractability of the
Wybourne-normalized crystal field parameters is cumbersome,
while the AOM representation seems to be more adequate. The
theory of AOM has already been described and reviewed36 for
d-31 and f-electrons,32 respectively. Hereafter, we are just giving
a short description of the model if extended for two-open-shell
f and d electrons.

In the AOM formalism, each ligand is assigned with para-
meters es, ep, ed and ej classified according to its overlap with
the lanthanide ion to give a s, p, d and j bond, respectively. In
Fig. 2, we present the AOM parameters in their original defini-
tions, i.e. interaction between a lanthanide ion and a ligand
within CNv symmetry. Chemical bonding up to d and j bonds
is rarely reached by the ligand orbitals, allowing us to neglect
for convenience the effect of ed and ej in the representation
given in Fig. 2 either for the 4f or the 5d energy splitting.

The definition of the parameter DAOM(fd) (Fig. 2) is connected
to the D(fd), which is already discussed in ref. 19 and 21. This
parameter represents the energy shift of the 5d orbitals with
respect to the 4f ones (Fig. 2). In cases with more than one
electron it cannot be discriminated in the spectral terms from
a gap due to the Slater–Condon F0(ff) and F0(fd) parameters.
Thus for the Pr3+ complexes19,21 taken as examples in the following,
we obtain:

D(fd) = F0(fd) � F0(ff) + B0
0(5d) � B0

0(4f) (4a)

where, the one-electron ligand field interaction intervenes in
eqn (4a) in a spherical average B0

0(4f) and B0
0(5d).

Hence the ligand field potential according to eqn (1)
becomes a traceless block without D(fd) in line with the
Wybourne formalism,27,28 which is not the case in the formal-
ism of AOM.31,32 The mapping between both formalisms is
obtained by adjusting the trace of the ligand field matrix
obtained in the AOM with DAOM(fd) (eqn (4b)).

DAOMðfdÞ ¼ DðfdÞ þ 1

7
trace 3h jVLF 3j ið Þ � 1

5
trace 2h jVLF 2j ið Þ

(4b)

This DAOM(fd) parameter will appear in the diagonal element
of the VLF(5d) block matrix. Within the first order approxi-
mation for a given ligand donor, we define es(f), ep(f), es(d) and
ep(d) parameters in line with the AOM formalism. Taking
however the inclusion of a second order perturbation, each
ligand donor obtains a novel set of AOM parameters. We define
es(fd) and ep(fd) as is represented in Fig. 2. Anisotropy in the p
interaction allows us to distinguish between epx and epy in the
definition of the AOM parameters.31,32 Therefore the general
matrix element VLF corresponding to the covalent interaction
of both the 4f and 5d orbitals with the ligands is developed
(eqn (5)), following the earlier approach of single-open-shell
d electrons by Schäffer and Jørgensen31 and f electrons by
Urland:32

3; mh jVLF 3; nj i ¼
Xligands
k¼1

X
l¼s;p

D4f
mlðkÞ �D4f

nlðkÞ � el;kðfÞ (5a)

2; mh jVLF 2; nj i ¼
Xligands
k¼1

X
l¼s;p

D5d
mlðkÞ �D5d

nlðkÞ � el;kðdÞ (5b)

3; mh jVLF 2; nj i ¼
Xligands
k¼1

X
l¼s;p

D4f
mlðkÞ �D5d

nlðkÞ � el;kðfdÞ (5c)

where D4f and D5d are the matrix elements defined in terms of
the Euler angles (Wigner’s Darstellungsmatrizen) or direction
cosines already described in ref. 31 and 32, respectively, and k is
the running index for the ligand system. The eigenvalues of the
VLF matrix in the way it is calculated from eqn (5) can be
determined analytically for the interaction between a lanthanide
ion and a ligand within CNv symmetry (Fig. 2). These eigenvalues
are presented in eqn (6) and (7), respectively, for the perturbation

Fig. 2 Representation of the AOM parameters adjusted from the inter-
action of a lanthanide ion with one ligand. The first order energy splitting of
the 4f and 5d orbitals is presented in green and the second order energy
splitting in blue.
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of the 4f and 5d orbitals:

3; lh jVLF 3; lj i ¼ 1

2
DAOMðfdÞ þ elðdÞ þ elðfÞð Þ

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DAOMðfdÞ þ elðdÞ � elðfÞð Þ2 þ 4el2ðfdÞ

q
(6)

2; lh jVLF 2; lj i ¼ 1

2
DAOMðfdÞ þ elðdÞ þ elðfÞð Þ

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DAOMðfdÞ þ elðdÞ � elðfÞð Þ2 þ 4el2ðfdÞ

q
(7)

where, l = s, px and py.
One can see that the mixed parameters es(fd) and ep(fd)

have to be small without impinging on the first order AOM
parameters. The absence of them leads to the formulation of
the eigenvalues (eqn (6) and (7)) in their original representa-
tions given in ref. 31 and 32, respectively. We map the ligand
field matrix obtained from the LFDFT calculation with eqn (5)
in order to extract AOM parameters (es(f), ep(f), es(d), ep(d),
es(fd), ep(fd) and DAOM(fd)) in their definitions described in this
section. The presented model is applied next for the calculation
of the electronic structure of eightfold coordinated trivalent
Pr3+ complexes: (PrX8)

5�, with X = F�, Cl� and Br� having an
arrangement either with D4h and D4d symmetry, respectively.

Computational details

The DFT calculations reported in this paper have been carried
out by means of the Amsterdam Density Functional (ADF2010)
program package.37–39 The local density approximation (LDA)
functional based on the Vosko–Wilk–Nussair (VWN)40 parame-
terization has been used for geometry consideration. The
LFDFT calculation has been performed using DFT calculation
based on the hybrid B3LYP functional as is implemented in the
ADF program package37–39 for the exchange and correlation
energy and potential. Positive point charges are added to
neutralize the highly negative charged structure using the Efield
keyword available in the ADF program package.37–39 The mole-
cular orbitals were expanded using a triple-z STO basis set plus
two polarization functions (TZ2P+) for the Pr atom and plus one
polarization function (TZP) for the halogen atoms, i.e. F, Cl and
Br. The LFDFT calculations were achieved following the
detailed procedure already described in ref. 19 where the most
important step consists of the representation of the density in a
totally symmetric form using the approach of the Average of
Calculation (AOC)41 type calculation. The 12 by 12 ligand field
matrix (in the same shape as is presented in Fig. 1) being the
representative of the ligand field potential was extracted for
the purpose of this work. Matlab/Octave codes for the LFDFT
program together with the determination of the AOM and the
Wybourne-normalized crystal field parameters from the ligand
field matrix are available from the authors upon request.

The structures of the theoretical complex (PrX8)
5�, with X = F�,

Cl� and Br� were obtained from the DFT geometry optimization
of the cluster (PrX8Na8)

3+, with X = F�, Cl� and Br�. The geometry
of this cluster was optimized while the electronic structure was
confined to have the AOC occupation of the 4f orbitals of the Pr3+

center and the symmetry was constrained to have the arrange-
ment of either the D4h or the D4d symmetry.

Results and discussion

Pr3+ with eight ligands in its coordination sphere is commonly
met in inorganic coordination complexes and solid state com-
pounds. In the field of luminescent materials, Pr3+ has been
doped into various fluoride host lattices such as NaYF4,

42 CaF2
or LiYF4,

43 etc. resulting in eight coordination, in order to
investigate the possibility of the quantum cutting process in
the optical behavior.43 If doped into the CaF2 host lattice or the
a-cubic phase of NaYF4,

42 the eight coordination is typically
found having a cubic arrangement (Oh point group), which
might always be subjected to a slight distortion to D4h symme-
try. The occurrence of a D4d arrangement of the eight ligands is
not usual in solid state compounds, to the best of our knowl-
edge, although it exists in inorganic coordination complexes
whose properties are well recognized in the topic of magnetic
anisotropy, being important in single ion magnets.44,45 In the
application of our AOM extended for two-open-shell f and d
electrons, we consider here as theoretical example (PrX8)

5�,
with X = F�, Cl� and Br�, having an arrangement of the D4h or
the D4d point group, insofar as the eight ligands are identical
and equivalent by symmetry (Fig. 3).

The structures of the eightfold coordinated Pr3+ are calcu-
lated while the optimization of the geometry is confined within
the desired symmetry, i.e. dependent on a few parameters such
as the Pr3+–ligand bond length d and the polar angle y in
spherical coordinates. The azimuthal angle f is fixed for each
of the eight ligands in the arrangement with either D4h or D4d

symmetry. We present in Table 1 these spherical coordinates
deduced from the optimized structures. The optimized struc-
tures in question are calculated as clusters, being representative
only in semiquantitative sense, since the full lattice effects are
idealized by compensating charges. Accordingly, the theoretical
structures (Table 1) might not represent a global minimum of

Fig. 3 Spatial representations of the structure of (PrX8)
5� (X = F�, Cl�, Br�)

with D4h (left hand side) and D4d (right hand side) arrangements.
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the energy in the adiabatic potential energy surface validated by
frequency analysis of all the normal modes.

The optimization of the geometry, if confined to the D4h

symmetry under the present computational details, leads to a
nearly cubic arrangement (Oh point group) of the eight ligands
(Table 1). The bond lengths determined for both structures
having D4h and D4d symmetry (Table 1) are in agreement with
the Shannon radii46 of Pr3+ and the ligand ions in such an eight
coordination. The D4h ligand field splits the 4f and 5d orbitals
of Pr3+ into a2u, b1u, b2u, 2eu and a1g, b1g, b2g, eg (cf. Fig. 4),
respectively, representative of the irreducible representations
(irreps) of the D4h point group. These representations can be
separately discriminated using the inversion center symmetry
operator since the 4f and 5d possess opposite parity in D4h. This
particular situation allows no mixing of the two-open-shell

4f and 5d electrons in the investigation of the 4f15d1 electron
configuration of Pr3+, i.e. the VLF(4f,5d) block matrix has strictly
zero elements. On the other hand, the D4d ligand field splits
the 4f and 5d orbitals into b2, e1, e2, e3 and a1, e2, e3 irreps
(cf. Fig. 4), respectively. It is obviously seen that the e2 as well as
the e3 irreps allow mixing of some 4f and 5d |l,mli functions.
This situation therefore leads us to consider more explicitly the
off-diagonal elements of the VLF matrix, being parameterized by
the mixed AOM es(fd) and ep(fd) parameters.

There are other circumstances under which the elements of
the VLF(4f,5d) block matrix may be significant, being therefore
important in the analysis of the luminescence of lanthanide
phosphors. So for example when Pr3+ is doped into Y3Al5O12

(ref. 15) or LiYF4 (ref. 43, 47 and 48) having a local symmetry of
D2d and S4, respectively, or the frequently occurred C1 ligand
field in YF3:Pr

3+,49,50 for instance.
The AOM extended for two-open-shell f and d electrons

provides: both a perturbation correction of the ligand field
potential for the 4f and 5d open shells, and an additional
mechanism that has to affect the multiplet energy levels and
more importantly their intensities. A graphical representation
of the energy splitting pattern of the 4f and 5d orbitals of Pr3+

together with the molecular orbital diagram is shown in Fig. 4
considering the 4f15d1 electron configuration, in both arrange-
ments of D4h and D4d symmetry, respectively.

Taking the structures given in Table 1 as input, we perform the
LFDFT calculation and extract the ligand field potential on which
we focus our interest. The Slater–Condon parameters are also
obtained from the LFDFT calculation and presented in Table 2.

We use the procedure as is described in ref. 21, using the
radial functions of the 4f and 5d Kohn–Sham orbitals of Pr3+ to
extract the Slater–Condon parameters. These radial functions
are graphically presented in Fig. 5 considering the free Pr3+ ion
and its complex with eight fluoride, chloride and bromide
ligands forming a D4h arrangement. Since the Slater–Condon
parameters are not treated prior to the ligand field potential
in this paper, we present them in Table 2 as average between
the quantities obtained for the D4h and D4d arrangements
of (PrX8)

5�, with X = F�, Cl�, Br�. It is noteworthy that the
parameters (Table 2) are not strongly sensitive to the change
of the spatial arrangement of the eight ligands around Pr3+.
The quantities given in Table 2 are in the magnitude of known
experimental fitted parameters.51 The Slater–Condon para-
meters G1(fd), F2(fd), G3(fd), F4(fd), and G5(fd) appropriate to

Table 1 DFT calculated geometries of (PrX8)
5� (X = F�, Cl�, Br�): Pr3+–X

bond length d in Å and the polar coordinate y in 1 of one ligand X from
which the rest of the ligand coordinates is generated by symmetry

D4h D4d

d y d y

(PrF8)
5� 2.372 54.75 2.368 56.95

(PrCl8)
5� 2.853 54.78 2.825 57.91

(PrBr8)
5� 3.007 54.74 2.973 58.34

Fig. 4 Splitting pattern of the seven 4f and five 5d orbitals of Pr3+ in
the presence of a ligand field of D4h (left hand side) and D4d (right hand
side) symmetry.

Table 2 LFDFT calculated Slater–Condon parameters in cm�1 obtained
for the system (PrX8)

5�, with X = F�, Cl�, Br�

(PrF8)
5� (PrCl8)

5� (PrBr8)
5�

F2(ff) 330.0 323.1 322.1
F4(ff) 43.0 41.9 41.8
F6(ff) 4.6 4.5 4.4
G1(fd) 296.3 227.5 179.8
F2(fd) 210.7 144.3 117.5
G3(fd) 26.7 18.5 14.5
F4(fd) 16.0 10.5 8.3
G5(fd) 4.2 2.8 2.2
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the splitting of terms sharing the 4f15d1 electron configuration
parentage diminish in the series F�, Cl� and Br� ligands, in
line with the increasing of the nephelauxetic effect obtained for
the same series of ligands. The nephelauxetic effect denomi-
nates an expansion of the electron cloud as is presented in
Fig. 5. The radial function of the 5d Kohn–Sham orbital, but
also the 4f one although the effect is weaker, is expanded
toward the ligands. This expansion is weak in the case of
the 5d in (PrF8)

5� but becomes stronger for chloride and
bromide systems. However in the same series of ligands, the
F2(ff), F4(ff), and F6(ff) parameters (4f2 electron configuration)
are almost invariant showing the relative shielding of the
4f orbitals by the outer shells in contrast to the 5d ones
(cf. Fig. 5). The spin–orbit coupling constants z4f and z5d are
also calculated using the approach of ZORA relativistic available
in the ADF program package,37–39 where we obtain (in cm�1) 760
and 945, respectively.

The AOM parameters are calculated by mapping the matrix
elements of VLF given by eqn (5) to the ligand field potential
obtained by the LFDFT procedure. These quantities are pre-
sented in Table 3, where only one set of the AOM parameters
appears since the eight ligands are identical and equivalent by
symmetry in the structures being investigated. Although the
Pr3+–ligand bond lengths obtained in the DFT optimization of
the D4h structures are slightly elongated if compared to the D4d

ones (cf. Table 1), we expect no significant changes in the AOM

parameters as depicted in Table 3. The difference between the
D4h and D4d ligand field potentials is essentially made by the
mixed AOM parameters es(fd) and ep(fd) in the VLF(4f,5d) block
matrix elements.

The strength of the ligand field is directly related to the AOM
parameters (Table 3), where the fluoride ligands exert the
largest energy splitting of both the 4f and 5d orbitals. This is
perfectly in line with the spectrochemical series for ligands.
The definition of the novel mixed parameters es(fd) and ep(fd)
in the present theoretical section leads to quantities which are
lying between the es(f), es(d), and ep(f), ep(d), respectively, as
shown in Table 3. Although in this paper we address theoretical
examples based on Pr–halides complexes, the AOM parameters
have the recognized advantages to be transferable giving
further insight into their comparison to available experimental
deduced parameters. Urland52 experimentally deduced es(f) =
552 cm�1 in the system LiYF4:Pr

3+ (eightfold coordinate (PrF8)
5�

having S4 arrangement)52 with a ratio es(f)/ep(f) = 5.34, in
the magnitude of our calculated parameters (Table 3). For a
chloride system, es(f) = 235 cm�1 was deduced experimentally in
Pr3+-doped LaCl3,

53 also in line with the calculated parameters
given in Table 3. Experimentally deduced Wybourne-normalized
crystal field parameters for bromide systems (Pr3+-doped ThBr4)
are also available in ref. 54, which indicate a priori AOM
parameters in the magnitude of Table 3, providing validation
of the calculated parameters.

We carried out the investigation by focusing more deeply on
the D4d ligand field, for which the presence of the mixed AOM
parameters is attested. To obtain the eigenvalues of the VLF

matrix in their representation given in Fig. 4, we calculate
analytically the VLF matrix elements for the case of the D4d

ligand field. The given analytical expressions are rigorously
adequate for any practical example since we present them also
in terms of the polar angle y (cf. Table 1), the AOM parameters
containing by definition information about the metal–ligand
bond length.31,32 In the D4d ligand field, the split of the 4f
orbitals in the b2, e1, e2, e3 irreps follows the classification of
ml = {0, �1, �2, �3} components. In the same way, the split of
the 5d in the a1, e2, e3 irreps gets ml = {0, � 2, � 1}. Within the

Fig. 5 Graphical representation of the radial functions of the 4f (left hand side) and 5d (right hand side) Kohn–Sham orbitals of the free Pr3+ ion (in red)
and the complexes (PrF8)

5� (in blue), (PrCl8)
5� (in magenta) and (PrBr8)

5� (in green), forming a D4h arrangement.

Table 3 DFT calculated AOM parameters in cm�1 for the ligand field
potential of (PrX8)

5� (X = F�, Cl�, Br�) with arrangement in D4h and D4d

symmetry

D4h D4d

(PrF8)
5� (PrCl8)

5� (PrBr8)
5� (PrF8)

5� (PrCl8)
5� (PrBr8)

5�

es(f) 534 214 105 417 186 101
ep(f) 71 88 34 194 84 45
es(d) 13 040 4536 3997 13 091 4558 3965
ep(d) 3732 2405 2365 2341 2365 2514
es(fd) 0 0 0 3456 429 248
ep(fd) 0 0 0 2179 257 123
DAOM(fd) 19 351 16 741 11 339 22 075 17 397 11 755
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first order perturbation, most elements of the VLF matrix are
zero, the non-vanishing elements remaining only in the diagonal
as given in eqn (8) and (9):

3; b2h jVLF 3; b2j i ¼ 2esðfÞ 5cos3y� 3cosy
� �2

þ 3epðfÞ 4siny� 5sin3y
� �2 (8a)

3;e1h jVLF 3;e1j i ¼ 3

2
esðfÞ 4siny� 5sin3y

� �2
þ 1

4
epðfÞ 225cos6y� 305cos4yþ 111cos2yþ 1

� �
(8b)

3; e2h jVLF 3; e2j i ¼ 15esðfÞ cosy� cos3y
� �2

þ 10epðfÞ 9

4
sin6y� 4sin4yþ 2sin2y

� �
(8c)

3; e3h jVLF 3; e3j i ¼ 5

2
esðfÞsin6y

þ 15

4
epðfÞ sin4yþ cosy� cos3y

� �2� � (8d)

2; a1h jVLF 2; a1j i ¼ DAOMðfdÞ þ 2esðdÞ 3sin2y� 2
� �2

þ 24epðdÞcos2ysin2y
(9a)

2; e2h jVLF 2; e2j i ¼ DAOMðfdÞ þ 12esðdÞcos2ysin2y

þ 4epðdÞ 4cos4y� 3cos2yþ 1
� � (9b)

2; e3h jVLF 2; e3j i ¼ DAOMðfdÞ þ 3esðdÞsin4y

þ 4epðdÞsin2y 1þ cos2y
� � (9c)

Furthermore, within the second order perturbation, the e2
and e3 irreps, being present in the transformation of both f and
d, allow mixing of the 4f and 5d functions as stated earlier,
leading to the formation of off-diagonal elements located in the
VLF(4f,5d) block matrix (eqn (10)):

3; e2h jVLF 2; e2j i ¼
ffiffiffiffiffi
30

p
cosy sin4y esðfdÞ �

ffiffiffi
2

p
epðfdÞ

� �
(10a)

3; e3h jVLF 2; e3j i ¼ 3
ffiffiffi
5

p
cosy sin4y esðfdÞ �

ffiffiffi
2

p
epðfdÞ

� �
(10b)

To ensure the double degeneracy of the e1, e2 and e3 irreps,
the matrix elements given in eqn (8b)–(8d), (9b), (9c), (10a) and
(10b) are always multiplied by an identity matrix of dimension 2.

Amongst the thirty-five elements of the VLF(4f,5d) block
matrix, four elements are non-zero in the D4d ligand field, which
are two by two equivalents as shown in eqn (10). Although the e2
and e3 irreps are well distinguished in the D4d point group, the
AOM formalism up to second order does not differentiate them
in the perturbation considering the isotropic p-interaction of
the Pr3+–ligand bond. Indeed eqn (10a) can be obtained from

eqn (10b) by multiplying it with a factor of
ffiffiffi
6

p
=3. Therefore

the slight stabilization of the eigenvalue of the |3,e2i function
due to the presence of the off-diagonal elements in the VLF

matrix (eqn (10)), which is equal to the destabilization of the
eigenvalue of the |2,e2i function, is connected to the energy
stabilization of the|3,e3i, which is also equivalent to the destabili-
zation of the |2,e3i, weighted with a constant factor. This factor is
not in reality fixed as we obtain from the non-empirical DFT
calculation. It can be definitely dismissed in the AOM considering
the formulation of two different ep(fd) parameters such as epx(fd)
and epy(fd), respectively. These two parameters, while different, will
conserve an intrinsic degeneracy of either e2 or e3 irrep in the D4d

point group. This is intriguing but without any doubt in the
definition of the second order AOMperturbation. Hence we present
in Table 3 one of those ep(fd) parameters since the another one is
set to zero in the mapping of AOM to the DFT results (eqn (5)). It is
noteworthy to emphasize that the exact consideration of the AOM
for two-open-shell f and d electrons requires toomany parameters,
which by convenience we enforce to fit with only seven parameters
(es(f), ep(f), es(d), ep(d), es(fd), ep(fd), DAOM(fd)). The non-
considered parameters do not vanish but their influence is subtly
engulfed into the active list in Table 3, the VLF matrix from eqn (5)
being as accurate as the calculated non-empirical DFT one.

Since most of the theoretical and experimental studies are
adopting the Wybourne-normalized crystal field formal-
ism,47,48,50,55–58 we present for comparison by means of
eqn (11) the Bk

q’s values (eqn (1)) obtained from the computed
matrix elements of VLF (see eqn (5)):

l;mlh jVLF l0;ml0j i ¼
X
k

Xk
q¼�k

Bk
qðl; l0Þ l;mlh jCðkÞ

q l0;ml0j i (11)

where hl,ml|C
(k)
q |l0,ml0i is a coupling coefficient.

The Bk
q’s are presented in Table 4 for the comparison

purpose considering the eightfold complexes of Pr3+ ions under
consideration. In total this formalism requires ten parameters
in the actual problem of the D4d ligand field, which is by far
superseded by our seven parameters obtained from the AOM
formalism.

Table 4 DFT calculated Wybourne-normalized crystal field parameters
in cm�1 for the ligand field potential of (PrX8)

5� (X = F�, Cl�, Br�) with D4h

and D4d symmetry

D4h D4d

(PrF8)
5� (PrCl8)

5� (PrBr8)
5� (PrF8)

5� (PrCl8)
5� (PrBr8)

5�

B2
0(4f) �3 �3 0 �346 �217 �133

B4
0(4f) �2634 �1148 �550 �2068 �871 �459

B4
4(4f) 1577 689 329 0 0 0

B6
0(4f) 1391 268 175 511 260 148

B6
4(4f) 2595 498 328 0 0 0

D(fd) 51 285 31 249 25 104 49 592 31 853 25 926
B2
0(5d) �82 �79 1 �8929 �5697 �6059

B4
0(5d) �45 129 �7433 �4725 �50 719 �6773 �2875

B4
4(5d) 27 012 4458 2823 0 0 0

B1
0(4f,5d) 0 0 0 �5399 �835 �700

B3
0(4f,5d) 0 0 0 6380 861 580

B5
0(4f,5d) 0 0 0 1613 366 441
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Another utility of the two-open-shell approach, which however
will be not detailed here, is curing the so-called holohedrization
effect59 that leads to an artificial increase in symmetry, if traditional
single-open-shell ligand field theories are used. Namely, with
respect to an inversion center, the d or f block Hamiltonians can
include only terms with even parity, because the matrix elements
are carrying the respective g � g = g or u � u = g products. This
means that an asymmetric coordination sphere is accounted non-
realistically. For instance, for the case of a single metal–ligand
couple, M–L, the ligand field problem in the d or f basis looks like
that the perturbation is smeared in equivalent halves (L/2) on both
directions of the coordination, as the ligand field is produced by a
trans-(L/2)–M–(L/2) arrangement.

Or, in the same line of reasoning a cis-MX3 pyramid with X–M–X
only at 901 angles will have the same f or d splitting as an
octahedron, since each ligand has distributed its perturbation in
the trans direction too, resulting in an artificial M(X/2)6. Such a cis-
MX3 does not exist in reality, but is a convincing thought experiment
about the limitation of the classical single-open-shell ligand field
Hamiltonian phenomenology. The two-open-shell approach allows
the insertion of asymmetric terms, by the g � u = u parity of the
f � d nondiagonal block. In this way the ligand field treatment is
enhanced to more realism. Another outlook of this approach, which
also is too large in technical display, being presented now only as
seed idea, is that the explicit use of two-electron f–d terms may
replace the use of empirical corrections, such as trees60 or Marvin
terms,61 for amending the implication of many body effect in the
ligand field Hamiltonian parameterization. The AOM extended for
two-open-shell 4f and 5d electrons will therefore provide a useful
tool ensuring chemical intuitiveness in the currently popular mag-
netic property design of lanthanide single ion magnets.62–65

Conclusions

Theoretical modeling is a valuable tool for the understanding of
the chemical and the physical properties of molecular, coordina-
tion chemistry complexes and solid state compounds. Here we
address a practical problem encountered in the non-empirical
determination of the 4f n- 4f n�15d1 transitions: the ligand field
interaction. We underline the need for a ligand field potential for
two-open-shell 4f and 5d electrons, which is important in the
formulation of a new generation of theoretical and application
problems in lanthanide physical chemistry. As practical use, the
two-open-shell model is of interest for the design and character-
ization of modern luminescent materials, aiming to provide us
hopefully soon with warm-white LED lighting.

We revisit the old concept of the Angular Overlap Model (AOM),
originally designed to describe the electronic structures of single-
open-shell d or f electrons, to parameterize the ligand field
potential obtained not only from the LFDFT calculation but also
from any available computational setting which may deal with the
problem. The combination of the AOM along with modern quan-
tum chemistry tools enhances the understanding of the chemistry
of lanthanides. We define new mixed AOM parameters acting
in non-diagonal blocks of the two-open-shell ligand field matrix.

The presented model is also appropriate for the calculation of line
intensities, where the mixing of both the 4f and 5d wave functions
is important. The AOM can be used to parameterize the ligand field
potential for two-open-shell f and d electrons, especially in the case
of low symmetry lanthanide coordination. The AOM parameters
are transferable, comparable, and offer chemical insight. In low
symmetry environments, the number of AOM parameters is usually
smaller than those of the Wybourne-normalized crystal field
schemes, a fact that enhances the transparency of the modelling.
The given model contributes to the understanding of lanthanides
in phosphors and presents a non-empirical approach using a less
sophisticated computational procedure for the rather complex
problem of ligand field of both 4f and 5d open shells.

Acknowledgements

This work is supported by the Swiss National Science Founda-
tion (SNF) and the Swiss State Secretariat for Innovation and
Research. Support from the UEFISCCDI (Romania) research
grant PCE 14/2013 is also acknowledged.

Notes and references

1 S. Nakamura and G. Fasol, The blue Laser Diode, Springer,
Berlin, 1997.

2 M. Krings, G. Montana, R. Dronskowski and C. Wickleder,
Chem. Mater., 2011, 23, 1694–1699.
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33 M. M. Lezhnina, T. Jüstel, H. Kätker, D. U. Wiechert and

U. H. Kynast, Adv. Funct. Mater., 2006, 16, 935–942.
34 E. van der Kolk, P. Dorenbos and C. W. E. van Eijk, Opt.

Commun., 2001, 197, 317–326.
35 S. Kück, I. Sokolska, M. Henke, M. Döring and T. Scheffler,
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T. Jüstel, Opt. Mater., 2013, 35, 2062–2067.
43 Q. Y. Zhang and X. Y. Huang, Prog. Mater. Sci., 2010, 55,

353–427.
44 S.-D. Jiang, B.-W. Wang, G. Su, Z.-M. Wang and F. Gao,

Angew. Chem., Int. Ed., 2010, 122, 7610–7613.
45 S. Takamatsu, T. Ishikawa, S.-Y. Koshihara and N. Ishikawa,

Inorg. Chem., 2007, 46, 7250–7252.
46 R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr.,

Theor. Gen. Crystallogr., 1976, 32, 751–767.
47 M. F. Reid, L. van Pieterson, R. T. Wegh and A. Meijerink, Phys.

Rev. B: Condens. Matter Mater. Phys., 2000, 62, 14744–14749.
48 D. Wang, S. Huang, F. You, S. Qi, Y. Fu, G. Zhang, J. Xu and

Y. Huang, J. Lumin., 2007, 122–123, 450–452.
49 J. K. Sommerdijk, A. Bril and W. de Jager, J. Lumin., 1974, 8,

341–343.
50 W. Piper, J. A. DeLuca and F. S. Ham, J. Lumin., 1974, 8,

344–348.
51 G. W. Burdick and M. F. Reid, Handb. Phys. Chem. Rare

Earths, 2007, 37, 61–98.
52 W. Urland, Chem. Phys. Lett., 1981, 77, 58–62.
53 A. Bencini, C. Beneli and D. Gatteschi, Coord. Chem. Rev.,

1984, 60, 131–169.
54 J. G. Conway, J. C. Krupa, P. Delamoye and M. Genet,

J. Chem. Phys., 1981, 74, 849–852.
55 M. D. Faucher and O. K. Moune, Phys. Rev. A: At., Mol., Opt.

Phys., 1997, 55, 4150–4154.
56 C.-K. Duan, P. A. Tanner, V. Makhov and N. Khaidukov,

J. Phys. Chem. A, 2011, 115, 8870–8876.
57 W. W. Lukens, N. M. Edelstein, N. Magnani, T. W. Hayton,

S. Fortier and L. A. Seaman, J. Am. Chem. Soc., 2013, 135,
10742–10754.

58 P. A. Tanner, C. S. K. Mak, M. D. Faucher, W. M. Kwok,
D. L. Philips and V. Mikhailik, Phys. Rev. B: Condens. Matter
Mater. Phys., 2003, 67, 115102.
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