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Abstract. In ecological networks, niche-overlap graphs are considered as
complex systems. They represent the competition between two predators that
share common resources. The purpose of this paper is to investigate the struc-
tural properties of these graphs considered as weighted networks and compare
their measures with the ones calculated for the binary networks. To conduct
this study, we select four classical network measures : the degree of nodes, the
clustering coefficient, the assortativity, and the betweenness centrality. These
measures were used to analyse different type of networks such as social net-
works, biological networks, world wide web, etc. Interestingly, we identify
significant differences between the structure of the binary and the weighted
niche-overlap graphs. This study indicates that weight information reveals
different features that may provide other implications on the dynamics of
these networks.

Keywords: Network Measures, Weighted Networks, Food-webs, Niche-
Overlap Graphs.

1 Introduction

Complex systems have recently gained much interest. Many analyses have
been conducted to understand the structure of these systems and to un-
cover their unique patterns [1, 2, 3]. Networks have emerged across many
fields including biology, ecology, social networks [4, 5, 6] and many others.
All these different networks were found to have a special architecture and a
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particular behavior. It was shown that social networks belong to the small
word property [7], known as the «six degrees of separation» phenomena.
Food-webs and niche-overlap graphs turned out to follow a single scale ex-
ponential distribution [8, 9] while other networks such as the biology cells
and the World Wide Web were found to follow a scale-free power law dis-
tribution [10]. In these real systems, two entities are connected if there is a
relationship between them. For instance, in a social network, the relation-
ship would be «being a friend with», in a food-web «feeding on a species», in
a niche-overlap graph «competition between species». However, in order to
have a better understanding of these networks, it is important to quantify the
relationship between nodes. This is done by giving a weight to the links of
the network. For example, in the scientific collaborator network, the weight
is equal to the number of coauthored papers between two authors. For the
world wide web network, the weight is defined by the load of data transferred
between two hosts [11]. For niche-overlap graph, the weight is characterized
by the number of common prey between two predators. In order to analyse
weighted networks, researchers generalized some network measures by con-
sidering the weight of the links [12, 13]. Here, our aim is to first investigate
the structure of weighted niche-overlap graph using four classical metrics:
node degree, clustering coefficient, assortativity and betweenness centrality.
We then compare the results with the ones obtained by analysing the binary
niche-overlap graphs. To our knowledge, this is the first study that consid-
ers niche-overlap graphs as weighted networks and conducts an analysis to
reveal their structure. The rest of the paper is organized as follows. Section
2 describes the food-webs and the niche-overlap graphs. Section 3 presents
the structural properties used to inspect the binary and weighted networks.
Section 4 illustrates and discusses the results. Finally, Section 5 concludes.

2 Ecological Networks: Food-Webs and Niche-Overlap
Graphs

Food-webs are examples of ecological networks. They describe the interac-
tions between consumers and resources. These complex systems are illus-
trated by a directed network. Nodes characterize species and directed links
map the feeding connections between them. Other networks, namely niche-
overlap graphs, are also examples of ecological networks. These graphs depict
the competition between consumers. Two predators (consumer) are linked if
they share at least one prey (resource). Niche-overlap graphs are drawn con-
sidering the information (who eat whom) retrieved from the food-webs. There
are two different ways of using this information: (1) searching only for the
common prey for each predator or (2) taking in consideration the number of
common prey for each predator. In the second case, the weight ωi,j assigned
to each edge will be defined using the Jaccard index [14]:
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ωi,j =
|preyi

⋂
preyj |

|preyi
⋃

preyj |
, (1)

where preyi and preyj are the prey of predator i and j respectively.
These weights provide important information on the competition between

predators. Two nodes might have the same number of links. However the
strength of their links might be different.

3 Datasets and Network Measures

3.1 Datasets

We selected a collection of 15 real food-webs and built their corresponding
niche-overlap graphs (Table 1). Weighted niche-overlap graphs were also gen-
erated to assess the comparison with the binary ones.

Table 1 Empirical food-webs and their associated niche-overlap graphs are pre-
sented by their name, order and size (number of links)

Food-web Niche-overlap Food-web Niche-overlap
Graph Order Size Order Size Graph Order Size Order Size
Chesapeake 33 71 27 95 Mangrove 90 1151 84 2148
Cypdry 68 468 53 855 LRL North Spring 2 144 2095 111 2520
Cypress 64 437 50 827 LRL North Summer 165 2706 121 3064
Cypwet 68 459 53 854 LRL North Winter 109 1257 86 1501
Everglades 63 617 58 1214 LRL South Winter 102 1328 83 1418
Gramdry 66 664 60 1267 LRL South Spring 1 151 2399 112 2965
Saint Martin 44 218 38 312 LRL South Summer 173 2901 119 3652
Mangrovedry 94 1210 86 2315

3.2 Network Measures

In order to assess a comparison between the architecture of these binary and
weighted graphs, we selected four classical network measures that were used
to analyse different networks such as social networks, biological networks,
world wide web networks and others [15, 16, 17]. These measures are pre-
sented below:

Degree: The degree Dv is the number of links that a node v has.

Weighted Degree: The node strength DW
v is the sum of the weights of the

links that a node v has.
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By taking into consideration the strength of each link, we obtain additional
information on the importance of the competition that a predator has. DW

v

is certainly lower than Dv since the weights ωi,j are in the interval [0, 1].

Clustering Coefficient: The clustering coefficient Cv measures the ten-
dency that the neighbors of a node v are linked to each other’s. It is given
by:

Cv =
2Ev

Dv(Dv − 1)
=

∑
j,h avjavhajh

Dv(Dv − 1)
, (2)

where avj is 1 if species v and j are connected (i.e. in competition) and 0

otherwise. The factor
Dv(Dv − 1)

2
is the potential number of links among the

neighbors. Ev is the number of links among the neighbors of v i.e. the actual

number of triangles in which node v participates:
1

2

∑
j,h

avjajkakv. The
clustering coefficient of the whole network, is the average clustering coefficient
C over all the nodes.

Weighted Clustering Coefficient: Many definitions of the weighted clus-
tering coefficient have been proposed in the literature [13, 18, 19, 20, 21].
In this paper, we restrict our analysis on the following two definitions : the
one proposed by Barrat et al. [13] which reflects how much of node strength
is associated with adjacent triangle edges and the one proposed by Onnela
et al. [21] which shows how large triangle weights are compared to network
maximum.

Barrat et al. take into account only two links of the triangle:

CW (B)
v =

1

sv(Dv − 1)

∑
j,h

(wvj + wvh)

2
avjavhajh, (3)

where sv accounts for the strength of node v:

sv =
∑

j
avjwvj .

The factor sv(Dv − 1) is the normalization factor to ensure that the

weighted clustering is in the interval [0, 1] and
wvj + wvh

2
is the weights’

average of the links between node v and its neighbors j and h.
If CW (B) > C, this shows that the interconnected triples are more likely

to be created by the links with larger weights. If CW (B) < C, this indicates
that these triples are formed by the links with lower weights [22].

Onnela et al. consider all the three link weights of a triangle:

CW (O) =
2

Dv(Dv − 1)

∑
j,h

(ŵvjŵjhŵhv)
1
3 = Cv Īv, (4)

where ŵvj is equal to wvj/max(w). The actual number of triangles in which
node v participates is replaced by the average intensity Īv of the triangle,
which is the geometric mean of the links’ weights (ŵvjŵjhŵhv)

1
3 [11].
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Betweenness Centrality: The betweenness centrality of a node v intro-
duced by Freeman [23] identifies the number of shortest paths that passes
through node v (denoted by σst(v)) among all the shortest paths (σst) in the
network. This measure is given by:

BCv =
∑

s,t�=v

σst(v)

σst
. (5)

If the betweenness centrality BC of a node v is equal to 0, it belongs to
only one complete subgraph (a clique) of a graph G [24].

Weighted betweenness Centrality: The weighted betweenness centrality
of a node v is calculated by taking into consideration the weights of the links
in the network when finding the shortest path that passes through v, σw

st(v)
and the ones among the network σw

st :

BCW
v =

∑
s,t�=v

σw
st(v)

σw
st

. (6)

In the weighted version of the betweenness centrality, if a species has a
BCW equal to 0, this does not ensure that it belongs to one unique clique.

Assortativity Coefficient: The assortativity coefficient R of a graph mea-
sures the tendency of degree correlation. It is calculated using the correlation
coefficient of Pearson applied to the degrees of each node in the network.

It is defined as:

R =

1
M

∑
Φ(
∏

v∈F (Φ)Dv)− ( 1
2M

∑
Φ(
∑

v∈F (Φ) Dv))
2

1
2M

∑
Φ(
∑

v∈F (Φ)D
2
v)− ( 1

2M

∑
Φ(
∑

v∈F (Φ)Dv))2
, (7)

where M is the total number of links in the network, F (Φ) denotes the set
of two nodes linked by the Φth link [15].

Weighted Assortativity Coefficient: The weighted assortativity coeffi-
cient RW suggested by Leung et al. [25] is given by :

RW =

1
H

∑
Φ(wΦ

∏
v∈F (Φ) Dv)− ( 1

2H

∑
Φ(wΦ

∑
v∈F (Φ)Dv))

2

1
2H

∑
Φ(wΦ

∑
v∈F (Φ) D

2
v)− ( 1

2H

∑
Φ(wΦ

∑
v∈F (Φ)Dv))2

, (8)

where H is the total weight of all links in the network and wΦ denotes the
weight of the Φth link.

If RW > R, this implies that the links with a larger weights are pointing
to the neighbors with larger degree. If RW < R, this shows that the links
with a larger weights are pointing to the neighbors with smaller degree [26].

4 Results and Discussion

The average degree of species of the 15 weighted niche-overlap graphs was
significantly lower compared to the binary ones (Fig. 1 (a)). This indicates
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that even though species compete with many other species, they actually
share few resources between them, thus providing weak links.

The distribution of the weighted clustering coefficient proposed by Barrat
et al. CW (B) is slightly higher than the one for the binary clustering coeffi-
cient C whereas the one suggested by Onnela et al. CW (O) is considerably
lower among the others (Fig. 1 (b)). The differences between both definitions
comes from the fact that Onnela et al. take into account the weights between
neighbors of node v and the weights of the edges between neighbors. On the
other hand, Barrat et al. consider only the weights of the triangle forming
the edges linked to node v but not the edges connecting the neighbors of
v. Both weighted clustering coefficient (CW (B) and CW (O)) provide us with
complementary information. CW (B) being close the C yields to two conclu-
sions : (1) the absence of correlation (randomized network), (2) the network
is divided in two sets, one where triples are constituted by larger weights
and others by smaller weights. CW (O) being significantly lower is due to the
weight normalization by the global max(w) and to a broad distribution of
weights in networks [27].
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Fig. 1 Box plots (minimum, quartiles and maximum) illustrating the distribution
of degree and clustering coefficient respectively of the 15 niche-overlap graphs. Me-
dians are indicated by red lines. D and DW correspond to the binary and weighted
degree respectively. C denotes the binary clustering coefficient. CW (B) and CW (O)

the one proposed by Barrat et al. and Onnela et al. respectively.

The percentage of species with a betweenness centrality equal to 0 differed
between the binary and the weighted niche-overlap graphs (Fig. 2 (a)). A
higher number of species with a BCW = 0 was detected in the weighted
version. This points out that some species have a stronger competition (a
high number of shared prey) among the others.

Interestingly, the assortativity coefficient for the weighted networks was
positive whereas for the binary ones it was close to 0 and slightly negative
(Fig. 2 (b)). This points out that by considering the strength of links, niche-
overlap graphs reveal a fairly tendency to be assortative. This expresses that
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Fig. 2 Box plots (minimum, quartiles and maximum) illustrating the distribu-
tion of betweenness centrality and assortativity respectively of the 15 niche-overlap
graphs. Medians are indicated by red lines. BC and BCW correspond to the bi-
nary and weighted betweenness centrality respectively. R and RW correspond to
the binary and weighted assortativity respectively.

predators with a high number of common prey tend to be connected with
predators who also have a high number of common prey. Nevertheless, by
considering simply the presence or absence of links (ignoring the weights),
highlights a different assemblage of predators, indeed for binary niche-overlap
graphs, predators tend to be linked randomly.

5 Conclusion

In this work, a set of 15 real networks was considered to conduct a comparison
between the structure of the binary and weighted niche-overlap graphs. Our
analysis showed significant differences between both structures indicating the
influence of the weights on the architecture and on the assemblage of species.
We believe that our study provides new insights and additional topological
information on the structure of niche-overlap graphs studied in the context
of foodwebs.
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