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 The Big Clifty (Jackson) Sandstone Member of the Golconda Formation is the 

most important of the Mississippian (Chesterian) heavy-oil reservoirs in the 

southeastern Illinois Basin. Heavy oil reservoirs, or asphalt rock deposits, have been 

studied extensively in south central and western Kentucky, and ~2 billion barrels of 

original oil in place (OOIP) have been proposed to occur in the Big Clifty Sandstone. 

Despite high OOIP estimates, heterogeneities in the reservoir negatively impact the 

production of heavy oil deposits. Heterogeneities related to depositional facies 

changes are poorly understood in the Big Clifty Sandstone of Kentucky, where it has 

been mostly described as a 60-120 feet thick sandstone unit. In some locations, the 

Big Clifty occurs as two distinct sand bodies with intercalated mud-rich units and, 

most typically, with the greatest clay- and silt-rich units present between sandstone 

bodies.  Questions exist as to how such muddy facies occur in the reservoir. 

 This study couples sedimentary facies analysis with sequence stratigraphy 

to assess how lithological factors affect the occurrence of petroleum in Big Clifty 

reservoirs.  Multiple datasets were integrated to develop a depositional model for 

lithologic facies observed in this study. Datasets include core, exposure 

descriptions, petrographic analysis, bitumen concentrations, electrical resistivity 

tomography (ERT), and borehole geophysical analysis. This study occurred in 

Logan, Warren, and Butler counties, with emphasis on an active asphalt-rock mine 



 
 

x 

in Logan County.  Surface geophysical methods aided in demarcating Chesterian 

limestones, sandstone bodies and, in particular, highly resistive heavy-oil laden Big 

Clifty channel bodies. 

 In Warren County, located E-NE of the Stampede Mine, the Big Clifty 

coalesces into a single amalgamated sandstone channel or a series of superimposed 

stacked channels as observed in outcrop along Indian Creek at McChesney Field 

Station and at Jackson’s Orchard. In these locations, the tidal influence is subtle with 

large-scale trough cross bedding dominating, and the contact on the Beech Creek 

Limestone is sharp. Facies changes related to the environment of deposition greatly 

impact the quality of heavy-oil reservoirs and must be taken into consideration 

during exploration and siting of asphalt rock mines.  
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Chapter 1: Introduction 
 

 
The Big Clifty Sandstone is both a heavy-oil (low API gravity) and 

conventional (high API gravity) petroleum reservoir that occurs in the subsurface 

and outcrop belt in the Illinois Basin of Western Kentucky. Despite multiple studies 

attempting to quantify Big Clifty heavy oil resources (Jillson, 1926; Noger, 1987; 

Bowersox, 2014), no facies analysis studies have been done relating depositional 

facies to reservoir properties. No specific depositional model, furthermore, has been 

suggested for the Big Clifty Sandstone in South Central Kentucky. Such an 

understanding could aid in exploration of heavy-oil reservoirs, as well as determine 

the potential of Big Clifty Sandstone for wastewater disposal wells in the subsurface 

of Butler and Warren Counties. 

 
 1.1: Problem Statement  
 

The economics of surface mining and processing heavy-oil reservoirs are 

negatively impacted by the occurrence of fine sediments and fluctuating heavy oil 

concentrations. Such heterogeneities in Big Clifty Sandstone reservoirs have 

impeded current attempts to develop heavy oil deposits in Logan County and made 

prospecting for new reserves challenging. Furthermore, sedimentary features such 

as grain size, composition, and shape are significant considerations needed to 

optimize processing heavy oil ore using ionic solution settling tanks. Such processes 

utilize electric pumps and piping prone to degradation as the result of the shape and 

strength of the materials they process. Additionally, solution-settling processes 

often do not work well with fine-grained materials.  
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Physical and reservoir properties such as grain size and porosity are largely 

controlled by facies in depositional systems (Pryor et al., 1990). Multiple types of 

depositional systems have been observed in Chester siliciclastic reservoirs such as 

deltaic, nearshore and marine embayments, incised valley systems, and estuarine 

systems (Webb and Grigsby, 2015). During Chesterian time, the Illinois Basin was a 

shallow ramp that rarely achieved depths below wave base (Treworgy, 1990). 

These shallow conditions further complicate interpreting facies, as systems were 

often reworked. Core and outcrop-based facies models provide a framework for the 

sedimentology and stratigraphy of Big Clifty heavy oil sandstones, which control 

reservoir properties. Currently no such model exists for heavy oil reservoirs in 

northeast Logan County.  

1.2: Objectives 
 

The main objectives for this study are the following: 1) develop a facies 

model for the Big Clifty Sandstone, and 2) relate this model to the exploration and 

production of heavy oil reservoirs in South Central Kentucky and, particularly, 

northeast Logan County. To accomplish these objectives a study was conducted 

incorporating sedimentological, petrographic, geophysical, and organic geochemical 

analysis of the study area. Core, surface exposures, Electrical Resistivity 

Tomography (ERT), petrographic, and laboratory datasets were integrated to 

develop the facies model. 
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Chapter 2: Geological Framework 

2.1: Overview 

The Illinois Basin is an intracratonic basin encompassing the majority of 

Illinois, Southwestern Indiana, and Western Kentucky (Figure 2.1). This 

sedimentary and structural basin is positioned near the New Madrid Rift Complex, 

and is bound on all sides (Figure 2.2) by positive structural features. The strata 

mostly consist of Cambrian through Pennsylvanian rocks that dip gently basinward 

from surrounding margins (Buschbach and Kolata, 1990). The geometry of the basin 

has been changing since faulting along the New Madrid Rift system occurred during 

the late Precambrian. Since the Precambrian, episodic subsidence occurring along 

normal faults has accommodated sedimentation and punctuated sedimentary 

sequences (Kolata, 1990). 

 
Figure 2.1. Map Showing the Illinois Basin, Appalachian Basin, Michigan Basin, and 
Black Warrior Basin. Source: Swezey (2009). 
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The Illinois Basin during much of the Paleozoic was connected to the open 

ocean to the south through the current day Pascola Arch (Figure 2.2). Fluctuating 

sea level caused major depositional sequences to develop, with each sequence 

representing a major regressive-transgressive cycle. Six primary sequences 

spanning the Phanerozoic are present in the Illinois Basin. From oldest to youngest 

they are the Sauk, the Tippecanoe, the Kaskaskia, the Absaroka, the Zuni, and the 

Tejas (Sloss, 1963; Kolata, 1990).  

 
Figure 2.2. Map showing Study area in relation to structural features. The outline of 
the Reelfoot rift and Rough Creek graben fault zones are outlined in green. Notice 
the Pascola arch which was emplaced after the deposition of the Big Clifty 
Sandstone in the Illinois Basin. Source: Sable and Dever (1990). 
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2.2: Structural Framework  
 
 The New Madrid Rift Complex is the primary control on sediment 

accumulation rates and depositional environments in the Illinois Basin (Figure 2.2) 

(Kolata and Nelson, 1990).  Siesmic-reflection data combined with gravity and 

magnetic anomalies have led to new understandings regarding the extent and 

geometry of the Reelfoot Rift Complex (Figure 2.2). The eastern arm of the rift 

complex consists of the Rough Creek Graben, which extends into Western Kentucky. 

The Rough Creek Graben possesses an east-west trend and is bound to the south by 

an unnamed fault system, which traverses the study area in Logan County and turns 

northward before reaching Warren County to combine with the Pennyrile Fault 

System. These faults occur as high-angle normal faults that, combined, have less 

than 3300 feet of displacement (Kolata, 1990; Nelson, 1990). The entire Rough 

Creek Fault System narrows to the east and widens to the west and southwest 

where it combines with the Reelfoot Rift. The Rough Creek Graben formed during 

the Precambrian; however, reactivation along existing faults occurred at least twice 

during the Paleozoic. During the Pennsylvanian, reverse faulting occurred from 

convergence related to the Alleghenian Orogeny. During this time many petroleum 

accumulating positive relief structures formed throughout the basin. During the 

Jurassic, extensional forces from the breakup of Pangaea caused dip slip reactivation 

(Nelson, 1990).  

 No specific work has been conducted that describes the structural geology of 

the unnamed fault system in Southwestern Kentucky. It has been suggested that the 

structural styles of this fault zone are quite similar to the Pennyrile Fault Zone to the 
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north, which formed in response to extensional forces with the breakup of Pangaea 

(Kolata and Nelson, 1990). It is within the southern unnamed fault zone that Big 

Clifty Sandstone heavy oil deposits occur in Logan County (Figure 2.3).  

 
Figure 2.3. Map showing study area. Dashed purple line shows the approximate 
boundary between the outcrop belt of Big Clifty Sandstone and where it occurs in 
the subsurface. Black lines show mapped faults. Note the southern most fault zone 
that occurs in the study area. Type section from Norwood (1876) also displayed. 
Source: Modified from KGS maps: http://www.uky.edu/KGS/ 
 
 
2.3: Stratigraphy 
 
 The oldest rocks in the Illinois basin consist of 1,420 to 1,500 Ma granite and 

rhyolite, which are overlain by sedimentary rocks ranging from Paleozoic to 

Mesozoic (Swezey, 2009).  The Paleozoic stratigraphic section in the Illinois Basin 

consists largely of carbonates punctuated by siliciclastics sourced by tectonic 

activity (Kolata and Nelson, 1990; Swezey, 2009). Three main periods of influx of 

siliciclastics into midcontinent basins are the result of the three orogenic 

http://www.uky.edu/KGS/


 
 

7 

revolutions that ultimately formed Pangaea (Pashin, 1993; Swezey, 2009). The last 

of these orogenies, the Alleghenian, occurred during the late Mississippian through 

Permian time and sourced the siliciclastics occurring between carbonates of the 

Chester Series in the Illinois Basin.  

 The Chester stratigraphic (Figure 2.4) section in the study area marks a 

transition from dominantly carbonate deposition during the early to middle 

Mississippian (Valmeyeran) to dominantly siliciclastic deposition during the 

Pennsylvanian (Treworgy, 1990). The Illinois Basin during this time was within 5° 

south of the equator and existed as a low-angle ramp covered by a shallow epeiric 

sea that shoaled south of the Rough Creek Fault zone. The Chester Series composes 

cyclical or rhythmic deposits of sandstone, shale, and limestone, with clastic 

sediments comprising 25 to 50 percent of the Series (Dana and Scobey, 1941; Sable 

and Dever, 1990). Sandstones commonly occur as fine to coarse-grained 

quartzarenite, which contrast the largely sublitharenites occurring in 

Kinderhookian and Osagean units.  
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Figure 2.4. Stratigraphic column. In South Central Kentucky the Beech Creek 
Limestone member of the Golconda Formation thins into the Girkin Limestone along 
the basin margin. The Beech Creek is often overlain by fossiliferous shale. Source: 
Modified by the author from Nelson et al. (2002). 

 

2.4: South Central Kentucky  
 

The Chester Series occurs both in the outcrop belt and in the subsurface in 

South Central Kentucky, where it thickens over the Mormon Syncline and Rough 

Creek Graben. The Chester outcrop belt parallels the Cincinnati Arch north to south 

along I-65 until near Mammoth Cave, where it turns west/southwest (Figure 2.3). In 

this region of Kentucky, the Big Clifty Sandstone is typified as 60 to 120 feet of 

quartz sandstone (Sable, 1964; Sandberg and Bowles, 1965) that caps ridges, 

forming the Dripping Springs Escarpment. This sandstone cap enhanced the 

development of numerous caves occurring in underlying limestone. The bedrock dip 
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in this region is to the west to southwest off the Cincinnati Arch and into the Illinois 

Basin.  

Numerous conventional oil and gas fields occur in the subsurface of this 

region. Bowling Green Consolidated Field in Warren County is one of the largest, 

and developed rapidly creating an oil boom in the 1920s (McGrain and Sutton, 

1973). Mississippian and Devonian-aged reservoirs are the primary producers. Sixty 

percent of the oil produced in the entire Illinois Basin is from Mississippian-aged 

reservoirs (Treworgy, 1990). The Big Clifty Sandstone is a conventional reservoir in 

Southwestern Butler County, where Chester stratigraphic units have produced the 

highest volumes of oil (Schwalb, 1975). 

 Unconventional hydrocarbons in the form of low API gravity oil and bitumen 

also occur extensively in Mississippian and Pennsylvanian rocks in this region. 

These deposits are not tar sands but rather are lithified sandstone containing <10 

API hydrocarbons and are referred to as asphalt rock. Estimates ranging from three 

to six billion barrels of oil-equivalent asphalt rock occur in Mississippian and 

Pennsylvanian reservoirs in Kentucky. The majority of this oil is from the Big Clifty 

Sandstone (Noger, 1987; May and Kuehn, 2009; May, 2013).  
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Chapter 3: Literature Review 

3.1: Chester Environments of Depositions (EODs) 

Several excellent studies have been conducted that describe sandstone 

depositional patterns and characteristics during the Chester (Upper Mississippian) 

in the Illinois Basin (Siever, 1953; Potter et al., 1958; Potter, 1962; Swann, 1964; 

Droste and Keller, 1995; Smith and Read, 2001; Nelson et al., 2002; Webb and 

Grigsby, 2015). Swann (1964) described the Chesterian as a rhythmic stacking of 

carbonates and sillicilastics occurring above the carbonate-dominant Valmeyeran 

and comprising 12 to 15 major regressive and transgressive cycles. Swann (1964) 

noted that exact boundaries of major cycles are difficult to determine as they 

commonly vary across the basin, which led to miscorrelation in early work. 

Compounding the problem, extreme lateral variation in lithology and thickness of 

siliciclastics occurs in the Chester Series. A sandstone body can shift laterally into 

shale over a distance of a mile or less (Siever, 1953). 

 According to Swann (1964), Chester siliciclastics entered the Illinois Basin 

from the northeast via the ancestral Michigan River and its associated deltaic 

system, which shifted laterally NW-SE some 200 miles (Figure 3.1). These delta lobe 

shifts led to geographic heterogeneities in the location of the sandstone across the 

basin both along strike (~200 miles) and down dip (~600 miles) as the 

paleoshoreline advanced and retreated.  

Environments of deposition (EOD) for Chester Series siliciclastic intervals 

vary from fluvial to distal marine environments. Specific depositional environment 

classes have been suggested and include: shallow marine, deltaic, estuarine, and 
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incised valley fill (Webb and Grigsby, 2015). Boundaries between classes are not 

always well defined and sedimentary units are commonly the result of multiple 

depositional classes. Facies analysis is a useful method for associating EOD based on 

lithology and sedimentary features. The term “facies” contains both a descriptive 

and interpretative component, which may be used to form a model describing 

sedimentary environments during deposition (Anderton, 1985). To address the 

complexities of the Chester Series and, more specifically, the Big Clifty Sandstone, 

this study combines the methods of facies analysis with sequence stratigraphy.   

 
Figure 3.1. Compilation of maps from previous work. Source: A, B, and C are 
modified from Swann (1964) showing his Michigan River Delta system. The black 
bars in C are 200 miles, which is the range of the delta switching according to Swann 
(1964). D is modified from Potter et al. (1958) showing sample sections 3 through 
13 (purple) and 14 through 20 (green). The grand mean is shown in the upper right 
corner. E is a map from Treworgy (1988) showing her subdivisions of the basin 
during Golconda time 
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3.2: Sequence Stratigraphy 

Sequence stratigraphy is a branch of stratigraphy that uses genetically 

related packages of sediments bounded by unconformities to correlate 

chronostratigraphically related but lithologically varying facies types. Sequences are 

composed of parasequences and parasequence sets and are organized into system 

tracts (Sloss, 1963; Wagoner et al., 1988; Embry, 2009). Despite the wide usage of 

sequence stratigraphy in basin analysis, it has been infrequently applied to 

intracratonic basins (Leetaru, 2000). Nonetheless, some excellent sequence 

stratigraphic studies of Chesterian units exist for the Illinois Basin (Leetaru, 2000; 

Smith and Read, 2001; Nelson et al., 2002)   

A study by Nelson et al. (2002) identified incised-valley fill (IVF) facies in the 

Big Clifty Sandstone in the Cub Run and Constantine quadrangles of Kentucky. These 

thick (60-120 feet) sandstone deposits fill scoured valleys. The grains are coarser 

than sandstones and interpreted to be tidal bars. Coals and carbonaceous shales 

have also been described in the upper portion of the unit in this area. Evidence for 

exposure is well documented in the Big Clifty Sandstone in the form of red and 

green mudstones and paleosols (Treworgy, 1988; Smith and Read, 2001; Nelson et 

al., 2002). Coals, however, have only been described in IVF deposits, which are 

fluvial in nature and likely formed during lowstand conditions (Nelson et al 2002).  

 Treworgy (1988) studied the Golconda Group across the Illinois Basin and 

described the basin as a shallow ramp during deposition of the Golconda Group. In 

her model, the basin was subdivided into three shelves (Figure 3.1, Part E) and 

separated by moderately deep areas, but never achieved depths below wave base. 
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Part E of Figure 3.1 shows the southern shelf, which occurred as a shallow sill with 

accommodation increasing westward. She divided the ramp into lower, middle, and 

upper sections and placed the boundaries between sections along structural “hinge 

lines.” Lower ramp settings contain the conodont Gnathodus that occurs in the 

Beech Creek Limestone (Treworgy, 1988). The Frailey’s Shale of Illinois and 

Western Kentucky formed under middle to lower ramp conditions while the Big 

Clifty Sandstone formed under middle to upper ramp conditions, and thickens to the 

east (Treworgy, 1988). Later work suggests that the Big Clifty Sandstone formed as 

a single regressive-transgressive unit spanning two sequences, accommodated by 

differential subsidence along existing structures (Smith and Read, 2001). The lower 

unit of Big Clifty Sandstone prograded into the Illinois Basin during high-stand 

conditions and the upper unit was deposited above a basin-wide exposure surface 

during the ensuing marine transgression (Nelson et al., 2002).   

 
3.3: Big Clifty Sandstone  

The Big Clifty Sandstone occurs as a fine-to-medium grained quartz arenite 

with framework grains consisting of mono and poly-crystalline quartz with minor 

feldspar and micaceous grains (May, 2013). The unit consists largely of sandstone in 

Western Kentucky, but also contains variable amounts of shale, siltstone, and 

limestone (Williams et al., 1982). Sandstone units are thin (e.g., 0.5-2 ft.) to massive 

bedded and exhibit cross bedding, ripple bedding, and flaser bedding (Noger, 1987).  

No detailed facies analysis exists for the unit south of the Rough Creek Fault 

Zone, despite several studies having been completed on the heavy-oil deposits 

occurring in the Big Clifty Sandstone. Two facies studies of the Big Clifty Formation 
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were conducted near Sulphur, Indiana (Visher, 1980; Specht, 1985). Results from 

these studies support interpretations in several major sequence stratigraphic 

studies (Treworgy, 1988; Nelson et al., 2002; Smith and Read, 2001). These 

researchers have described the Big Clifty Sandstone in Indiana as tidally influenced 

bar sands and tidal sand ridges that formed in a tidally influenced delta system. 

Baker (1980) studied the Big Clifty in the Wheatonville consolidated field in Gibson 

County, Indiana, and identified two sandstone lenses in the subsurface ~1 mile (1.6 

km) apart. These sandstone lenses are approximately 0.75 miles (0.75 km) across 

and 5 miles (8.1) long and range in thickness from 20 to 64 feet (6.1 to 19.0 meters). 

Baker (1980) described the lower contact of the Big Clifty with the underlying Beech 

Creek or Girkin Limestone as sharp with sand bodies containing cross laminations 

and fine-grained clastics. These interpretations are consistent with a tidally 

influenced, near shore to shallow marine environments of deposition. Upper delta 

plain or fluvial deposits have not been described in Indiana.  

Potter et al. (1958) conducted a basin-wide paleocurrent study of Chester 

sandstones and concluded that the Big Clifty Sandstone is a notable exception to the 

general Chester trends in both paleocurrent direction and location in the basin. The 

Big Clifty Sandstone occurs in the outcrop belt of Indiana and Western Kentucky 

along a north to south trend where it is well developed in the subsurface and 

becomes less developed westward in Illinois (Potter et al., 1958). Part D of Figure 

3.1 shows the grand mean for paleocurrent data for both the Hardinsburg and Big 

Clifty sandstones in the lllinois Basin. Researchers note that cross bedding in the Big 

Clifty Sandstone is poorly developed in sections 3 to 13 of the outcrop and best 
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developed in sections 14 to 20 (Figure 3.1 part D) where the sandstone has a 

dominantly westerly paleocurrent direction (Potter et al., 1958). Several 

interpretations were offered by the authors to explain the atypical nature of the Big 

Clifty Sandstone in the eastern Illinois Basin including a localized easterly sediment 

source, depositional strike elements from longshore currents, and relief from the 

Cincinnati Arch (Potter et al., 1958). Later work emphasized an easterly cratonic 

source during Big Clifty time as indicated by correlating the Big Clifty Sandstone to 

the Hartselle Sandstone of the Appalachian Basin of Kentucky and Tennessee (Sable 

and Dever, 1990). This work suggests that the northwest to west paleocurrent 

direction in the Big Clifty Sandstone in South Central Kentucky, results from 

sediments entering the basin across the Cumberland Saddle (Figure 3.3, Part B). 

Other researchers correlated the Big Clifty Sandstone to the Hartselle Sandstone of 

the Black Warrior Basin of Alabama noting a similar cratonic source for both the 

Hartselle and Big Clifty (Stapor and Cleaves, 1992). This interpretation has met 

challenges. Thomas and Macke (1982) suggested an Ouachita orogenic source for 

the Hartselle in the Black Warrior Basin. Compelling similarities exist in facies 

between the Hartselle and Big Clifty as both units consist of tidally influenced bar 

sandstones and both units are heavy oil reservoirs. These two siliciclastic units 

represent a dramatic shift in the siliciclastic- generating source region and could 

record the transition from Taconic to Alleghenian tectonic styles (Stapor and 

Cleaves, 1992).  
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3.4: Reservoir Studies 

3.4.1: Asphalt Rock Reservoirs 

Asphalt rock has been mined for over 100 years in Kentucky (Noger, 1987).  

Since the 19th century, geologists have studied these resources in an attempt to 

quantify them. The first asphalt mine in Kentucky was located in Logan County in 

1891. The asphalt was used locally as a paving material (May, 2013). Kentucky 

Asphalt Rock Company mined the basal Pennsylvanian Caseyville Sandstone in 

Edmonson County in the first half of the 20th century with much success. The 

material was loaded into barges and shipped along the Green River and sold globally 

(May, 2013). A study by Jillson (1926) was one of the earliest attempts to quantify 

asphalt rock reserves in South Central Kentucky. This comprehensive report 

documented asphalt rock mining and reserves across the region by providing 

reservoir geometry and bitumen concentrations. Several mines northeast of 

Russellville in Logan County were examined.  Jillson (1926) noted an average 

bitumen concentration of 7.36% in these locations with deposits ranging from 10 to 

39 feet thick, with one 350 to 400 acre tract in Logan County estimated to contain 

~1,500,000 tons of recoverable asphalt rock.  

3.4.2: Previous Studies 

During the 1960s and 1970s, the United States Geological Survey (USGS), in 

cooperation with the Kentucky Geological Survey (KGS), conducted a statewide 

geological mapping program on a 1:24,000 scale (Noger, 1987). This work provided 

maps to the public showing the location of asphalt rock mines for the first time and 

greatly enhanced efforts to quantify heavy oil reserves. The most comprehensive 
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study to date of asphaltic sandstone resources in Kentucky was conducted in the 

early 1980s in a joint study between the KGS and Interstate Oil Compact 

Commission (Noger, 1987).  Figure 3.2 shows the locations of asphaltic sandstone 

measured in this study. In the Cooperstown-Gasper area of Logan County, 43,000 

acres were assessed and 390 million barrels of heavy oil were estimated to occur in 

the Big Clifty Sandstone (Noger, 1987). 

 
 
Figure 3.2. Map showing the location of asphaltic sandstone deposits across the 
study area. In the Cooperstown and Gasper area of Logan County, Noger (1987) 
reports approximately 20 to 30 K barrels per acre.  Source: Noger (1987). 

 

  An estimated 2.1 billion barrels of heavy oil were calculated for all Big Clifty 

heavy oil reservoirs in South Central Kentucky. This estimation has been refined 

over the years, most recently by Bowersox (2014) who calculated an average 

volume of 6,300 barrels of heavy oil per acre for the Big Clifty Sandstone.  In this 

study Bowersox (2014) noted approximately 389,000 acres of Big Clifty Sandstone 

resources (Figure 3.3). 
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Figure 3.3. Net asphalt rock map of the Big Clifty Sandstone. Sandstone thickness 
values range from 0 to 50 feet and are shown on carter coordinate grid. Note the 
high values shown in the riverside area of Warren County where the Mega West 
project occurred. Outcrop and core data locations are shown with blue and red 
circles.  Source: Created by Bowersox (2014) and used with permission. 
 

3.4.3: Logan County  

Much of the surface mining of asphalt rock has occurred in areas where 

heavy-oil reservoirs are at or near the surface, such as in Logan County. Overburden 

is a considerable expense for asphalt rock-mining operations. Perhaps the most 

successful asphalt-rock mining operation in Logan County to date was the Tarco 

pilot project operated by Larry Hastings and DOW Chemical in the 1980s. The Big 

Clifty Sandstone at the former plant site occurs close to the surface with an 

overburden of 4-10 feet (Groves and Hastings, 1983). The Tarco operation was 

located near Homer, Kentucky, approximately four miles from the current Stampede 

Mine site. The largest impediment to the economics of developing asphalt rock for 
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crude oil is processing the ore. Heterogeneities in the reservoir greatly impact 

attempts to process asphalt ore through solution processes. The Big Clifty Sandstone 

in the vicinity of the Tarco site consists of approximately 40 feet of sandstone with 

bitumen content of between 6 to 8% (Groves and Hastings, 1983). No reservoir 

characterization or facies analysis data were published or made publically available 

from the Tarco operation.  

3.4.4: Butler County 

The Big Clifty Sandstone is a reservoir in Butler County. Schwalb (1975) 

published a report on the petroleum geology of Butler County and noted that the Big 

Clifty Sandstone occurs as a shallow conventional oil reservoir primarily in the 

northern and western portions of the county. The Big Clifty has also produced gas in 

the Huntsville field (Figure 3.4) with initial production of one well at 325 MCF 

(thousand cubic feet) per day (Schwalb, 1975). 
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Figure 3.4. Map showing oil fields in south western Butler County. The purple circles 
represent the Huntsville field. The structure is on the Glen Dean Limestone in the 
west and the Big Clifty Sandstone in the east. Source: Created by author with data 
from the Kentucky Geological Survey (KGS, 2015) online at: 
http://kgs.uky.edu/kgsweb/DataSearching/oilsearch.asp  

 

In this report, Schwalb (1975) suggested that the term “shelf” does not 

describe the paleogeography of Butler County during Chester deposition and prefers 

instead the term “verge” to describe the shallowly dipping basin. He noted that no 

major change in degree of dip angle or sedimentation occurs north to south across 

the Pennyrile Fault System but, instead, suggested that the verge in this area begins 

at the Pennyrile Fault System and terminates toward the Tennessee border 

(Schwalb, 1975). This interpretation may conflict with Treworgy’s (1988) 

classification of lower, middle, and upper shelf or shelves that transition over 

http://kgs.uky.edu/kgsweb/DataSearching/oilsearch.asp
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structural hinge lines. Schwalb (1975) suggested that Big Clifty Sandstone 

petroleum traps result from variation in sandstone thickness and sandstone quality 

rather than structural closure, although combination traps likely exist. Pryor et al. 

(1991) also described stratigraphic traps in Chesterian units and, according to their 

study, the distributions of reservoirs are controlled by “synsedimentary 

topography.” They suggested regenerative feedback mechanisms caused by 

preexisting structures and/or syndepositional topography controlling both where 

reservoirs and seals occur in Chester units (Pryor et al., 1991). Marine shale is the 

primary seal for Chester sandstone where it encases the Sandstone body on all 

sides. These mechanisms exert a strong control on patterns of deposition and 

eogenetic diagenesis (Pryor et al., 1991). 

3.4.5: Warren County  

Several Pennsylvanian asphalt-rock deposits occur along the Green River in 

Warren County. No large-scale mining, however, has been attempted. Steam-flood 

and fire-flood processes have been attempted in Big Clifty reservoirs of Warren 

County with poor results (McGrain, 1976). From 2008 to 2011, Megawest Energy 

Corporation attempted a steam-flood design, targeting multiple Chester sandstone 

units (Big Clifty, Hardinsburg, and Tar Springs) in Edmonson, Butler, and Warren 

counties (May, 2013). No mining or enhanced oil recovery projects are currently 

active in Warren County.  
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Chapter 4: Methods of Investigation 
 
4.1: Overview 
 

This study is primarily based on cores taken from the Stampede Mine and 

surrounding areas in Logan County, Kentucky. Other data sets were collected from 

this site including Electrical Resistivity Tomography (ERT), and detailed 

measurements of surface exposures created from the mining pit. These data are 

compared to surface exposures along an approximately 30-mile (45-50km) traverse 

across Northeast Logan and Northern Warren counties. Subsurface data from 

Southwest Butler County and western Warren County are also examined and 

correlated to facies analysis (Figure 4.1). Thirty thin sections prepared from billets 

cut from core in Logan County were examined for facies type and porosity. Core plus 

surface exposure (Mine pit A) samples were collected and analyzed for bitumen 

concentration. Reservoir parameters, including porosity, permeability, and liquids 

saturation, are also determined through core analysis. Oilfield Research Inc. of 

Evansville, Indiana, conducted this analysis. Two cores from Logan County were 

analyzed in 2012 and 2013. These data, along with three core analysis studies from 

nearby Southern Butler County, are referenced. The resulting lithofacies model is 

used to interpret a type log from a conventional Big Clifty oil and gas field in 

Southwest Butler County.  

The following describes the datasets utilized in this study. These data have 

been integrated and correlated to develop a depositional model as related to the 

emplacement of petroleum reservoirs both in and around the study area.    
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Figure 4.1. Location of the data used in this study. Logan County cores are shown as a Green polygon. Geophysical logs 
are shown with blue circles with KGS permit #. Surface exposures are shown with yellow circles.  
Source: Created by Andrew Reeder and modified by the author with permission. 
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4.2: Study Area 

 This study takes place over Logan, Warren, and Butler Counties spanning the 

subsurface, shallow subsurface, and outcrop belt in South Central Kentucky. The 

datasets from the three counties are shown in Table 4.1 and Figure 4.1.  

Location Dataset 

Logan County 
 Stampede Mine, ~11 miles NE of 

Russellville on highway 79 
 Wells from Stampede Acreage 

(Figure) 
 

24 cores, 30 thin sections, Mining 
Exposures, Bitumen Concentration 

Analysis, ERT 

Warren County 
 Natcher Parkway and Glen Lilly 

Road (two locations) 
 Barren River Road, 2-3 miles north 

of Scott Quarry 
 Jackson’s Orchard, Off of Slim Island 

Road 
 McChesney Field Station, along 

Indian Creek 

Road cuts, surface exposures 

Butler County 
 Multiple Oil Fields (Figure 3.4) 
 Type Log from 11-H-32 

800 Records examined: Drillers logs, 
core analysis, geophysical logs, 

Table 4.1: Showing the Datasets Utilized in this Study, along with Source Location. 

 
4.3: Core Analysis 

 
A total of 24 cores were pulled from drilled boreholes from the vicinity of 

Homer, Kentucky, in Carter Coordinate (CC) F-32 and F-33. Of these 24 cores, 20 

were retrieved from the Stampede Mine property. Three cores were obtained from 

other leases referred to as Morgan Farm (MA, MAA, MBB, MCC) and one was taken 

from the Looper Farm property (LFA), shown in Figure 4.2. Three rounds of coring 

occurred at the Stampede Mine. However, only two rounds are included in this  
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Figure 4.2.  Map of Stampede acreage position in Logan County. Cores used in this study are also 
labeled. Tarco site is also shown along with the property examined in Jillson (1926) report.  
Source: Created by Andrew Reeder and used with permission. 
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Figure 4.3. Map showing Stampede Mine site with core locations and ERT transects  
labeled. Outline of Pit A also shown on map.  
Source: Created by Andrew Reeder and used with permission. 
 

 



 
 

27 

study because of failure to maintain a legitimate chain of custody of the core. Core 

from the Stampede Mine occur as the “A” series and the “B” series as designated in 

this study (Figure 4.3). The B series consist of thirteen cores; however, only ten 

contain a complete Big Clifty section. This coring operation occurred over two 

months in the Fall of 2014. One of these cores was retrieved across Highway 79 

from the Stampede Mine on an adjacent property. The A series cores were obtained 

in Spring, 2015 (Figure 4.3). The A series consists of ten cores that span the entire 

Big Clifty section. Locations are shown in Figure 4.3. All cores were logged at the 

well site by either an engineer or a geologist and then brought to WKU for 

examination. Cores were cleaned, slabbed, logged, and photographed by the author. 

Core logging was done on a 1:10 scale in tenths of feet. All cores were examined for 

mineral composition, grain size, sedimentary structures, stratigraphic continuities 

and discontinuities, ichnofacies, and color using a Munsell chart. Sedimentary 

features were identified with the aid of the Indiana Geological Survey guidebook 

titled Corebook of Pennsylvanian Rocks in the Illinois Basin (Barnhill and Zhou, 1996). 

Example flow-charts  illustrating the identification of lithology, primary, and 

secondary sedimentary structures are located in Appendix 7. All descriptions from 

cores are both hand annotated and digitized using the program Sedlog 3.1. Those 

logs are in Appendix VII as well. Ichnofacies descriptions and interpretations are in 

the style of Basan (1977) and MacEachern et al. (2007). 

4.4: Outcrop Descriptions 

Outcrop, roadcut, and surface exposure descriptions were made in Logan and 

Warren counties (Figure 4.1). Descriptions from Pit A at the Stampede Mine were 



 
 

28 

compiled as surface mining progressed over approximately one year. Stratigraphic 

sections were measured and descriptions include mineral composition, grain size, 

sedimentary structures, and gross geometry or dimensions. Five surface exposures 

were measured in Warren County and those logs are included in Appendix B. These 

surface exposures were chosen based on the extent of given exposure of the Big 

Clifty section although no exposure contains a complete section.  

4.5: Petrographic Analysis 

 Thirty oriented thin sections were examined for mineral composition, grain 

size, porosity, and sedimentary structures. Thin sections are described according to 

the methods outlined by Scholle, (1978; 1979). Thin sections were taken from 

billets during the logging process. Thin sections were cut with the assistance of 

National Petrographic Services Incorporated in Houston, Texas. Thin sections are a 

standard 30 microns and were stained with “Alizarin Red S” to identify carbonate. 

Petrographic analysis was conducted using a standard transmitted light 

petrographic microscope. Although diagenetic features were not the focus of 

petrographic analysis in this study, another study currently underway by May and 

Butler (2014) on the Big Clifty Sandstone in Warren and Butler Counties shows that 

occlusion from calcite cements is related to diagenetic alteration.  

Carbonate rock thin sections were classified based on Dunham’s (1962) 

system. These thin sections were only used for facies interpretation. Limestone 

stringers or thin beds were observed in Big Clifty Sandstone reservoirs. Thin 

sections of the limestone were examined to better understand the origin of the 

limestone. Carbonate depositional environments are not the focus of this thesis and 
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thus will not be discussed in detail. Limestone facies are important to note for 

exploratory purposes. Multiple Chesterian-heavy oil sandstone reservoirs occur that 

look quite similar and, sometimes, confusion occurs regarding which interval is 

being cored, particularly in fault zones. Limestone facies analysis alleviates some of 

this confusion, as limestone units are more distinctive based on variable carbonate 

skeletal and ooid grains.  

4.6: Electrical Resistivity Tomography  

Electrical Resistivity Tomography (ERT) is a technique that measures the 

resistance to electrical flow according to Ohm’s Law. This technique was applied at 

the Stampede Mine by consulting geophysicists from Northern Kentucky University. 

This group collected and processed data during field excursions and presented their 

findings in two reports to the mine operators and geologists. Data from these 

reports were used in this study and constrained for interpretation by core and 

outcrop data. The collection of these datasets can be affected by many factors that 

must be taken into consideration during the interpretation process. A detailed 

analysis of these factors may be found in Reynolds (2011) and May and Brackman 

(2014). Four ERT transects were interpreted in this study, which are located in 

Appendix XII. The most important transect to this study was taken over Pit A 

directly on top of reservoir sandstone. The results from this transect serve as a 

control to interpret other ERT data from the mine site as the sandstone below was 

mined. 
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4.7: Bitumen Concentrations  

 Samples of reservoir sandstone from the Stampede Mine were collected 

during the logging process. Samples were gathered after cutting core using a rock 

saw. Sampling occurred at points of interest in the core. These samples were chosen 

based on appearance of heavy oil as shown in Appendix XVII. These samples were 

sent to Waypoint Analytical Inc. in Memphis, Tennessee and assayed for bitumen 

content using the methylene chloride extraction (9071 (MeCl2)) method. 

4.8: Geophysical Logs 

 Geophysical logs from several Big Clifty Sandstone oil producing fields in 

southern Butler County were examined in this study (Figure 4.1). All data were 

taken from the KGS online data repository. Over 800 records were examined, 

however, only drillers logs, geophysical well logs, and wells with cores were used in 

this study, with a total of 56 wells (Appendix VIII). The location of wells with 

geophysical logs used in this study is shown in Figure 4.1, and the logs are located in 

Appendix VI. A type log is presented from section 11 of Carter Coordinate C H-32 

that contains Gamma Ray and Density Porosity logs (Figure 6.6). This log was 

chosen because of the proximity to the mine site, and also because the Big Clifty 

interval was cored and core analysis was conducted at Oil Field Research Inc. of 

Evansville, Indiana.  

 Four geophysical logs are interpreted from Warren County and are listed in 

table 8 (Appendix VI) and shown on Figure 4.1. Core analysis was gathered along 

with geophysical logs for the wells in Warren County (Appendix VI) Mega West 

Energy collected these data while studying the potential of a gravity assisted steam-
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flood project. Geophysical logs include gamma ray, caliper, density porosity, neutron 

porosity, Shallow, medium, and deep resistivity, and PE. Density porosity is 

calculated on a sandstone matrix of 2.65 unless otherwise noted on the log.  

4.9: Cross Sections and Isopach Maps 

 Cross sections across the Stampede Mine property are located in Appendix I. 

Structural cross-sections were flattened on 560’ above mean sea level. Stratigraphic 

cross sections A and B are flattened on the top of the Beech Creek Limestone, while 

cross-section C is flattened on the top of facies 3. Structural dip is determined 

assessing true vertical depth sub-sea (TVDSS) of the top of the Beech Creek/Girkin/ 

Barlow limestone both in Logan County and in Butler and Warren counties. 

Structural dip on the Beech Creek Limestone is compared to a structural map 

prepared by Williams et al. (1982) shown in Appendix II.   

 Isopach and net isopach maps were constructed by the author and consulting 

geologists from the Stampede Mine. These maps are used with permission from the 

Stampede Mine and consulting geologist Andrew Reeder. Volumetric calculations 

are also included and used with permission from the Stampede Mine (Appendix II).   
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Chapter 5: Results 
5.1: Overview 

Lithofacies or facies analysis is the study of rocks or sediments based on 

characteristics such as lithology, grain size, biological activity, and primary 

sedimentary structures, which are the result of a process or several processes 

associated with specific environments of depositions (EOD). Much work has been 

conducted interpreting facies for EOD in Chesterian deposits in the Illinois Basin 

(Visher, 1980; Treworgy, 1988; Smith and Read, 2001; Nelson et. al, 2002). No 

studies, however, have focused on specifically documenting the lithofacies of the Big 

Clifty Sandstone as related to hydrocarbon emplacement and trapping in South 

Central Kentucky, particularly heavy-end oil. 

Facies analysis was conducted using 24 core samples with an average length 

of 46 feet and ranging from 22 to 65 feet (6.7 to 19.8 meters). A complete 

representative core is shown in Figure 5.1.  
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Figure 5.1. Complete core from the Stampede Mine showing facies identified in this 
study. Footage moves from top to bottom, right to left. This core is missing the 
Beech Creek Limestone which occurs below the Big Clifty Section. Facies 1, 4, 5, and 
7 are mud-dominated facies. Source: Imaged by the author.  

 

Cores were examined for lithology, grain size, sedimentary structures, 

bedding contacts, and ichnofacies.  A total of ten distinct lithological units were 

noted in core including: sandstone, mud-rich rocks and limestone, which are not 

described in detail in this thesis. Limestone is, however, important for exploratory 

purposes and, although it will not be discussed in detail, photomicrographs may be 

referenced in Appendices XIV to XVII. Core descriptions from the Stampede Mine 

were supplemented with mining pit exposure descriptions. One outcrop adjacent to 

the mine property along Muddy Creek was also measured. These data were 
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combined with petrographic thin-section descriptions and sieve grain-size analysis 

and recorded in Table 2.  

Five surface exposures were measured for lithofacies in Warren County. 

Those logs are located in Appendix A. Lithofacies for these outcrops may be found in 

Table 2 with descriptions and photos of measured sections located in this chapter.  

 
5.2: Lithofacies Analysis- Logan County  
 
5.2.1: Facies 1: Fossiliferous Shale and Interbedded Limestone  
 

Description: Facies 1 consists of laminated shale and interbedded limestone. 

This facies separates the Big Clifty Sandstone from the Beech Creek Limestone 

below and the Haney Limestone above. The shale is black to grey (N4-N5) and 

moderately fissile with convoluted white to light gray limestone lenses between 1-5 

cm thick (Figure 5.2). Thin sections of limestone were examined under the 

petrographic microscope and it is possible that some of these lenses could be 

calcareously cemented sandstone (Appendix XV). No macrofossils were observed in 

the shale. The upper F1 unit has a maximum thickness of 14 feet while the lower 

unit has a maximum thickness of 18 feet. However, in places there is no shale. In 

such locations, the contact between the Big Clifty Sandstone and the Beech Creek 

Limestone is unconformable.
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Table 5.1: Facies 1-7 from Terramer Leases in Logan County, Kentucky. Source: Created by the author.
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Figure 5.2. Facies 1 from the Stampede Mine. Note convolute bedding approximately 
5 cm wide. Diagram on the right shows facies 1-7. Blue arrow is pointing to facies 1. 
The Limestone below F1 is the Beech Creek, while the limestone above is the Haney 
Limestone. Convolute lenses effervesce with HCl acid.  Source: Imaged by the author. 
 

Interpretation: This facies is entirely marine and represents a transition from 

carbonate to siliciclastic depositional systems (Smith and Read, 2001). The high clay 

content and lack of body fossils suggest a relatively deep environment. Examination 

of the convolute bedding in interbedded limestone to calcareous sandstone suggests 

a periodically unstable depositional environment.  It is difficult to determine if the 

absence of the shale above the Beech Creek is always the result of scouring or non-

deposition. Pryor et al. (1991) described the importance of antecedent 

syndepositional topography in determining the thickness and thinness of later 

deposited units. The study area, furthermore, is in a transitional zone between the 
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Illinois Basin proper and the Cincinnati Arch region where units are known to thin 

and pinch out. The Beech Creek represents a major marine flooding surface. 

Therefore, it is likely that missing shale above it represents scouring. Variation in 

facies 1 above the Big Clifty siliciclastic package probably represents a change of 

accommodation between syndepositional highs and lows. Convolute bedding 

(Figure 5.2) in this facies above the Beech Creek may be a characteristic of a distal 

environment and likely represents the transitional zone between Big Clifty 

siliciclastic wedge and below storm wave-base limestone. This unit thins and 

pinches out across northern Warren County in the direction of the Mormon 

Syncline. Visher (1980) observed a similar facies between the Big Clifty Formation 

and the Beech Creek Limestone. This shale was observed to thin and pinch out to 

the southeast of Crawford County, Indiana. Both units thin in the direction of the 

Rough Creek Fault zone.  

5.2.2: Facies 2: Fine-to-Medium Grained Sandstone and Interbedded Mudstone and 
Siltstone 
 

Description: Facies 2 consists of interbedded fine-grained sandstone, shale, 

and siltstone (Figure 5.3). This unit is extensively bioturbated, which mostly 

obscures primary bedding in the core. The unit ranges in thickness from one to 

seven feet (0.3 to 2 meters). Hummocky to wavy bedding is observable. The lower 

contact is gradational with facies 1, but the upper contact with facies 3 is sharp 

(Figure 5.3, Photo A).  
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This unit contains up to 50% clay minerals in places. However, some bitumen occurs 

in mud-free sandstone. Because of the completely reworked nature of the sediment 

in facies 2, ichnogenera are difficult to decipher, however Chondrites-like ichnofacies 

were identified (Figure 5. 3, Photo B). 

 
Figure 5.3. Facies 2 from the Stampede Mine. A shows the sharp upper contact with 
facies 3. B, C, D, and E show bioturbation including Chondrites (D), which occur in 
muddy interlayers. F shows the lower contact on facies 1. Light bitumen staining 
occurs in sandy zones and occurs as the dark coloration in C.  
Source: Imaged by the author. 
 

Interpretation: Facies 2 shows fluctuating energy conditions, which resulted 

in the interbedded lithologies observed. This unit likely represents the bottomsets 

of a prograding tidal sand bar complex. The moderate to high bioturbation suggests 
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a low rate of sediment accumulation, which is punctuated by wavy to hummocky-

bedded units. These punctuations could be the result of storm activity. Ichnofacies 

were difficult to positively identify but are thought to be Cruziana. 

5.2.3: Facies 3: Fine-to-Medium Grained Quartz Sandstone and Siltstone 
 
Description: Facies 3 consists of fine-to-medium grained cross-laminated quartz 

sandstone with minor mud or flaser beds (Figure 5.4 and Figure 5.7). In the 

Stampede Mine sample, this facies ranges in thickness from 0 to 13 feet. Framework 

grains are composed primarily of quartz, some with quartz overgrowths, and minor 

amounts of feldspar, chert, and detrital accessory muscovite (Figure 5.5).   

 
Figure 5.4. Facies 3 from the Stampede Mine (A series) and Morgan property (M.A.), 
showing some of the types of bedding observed in this facies. Red letters and 
numbers identify the core. A shows cross bedding with light bitumen staining. B 
shows horizontal laminated bedding cross cut by fracture. C shows cross bedding 
with mud intraclast along bedding plane and is moderately to heavily stained. D 
Shows massive white sandstone with no bitumen staining.  
Source: Imaged by the author. 
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Figure 5.5. Photomicrographs showing Facies 3 from core B12. Blue staining fills 
intergranular porosity. A and B are taken in plane polarized light while A’ and B’ are 
taken in cross polarized light. A series are on a 0.5 mm scale while B series are on a 
0.2 mm scale. Thin sections were stained with Alizarin red S to show carbonate as 
seen in photomicrograph B.  Source: Imaged by the author. 
 

Grain size ranges from 3 to 250 μ and are subangular to subrounded. Minor 

amounts of detrital carbonate were observed (Figure 5.6). The lower contact is 

sharp and mud chips were observed along the lower contact. Much of the primary 

bedding is obscured by the presence of heavy oil; however, flaser beds, 

massivebeds, and cross-laminated beds were observed (Figure 5.7). The upper one-

to-three feet are mottled and contain vertical and horizontal bioturbation structures 

(Figure 5.8). Minor to heavy bitumen concentrations were observed throughout this 

unit. That information is presented in Table 4. Fractures were observed in the 



 
 

41 

reservoir (Figure 5.9). Fractures are almost vertical and in one core a micro reverse 

fault was observed with millimeters of offset (Figure 5.9, Photo B). 

   
Figure 5.6. Photomicrographs showing detrital carbonate grains in facies 3.  A and B 
show detrital carbonate grain in plane polarized (A) and cross polarized (B) light. 
Scale is 200 pixels for A, B, and C. C shows detrital carbonate grain. Note the calcite 
rhombs and calcite cement. D shows detrital carbonate grain on a scale of 0.05mm. 
Source: Imaged by the author.  
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Figure 5.7. Types of bedding in facies 3. Views A,B, C show mottled bedding and 
vertical structures (A) at upper contact. D massive bedding. E cross  bedding. F 
shows iron staining and light bitumen staining  near the bottom. G and H show 
heavy  bitumen staining and  flaser bedding with mud intraclasts. I shows the sharp 
lower contact . Source: Imaged by the author.  
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Figure 5.8. Photographs show the contact between facies 3 and facies 4. The contact 
is typified by vertical bioturbation, root structures, brecciation, and paleosols as 
shown above. Note the partitioning of reservoir sandstone by mud filled 
bioturbation as shown in A6, A3, A8, and A2. Bitumen is black to light brown. 
Source: Imaged by the author 
 
 

Interpretation: Facies 3 contains characteristics of channel and bar sandstone 

deposits. The lower contact is sharp with mud intraclasts, suggestive of high-energy 

conditions. The unit is overlain by mudstone and a paleosol. Cross laminations 

suggest moderate- to high-energy conditions. No bimodal bedding was observed for 

this unit. No exposures of facies 3 were measured in Pit A. Miners did expose the top 

of the unit that was observed as undulatory. Thin (1 to 5 inch) (2.5 to 7.5 cm) coaly 

mudstone separate sand bodies which act as seals between reservoirs (Figure 5.10). 
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Figure 5.9. Fractures shown with yellow arrows observed in facies 3 (MAA, A2, 
MCC) and Facies 6 (Pit A). View A, B, and C show photos of cores.  View B contains a 
reverse fault with millimeters of offset. View C shows two fractures observed in Pit 
A. Notice the carbonate lens cross cut by vertical fracture in D.  Source: Imaged by 
the author.  

 

Mottled bedding, mudcracks, and vertical structures in the upper one-to-

three feet of the facies represent either a decrease in the rate of sedimentation or 

sediment stabilization under relatively shallow-water conditions. Root-like 

structures were noticed in the upper part of the sandstone, which is overlain by a 

paleosol and mudstone. Intergranular porosity varies but ranges from good to 

excellent. Meanwhile, detrital carbonate and clay occlusion occurs by cementation. 

Detrital carbonate grains observed in thin section were likely derived from 

incisement-up paleoslope into underlying limestone and transported via channel 

networks.  
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Figure 5.10. Coaly mudstone acts as a seal in Big Clifty reservoir in core LFA. 
Sandstone above the seal is light stained to void of bitumen, while sandstone below 
is heavily stained. Source: Imaged by the author. 
 
5.2.4: Facies 4: Brecciated Mudstone and Paleosol 
 

Description: Facies 4 is a massive to blocky mudstone and paleosol (red- 

green shales) (Figure 5.11) that contains slickensides (Figure 5.12) and is 

brecciated. This unit is up to four feet thick in places. Root casts and dolomitic 

nodules are observable. The lower contact contains vertical structures that protrude 

into Facies 3. The upper contact is gradational. 
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Figure 5.11. Facies 4 observed in cores from Stampede Mine and in MA property. 
Photo A shows brecciated mudstone. Photo B shows red green shales which are 
interpreted as a paleosol after Treworgy (1988), Smith and Read (2001), and Nelson 
et al. (2002). Paleosol occurs over facies 3. Source: Imaged by the author. 
 

 
Figure 5.12. Photographs show slickensided paleosol from facies 4 (A). 
Carbonaceous branch structures occurring in facies 4 are interpreted as roots 
structures (B). Source: Imaged by the author. 
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Interpretation: The presence of red-green shales and a paleosol with root 

casts suggest parts of this unit were subareally exposed. Mud cracks occurring along 

the boundary between facies 3 and facies 4 support this interpretation. Treworgy 

(1988) and Nelson et al. (2002) described paleosol in the upper portion of the Big 

Clifty  as occurring across the basin. This paleosol, and other exposure surfaces, 

represents maximum regression of sea level and, therefore, serves as a time marker 

between regressive and transgressive parasequences. This is important for 

allostratigraphic correlation of Big Clifty facies. Paleosols are correlated to the 

bottom of incised channel fill deposits described by Nelson et al. (2002). 

 
5.2.5: Facies 5: Non-fossiliferous, Laminated Shale and Lenticular Shale  
 
Description: Facies 5 consist of gray to light gray (N6 to N3) non-calcareous 

laminated shale and lenticular shale (Figure 5.13). The lower contact is gradational, 

while the upper contact is sharp. The unit ranges in thickness from two to thirteen 

feet. Minor amounts of sandstone are present as interbeds in laminated shale.  

Interpretation: Higher shale relative to sandstone in this facies suggests it 

formed in low-to-moderate energy conditions. No macrofossils were observed in 

this unit. Unlike facies 1, no effervescing was observed with the application of HCl 

(non-calcareous). The upper portion is sharply overlain by tidal sandstone in facies 

6. In context to facies 3 and 4, facies 5 likely represents a back-barrier or marginal-

marine environment with low-to-moderate energy flux (Smith and Read, 2001).   
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Figure 5.13. Photos of facies 5 showing laminated shale overlain by facies 6 (A and 
B). Photograph C shows laminated shale. Source: Imaged by the author.  
 

5.2.6: Facies 6: Fine-to-Medium Grained Sandstone and Rhythmic Mudstone 
 

Description: Rhythmic sandstone and clinoformal mud drapes and minor 

carbonate comprise Facies 6 (Figure 5.14). Grains are subangular to subrounded. 

Grain size ranges from silt to medium sand with 95% of the sieved sample occurring 

as 180 μ. Intergranular porosity is commonly occluded by clays (Figure 5.15). Sets 

of mud drapes range in length from a few inches to one foot, and are bound by 

reactivation surfaces (Figure 5.16). One to two millimeter mud drape tidal bundles 

were measured. Carbonate caliche occur (Figure 5.17) along bedding planes and can 

be up to two feet (60 cm) long and four inches (8cm) thick with vuggy pores that 

have been occluded by calcite (Figure 5.17). 
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Figure 5.14. Facies 6 observed at the Stampede Mine. View A shows the upper 
portion of the facies that includes bioturbated sandstone (blue dot on stratigraphy 
column). void of bitumen. Herringbone cross bedding was observed (B), along with 
rhythmic bedding and carbonate grains (B and C). Clinoformal mud-drapes are also 
shown (D). Note the partitioning of heavy oil by fine mud drapes and carbonate. 
Source: Imaged by the author.  
 

Biomodal paleocurrent indicators in the form of herringbone crossbeds are 

observable in exposures. In places, the upper two feet is intensely bioturbated 

occurring with reduction halos and desiccation cracks (Figure 5.18).  

Bioturbated sandstone acts as a permeability barrier and is void of bitumen (Figure 

5.18, Picture D). Two to five feet vertical fractures occur in exposure and may be 

correlated to fractures observed in core. Asphalt concentrations appear to be more 

concentrated along fractures (Figure 5.9, Picture D) in exposure. Additional photos 

of facies 6 may be found in Appendix VII 
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Figure 5.15. Photomicrographs showing facies 6 observed at the Stampede Mine. 
Both A and B are in plane polarized light and A’ and B’ are in cross polarized light. 
All photomicrographs are oriented with the up direction shown with the arrow. 
Notice the silt to fine grain size. Porosity (blue staining) is occluded by fine grained 
mate material. Source: Imaged by the author. 
 

 
Figure 5.16. Photos A and B show mud drapes and reactivation surfaces. Cross 
laminated bedding is dipping to the south west. Both images are oriented 
approximately south east. Notice the light gray mudstone that partitions the 
reservoir which is charged with heavy oil (black staining). Photos are from Pit A at 
the Stampede Mine and this material is representative of the ore processed by the 
mine. Brunton for scale.  Source: Images by the author.  
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Figure 5.17. Photomicrographs and photo of limestone observed in reservoir facies 
6. A and B are photos in plan polarized light showing caliche carbonate with spar-
filled vuggy inclusions (A), and silt-sized quartz grains. Photo C shows carbonate 
observed in tidal-channel sandstone from Pit A. Carbonate is deposited along 
bedding plains and is likely derived from supratidal mudflats where it was eroded 
and transported before being deposited along bedding planes of tidal- channel 
sandstone. Carbonate lenses are anomalous and partition the reservoir which is 
impregnated with heavy oil (black staining) as shown in C. Source: Imaged by the 
author. 
 

 
Figure 5.18. Photos from facies 6 showing ophiomorpha bioturbation (A and C), 
desiccation cracks (B), and bioturbated sandstone acting as a permeability barrier 
on top of petroleum-charged sandstone. Source: Images by the author, with all 
photos taken from pit A at the Stampede Mine.   
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 Interpretation: Facies 6 represents intertidal sand flats. Evidence for this 

includes herringbone cross bedding, rhythmically bedded mud drapes, reactivation 

surfaces, and syneresis cracks (Figure 5.18). Other workers have described meso-to-

macro tidal conditions in the Illinois Basin in the Pennsylvanian (Kvale and Archer, 

1991). Unlike facies 3 where the tidal influence is subtle, facies 6 is a tide-dominated 

system as shown by slack water mud drapes and herringbone cross bedding. 

Intergranular porosity varies, with total occlusion from caliche, authigenic 

carbonate and clay minerals being common.  Bedform geometry consists of a 

complex stacking of migrating tidal sand dunes that are declined to the southwest, 

which is the inferred ebb-tide direction (Figure 5.16). Interchannel mudstone 

partitions reservoir bodies and are noticed in exposures, mining excavation, and 

indirectly using ERT. Ophiomorpha and Skolithos ichnofacies occur in tidal channels 

in the overall intertidal channel complex (Figures 5.28 and 5.23). This sandstone 

contains ample oxidized iron-filled burrows, which range from one to five 

centimeters. Perhaps this diagenetic alteration of bioturbated sandstone, which sits 

directly on top of bitumen bearing sandstone, is the reason it is not charged with 

hydrocarbons (Figure 5.19 ). This subfacies does not occur in all cores but where it 

does occur, it contrasts sharply with overlying facies that contain marine Cruziana 

ichnofacies.  
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Figure 5.19. Close up view of the partitioning of facies 6 by ophiomorpha-like 
bioturbation (A). Oxidized iron-bearing minerals occur in bioturbated sandstone. 
Rock hammer approximately 7 inches for scale. Source: Images by the author. 

 

5.2.7: Facies 7: Heterolithic Sandstone and Shale 
 

Description: Facies 7 consists of lenticular to rhythmically bedded 

interlaminated sandstone and shale (Figure 5.20). Hummocky bedding and 

overturned cross laminations disrupt rhythmic bedding (Figure 5.21). Unit 

thickness ranges from two to twelve feet (0.6 to 3.6 meters) and averages five feet 

(1.5 meters). Grain size ranges from clay to very fine sand. Bioturbation can be seen 

in exposures and in core, which include Rhizocorrallium-like structures (Figures 
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5.22 and 5.23). The upper contact is gradational and the lower contact is sharp with 

extensive bioturbation in the first foot of section.  

 
Figure 5.20. Photos of Core from facies 7. Note rhythmic and hummocky bedding is 
disrupted by bioturbation and overturned cross laminations. Pyrite was observed at 
the contact between facies 7 and facies 1 shown in core A6. Heterolithic deposits of 
facies 7 are moderately to heavily bioturbated. Source: Imaged by the author. 
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Figure 5.21. Core from facies 7. Yellow bars show rhythmic bedding which is cross 
cut by Rhizocorrallium- like bioturbation. Core is ~6.5 inches.  
Source: Imaged by the author. 
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Figure 5.22.  Facies 7 exposure surfaces from Pit A at the Stampede Mine showing 
Rhizocorrallium- like bioturbation (A, B, and C). View is perpendicular to bedding. 
Note the dark laminae and miniscae which is typical of Rhizocorralium.  View D 
shows Chondrites-like bioturbation. Cruziana ichnogenera sharply contrast the 
glauconitic upper sandstone of facies 6.  Source: Imaged by the author.  
 

 
Figure 5.23. Anomalous glauconitic and burrowed sandstone occurs in the upper 
portion of facies 6. This sandstone is void of hydrocarbon and contains 
Ophiomorpha-like bioturbation. A sharp transition occurs above Facies 6 into 
heterolithic deposits (facies 7). Disturbed bedding and bioturbation is present at the 
contact as shown above. Cruziana ichnogenera occur above the contact such as 
Rhizocorralium and Chondrites. This transition is part of a transgressive 
parasequence and represents a shoreward shift in sea level.                                      
Source: Imaged by the author. 
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Interpretation: Facies 7 represents a transition zone from tidal flat to 

subtidal. The first two feet (0.6 meters) of facies 7 are bioturbated with Cruziana-

like ichnofacies that overlie burrowing structures in facies 6 (Figure 5.23). 

Structures are similar to those of Rhizocorrallium and Chondrites. This is a sharp 

contrast to the desiccation cracks and Ophiomorpha-like structures that dominate 

bioturbation of facies 6. This sharp contrast suggests a flooding surface. The upper 

contact grades into a marine shale (facies 1), which represents a distal environment 

from the shore. 

5.2.8: Summary 
 
 Facies 1-3 reveal characteristics commonly found in bar-sand and tidal-sand 

ridge complexes, as described by Dalrymple and Choi (2007). This vertical stacking 

pattern prograded basinward on top of a distal marine shale (facies 1). These facies 

formed as ribbon sands that coalesced into large belts in which lateral variations 

occur. Examples of variations are found in facies 3 where thickness ranges from 0 to 

>50 feet (0 to 15 meters) of sandstone. Facies 4 caps the progradational package 

and represents a basin-wide exposure surface. This surface is well documented 

elsewhere in the basin (Treworgy, 1988) and was observed in numerous cores at 

the Stampede Mine and in a core approximately six miles away. Facies 5-6 consist of 

heterolithic facies deposited on top of the progradational sequence. These facies 

formed as mixed tidal flats and estuarine facies filled in on top of the previously 

deposited progradational unit. Core, field measurements, and thin-section analysis 

confirms that this unit contains more fine-grained material than in sequence 1-3. 

This fact has great economic implications for heavy oil development, which will be 
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discussed in Chapter 6. One of the most distinguishing features is the identification 

of facies 4, which acts as a sequence boundary according to Treworgy (1988) and 

Nelson et al. (2002). This facies forms a surface on which parasequences may be 

distinguished.  

5.3: Lithofacies Analysis-Warren County  

Lithofacies analysis was also conducted at five Big Clifty Sandstone outcrops 

oriented roughly east west across northern Warren County, Kentucky. The following 

four facies were identified: 1) Fossiliferous shale, 2A) Ripple-bedded shale, siltstone, 

and sandstone, 2B) Ripple bedded sandstone, and 3) Cross-laminated sandstone. An 

overall upward coarsening sequence was observed in Warren County, except at 

McChesney Field Station and Jackson’s Orchard where the entire Big Clifty section 

consists of cross-laminated sandstone. Facies descriptions are shown in Table 3.  

5.3.1: Facies 1: Fossilerous Shale  
 

Description: Facies 1 consists of a light gray to black fossiliferous shale 

(Figure 5.24). This shale effervesces from HCl and is fissile in the outcrop. Thickness 

ranges from eight to ten feet along the Natcher Parkway and Glen Lilly Road. The 

lower contact with the Beech Creek Limestone is exposed by a road cut along the 

Natcher Parkway and is gradational. The upper contact with facies 1 is sharp (Figure 

5.24). 

Interpretation: This shale is equivalent to facies 1 from the Stampede Mine 

site and other core in Logan County. It formed in deep water conditions as 

previously described for facies 1.  
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Table 5.2: Facies 1-3 Observed in Warren County, Kentucky. Source: Created by the author. 
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Figure 5.24. Photograph showing facies 1 and 2 along Natcher Parkway and Barren 
River Rd. in Warren County, Kentucky. Call out box shows the contact between 
facies 1 and 2 observed at the road cut. Source: Images by the author.  
 

5.3.2: Facies 2A: Ripple-Bedded Sandstone and Interbedded Siltstone  
 

Description: Facies 2A consists of alternating and interlaminated ripple 

bedded sandstone and siltstone. Ripple bedding ranges from a few millimeters to 

fifteen inches thick (Figure 5.25). Sandstone bed sets range from 2 inches to 8.25 

inches thick. Interbedded shale thickness bedsets range from a few millimeters to a 

few inches in thickness. Neither macrofossils nor bioturbations are present in 

outcrop for this facies.  

Interpretation: Alternating siltstone and sandstone interbeds suggest 

fluctuating energy conditions during the time of deposition. It is not clear if energy 

flux is related to tidal processes or is the result of changes in sediment input or a 
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mixture of the two.  It is also possible that these deposits may represent 

interchannel areas, which contain muddy sand and silt with splay-like geometries.  

 
Figure 5.25. Photos of facies 2 from road cut along Barren River Rd. in Warren 
County, Kentucky. Note the interbedded and ripple bedded sandstone and muddy 
deposits. Muddy deposits differentially weather in outcrop compared to coarser 
sandstone. Source: Images by the author.  
 

5.3.2: Facies 2B: Ripple-Bedded Sandstone 

Description: Facies 2B consists of ripple-bedded sandstone (Figure 5.26). 

This facies is similar in character to facies 2A at the Stampede Mine but is void of 

shale. It ranges from two to five feet in thickness. The dominant sedimentary 

structure is ripple bedding. Bedding is wedge shaped and forms a shallowly (<15°) 

inclined surface. The upper contact is scoured and filled with facies 3.  

Interpretation: The absence of shale interbeds differentiates this facies from 

facies 2 from the Stampede Mine. This could be caused by either an increase in 

current energy or a basinward shift in deposition. Moving up section from facies 2 to 

3 shows an increase in sand to shale ratio (shale is ~0). The exposure is coarsening 

upwards. This interpretation is also supported by a scoured upper contact.  
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Figure 5.26. Road cut exposure showing facies 2, 3, and 4 along Barren River Rd. 
Exposure is coarsening upwards. Source: Image by the author.  

 
 
5.3.3: Facies 3: Cross-Laminated Sandstone 

Description: Facies 3 consists of cross-laminated quartz sandstone. This 

sandstone is trough cross-bedded to tabular cross-bedded and contains iron-oxide 

intraclasts and liesegang banding. The color ranges from white to dark brown. 

Bedding thickness ranges from an inch to eight inches (2.54 to 20.3 cm) with 

bedsets averaging eight feet thick to ~30 feet (2.5 to 9 meters thick) across the 

study area (Figure 5.27). The exposure at Barren River Road strikes approximately 

northwest. Two strike and dip readings from an inclined bedding plane strike and 

average of N28°W with a dip of 19° SW. Cross sets become tangential at the lower 

boundary. No biogenic or trace fossils occur in the field. The lower contact is sharp 
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on facies 2, however at Jackson’s Orchard and McChesney field station, the Big Clifty 

occurs entirely as facies 3. The upper contact was not observed at any outcrop due 

to ground cover.   

 

 

 
Figure 5.27. Approximately 40’ of trough and planar cross bedded Big Clifty 
Sandstone exposed along Indian Creek at the McChesney Field Station. No fine shale 
or mudstone are observed at this exposure. Source: Image by the author 
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Figure 5.28. Road cut along Barren River Rd. showing facies 3. Facies 3 exhibits 
planar bedding that is filled with trough cross-bedded sandstone.  
Source: Image by the author. 
 

Interpretation: Facies 3 at the Natcher Parkway and at Barren River Road 

outcrop is coarsening upwards. At Jackson’s Orchard and McChesney Field Station, 

the entire Big Clifty outcrops consists of 25-40 feet (7.6 to 12.1 meters) of cross-

bedded sandstone. At Jackson’s Orchard the lower contact is sharp onto the Beech 

Creek Limestone/Girkin formation Figure. Cross bedding likely formed as migrating 

megaripples or subaqueous dunes.  
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Figure 5.29. Outcrop photos of Big Clifty Sandstone at Jackson’s Orchard. Note Large 
scale (1-3 feet) cross bedding (B). Honey comb weathering in outcrop (A).  
Source: Image by the author. 
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5.3.4: Summary 

 Two types of Big Clifty Sandstone sequences were observed in Warren 

County. Along the Natcher Parkway and at Barren River Road, coarsening upwards 

was observed. At Jackson’s Orchard and McChesney Field Station the entire unit 

consists of crosslaminated sandstone with a sharp lower contact on the Beech 

Creek/Girkin Formation. The gross thickness of the unit from Logan County to 

northern Warren County remains approximately 40 feet (13 meters). Along this 30-

mile transect, however, the net sandstone thickness varies dramatically. The change 

in depositional style was observed over ~4 miles (~6.4 km) from Natcher Parkway 

to Jackson’s Orchard. 

5.4: Cross Section and Map Construction 

5.4.1: Structural Cross Sections 

 Structural dip was determined on the top of the Beech Creek/Girkin/Barlow 

limestone across the asphalt rock play utilizing three wells that penetrated the 

limestone. The Beech Creek Limestone is an excellent stratigraphic marker 

(Treworgy, 1988). Few wells, however, from this study penetrate the Beech Creek. 

Of those wells that did, TVDSS of the Beech Creek is shown in Appendix VIII and the 

rate of dip (50’ per mile) is similar to the rate calculated by Williams and others 

(1982). The rate of dip from LFA core to A2 core is 48 feet per mile, within two units 

of the reported average. The Beech Creek and/or Girkin Limestone are present in 

geophysical logs from both Warren and Butler Counties at the tops are located in 

Appendix VIII 
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5.4.2: Stratigraphic Cross Sections 

 Cross sections over the Stampede Mine reveal complex and channel like 

geometries of sandstone reservoirs. Cross sections run both parallel and 

perpendicular to SW-NE trend identified in previous studies (Specht, 1985; Visher, 

1980; Williams et al., 1982). Cross section C (Appendix I) is flattened on the top of 

facies 3. The channel-like geometry of facies 3 is shown in this cross section. Facies 6 

is thin to absent in cores A5 and A9. This is also illustrated in Cross section A and B 

(Appendix II). While facies 3 thickens and thins across the mine property, facies 6 is 

sheet like. Thickness variation is observed in other facies, especially in facies 1. 

Facies 1 in well B13 is completely absent. This facies is also absent in MCC and 

presumably MAA, MBB, and MA; however, coring ceased before hitting the Beech 

Creek Limestone.  

 Two regional cross sections trending NE-SW were prepared using exposure 

descriptions, core logs, and geophysical logs, and are located in Appendix I. Cross 

sections document a transition in vertical stacking patterns in the Big Clifty 

Sandstone as shown in cross section A and B. In both cross sections the Big Clifty 

Sandstone transitions from a single, amalgamated sandstone in the northeast to two 

sandstone units to the southwest across the study area.  

5.5: Petrographic Study 

5.5.1: Sandstone 

 The Big Clifty Sandstone is a quartz arenite to sublitharenite ranging from 

very fine-to-medium grained, and is angular to subangular with low-to-moderate 

sphericity. Detailed petrographic analysis of the Big Clifty Sandstone is currently 
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being completed based on prior research (May and Butler, 2014), and is not 

addressed in this thesis. Porosity estimates range from totally occluded to greater 

than 20% and is entirely intergranular. Petrographic thin sections are an important 

way to correlate facies and understand changes in porosity across reservoir facies 

(F3 and F6).  

5.5.2: Limestone 

 Petrographic analysis of limestone from facies 6 reveals caliche and spar-

filled vuggy intergrowths (Figure 5.17). Facies 6 formed in a tidal flat environment 

where allochthonous caliche and lime-mud from adjacent mud flats were 

transported then deposited parallel to bedding. No bioclastic carbonate was 

observed in facies 6. Photomicrographs of the Haney and Beech Creek Limestone 

are shown in Appendix  

5.5.3: Siltstone 

 Silt-sized grains occur in both facies 6 and facies 3.  Silt sized material is 

abundant in facies 6, which is interpreted as tidal-flat sandstone. 

 
5.6: Oil Analysis 

Laboratory analysis was conducted to gather bitumen concentration 

information for reservoir facies examined in this study at the Stampede Mine. The 

logs in Appendix A list bitumen concentrations along with the footage at which they 

were sampled. Bitumen concentrations range from 0 to ~6.5 %, with an average 

concentration of ~3% for both upper and lower sandstone reservoirs. These data 

are listed in Table 4. Petrographic parameters, determined by Oil Field Research 

Inc., are listed in Table 5. These data were compared to records from the Kentucky 
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Geological Survey online oil and gas database. Three core analysis reports 

containing average porosity, average permeability, and liquid saturation 

information are found in Table 6. All three records were completed by Oilfield 

Research Inc. based in Evansville, Indiana.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5.3: Statistical Analysis of Bitumen Concentrations from the Stampede Mine. 
Source: Created by the author. 
 
 

5.7: Electrical Resistivity Tomography   

Electrical Resistivity Tomography was conducted along four transects at the 

Stampede Mine. Few studies exist that utilize this technique in the exploration and 

development of shallow heavy oil or asphalt-rock deposits (May and Brackman, 

2013). To better interpret the data, a control transect was run in Pit A. This line was 

run directly on top of facies 6 (Figure 5.30 and Figure 5.31).  
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Table 5.4 Core Analysis of Big Clifty Sandstone. Location is Logan County. (No specific location was provided by 
company.) Source: Created by the author. 
 
 

 
Source 

 
Carter 

Coordinate 

 
Date 

Feet Core 
Analyzed 

Average 
Permeability 
Millidarcies 

md 

Average 
Porosity 

% 

Average 
Oil 

Saturation 
% 

Average 
Water Saturation 

% 

KGS 
 Well #62912 

11-H-32 6/25/198
4 

7.0’ 15 14.0 16.9 42.0 

KGS  
Well# 54759 

19-H-32 6/18/198
3 

2 
samples 

834 21.0 3.6 55 

KGS 
 Well# 62391 

9-H-33 6/13/198
4 

5 
samples 

81 15.5 0.0 45 

 
Table 5.5. Showing Core Analysis from the Big Clifty Sandstone in Butler County.  Source Created by the author. 

 
 

Date  Horizontal 
Permeability  
Millidarcies 
(md) 

Porosity  
 

% 

Bulk Wet 
Density  
gm./cc 

Residual Oil  
 

% 

Residual 
Water  
 

% 
12/20/2012 75 19.4 2.26 40.3 19.7 
1/8/2013 131 19.4 2.23 36.7 10.7 
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Figure 5.30. Photo from Pit A at the Stampede Mine. This transect was run as a 
control. After ERT data was collected the area was mined and measured (next 
figure) which allowed for excellent constraint of geophysical dataset.                 
Source: Image by the author. 

 

 

Results show channel like geometries (Appendix V). After the data were 

collected in Pit A, this location was mined. As mining progressed, the lithology was 

observed, which allowed for direct control on ERT data. Warm colors are thus 

interpreted as sandstone, with cool colors occurring as shales in pseudo sections. 

Bright red colors indicate highly resistive material such as bitumen-impregnated 

sandstone. 
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Figure 5.31. Mining over ERT transect allows for anomalous features in geophysical 
dataset to be constrained by direct observation of facies 6. Arrow shows a mudfilled 
interchannel area between facies 6 reservoirs. Note lenticular nature of ERT data 
reflects lenticular sandstone observed in Pit A. This ERT transect serves as a control 
to interpret other transects across the mine site. Source: Images by the author.
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Chapter 6: Discussion 
  
6.1: Core Analysis 
 
 Facies analysis documents a channel sandstone complex with interchannel 

mudstone, siltstone, and limestone. Channel sandstone geometries are observed in 

ERT pseudo sections (Figure 5.31 and Appendix V) and through cross sections 

(Appendix I). Interpretations of the Big Clifty Sandstone EODs in south central 

Kentucky include shallow marine environments, but detailed definitive studies of 

sub-environments are lacking (Williams et al., 1982). Two sedimentary packages of 

Big Clifty exposures are observed in the outcrop belt of south central Kentucky, 1) 

amalgamated channel sandstone, 2) lower and upper sandstone bodies separated by 

mudstone (Table 7). 

Sedimentary 
Packages 

1  2 

Sandstone 
 
 
 
 
 
 

Facies  

Entire unit consists of 35-45 feet 
of amalgamated channel 
sandstone, underlain by 

limestone of facies 1 
 

 
1,2,3 

Unit contains two distinct sand 
bodies referred to as lower and 

upper Jackson Sandstone, 
underlain by limestone of facies 

1 
 

1,2,3,4,5,6,7 

 
Upper contact 

 
 
 

Lower Contact 

 
Not observed 

 
 

Sharp on limestone or facies 1 
 

 
facies 1 to Haney Ls 

 
 

Sharp on limestone or facies 1 
 

 
 

Location 
 

 
Natcher Parkway, Jackson’s 
Orchard, McChesney Field 

Station 
Warren County Well Logs 

 
Stampede Mine 

Butler County well logs 

Table 6: Summary of vertical stacking patterns observed in study.  
Source: Created by the author 
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None of these characteristics, however, are conclusive of a particular EOD. 

Unimodal and large-scale crossbedding as observed at Jackson’s Orchard is 

suggestive of high current energy such as in deltaic or fluvial environments. Marine 

fossils (May 2013) and bimodal cross bedding, however, are suggestive of tidal to 

marine influence. The grain size of Big Clifty Sandstone as observed in the field 

exposures, core, and thin section is fine-to medium-grained and has been shown to 

contain ample clay and bioclastic carbonate (facies 6). Sandstone bodies in Warren 

County are vertically stacked and amalgamated both in surface exposure and in the 

subsurface. Across northern Warren County, the Big Clifty occurs almost entirely as 

sandstone. Facies 1 occurs thinly in the Megawest cores shown on cross section A. In 

Butler and Logan County, where facies 2 and 3 are thin thick mudstone, tidal-flat 

sandstone, and heterolithic deposits occur (cross section A and B). Tidally 

influenced deltaic systems have been suggested for the Big Clifty Formation of 

Indiana (Visher, 1980; Specht, 1985), and provide the EOD framework for various 

lithologies and sedimentary features observed in this study. Tidally influenced 

deltaic systems are discussed in the following section. 

 
 6.2: Tidally Influenced Deltaic Systems 
 

The goal of this section is to combine datasets described in the previous 

chapter into a working depositional model that can best explain facies associations 

observable in core and surface exposures. This effort is aided by the work of two 

studies written on the Big Clifty Formation at Indiana University in the 1980s. 

Visher (1980) and Specht (1985) both purport that the Big Clifty Formation of 

Indiana is the product of a tidally influenced deltaic system. Specht (1985) provides 
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a thorough review of tidally influenced deltaic systems, as also described in Coleman 

and Prior (1982).  A thorough examination of tidal deltas, also referred to as bay 

head deltas or incised valley-fill deposits, may be found in Brown (1979), Gupta and 

Johnson (2002), Porębski and Steel (2006), Dalrymple and Choi (2007), and 

Maynard et al. (2010). Specht (1985) based the argument on the fact that the Big 

Clifty formed in a system such as the following: 1) the ancestral Michigan River of 

Swann (1964) shifted to the southeast margin of the basin over the current 

Cincinnati Arch during the deposition of the Big Clifty Formation; 2) paleocurrents 

measured by Potter et al. (1958) and Visher (1980) are both unimodal and 

polymodal (Visher (1980) found that bimodal deposits constitute approximately 

30% of fluvio-tidal facies); and 3) major similarities exist in sedimentary 

characteristics between modern, tidally influenced deltaic systems and the facies 

observed in his work and by Visher (1980) and Baker (1980). The following section 

examines some of the facies associations of tidally influenced deltaic systems and 

compares them to the facies identified in this study.  

 Wright and Coleman (1975) described a typical progradational sequence for 

a tide-dominated delta system from the Orb Delta in Australia. In ascending order, 

the sequence consists of: 1) Shelf and prodelta mud; 2) Distal bar; 3) Tidal ridges 

and channel fill; 4) Over-bank splays, and subtidal mud flats, and mangrove 

deposits; 5) Tidal channel deposits; 6) Intertidal flats; and 7) Supratidal evaporite 

flats. Specht (1985) compared this Orb Delta sequence to the Big Clifty Formation 

and concluded they contain “striking” similarities. When this sequence is compared 
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to the facies in Logan and Warren counties, similarities are also observable (Figure 

6.1).  

 
Figure 6.1. A comparison of the depositional model described by Wright and 
Coleman (1975) and the facies identified at the Stampede Mine. Source: Strat 
column created by the author; interpretation from Wright and Coleman (1975).  

 

Figure 6.1 shows the facies from the Stampede Mine, along with the 

progradational sequence described by Wright and Coleman (1975). Using this 

interpretation, 6 of the 7 units match the vertical stacking patterns from the mine 

site. When this process is applied to the facies from Warren County, similarities are 

also observable.  

Nelson et al. (2002) described the Big Clifty forming as a result of 

regressional and transgressional parasequences; thus, some of the units similar to 
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the Orb Delta model could have been reworked. Tidally influenced deltaic systems 

are complex (Dalrymple and Choi, 2007). These systems result from the interactions 

of multiple processes, and individual tidally influenced deltaic systems contain 

differences in wave and fluvial energy, tidal range, climate, and structural regime.  

Because of these differences and others, no system is exactly like another and thus 

no one tidally influenced delta system necessarily serves as a model for any other 

(Specht, 1985). The transition from open-marine shelf to fluvial environments 

represents a profound spatial change in depositional conditions. Factors that control 

the nature of deposits include: 1) baythmetry and geomorphology; 2) type of 

current energy (tidal, wave, river, longshore); 3) rate and direction of sediment 

movement; and 4) salinity of the water (Dalrymple and Choi, 2007). A delta’s 

location on the shelf is another consideration when interpreting facies in tidally-

influenced delta systems, as described in Porębski and Steel (2006). A transition in 

energy systems occurs as sea level changes from fluvio-tidal to tidal wave (Figure 

6.2). Again, with the notion that no tidally deltaic system is necessarily comparable 

to another, Figure 6.2 provides only a framework for understanding deltaic deposits 

in the Illinois Basin, which has been described as a ramp by Treworgy (1988) rather 

than a shelf. Nonetheless, the transition in energy regime from inter-tidal channel 

sandstone to subtidal, heterolithic mixed-flat facies observed in this study 

represents a shoreward shift in sea level trangression. This interpretation is also 

supported by a transition ichnofacies from Ophiomorpha in facies 6 to Cruziana in 

facies 7. 



 
 

78 

 
Figure 6.2. Location on the shelf and delta type (A), illustrating Big Clifty Sandstone 
formed in tidally influenced deltas dominated by flubio-tidal energy.               
Source: Model from Porębski and Steel (2006). 

 
Another important consideration for the identification of EOD in Chester 

sandstones is the geometry of tidally influenced sand bodies. Potter (1962) 

provided four idealized sand geometries for Chester sandstones, which include 

pods, ribbons, dendroids, and belts (Figure 6.2). Big Clifty reservoirs as described by 

Specht (1985) occur as ribbon bar sands that may coalesce to form wide belts. 
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Longitudinal changes in sand thickness relative to shore strongly influence the 

nature of the bars that develop (Dalrymple and Choi, 2007). Distributaries of tidally 

dominated delta systems are funnel shaped (Figure 6.3). At the seaward end of 

these systems elongated tidal bars or tidal sand ridges occur in relatively straight 

and wide channels (Dalrymple and Choi, 2007). Tidal ridges are commonly parallel 

to tidal currents and perpendicular to the shoreline, as well as being separated by 

scour channels. The dimensions of these ridges may vary greatly, but it is these 

ridges that form the foundation on which the tide-dominated delta progrades 

(Specht, 1985). A generalized vertical profile of a tidal bar is shown in Figure 6.4, 

where the tidal bar is composed of bottom sets, bar slope, and bar crest. This 

deposition is coarsening upwards. Facies 1 to 3 from this study fit the 

characteristics of tidal bar deposit (Figure 6.4).  

 
Figure 6.3. Geometries of Chesterian sand bodies. Source: After Potter (1962).  
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Figure 6.4 Tidal Bar model compared to facies 1, 2, and 3 from Logan County, 
Kentucky. Source: Modified from Dalrymple and Choi (2007). 
 

During Big Clifty time, a tide-dominated delta occurred outside of the current 

margins of the Illinois Basin. Sediments from this delta system were transported in 

multiple distributary channels that commonly coalesced to form large belts. In turn, 

tidal bar complexes formed at the mouths of these channels. Accommodation in 

general increased along structural hinge lines (Treworgy, 1988) and is marked by a 

noticeable increase in suspended sediment deposition. Tidal currents aligned tidal 

sand ridges into northeast-southwest trending ribbons and belts that become 

sandier toward the head of the tidally influenced delta system. General grain size 

distribution may be seen in Figure 6.3 (e.g., mud vs. sand). The diagram in Part C of 

Figure 6.5 shows how flux in the amount of fines is controlled by EOD. It is known 
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that, in the southeastern portion of the basin, Big Clifty sand bodies prograded 

further south and east than anywhere else in the basin during this time (Specht 

1985). It is, therefore, likely that multiple sedimentary deposits controlled by 

varying energy regimes, as described in Porębski and Steel (2006), are preserved in 

this area. 

 
Figure 6.5. Model of bay head delta. Note the relationship between grain size (C), 
and mixed-energy systems (B). Source: After Dalrymple and Choi (2007). 
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 USGS 7.5 minute quadrangle maps show that the thick sand belt trend 

increases northward into the Constantine and Cub Run quadrangles (Sable, 1964; 

Sandberg and Bowles, 1965) where coals and incised-valley fill (IVF) deposits are 

observed. It is important to keep in mind that, in addition to longitudinal facies 

changes in a tidally influenced delta system, it has been suggested that sea level also 

fluctuated during the deposition of Big Clifty siliciclastics (Nelson et al., 2002). Such 

fluctuations caused a basinward movement of facies across time and space (i.e., they 

are diachronous).  

Sediment package 1 (Table 7), observed in north Warren County (Cross 

sections A and B) (and described in Edmonson, Hart, and Hardin counties) show 

fluvial-tidal influence and are part of the regressive parasequence. The sequence 

boundary is either placed on the top of sandstone, or at the bottom of IVF deposits. 

Whereas sediment package 2 deposits, positioned basinward of Warren County, 

suggest more tidal-to-wave energy conditions, and contain regressive tidal bar 

sands and transgressive heterolithic tidal flat deposits (facies 1, 2, 3, 4, 5, 6, and 7), 

the sequence boundary is on the top of facies 3 as observed at the Stampede Mine.  

6.3: Petroleum Occurrence  
 
 The Stampede Mine provides an excellent case study to understand heavy-

end oil development of Big Clifty reservoirs using surface-mining techniques. An 

extensive sampling program was conducted during this study to measure bitumen 

concentrations at the Stampede Mine. As shown in previous sections, two reservoir 

sand bodies occur over the mine property. Reservoirs are referred to as the lower 

reservoir (facies 3) and upper reservoir (facies 6) for convenience.  Twenty-eight 
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samples were retrieved in the upper reservoir and fifty-three were collected from 

the lower reservoir. These 81 samples were analyzed for bitumen content and are 

shown in Table 5.3. The average bitumen concentration is approximately 3.3% for 

both reservoirs analyzed. The maximum value for the lower reservoir is slightly 

higher at 6.5 % versus the upper, which is 5.21%. Out of fifty-three samples from 

the lower reservoir only five had lab results higher than 5% bitumen. The mode for 

the lower reservoir is 2.6% bitumen. Both average concentration values are below 

the 7.36% average reported in the Jillson (1926) reports. No attempts were made to 

calculate Original Oil in Place (OOIP) or reserve estimates in this thesis. Volume of 

rock based on calculations from net isopach maps shown in Appendices IX and X  

may be multiplied by average percent to yield approximate acre feet for the 

Stampede Mine. Doing so yields ~14,187,327 ft3 with an average of 3% bitumen for 

the upper reservoir, and ~23,984,082 ft3 at 3% bitumen for the lower reservoir. 

How much oil is actually recovered from Big Clifty Sandstone asphaltic reservoirs 

largely depends on the method. A successful method for extracting bitumen from 

tidally influenced sandstone reservoirs using surface mining must address the 

following: 1) angular to sub-angular grains, 2) fine the very fine grain size, and 3) 

vertical stacking patterns of sandstone in sequence stratigraphic context.  

 Facies analysis has great implications for low (10-12) API gravity oil 

processing and exploration activities. This study has shown two reservoir facies that 

have been interpreted to form in different EODs, with the result of differing amounts 

of fine sediments throughout the reservoir. The amount of fines negatively affects 

the quality of the “ore.” The angularity of grains is another important consideration. 
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Subangular grains can quickly wear out hoses and piping, observed at the Stampede 

Mine, as the material is pumped through multiple settling tanks. Although average 

bitumen concentration is ~3% for both reservoirs, the lower reservoir is a better 

target because it contains less fines. Detailed facies mapping through coring 

operations is an important component of any proposed surface mining program, 

and should be done before siting a mine. Mining strategies must address the 

lenticular geometry of the reservoirs, which are separated commonly by mud-filled 

interchannels as observed through ERT, exposure, and core. This point is especially 

relevant for a state that may import miners and mining techniques from the coal 

industry. Treating the sand body like a laterally continuous coal seam is costly and 

inefficient, as observed at the Stampede Mine.  

 Fractures were observed both in exposure and in core (Figure 5.). The extent 

to which fractures serve as a conduit to increase permeability and charging of 

reservoirs is not well understood for Big Clifty systems. The heavy oil play in Logan 

County occurs parallel to a known fault system, and faulting is a postulated charging 

conduit in the Illinois Basin (May, 2013). A relative increase in bitumen staining was 

observed along two vertical fractures in Pit A (Figure 5.9); however, no laboratory 

analysis was conducted to substantiate this observation. A reverse fault with 

millimeters of offset, along with other observed vertical fractures, agrees with the 

interpreted tensional and vertical principal stress of the region. Thus, movement in 

such a stress regime along deep-rooted east-west fault blocks related to Iapetan 

rifting resulted in normal/left lateral displacement (Nelson, 1990). Structural 

complexities related to faulting in and around the southernmost fault zone in Logan 
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County are not well known. According to the KGS (2016) online oil and gas 

database, only 729 oil and gas wells have been drilled in Logan County as of 

February, 2016. Of these wells, only 99 have been drilled equal to or deeper than 

1500’ and only 24 have been drilled equal to or deeper than 2000’. The quantity of 

wells with geophysical logs is even less. Poor well control and lack of geophysical 

data mean that structures related to faulting around Logan County’s heavy oil and 

deeper reservoir targets are poorly understood. Extensive heavy oil deposits 

confirm the existence of migration pathways and trapping mechanisms, and suggest 

potential for future exploration.  

6.4: Subsurface to Outcrop 

 Facies models may be used to inform well log analysis of Big Clifty Sandstone 

reservoirs in the subsurface. Figure 6.6 shows a representative log of the Big Clifty 

Sandstone from section 11 of Carter Coordinate H-32 in Butler County.  

The type log was chosen for five reasons: 1) it spans the Golconda interval; 2) 

the drillers log mentions heavy oil shows; 3) the well is relatively close (9.7 miles 

NW) from the Stampede Mine property; 4) the Big Clifty interval was cored and 

measured for porosity, permeability, and water and oil saturation; and 5) it may be 

examined for lithology (gamma ray) and porosity (density porosity). Density 

porosity for this log is calculated using a limestone matrix of 2.72 g/cc. Results from 

core analysis are shown in Table 5.5. A study of this type log reveals a gross 

thickness of 78’. Net thickness using a gamma ray cut off of 60 API yields 17’ for 

combined lower and upper reservoirs. The lower sandstone contains approximately 

14’ of net sandstone. The upper sandstone contains approximately 15’, however, 
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compared to the lower sand, the upper contains shale breaks that partition 

sandstone bodies (Figure 6.6).  

 
Figure 6.6. Type log of Big Clifty from Butler County, Kentucky. Density porosity was 
calculated on a limestone matrix. Source: Constructed by author using KGS (2015; 
2016) well permit# 38144: 
http://kgs.uky.edu/kgsweb/DataSearching/oilsearch.asp.  
 

 Applying facies analysis, an unconformity surface is identified that separates 

regressive and transgressive parasequences (Figure 6.6). The lower sandstone is 

interpreted as a tidal-bar complex with porosity decreasing in the upper five feet 

http://kgs.uky.edu/kgsweb/DataSearching/oilsearch.asp
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(1.524 meters) from 18% to 13% (Figure 6.6). The overall shape of the gamma ray 

log for the lower sandstone is coarsening upwards (facies 1, 2, and 3). The upper 

sandstone represents a combination of tidal flat and mixed (heterolithic) tidal flat 

(facies 6 and 7) facies.  The porosity from core analysis is higher than the density 

porosity for a given footage (Figure 6.6).   

The two vertical stacking patterns of Big Clifty Sandstones are observable in 

geophysical well logs. In Butler County, it is common for drillers’ logs to refer to the 

upper and lower Jackson sandstone. In the four logs from Warren County, the Big 

Clifty section occurs entirely as sandstone as described in group 1 facies, averaging 

54 feet thick (Table 7). The change in vertical stacking patterns is seen in cross 

sections A and B, where the variation occurs along a NE-SW trend.  

6.5: Integrated Model 

 Tidally influenced deltas provide the EOD framework for facies observed at 

the Stampede Mine and in exposure. Although highly complex, modern tidal deltas 

may be used to model ancient analogs, such as the Big Clifty Sandstone. The benefits 

of facies analysis are many and relevant for heavy oil exploration programs, mine 

siting, and interpretation of conventional targets, as described in this chapter. 
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Chapter 7: Summary/ Conclusions 
 

The Big Clifty of South Central Kentucky was formed during a regressive- 

transgressive cycle in a tidally influenced deltaic system that shifted along 

paleoslope as sea level flucuated. Lithofacies identified in core and outcrop, and 

correlated to the subsurface with geophysical logs, support this interpretation. A 

typical Big Clifty regressive-transgressive cycle consists of the following: 1) the cycle 

begins with the progradation of a siliciclastic package onto a shallow limestone shelf 

(facies 1, 2, and 3); 2) Maximum regression is marked by a basin-wide exposure 

surface consisting of mudstone and paleosol (facies 4) and, less commonly, incised 

valley fill (Nelson et al., 2002); 3) A transgressive parasequence consisting of 

intertidal tidal flat sandstone and subtidal heterolithic flat deposits (facies 5, 6, and 

7) resides on top of the sequence boundary; and 4) the cycle is capped by marine 

shale and the Haney Limestone. Variations of this general cycle are observed, 

particularly in the form of the entire unit occurring as a single sandstone body, such 

as in much of Warren County. In northern Warren County, the Big Clifty forms a 

large sandstone bluff, which is important for the extensive cave development in the 

region. Thick bodies of sandstone are also recorded in USGS geological maps in Hart, 

Hardin, and Grayson counties where the Big Clifty type section occurs near the town 

of Big Clifty. The results from this study suggest that the Big Clifty Sandstone in this 

area consists of a single regressive unit. Basinward of these locations in southwest 

Butler and Logan counties, the Big Clifty commonly consists of two distinct 

Sandstone bodies separated by four to ten feet (1.2 to 3 meters) of mudstone and 

paleosol (facies 4 and 5). The resulting facies model from this study allows for a 
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sequence boundary to be placed between sand bodies in geophysical logs. The shift 

in EOD related to the sequence boundary resulted in increased amounts of fine-

grained material in the sand body above the sequence boundary rather than below 

it. This has great implications for both conventional and asphalt rock reservoirs. A 

decrease in porosity was observed in well logs containing two sandstone bodies. 

How fine-grained material affects conventional reservoirs, however, was not 

addressed in this study. ERT analysis reveals complex channel geometries separated 

by mud-filled interchannels. Fractures and faults are observed in asphalt rock 

reservoirs and suggest faulting as a conduit for petroleum charging.  

 Specific conclusions include:  

 Facies analysis studies are a crucial component of exploring for and 

developing asphalt rock reservoirs; 

 Differences in reservoir quality are observed between upper and lower sand 

bodies, which may be explained by a variation in EOD in a sequence 

stratigraphic context and regional variable shelfal setting;  

 Although the Big Clifty generally contains porosities ranging from 13-21%, 

variable concentrations of fine-grained material and diagenetic partitioning 

throughout the reservoir are observed (at least at the periphery of the 

basin);  

 Although gross isopach maps are helpful for realizing regional trends in 

sandstone belts, this study has shown that variability in fine-grained material 

occurs in Big Clifty Sandstone along with complexities of multistoried sand 

bodies, which are crucial considerations in surface mining operations. This 
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work also has implications for enhanced oil recovery methods such as steam 

and fire floods or waste water disposal wells; and 

 Despite the large estimated OOIP of Big Clifty Asphaltic reservoirs 

(Bowersox, 2014), recoverable amounts using surface mining and ionic 

solution processing are far less than anticipated due to complications in 

processing related to fine-grained material and heterogeneities in the 

reservoir. 
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Appendix I: Cross Sections with index maps 
 

 
Index map for cross section A and B. Map constructed by Andrew Reeder and 
modified by the author with permission.   
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Stratigraphic cross section A flattened on the top of the Beech Creek runs from near Warren County, near the borders of 
Edmonson and Butler Counties, to southwestern Butler County. Note that along the cross section the Big Clifty 
Sandstone transitions from entirely sandstone to two sandstone units with a mudstone to shale interburden.  Distances 
between core locations are shown in cross section. Source: Well logs were accessed from the KGS online data repository 
(kgs.uky.edu/kgsweb/DataSearching/oilsearch.asp). Author constructed cross section.  
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

99 

 
 
 
 

 
Stratigraphic cross Section B flattened on the top of the Beech Creek covers the outcrop belt of Warren County into the 
study area in Logan County. Note the transition from a single sandstone unit to two sandstone units separated by 
mudstone interburden, also observed in the subsurface (cross section A). Source: Author 
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Index map for cross sections C, D, E, and F at the Stampede Mine. Source: Map 
constructed by Andrew Reeder and modified with permission. 
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 Stratigraphic cross section C flattened in the top of facies 3 runs across the Stampede Mine from core B13 to Core B8. 
Note the thinning of facies 3 in core A5, and facies 1 is completely absent in core B13. Source: Author 
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 Structural cross section D hung on 560’ elevation shows that the Big Clifty Sandstone section dips to the north from A1 
to B1. Source: Author 
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Structural cross section E hung on 560’ elevation runs east west across the mine site. Note that facies 3 is completely 
absent in core A9. Only a few core from the Stampede Mine penetrated the Beech Creek. In future coring operations 
completely coring the interval until hitting limestone is recommended such that accurate structural information may be 
calculated. Source: Author 
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 Structural cross section hung on 560’ elevation moving south to north across the mine site. Note the thinning of facies 
3 in core A5. Source: Author
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Appendix II: Additional Maps 
 

 
Map showing upper sand Net Pay. Cutoffs were determined through semi-
qualitative and quantitative factors including bitumen concentration and physical 
appearance. Map was made by Andrew Reader with data from this study and used 
by author with permission.  
 
 
 
 
 



 
 

106 

 
Net Pay cut off isopach for the lower sandstone at the Stampede Mine. Map was 
made by Andrew Reader with data from this study and used by author with 
permission. 
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Structure map on the top of the Beech Creek Limestone from Williams et al. (1982). Asphalt-rock play is 
shown with gold-dashed lines. Regional dip of 50’ per mile was also calculated in this study. Source: 
Modified from Williams et al., 1982 
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Map showing wells with types of data utilized in study of Big Clifty in subsurface of Butler County, Kentucky. Wells with 
geophysical logs are shown with blue circles. Source: Map constructed by author with data from the KGS online data 
repository (http://kgs.uky.edu/kgsweb/DataSearching/oilsearch.asp) 
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Map of gross thickness values of the Big Clifty Sandstone interval in the subsurface of Butler County. Map constructed 
by author with data from the KGS online data repository (http://kgs.uky.edu/kgsweb/DataSearching/oilsearch.asp) 
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Appendix III: Photomicrographs  
   

 
Photomicrograph of the Haney Limestone cored at the Stampede Mine. A, B, C, and D 
are in plane polarized light, while A’, B’, C’, and E are in cross-polarized light. A and 
A’ show oolites. Note biogenic material in B and C. Thin sections are stained with 
Alizarin S to identify carbonate. Note sucrosic dolomite in D. Source: Author 
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Photomicrograph of Beech Creek Limestone encountered in core A2, and A9. Note 
biogenic material and carbonate cement intermixed with quartz grains (A and B). 
The left view is in plane polarized light, while the right view is cross-polarized light. 
C shows the contact between a brachiopod shell and sucrosic dolomite. Source: 
Author 
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Photomicrograph of quartz grains encrusted with caliche from facies 6 of the Big 

Clifty Sandstone at the Stampede Mine 
 

 
Photomicrograph of limestone encountered at TD of core LFA. Whether this is Beech 

Creek or Haney Limestone has been contested. It is currently interpreted as Beech 
Creek Limestone. Understanding limestone facies is important in exploring for 

Chesterian asphaltic sandstones in the Illinois Basin. Future work could conduct 
facies analysis on the limestone encountered in this study.  
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Appendix IV: Photos of “ore”  

 
 

Photos of asphalt rock from Pit A at the Stampede Mine showing the variable 
concentrations of bitumen (A, B, C, D, E, F, G, H, I). Heavy concentration shown in 
photo D. Partitioning of “ore” shown by clay sized grains in A, B, C, E, and G. I shows 
contact between facies 6 and facies 5 in Pit A. Dessication cracks shown in F, and 
ripple-bedding shown in C. Source: Author 
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Appendix V: ERT Transects 

 
ERT lines from the stampede mine. Note the lenticular geometry of sandstone bodies. Warm colors signify high resistivity, 
usually related to bitumen concentration. Source: Author and Stampede Mine. 
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Appendix VI: Geophysical Logs  

 

Well logs from KGS online data repository and modified by author 
(http://kgs.uky.edu/kgsweb/DataSearching/oilsearch.asp) 
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Well logs from KGS online data repository and modified by author 
(http://kgs.uky.edu/kgsweb/DataSearching/oilsearch.asp) 
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Well logs from KGS online data repository and modified by author 
(http://kgs.uky.edu/kgsweb/DataSearching/oilsearch.asp) 
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Well logs from KGS online data repository and modified by author 
(http://kgs.uky.edu/kgsweb/DataSearching/oilsearch.asp) 
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Well logs from KGS online data repository and modified by author 
(http://kgs.uky.edu/kgsweb/DataSearching/oilsearch.asp) 
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Well logs from KGS online data repository and modified by author 
(http://kgs.uky.edu/kgsweb/DataSearching/oilsearch.asp) 
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Well logs from KGS online data repository and modified by author 
(http://kgs.uky.edu/kgsweb/DataSearching/oilsearch.asp) 
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Well logs from KGS online data repository and modified by author 
(http://kgs.uky.edu/kgsweb/DataSearching/oilsearch.asp) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix VII: Core and Exposure Logs 
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Flow chart used to determine the lithology of the rocks observed in core. Source: 
Barnhill and Zhou, 1996 
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Flow chart used to identify sedimentary features observed in this study. Source: 
Barnhill and Zhou, 1996 
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The author, using Sedlog 3.1, constructed the following logs. Note: The scale is in 
tenths of feet. 
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Key for core logs from Sed. Log 3.1 created by author.
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Appendix VIII: Data Reference Tables 
All tables were created by author using data collected during this study.  

 
Permit # Carter Coordinate County Datum Big 

Clifty 
Top 

TVDSS 
Upper 

Big 
Clifty 

Bottom 
TVDSS 
Upper 

Gross 
Sandstone 

Upper 

BC 
Top 

TVDSS 
Lower 

BC 
Bottom 
TVDSS 
Lower 

Gross 
Sandstone 

Lower 

Combined 
Gross 

Sandstone 

# 
Reservoir 

Type 

Top 
Beech 
Creek 
TVDSS 

Big  
Clifty  
Gross 

101824 08-H-36 Warren 571.5 132.5 80.5 52 NA NA NA 52 1 75.5 ƫ 57  

101779 24-I-36 Warren 426.1 1 -59 60 NA NA NA 60 1 -62 63 

101825 8-H-36 Warren 482 210 164 46 NA NA NA 46 1 157 53 

101780 24-I-36 Warren 487.5 29.5 -28.5 58 NA NA NA 58 1 -36.5 66 

85390 1-G-31 Butler 400 75 60 15 350 379 29 44 2 6 69 

86121 16-H-33 Butler 460 61 39 22 32 20 12 34 2 12 49 

94184 5-G-32 Butler 406 84 60 24 56 49 7 31 2 35 49 

65340 16-H-33 Butler 449 170 125 45 NA NA NA 45 1 111 59 

62912 11-H-32 Butler 690 76 43 33 36 20 16 49 2 10 66 

A1 Stampede 
Mine  

Logan 638 588.5 581.5 7 572.5 564.5 8 15 2 NA ƫ 41.5 

A2  Stampede 
Mine 

Logan 611 582.5 574 8.5 565.5 558 7.5 16 2 533 49.5 

A3 Stampede 
Mine 

Logan 603 581.5 574 7.5 564 557 7 14.5 2 NA 43.5 

A4 Stampede 
Mine 

Logan 607 567 563 4 553 547 6 10 2 NA 47 

A5 Stampede 
Mine 

Logan 610 570.5 564 6.5 NA NA NA 6.5 1 NA 45.5 

A6 Stampede 
Mine 

Logan 604 566 556 10 548 542 6 16 2 NA 45 
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Permit # Carter Coordinate County Datum Big 
Clifty 
Top 

TVDSS 
Upper 

Big 
Clifty 

Bottom 
TVDSS 

Upper 

Gross 
Sandstone 
Upper 

BC 
Top 

TVDSS 
Lower 

BC 
Bottom 
TVDSS 

Lower 

Gross 
Sandstone 
Lower 

Combined 
Gross 

Sandstone 

# 
Reservoir 
Type 

Top 
Beech 
Creek 
TVDSS 

Big  
Clifty  
Gross 

A7 Stampede Mine Logan 577 564 558.5 5.5 549.5 537.5 12 17.5 2 NA 52.5 

A9 Stampede Mine Logan 563 563 557 6 548 541 7 13 2 NA NA 

A10 Stampede Mine Logan 594 594 586 6* 575 568 7 13 2 NA NA 

B1 Stampede Mine Logan 545 545 541 4 520.5 516.5 4 8 2 NA NA 

B2 Stampede  Mine Logan 585 571.5 565 6.5 
 

555.5 550.5 5 11.5 2 NA NA 

B3 Stampede Mine Logan 595 573 567 6 559 547 
 

12 18 2 NA NA 

B7 Stampede Mine Logan 583 578 571 7 562 552 10 17 2 NA NA 

B8 Stampede Mine Logan 574 565 560.5 4.5 552 545 7 11.5 2 NA NA 

B9 Stampede Mine Logan 622 571 566 5 559 549.5 9.5 14.5 2 NA 47.5 

B10 Stampede Mine Logan 635 579 575 4 565 559.5 5.5 9.5 2 NA NA 

B11 Stampede Mine Logan 617 575 571.5 3.5 561.5 554.5 7 10.5 2 NA NA 

B12 Stampede Mine Logan 638 581.5 578.5 3 571 557.5 14 17 2 NA NA 

B13 KY Single Zone 
(north,east): 
 3519189.132777618, 
4621246.11350958 

Logan 605 595 589 6 571 555 16 22 2 555 40 

MA KY Single Zone 
(north,east):  
3508768.8556053303, 
4591494.482935033 

 

Logan 475 452 448.5 3.5 445 387 58 61.5 2 NA 77.5 
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Permit # Carter Coordinate County Datum Big 
Clifty 
Top 

TVDSS 
Upper 

Big 
Clifty 

Bottom 
TVDSS 

Upper 

Gross 
Sandstone 
Upper 

BC 
Top 

TVDSS 
Lower 

BC 
Bottom 
TVDSS 

Lower 

Gross 
Sandstone 
Lower 

Combined 
Gross 

Sandstone 

# 
Reservoir 
Type 

Top 
Beech 
Creek 
TVDSS 

Big  
Clifty  
Gross 

MAA KY Single Zone 
(north,east):  
3509127.283296904, 
4591285.61334307 

Logan 470 466 415 51 NA NA NA 51 1 NA 51 

MBB  Logan 460 457.5 423 34.5 NA NA NA 34.5 1  40.5 

MCC  Logan 525 514.5 474 40.5 NA NA NA 40.5 1 474 
 

NA 

LFA  Logan 650 618 633 15 NA NA NA 15  620 NA 

McChesney 
Field 

Indian Creek Warren  460  40    40    

Natcher  
Parkway 

         21    

Jackson’s 
Orchard 

         45    

Barren Rvr. 
Road 

         25    

Average 
All Wells 

     19.5   9.75 27    

Average 
Stampede 
Mine 

     5.8   8 13.2    

Average 
Warren 

         54    

Average  
Butler 

         48.3    

 
Type 1 Reservoir – Big Clifty Sandstone occurs as single-bodied sandstone.  
Type 2 Reservoir- Big Clifty Sandstone occurs as multistoried sandstone. Lower sandstone is better reservoir for asphalt rock.  
TVDSS- True Vertical Depth Sub sea 
Ɨ- Gross interval thickness is measure from top of Big Cifty Sandstone to top of Beech Creek. 
ƫ- Gross interval is top of facies 7 to top of facies 1 
*- Two feet of mudstone interbedded 
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Table created by author. Well log data was accessed from KGS online data 
repository (http://kgs.uky.edu/kgsweb/DataSearching/oilsearch.asp) 
 

ID 
KGS_ 
Recno 

Permit  
# 

Top 
MD 

Bottom 
MD 

Gross 
Isopach 

Data 
Type Series County 

1 21404 54759 361.5 401 39.5 cored 1 Butler 

2 62391 62391 290 363 73 cored 1 Butler 

3 21406 48730 390 461 71 well log 1 Butler 

4 46556 65340 266 340 74 well log 1 Butler 

5 47601 65785 320 402 82 well log 1 Butler 

6 89791 78118 302 378 76 well log 1 Butler 

7 2003156 12836 364 446 82 well log 1 Butler 

8 2003161 5662 310 390 80 drillers log 1 Butler 

9 2003164 6234 251 293 42 drillers logs 1 Butler 

10 110421 86121 374 448 74 well log 1 Butler 

11 112229 87024 340 398 58 well log 1 Butler 

12 89809 N3325 297 365 68 drillers 1 Butler 

13 2003161 5662 328 409 81 cored 1 Butler 

14 2003164 6234 251 293 42 drillers logs 1 Butler 

15 2006219 
5836-
wf 586 626 40 drillers 1 Butler 

16 59139 69362 530 540 10 well log 1 Butler 

17 38144 62912 602 676 74 
Well log 
core 1 Butler 

18 32163 58930 428 506 78 Well Log 1 Butler 

19 32162 56292 304 420 116 well Log 1 Butler 

20 21404 54759 361.5 401 39.5 cored 1 Butler 

21 2594 39165 338 349 11 drillers logs 1 Butler 

22 2613 37539 384 404 20 drillers 1 Butler 

23 54831 21412 405 450 45 drillers 1 Butler 

24 55546 10852 627 649 22 drillers 1 Butler 

25 55547 10710 432 450 18 drillers 1 Butler 

26 54059 9938 536 572 36 drillers 1 Butler 

27 36052 1964 468 515 47 drillers 1 Butler 

28 20156 5401 306 370 64 Well Log 1 Butler 

29 92870 25916 350 392 42 well_ core 1 Butler 

30 92873 7732 390 431 41 drillers log 1 Butler 

31 105549 4988 358 381 23 
drillers 
Logs 1 Butler 

32 105551 23537 375 401 26 drillers logs 1 Butler 

33 105553 6325 344 379 35 drillers 1 Butler 

34 105555 8665 400 415 15 drillers  1 Butler 
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35 106775 25917 301 373 72 drillers 1 Butler 

36 109110 85390 308 384 76 well log 1 Butler 

37 121656 91587 338 388 50 well log 1 Butler 

38 127520 96217 304 384 80 Well Log 1 Butler 

39 2002732 23823 325 391 66 drillers log  1 Butler 

40 2002735 4962 302 377 75 well log 1 Butler 

41 2002743 6828 305 381 76 drillers logs 1 Butler 

42 2002745 8902 352 382 30 
Drillers 
logs 1 Butler 

43 2002747 25918 317 380 63 drillers logs 1 Butler 

44 2002748 25919 248 300 52 welllog 1 Butler 

45 2002802 5100 360 400 40 well log 1 Butler 

46 2003368 4906 327 399 72 drillers log 1 Butler 

47 2557 52220 296 348 52 well log 1 Butler 

48 55981 
 

541 595 54 drillers logs 1 Butler 

49 88621 77386 390 420 30 well log 1 Butler 

50 26539 16573 350 430 80 drillers log 1 Butler 

51 28416 
 

150 245 95 drillers log 1 Butler 

52 28420 
 

157 238 81 drillers log 1 Butler 

53 28427 
 

160 230 70 Drillers log 1 Butler 

54 53312 
 

265 340 75 drillers 1 Butler 

55 53316 
 

58 135 77 drillers 1 Butler 

56 53778 
 

199 256 57 drillers 1 Butler 
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