
Western Kentucky University
TopSCHOLAR®

Masters Theses & Specialist Projects Graduate School

Summer 2015

An Apache Hadoop Framework for Large-Scale
Peptide Identification
Harinivesh Donepudi
Western Kentucky University, harinivesh.donepudi110@topper.wku.edu

Follow this and additional works at: http://digitalcommons.wku.edu/theses

Part of the Biochemistry, Biophysics, and Structural Biology Commons, and the OS and
Networks Commons

This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Masters Theses & Specialist Projects by
an authorized administrator of TopSCHOLAR®. For more information, please contact connie.foster@wku.edu.

Recommended Citation
Donepudi, Harinivesh, "An Apache Hadoop Framework for Large-Scale Peptide Identification" (2015). Masters Theses & Specialist
Projects. Paper 1527.
http://digitalcommons.wku.edu/theses/1527

http://digitalcommons.wku.edu?utm_source=digitalcommons.wku.edu%2Ftheses%2F1527&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F1527&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/Graduate?utm_source=digitalcommons.wku.edu%2Ftheses%2F1527&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F1527&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1?utm_source=digitalcommons.wku.edu%2Ftheses%2F1527&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=digitalcommons.wku.edu%2Ftheses%2F1527&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=digitalcommons.wku.edu%2Ftheses%2F1527&utm_medium=PDF&utm_campaign=PDFCoverPages


AN APACHE HADOOP FRAMEWORK FOR LARGE-SCALE PEPTIDE
IDENTIFICATION

A Thesis
Presented to

The Faculty of the Department of Computer Science
Western Kentucky University

Bowling Green, Kentucky

In Partial Fulfillment
Of the Requirements for the Degree

Master of Science

By
Harinivesh Donepudi

August 2015





DEDICATION

To my Mother and God in whom I trust.

&

To all the computer scientists that are working around the globe for better society who

believe "You can have data without information, but you cannot have information without

data".



ACKNOWLEDGMENTS

I wish to extend my gratitude to Dr. Zhonghang Xia for offering his advice and

guidance throughout my masters. It has been a great pleasure to work alongside him both a

graduate assistant and a student. I am truly grateful for his instrumental support throughout

my research. I am thankful for the opportunities he provided me to use the latest technolo-

gies such as Hadoop.

I would also like to acknowledge Dr. Michael Galloway. I am thankful for the way

that he motivated me. I enjoyed our discussions. I appreciate him taking the time to review

this document. His insight was imperative in completing this research. He also inspired me

to extend my current research towards cloud computing.

I would like to thank Dr. James Gary who accepted my request to be part of my

thesis committee. He and the rest of the Computer Science faculty have never ceased to be

supportive in my endeavors. I would also like to extend my gratitude to Western Kentucky

University for allowing me to pursue my masters here.

I would also like to thank my friend Travis Brummett for helping me throughout

my course work and for aiding me in revising this document. I would like to extend my

appreciation to my friend Bindu Priya Bhavineni for supporting me during my tough times.

I would like to Thank all my classmates for their extended support.

Finally, I would like to acknowledge my family. I want to extend my gratitude to

my mother who has continuously supported me.

iv



CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1 Big Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Methods of Analyzing Big Data . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Apache Hadoop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Bioinformatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Protein and Peptide Identification . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Peptide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.2 PSM Data as a Big Data . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.3 C-Ranker, Peptide, and Protein Identification . . . . . . . . . . . . 7

1.5 Prior Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5.1 Problems with the Current Bioinformatics Algorithm(C-Ranker) . . 9

1.6 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6.1 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6.2 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . 10

v



1.6.3 Area of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6.4 Scope of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6.6 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.7 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Terms and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Protein Identification Using Mass Spectrometry . . . . . . . . . . . 14

2.1.2 Protein Search Engines Using Databases . . . . . . . . . . . . . . 16

2.1.3 Post Database Searching . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 PeptideProphet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Benifits and Issues of PeptideProphet . . . . . . . . . . . . . . . . 18

2.3 Percolator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Benefits and Issues of Percolator . . . . . . . . . . . . . . . . . . . 20

2.4 CRanker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Reasons for Choosing CRanker . . . . . . . . . . . . . . . . . . . 21

2.5 Why Apache®Hadoop™Framework . . . . . . . . . . . . . . . . . . . . . 23

2.5.1 Top Reasons to Consider Hadoop . . . . . . . . . . . . . . . . . . 23

2.5.2 Apache®Hadoop™ . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Apache Hadoop Distributed File System . . . . . . . . . . . . . . . . . . . 26

2.6.1 HDFS Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7 Apache Hadoop MapReduce . . . . . . . . . . . . . . . . . . . . . . . . . 31

vi



2.7.1 What is MapReduce? . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 EXISTING PROBLEMS AND PLANNED IMPROVEMENTS . . . . . . . . . . 36

3.0.2 Existing Solution to Execute CRanker . . . . . . . . . . . . . . . . 36

3.0.3 Existing Issues with CRanker . . . . . . . . . . . . . . . . . . . . 39

3.1 Why Only Use Apache Hadoop for CRanker Execution . . . . . . . . . . . 41

3.1.1 Case Studies Which Motivated the Choice of Apache Hadoop . . . 41

4 PROPOSALS,ENVIRONMENT SETUP, DESIGN, AND IMPLEMENTATION . 43

4.1 Proposals Made . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 Observations Made on Increasing the Computation Power . . . . . 43

4.1.2 Observations Made on Using High-Performance Computing . . . . 45

4.1.3 Observations Made on Using GPU Computing . . . . . . . . . . . 47

4.1.4 What About Re-Implementing the CRanker Algorithm . . . . . . . 49

4.2 Parallelizing the CRanker Application . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Finalized Idea for CRanker Execution and Approved Concept . . . 51

4.3 Setting of Environment and Other Essentials . . . . . . . . . . . . . . . . . 51

4.3.1 Setting Up the Hardware Infrastructure . . . . . . . . . . . . . . . 52

4.3.2 Setting Up the Software Infrastructure . . . . . . . . . . . . . . . . 54

4.4 Proposed Framework Architecture, Design, and Implementation . . . . . . 54

4.4.1 Idea Execution and Design . . . . . . . . . . . . . . . . . . . . . . 54

4.4.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 DEVELOPMENT AND EXECUTION . . . . . . . . . . . . . . . . . . . . . . . 64

vii



5.1 Setting up of Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Determining the Approach for CRanker Execution . . . . . . . . . . . . . 65

5.2.1 Outline of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.2 Execution of the Algorithm . . . . . . . . . . . . . . . . . . . . . 67

5.3 Determining the Joins for File Comparison . . . . . . . . . . . . . . . . . . 69

5.3.1 Outline of MapReduce Join Algorithm . . . . . . . . . . . . . . . . 70

6 EVALUATIONS AND ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.1 Evaluating the Distributed Execution of CRanker Algorithm Using Apache
Hadoop Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.1.1 Evaluating the Memory Considerations and its Analysis . . . . . . 74

6.1.2 Evaluating the CRanker Execution Time . . . . . . . . . . . . . . . 78

6.2 Evaluation and Analysis of File Comparison Algorithm . . . . . . . . . . . 82

7 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . 85

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A MAPREDUCE CODE FOR CRANKER DISTRIBUTED EXECUTION . . . . . 92

A.A The driver for MapReduce CRanker distributed execution . . . . . . . . . . 92

A.B The MapReduce code for CRanker distributed execution . . . . . . . . . . 96

A.B.1 CRanker Execution Command . . . . . . . . . . . . . . . . . . . . 101

B MAPREDUCE CODE FOR FILE COMPARISON . . . . . . . . . . . . . . . . 102

B.A MapReduce Code for File Comparison Using Joins . . . . . . . . . . . . . 102

viii



C APACHE HADOOP CONFIGURATION FILES . . . . . . . . . . . . . . . . . . 106

C.A Apache Hadoop Master Node configuration Files . . . . . . . . . . . . . . 106

C.A.1 MapReduce Configuration . . . . . . . . . . . . . . . . . . . . . . 106

C.A.2 HDFS Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 108

C.A.3 Core Site Configuration . . . . . . . . . . . . . . . . . . . . . . . 111

C.A.4 Apache Hadoop Yarn Configuration . . . . . . . . . . . . . . . . . 112

C.B Apache Hadoop Slave Nodes configuration Files . . . . . . . . . . . . . . 114

C.B.1 MapReduce Configuration . . . . . . . . . . . . . . . . . . . . . . 114

C.B.2 HDFS Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 116

C.B.3 Core Site Configuration . . . . . . . . . . . . . . . . . . . . . . . 119

C.B.4 Apache Hadoop Yarn Configuration . . . . . . . . . . . . . . . . . 120

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

ix



LIST OF TABLES

2.1 Target PSMS Output by PeptideProphet, Percolator, and CRanker. . . . . . 22

2.2 Overlap of PeptideProphet and CRanker. . . . . . . . . . . . . . . . . . . . 22

3.1 PBMC data execution on CRanker . . . . . . . . . . . . . . . . . . . . . . 40

5.1 Hardware used for development and execution . . . . . . . . . . . . . . . . 64

6.1 Test Beds Used for CRanker Distributed Execution Using Amazon EC2 . . 72

6.2 Test Bed for Apache Hadoop CRanker Execution on Localhost . . . . . . . 73

6.3 CRanker Execution Times on Cluster 1 . . . . . . . . . . . . . . . . . . . . 81

6.4 Matched Percentage of the CRanker Output . . . . . . . . . . . . . . . . . 84

x



LIST OF FIGURES

1.1 Big Data Analysis Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Protein Arrangement and Protein Gathering . . . . . . . . . . . . . . . . . 15

2.2 Seeking a Spectrum Library and de Novo sequencing . . . . . . . . . . . . 15

2.3 Hadoop execution architecture. . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Hadoop architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 HDFS Architecture (Source Apache Hadoop). . . . . . . . . . . . . . . . . 28

2.6 HDFS Block Replication (Source from Apache Hadoop) . . . . . . . . . . . 29

2.7 Hadoop Client Creates a File. . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8 HighLevel MapReduce Pipeline . . . . . . . . . . . . . . . . . . . . . . . 34

2.9 MapReduce Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 CRanker Read Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 CRanker Solve Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 CRanker Write Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 GPU Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 CRanker DataFlow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 CRanker Input Split DataFlow . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Amazon EC2 instance access . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 CRanker Input File Split . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6 Hadoop Resource Management Architecture . . . . . . . . . . . . . . . . . 58

xi



4.7 Proposed Framework Architecture . . . . . . . . . . . . . . . . . . . . . . 60

4.8 CRanker with MapReduce Dissected . . . . . . . . . . . . . . . . . . . . . 61

5.1 MapReduce Join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.1 CRanker Execution Burden Comparison . . . . . . . . . . . . . . . . . . . 73

6.2 CRanker Normal Memory Usage Vs Apache Hadoop Jobs Memory Con-
sumption on Localhost . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3 CRanker Normal Memory Usage Vs Apache Hadoop Jobs Memory Con-
sumption on Cluster 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.4 CRanker Normal Memory Usage vs Apache Hadoop Jobs Memory Con-
sumption on Cluster 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.5 Summary of CRanker Memory Utilization . . . . . . . . . . . . . . . . . . 78

6.6 CRanker Execution Time:Normal Execution Vs Single Node Execution on
Localhost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.7 CRanker Execution Time:Normal Execution Vs Cluster 1 . . . . . . . . . . 80

6.8 CRanker Execution Time:Normal Execution Vs Cluster 2 . . . . . . . . . . 82

6.9 CRanker Execution Summary . . . . . . . . . . . . . . . . . . . . . . . . 83

6.10 Matched Percentage of CRanker Output . . . . . . . . . . . . . . . . . . . 84

xii



AN APACHE HADOOP FRAMEWORK FOR LARGE-SCALE PEPTIDE
IDENTIFICATION

August 2015Harinivesh Donepudi 124 Pages

Directed by: Dr. Zhonghang Xia, Dr. James Gary, Dr. Michael Galloway

Department of Computer Science Western Kentucky University

Peptide identification is an essential step in protein identification, and Peptide Spec-

trum Match (PSM) data set is huge, which is a time consuming process to work on a single

machine. In a typical run of the peptide identification method, PSMs are positioned by a

cross correlation, a statistical score, or a likelihood that the match between the trial and

hypothetical is correct and unique. This process takes a long time to execute, and there

is a demand for an increase in performance to handle large peptide data sets. Develop-

ment of distributed frameworks are needed to reduce the processing time, but this comes

at the price of complexity in developing and executing them. In distributed computing, the

program may divide into multiple parts to be executed.

The work in this thesis describes the implementation of Apache Hadoop framework

for large-scale peptide identification using C-Ranker. The Apache Hadoop data process-

ing software is immersed in a complex environment composed of massive machine clus-

ters, large data sets, and several processing jobs. The framework uses Apache Hadoop

Distributed File System (HDFS) and Apache Mapreduce to store and process the peptide

data respectively.The proposed framework uses a peptide processing algorithm named C-

Ranker which takes peptide data as an input and identifies the correct PSMs. The frame-

work has two steps: Execute the C-Ranker algorithm on Hadoop cluster and compare the

correct PSMs data generated via Hadoop approach with the normal execution approach of

C-Ranker.

The goal of this framework is to process large peptide datasets using Apache Hadoop

distributed approach.
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Chapter 1

INTRODUCTION

There is great potential for end users in numerous fields of science to routinely

lead big scale computations on distributed resources by utilizing a blend of the accompa-

nying emerging technologies. Distributed computing contains the distributed middleware

for connecting data or cluster of computing centers, this including resource scheduling or

reservation, remote job submission and data management

1.1 Big Data Processing

Even from its earlier days, Google had to manage the issues in the usage and op-

eration of a web index. In the time of "big data", no single machine can be relied upon to

handle the volume of data and preparation needed to satisfy Google’s central goal. That

goal is: "to compose the world’s data and make it universally available and useful". Today,

we are flooded with a surge of data. In a broad scope of utilization areas, information is

being gathered at an exceptional scale. Choices that were previously made in shrouded in

mystery, or on meticulously developed models of reality, can now be made in light of the

information itself. Such big data examination now drives every part of our present day so-

ciety including retail, financial services, mobile services, manufacturing, physical sciences,

and life sciences. In fact, there is a whole sequence of bioinformatics that to a great extent

dedicated to the curation and examination of such information. As innovation advances,

2



especially with the appearance of Next Generation Sequencing, the size and number of trial

data sets that are accessible is expanding exponentially.

For example, As demonstrated in the Figure 1.1, the analysis of Big Data includes

different particular stages each of which presents challenges. Numerous individuals shock-

ingly concentrate just on the investigation/demonstration stage. While that stage is essen-

tial, it is of little use without alternate periods of the information examination pipeline. In

the investigation phase , which has gotten much consideration, there are inadequately com-

prehended complexities in the setting of multi-tenanted clusters where a few clients projects

run concurrently. Numerous critical difficulties develop past the investigation stage. Case

in point, big data must be overseen in connection, which may be uproarious, heterogeneous,

and exclude a forthright model. Doing so raises the need to track provenance and to handle

instability and failure: points that are vital to achievement, but sometimes simultaneously

as big data. Also, the inquiries to the information examination pipeline will normally not

all be laid out ahead of time. We may need to make sense of proper inquiries given the in-

formation. Doing this will require more brilliant frameworks providing better backing for

client connection with the examination pipeline. We presently have a noteworthy bottle-

neck in the amount of individuals enabled to investigate the inquiries of the data and dissect

it. Users can radically expand this number by supporting three levels of engagement with

the data, not all obliging profound database aptitude.

1.2 Methods of Analyzing Big Data

1.2.1 Apache Hadoop

Apache Hadoop is an open-source programming system. It is written in Java for

distributed storage and handling of vast information sets on PC clusters manufactured from

3



Figure 1.1: Big Data Analysis Pipeline

commodity hardware. All the modules in Hadoop are composed with a major presumption

that equipment failure (of individual machines, or racks of machines) is ordinary.In the case

of failures it is natural to handle through the programming. The center of Apache Hadoop

comprised of a storage part (Hadoop Distributed File System (HDFS)) and a processing

part (MapReduce).

1.3 Bioinformatics

Bioinformatics is an interdisciplinary field that creates systems and programming

methods for For the comprehension of biological information. As an interdisciplinary field

of science, bioinformatics joins software engineering, measurements, math, and architec-

ture to study and procedure natural information.

Bioinformatics is an umbrella term for the assortment of organic studies that uti-

lizes computer programming as a component of technique. It is also a reference to par-

ticular investigation "pipelines" that are utilized over and over, especially in the fields of

4



hereditary qualities and genomics. Normal employments of bioinformatics incorporate the

ID of competitor qualities and nucleotides (SNPs). Regularly, such recognizable proof is

improved to the point of comprehension of the hereditary premise of infection, exceptional

adjustments, attractive properties or contrasts between populaces. In a less formal manner,

bioinformatics additionally tries to comprehend the authoritative standards inside nucleic

acid and protein sequences.

1.4 Protein and Peptide Identification

Proteins are huge natural particles, or macromolecules, comprising of one or more

long chains of amino acid buildups. Proteins perform an inconceivable exhibit of capaci-

ties inside of living life forms, including catalyzing metabolic responses, recreating DNA,

reacting to boosts, and transporting atoms between the source and destination. Proteins

vary from each other fundamentally in their succession of amino acids, managed by the

nucleotide grouping of their qualities. That normally brings about collapsing of the protein

into a particular three-dimensional structure that decides its action.[Lehninger, Nelson, and

Cox, 2005].

1.4.1 Peptide

Peptides are functioning organic particles. They are short chains of corrosive amino

monomers connected by peptide (amide) bonds. Peptides differs from proteins on the

premise of size, and as a self-assertive benchmark can be comprehended to contain roughly

fifty or less amino acids. Proteins comprise of one or more polypeptides orchestrated in

a naturally practical manner, regularly bound to ligands. The size limits that differentiate

peptides from polypeptides and proteins are not definitive. Long peptides, for example, or

5



amyloid beta have been alluded to as proteins, and littler proteins like insulin have been

mistaken as peptides [Zealandpharma.com, 2015].

1.4.2 PSM Data as a Big Data

Liquid chromatography combined with tandem mass spectrometry (LC/MS/MS)

offers the guarantee to exhaustively recognize and evaluate the proteome of complexes,

cells, and tissues.

The extensive quantities of peptide spectra created by LC/MS/MS investigations

are routinely sought to utilize a search engine against hypothetical fracture spectra received

from target databases containing either protein or interpreted nucleic acid sequences. It is

regularly expected that a peptide spectrum match (PSM) for every MS/MS range is con-

tained in the sequence database. In a run of the peptide identification technique, PSMs

are positioned by a cross correlation, a measurable score, or a likelihood that the match

between the experimental and hypothetical is correct and unique. Just those PSMs with

the most noteworthy scores or most significant probabilities are accounted for as correct.

On the other hand, this methodology dishonestly distinguishes the peptides frequently. In

all actuality, more than half of PSMs initially doled out by database search engines, for

example, SEQUEST[Fields.scripps.edu, 2015], MASCOT [Matrixscience.com, 2015], and

X!TANDEM [Thegpm.org, 2015] are erroneous. Accordingly, the exactness of database

list items is frequently assessed via seeking a decoy protein database to recognize the false

discovery rate (FDR). Decoy databases contain either modified or arbitrarily rearranged

protein successions received from the right or target protein database. The database search

engine doles out an observed spectrum range to either an objective or a decoy sequence.

The objective decoy database search additionally shows the quality or reliability of the tar-
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get PSMs. In any case, the objective PSMs are not all correct because of the low quality

of the exploratory MS/MS data, the arrangement not in the database, or unforeseen amino

acid alterations. As a result, a small amount of the objective PSMs from the search engine

is false positives. Thus, manual or computational methodologies are critical to approving

target PSMs after a protein database examination of the LC/MS/MS data.

In the course of recent years, the number and size of proteomic datasets made out

of mass spectrometry-inferred protein identifications reported in the literature have become

drastic. Tandem mass spectra are frequently checked against immense protein databases

produced from genomes or RNA-Seq data for peptide identification. Most existing tools

for mass spectrometry-based peptide identification consider a pair mass range against all

peptides in a database. The atomic masses are like the precursor mass of the spectrum,

making mass spectral data analysis moderate for large databases.

During this process, tremendous amounts of data is being delivered utilizing cutting

edge innovations like Next Generation Sequencing Machines and high-throughput Mass

Spectrometers. The generated big data make issues regarding storage, networking, and

calculations. Keep in mind the end goal to process such data in a convenient way. High-

performance computing, distributed computing is turning into a vital segment in biological

science, bioinformatics , and computational biology. So, to process these huge data sets

there is a need for big data analysis methods. The demand for big data analytic frameworks

has been growing in the field of peptide identification over the recent years.

1.4.3 C-Ranker, Peptide, and Protein Identification

In a typical binary classification of the correct and incorrect PSMs, target PSMs

are labeled as correct, or +1 and decoy PSMs are labeled as inaccurate or -1. The classi-
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fier learns from the training dataset to assign either +1 or -1 class labels to PSMs. How-

ever, in peptide identification, the target PSMs are not trustworthy [Jian, Niu, Xia, Samir,

Sumanasekera, Mu, Jennings, Hoek, Allos, Howard, et al., 2013]. Although some algo-

rithms have been proposed for identifying high-quality PSMs, parameter selection remains

a big challenge. C-Ranker aims to overcome this problem automatically.

Sequence database searching (for the large-scale dataset) [Matrixscience, Matrix-

science] and de novo sequencing (new protein discovery) [Seidler, Zinn, Boehm, and

Lehmann, 2010] are two standard approaches for peptide identification. The mass spec-

trometry (MS) based strategy coupled with sequence database searching has become the

dominant method for peptide identification in large-scale proteomics studies. A variety of

statistical and machine learning algorithms have been described to select these true PSMs

in efficient manners among them in the C-Ranker.

In sequence database searching, an expansive number of PSMs are routinely pro-

duced, then again, just a small amount of them are correct. The undertaking of peptide

identification is to pick correct ones from the database search yields. C-Ranker is the al-

gorithm with scoring approach to rank all PSMs, and users can choose those top-scored

PSMs as indicated by FDRs. The C-Ranker technique has been approved on various PSM

datasets created from the SEQUEST database search tool. C-Ranker utilizes the primal

SVM system and adapts to the weight of each PSM as a variable.C-Ranker is developed in

Matlab; it comes with Windows and Linux distribution packages.

1.5 Prior Research

Prior to this thesis, C-Ranker Linux distribution or Windows installation is used

for validating Shotgun Proteomics Datasets. The algorithm is designed to execute only
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on a single machine. There are certain steps involved in the execution that includes read,

solve, and write. C-Ranker with MATLAB runtime is a memory consuming algorithm

that requires a high computing machine. In general, for a dataset having about 400,000

PSM records, it may take about five hours on a PC with CPU Intel Core i5 3.10GHz of 4

cores and Memory 8GB. Increases the data set size, i.e., PSM records, would increase the

execution time of the C-Ranker. So, an idea was developed to decrease the execution time

without compromising the reliability.

1.5.1 Problems with the Current Bioinformatics Algorithm(C-Ranker)

Many bioinformatics algorithms are parallelizable. Parallelism is not readily avail-

able in the original code. The user who needs to make the algorithm parallelizable may

have to rewrite the entire code. C-Ranker also comes under this category where the paral-

lelism is not readily available, Thus there is a need of framework to overcome this problem.

1.6 Proposed Solution

This thesis attempts to move from a theoretical approach to more practical approach

by incorporating the data provided. Hadoop MapReduce and HDFS concepts are used to

do the distributed processing. An algorithm was designed to use the distributed concepts

of Hadoop and execute the C-Ranker on a cluster of nodes. This approach will reduce

the execution time of C-Ranker without compromising the actual behavior of it. In this

framework, C-Ranker input files are divided and distributed across all the nodes that are

registered with the Hadoop node manager. Each mapper on the node in a cluster will

consume the local data and execute the C-Ranker steps.

The main steps in the proposed solution include:
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1. Create an algorithm/Framework to execute C-Ranker in distributed mode.

2. The framework is designed in such a way that it may work with other post database

searching algorithms like C-Ranker with minimal changes.

3. Compare the generated distributed output of C-Ranker with the actual output of the

C-Ranker, i.e., executed on a single node.

4. Make sure the algorithm is well executed on the set of predefined nodes.

1.6.1 Thesis Statement

This segment portrays the reasoning, extension and technique utilized as a part

of finishing this research. It portrays why the research was led, and additionally some

fundamental points of implementation; it also depicts what was and was not excluded in

the research.

1.6.2 Research Question

How can the execution time of the C-Ranker algorithm be reduced without chang-

ing the execution behavior and its implementation? How to is it possible to have a better

resource management while executing C-Ranker? Does the distributive or parallel execu-

tion fit here?

1.6.3 Area of Research

The purpose of the study is to implement the distributive framework to execute

the C-Ranker in a distributive environment, including the preserving of the current exe-

cution behavior of C-Ranker. For this to be accomplished an algorithm is designed using

Apache Hadoop [Hadoop, 2011] MapReduce and HDFS. The second part of this study
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includes how the files are compared using MapReduce joins. The research also evaluates

the overhead introduced by virtualization and Hadoop by comparing the performance of

the C-Ranker application using physical and virtual machines, on LAN clusters, and with

Hadoop. The results will be recorded in the form of tables, graphs and are utilized to

analyze various parameters.

1.6.4 Scope of Thesis

This thesis focuses on quantifying and analyzing the results produced by C-Ranker

using the distributive/parallel execution approach. Currently, C-Ranker is taking a long

time to process the large data sets. So, an attempt has made to reduce this execution time.

The research focuses only on executing the C-Ranker on multiple nodes at a single point in

time. This thesis will not discuss changing the C-Ranker‘s actual implementation (code) to

make it work on distributed computing.

1.6.5 Methodology

Initially, a domain and data flow diagrams were developed; then an architecture was

designed. In the next stage, MapReduce classes and the driver classes were created. The

last step was building up a system to present the outcomes. The outcomes will be most

useful by including all the observations and results in Microsoft Excel spreadsheets. From

these worksheets, different charts and tables can be delivered alongside access to the raw

data.

1.6.6 Advantages

There are advantages to using Hadoop for distributed computing that will be ex-

plained in detail in the coming chapters. In short, the resource management is much easier

when using Hadoop as the distributed platform. The C-Ranker distribution approach will
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significantly reduce the current execution time for large data sets with minimal cost in the

hardware and software infrastructure. In the case that there is an increase in the PSM data

in the future, the framework that is designed can work with huge data sets and process them

efficiently. The proposed framework also increases the reliability of storing and processing

the PSM data using its distributive approach.

1.7 Organization of Thesis

This thesis reports results of C-Ranker generation using the distributive approach

that is designed and developed in Chapter 4 with Apache Hadoop HDFS and MapReduce

concepts. The rest of this thesis is organized as follows :

Chapter 2 Characteristics Definitions Explained

• Formally introduces about bioinformatics and its role, differences of post database

searching algorithms like peptide prophet, percolator, and C-Ranker. The reason for

choosing C-Ranker to execute it in distributed mode. Introduction of technology de-

tails like Hadoop framework, its advantages, and the reasons for selecting the Hadoop

for this thesis.

Chapter 3 Existing Problems and Planned Improvements

• Formally describes the current solution that C-Ranker has and problems facing that.

This chapter also summarizes the solution planned to solve the existing problem.

Chapter 4 Proposals,Environment Setup, Design and Implementation

• Formally describes all the proposals made, reasons for selecting the current proposal,

the design, and the plans to implement the proposal and its implementation details.
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Chapter 5 Development Execution

• Describes development, observations during the execution, what is being achieved?

and the ways the problem has been solved.

Chapter 6 Results and Summary

• Show case results and summarize the total research.

Chapter 7 Conclusions and Future Directions

• Summarizes the entire research and concludes the work. The look at the different

directions future research might follow.
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Chapter 2

BACKGROUND

This chapter focuses on why we need peptide identification techniques, database

search techniques for peptide identification, and post database technologies. It also review

the reason for choosing only CRanker among other post database search algorithms. Lastly,

it will outline why Hadoop and its components were shortlisted for this research work and

details about the Apache Hadoop Components that are used in this thesis.

2.1 Terms and Definitions

It is bioinformatics that connects genomes, proteomes, and biological processes and

permits us to study and concentrate on information from this data. Bioinformatics plays a

significant role in identifying the proteins based on the peptide information.

2.1.1 Protein Identification Using Mass Spectrometry

Peptide identification is the key stride in protein identification and, more so, quan-

tification. Various businesses and non-commercial database search instruments have been

created to rank the PSMs given scoring functions and report the top-scored as target PSMs.

Protein identification by mass spectrometry is widely used in biological research.

Protein identification by mass spectrometry (MS) is an imperative system in pro-

teomics. Via seeking an MS range against a given protein database, the most coordinated

proteins are sorted utilizing a scoring capacity, and the main one is frequently viewed as the

accurately recognized protein. Mass spectrometry-based protein identification has turned
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into a precious tool for explaining protein capacity. A few routines have been created for

protein ID including, arrangement accumulation with masses of peptides or their parts,

phantom library seeking, and de novo sequencing.

Figure 2.1: Protein Arrangement and Protein Gathering

Figure 2.2: Seeking a Spectrum Library and de Novo sequencing

Peptide and protein identifications made in many mass spectrometry-based pro-

teomic work processes first include gaining an arrangement of tandem mass (MS/MS)

spectra. They then consists of cross-examining every spectrum against spectra anticipa-

tion from a rundown of protein groupings via search engines is performed. SEQUEST,

Mascot, OMSSA, and X!Tandem are examples. The yield of these projects demonstrates
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the best hypothetical peptide matches to the information spectra, which are then used to

deduce the source protein that was available in the natural specimen.

2.1.2 Protein Search Engines Using Databases

2.1.2.1 SEQUEST

SEQUEST [Keller, Nesvizhskii, Kolker, and Aebersold, 2002] changes over the

character-based representation of amino acid sequences in a protein database to fracture

designs that are compared against the MS/MS range produced on the objective peptide.

The calculation initially recognizes amino acid successions in the database that match the

deliberate mass of the peptide. It then looks at fragmented particles against the MS/MS

range and creates a preparatory score for every amino acid succession. A cross-relationship

analysis is then performed on the main 500 preparatory scoring peptides by associating hy-

pothetical recreated spectra against the experimental spectrum. Yield results are shown

appropriately. To put it plainly, SEQUEST performs robotized peptide/protein sequencing

through database searching of MS/MS spectra without the requirement for any manual suc-

cession interpretation. However, it can make use of translated grouping data if accessible.

2.1.2.2 Mascot

Mascot [Matrixscience.com, 2015] is a software search engine that uses mass spec-

trometry information to recognize proteins from peptide succession databases. It is broadly

utilized via research facilities around the globe. It utilizes a probabilistic scoring calcula-

tion for protein identification that was adjusted from the MOWSE (for MOlecular Weight

SEarch) [Pappin, Hojrup, and Bleasby, 1993] calculation. Mascot is openly accessible to

use on the Matrix Science website.
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2.1.3 Post Database Searching

In the course of recent years, MS/MS with database search has been utilized pro-

gressively for high-throughput investigation of complex protein tests. It has been made

conceivable via computerized database search programming, such as SEQUEST. These

applications compare every spectrum against those normal for every conceivable peptide

acquired from a grouping database that have masses inside of a slip resilience of the an-

tecedent particle mass. Every spectrum is then doled out to the database peptide with the

most elevated general score, or set of scores, that reflects different parts of the fit in the

middle of range and peptide. These scores help segregate in the midst of correct and in-

correct peptide assignments to spectra and thus encourage discovery of false recognizable

pieces of identifications.

There is a need for powerful and precise statistical models to evaluate the legitimacy

of peptide identifications made by MS/MS and database search. Every peptide task to a

spectrum is assessed for every single other task in the dataset, including some incorrect

assignments. The technique applies machine learning strategies utilizing database search

scores and the quantity of tryptic ends of the doled out peptides to recognize from the

inaccurately appointed peptides in the dataset effectively. In this manner, it calculates the

likelihood of being correct for every peptide tasked to a spectrum. The calculation applies

a strategy to SEQUEST database search results for ESI-MS/MS spectra produced from a

set of sample purified proteins. The algorithm show the registered probabilities are exact

using this dataset with peptide assignments of known legitimacy and have high energy to

separate in the middle of efficiently and inaccurately appointed peptides.
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These statistical analysis algorithms guarantee to be of an incredible quality to high-

throughput proteomics. Examples of the post database searching algorithms are Peptide-

Prophet, Percolator, and C-Ranker.

These algorithms utilize semi-directed machines learning how to enhance the dis-

crimination in the middle of the right and erroneous spectrum identifications. The matches

from searching a decoy database give the negative illustrations to the classifier, and a subset

of the high-scoring matches from the objective database present the positive cases.

2.2 PeptideProphet

PeptideProphet [Ma, Vitek, and Nesvizhskii, 2012] consequently approves peptide

assignments to MS/MS spectra made by database search projects like SEQUEST. From

each dataset, PeptideProphet learns distributions of search scores and peptide properties

among right and wrong peptides and uses those distributions to process for every likely

outcome that it is right. Applicable peptide properties incorporate the quantity of ends good

with enzymatic cleavage (for unconstrained searches) and the amount of missed compound

cleavages. It also incorporates the mass distinction of the antecedent ion, the vicinity of

light or substantial cysteine (for ICAT tests), and the vicinity of an N-glycosylation theme

(for N-glycosylation catch tests). PeptideProphet can be utilized as a second stride follow-

ing the examination of MS/MS spectra created from any mass spectrometer and relegated

peptides utilizing any number of database search programs. Normally, PeptideProphet

analysis is trailed by ProteinProphet, which assembles peptides by their relating protein(s)

to process probabilities that those proteins were available in the original sample.

2.2.1 Benifits and Issues of PeptideProphet
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2.2.1.1 Benifits of PeptideProphet

PeptideProphet is widely used for Peptide identification. There are certain advan-

tages:

• The PeptideProphet model is accurate.

• The PeptideProphet model is more sensitive than threshold model.

• The PeptideProphet model allows user to choose an error rate.

2.2.1.2 Issues with PeptideProphet

• It is impossible to compare results from different search algorithms and multiple

tools.

2.3 Percolator

Percolator [Käll, Canterbury, Weston, Noble, and MacCoss, 2007] is an algorithm

that uses a semi-directed machine calculating out how to enhance the discrimination in the

middle of correct and incorrect spectrum identifications. The matches from searching a

decoy database give the negative cases to the classifier and a subset of the high-scoring

matches from the objective database give the positive illustrations. Percolator prepares a

machine learning calculation called a support vector machine (SVM) to separate between

the positive and negative matches by relegating weights to various components. Cases of

elements incorporate Mascot score, antecedent mass blunder, part mass mistake, the num-

ber of variable modifications etc. The vector of components with their ideal weights is then

utilized to re-rank matches from all queries frequently prompting enhanced affectability.

The necessities for utilizing Percolator to re-rank the matches from a Mascot search are:
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1. MS/MS search.

2. The search must incorporate the outcomes from an automatic decoy database search.

3. The search must contain no less than 100 questions

4. More than 100 databases are searched.

2.3.1 Benefits and Issues of Percolator

2.3.1.1 Benefits

• Percolator will normally give an advantageous change in sensitivity.

2.3.1.2 Issues

• In the event that there are different high scoring matches to a solitary query, the

present methodology is to submit just the first rank match to Percolator.

• In the other way three main matches had Mascot scores of 60, 50, and 40, and the

Percolator re-scored the rank one match to 54, the rank two and three matches would

be re-scored to 45 and 36. That would maintain a strategic distance from peculiarities

but it is not perfect.

2.4 CRanker

Although some algorithms have been proposed for identifying high-quality PSMs,

parameter selection remains a big challenge. C-Ranker, which from now onward will be

called as CRanker in this document, aims to overcome this problem automatically. It is a

post-database searching software for identification of peptides. The target of CRanker is to

identify correct PSMs output from the database searching tool SEQUEST. It was developed

in Matlab and C.
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By default CRanker uses nine attributes for representing a PSM data point, of which

5 comes from original sequest output file:

xcorr, deltacn, sprank, ions, hit mass;

The other four are calculated by CRanker:

enzN, enzC, numProt, xcorrR

In addition to the nine attributes, three other attributes, i.e., spectrum, protein, and peptide,

are employed by CRanker to distinguished PSM data and calculate the appended features.

In the research conducted by Dr. Zhonghang Xia, peptide identification by CRanker

[Liang, Xia, Niu, and Link, 2014] is proved as the most efficient algorithm for post database

search. In sequence database searching an extensive number of PSMs are routinely pro-

duced but only a fraction of them are correct. The errand of peptide identification is to pick

the correct ones from database search yields. In the binary classification "great" PSMs are

allocated to the class of "right" or "+1" and "terrible" PSMs to the class of "wrong" or "-

1". Distinctive from normal classification issue, the objective PSMs are not reliable i.e.,

"+1" marks (relating to target PSMs) are not dependable.

2.4.1 Reasons for Choosing CRanker

Based on the below research results in Table 2.1, CRanker is probably most efficient

compared to PeptideProphet and Percolator.

Performance of CRanker is evaluated by comparing the algorithm with Peptide-

Prophet and Percolator based on PSMs generated from the SEQUEST search engine.

Table 2.1 demonstrates that the aggregate quantities of PSMs distinguished by

CRanker, PeptideProphet, and Percolator over all datasets (preparing and test) at FDR =
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Data Method Total TP FP

ups1
PeptideProphet

Percolator
CRanker

582
450
601

566
438
585

16
12
16

yeast
PeptideProphet

Percolator
CRanker

1481
1429
1491

1443
1394
1455

38
35
36

orbit-mips
PeptideProphet

Percolator
CRanker

34035
33846
35006

33233
33053
34123

802
793
880

orbit-nomips
PeptideProphet

Percolator
CRanker

36542
36096
37337

35673
35230
36416

869
866
921

Table 2.1: Target PSMS Output by PeptideProphet, Percolator, and CRanker.

Data PeptideProphet CRanker Overlap

ups1 582 576 509
orbit-mips 34035 34273 32243

Table 2.2: Overlap of PeptideProphet and CRanker.

0.05. Obviously, CRanker can recognize more PSMs than the two algorithms. By consid-

ering the recognized PSMs among the three algorithms CRanker and PeptideProphet has

the same overlapping.

Table 2.2 demonstrates the overlapping of aggregate PSMs distinguished by Pep-

tideProphet and CRanker as 88.4 % and 94.8% on UPS1, and "orbitmips", respectively. The

outcome shows the covering degree is around 90% and the larger part of PSMs accepted

by CRanker were also approved by PeptideProphet.

CRanker utilizes the primal SVM system and adapts to the weight of each PSM as

a variable. The execution of CRanker outperformed the benchmarked calculations of Pep-

tideProphet and Percolator for a greater variety of PSM datasets. The exploratory studies

show CRanker outperforms the other two by recognizing more targets at the same FDRs.
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Based on the above reason, CRanker is chosen to execute on the distributed framework us-

ing Hadoop Framework. A Linux version of CRanker is used to make it run on the Apache

Hadoop framework.

2.5 Why Apache®Hadoop™Framework

This section summarizes the reasons for choosing Hadoop as the distributed frame-

work for this thesis and also what Apache Hadoop is.

2.5.1 Top Reasons to Consider Hadoop

Parallelizing the applications that can run on multiple resources, each of which

executes the sequential application of a subset of the inputs, requires additional software

to manage and monitor job distribution and should possibly offer fault tolerance. There

should be an automated process of transferring or sharing large data sets and selecting ap-

propriate application binaries for a variety of environments or existing services. Managing

the creation and submission of a large number of jobs to be executed in parallel and recov-

ering from possible failures are the important points to be considered while choosing the

distributive framework. Hadoop offers all these services very efficiently, and it also cus-

tomizes these services as per user needs using MapReduce programming. Based on several

case studies, it has been proven that big data analysis has been much easier and effective

using Hadoop Framework. This is why Hadoop has been chosen to make the CRanker

execution distributed.

2.5.2 Apache®Hadoop™

Apache®Hadoop™[White, 2012] is an open source software framework that en-

ables distributed processing of large data sets across clusters of commodity servers. It is

intended to scale up from a solitary node to a large number of nodes, with a high level of

23



adaptation to internal failure (fault tolerance). Instead of depending on the top of the line

hardware, the resiliency of these clusters comes from the software‘s ability to detect and

handle failures at the application layer.

Figure 2.3: Hadoop execution architecture.

The project incorporates these modules:

• Hadoop Common: The typical utilities that are backing the other Hadoop modules

• Hadoop Distributed File System (HDFS™): A distributed file system that provides

high-throughput access to application data.

• Hadoop YARN: A framework for scheduling the jobs and cluster node management.

• Hadoop MapReduce: A YARN-based framework for parallel processing of vast data

sets.
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Figure 2.4: Hadoop architecture.

The term "Hadoop" now alludes to the base modules above, as well as to the "en-

vironment", or gathering of extra programming bundles that can be introduced on top

of or nearby Hadoop; for example, Apache Pig, Apache Hive, Apache HBase, Apache

Spark, and others.Apache Hadoop‘s HDFS and MapReduce components were motivated

by Google papers on their Google File System [Ghemawat, Gobioff, and Leung, 2003] and

Mapreduce. The Hadoop system itself is for the most part written in the Java programming

language, with some part of a native code in C and command line utilities composed as

Shell script. For end-clients, however, MapReduce Java code is basic. Any programming

language can be utilized with "Hadoop Streaming" to implement the "Map" and "Reduce"

parts of the client‘s program. Other related projects uncover other higher-level user in-

terfaces and APIs. This thesis uses HDFS and MapReduce as its platform for distributed

processing. The HDFS and MapReduce will be discussed in the following sections.
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2.6 Apache Hadoop Distributed File System

The Hadoop Distributed File System (HDFS) is intended to store substantial data

sets accurately, and to stream those information sets at high data transmission to client

applications. In a large cluster, a large number of servers both host straightforwardly con-

nected capacity and execute client application undertakings. By distributing storage and

computation crosswise over numerous servers, the resource can develop with interest while

staying prudent at each size.

HDFS stores file system metadata and application information independently. Dis-

tributed file system metadata, such as PVFS [Zhu and Jiang, 2006] and GFS [Ghemawat

et al., 2003], HDFS stores metadata on a dedicated server node, called the NameNode. Ap-

plication data is put away on different servers called DataNodes. All servers are completely

associated and correspond with one another utilizing TCP-based protocols. Unlike PVFS,

the DataNodes in HDFS do not depend on data security mechanisms such as RAID to make

the information tough. As GFS, the file content is reproduced on numerous DataNodes for

dependability. While guaranteeing data durability, this method has the included point of

interest that data transfer bandwidth capacity is multiplied and there are more open doors

for finding computing close to the required data.

2.6.1 HDFS Architecture

This section discusses the HDFS architecture.

2.6.1.1 NameNode

The NameNode is the center point of the HDFS file system. It keeps the catalog

tree of all files in the file system and tracks where the file data is kept. It does not store
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the information of these files itself. Client applications converse with the NameNode at

whatever point they wish to find a file, or when they need to include/duplicate/move/erase

a record. The NameNode reacts the effective demands by giving back a list of pertinent

DataNode servers where the data lives.

The NameNode is a single point of failure for the HDFS cluster. HDFS is not

presently a high availability system. At the point when the NameNode goes down, the

record framework goes down. There is a discretionary secondary NameNode that can be

facilitated on a different machine. It just makes checkpoints of the namespace by blending

the altered files into the image record and does not give any genuine redundancy. Hadoop

0.21+ has a BackupNameNode that is a piece of an arrangement to have an HA name

service, yet it needs dynamic commitments from the individuals who need it (i.e. user) to

make it highly available. So, it is the user‘s responsibility to use the high configuration

machines to host the NameNode.

2.6.1.2 Data Node

A DataNode stores data in the Hadoop Distributed File System. A working file sys-

tem has more than one DataNode, with data replicated crosswise over them. On startup, a

DataNode interfaces with the NameNode; turning until that service comes up. It then will

ask the NameNode for file system operations. Client applications can talk straightforwardly

to a DataNode once the NameNode has given the location of the data. Correspondingly,

MapReduce operations cultivated out to TaskTracker occasions close to a DataNode talk

specifically to the DataNode to get to the files. TaskTracker occasions can undoubtedly

be conveyed on the same servers that host DataNode examples so that MapReduce opera-

tions are performed near the data. DataNode occurrences can converse with one another,
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which is their main purpose when they are replicating data. There is usually no compelling

reason to utilize RAID stockpiling for DataNode data. In fact, that data is intended to be

recreated over different servers, instead of numerous circles on the same server. A perfect

arrangement is for a server to have a DataNode plus a TaskTracker. That will permit each

TaskTracker 100 % of a CPU and separate disks to write and read data.

Figure 2.5: HDFS Architecture (Source Apache Hadoop).

2.6.1.3 Block Replication

HDFS is intended to store huge files crosswise over machines in a vast cluster de-

pendably. It stores every file as a grouping of blocks; all blocks in a file aside from the last

block are the same size. The blocks of a file are reproduced for adaptation to fault toler-

ance. The block size and replication component are configurable per file. An application

can indicate the quantity of copies of a file. The replication factor can be determined at file

creation time and can be changed later. Files in HDFS are written once and have entirely

one writer at any time. The NameNode settles on all choices in regards to replication of
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blocks. It occasionally gets a Heartbeat and a Blockreport from each of the DataNodes in

the cluster. Reception of a Heartbeat infers that the DataNode is working legitimately. A

Blockreport contains a list of all blocks on a DataNode.

Figure 2.6: HDFS Block Replication (Source from Apache Hadoop) .

2.6.1.4 HDFS Client

Client applications get to the file system utilizing the HDFS client, a library that

fares the HDFS file system interface. Like most ordinary file systems, HDFS bolsters

operations to read, write, and delete files, and operations to delete and create directories.

The client references files and indexes by way of the namespace. The client application

does not have to realize that file system metadata and storage are on diverse servers, or that

blocks have various replicas. At the point when an application reads a record, the HDFS

client first approaches the NameNode for the rundown of DataNodes that host replicas

of the blocks of the file. The list is sorted by the topology of network separation from

the client. The client contacts a DataNode specifically and demands the exchange of the
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desired block. At the time a client can first request the NameNode pick DataNodes to host

replicas of the first block of the record. The client sorts out a pipeline from node-to-node

and sends the data. When the first block is filled, the customer demands new DataNodes

to be chosen to host copies of the following block. Another pipeline is sorted out, and the

client sends the further bytes of the file. The decision of DataNodes for every piece is likely

to appear as something else. The communications among the customer, the NameNode, and

the DataNodes are represented in the Figure 2.7.

Figure 2.7: Hadoop Client Creates a File.

2.6.1.5 Secondary NameNode

Secondary NameNode is a deceptive name that some may inaccurately translate as

NameNode and it is used when the essential NameNode gets disconnected from the picture.

The Secondary NameNode routinely joins with the essential NameNode and assembles

previews of the essential NameNode‘s registry data, which the framework then moves to

local or remote indexes. These check-pointed pictures can be utilized to restart a failed

essential NameNode without needing to replay the entire journal of the file system actions,
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then to alter the log to make an up and coming index structure. Since the NameNode is the

single point for storage and administration of metadata, it create a bottleneck for supporting

an enormous number of files, particularly an expansive number of small records or files.

HDFS Federation, another expansion, intends to handle this issue to a certain degree by

permitting numerous namespaces served by separate NameNodes.

2.7 Apache Hadoop MapReduce

This section summarize the MapReduce concepts of Apache Hadoop

2.7.1 What is MapReduce?

MapReduce is a basic programming model for handling huge data sets in parallel.

The essential thought of MapReduce is to gap an undertaking into subtasks, handle the

subtasks in parallel, and total the after effects of the subtasks to shape the last output. Pro-

grams written in MapReduce are naturally parallelized; software engineers should not be

worried about the execution points of interest of parallel handling. Instead, software engi-

neers compose two capacities: Map and Reduce. The mapping stage reads the information

(in parallel) and distributes the data to the reducers. Assistant stages, for example, sorting,

partitioning, comparison and consolidating values can likewise occur between the Map and

Reduce stages.

MapReduce programs are, for the most part, used to process extensively large files.

The input and output for the map and reduce functions are communicated as key-value

pairs. The utilization and subtle elements of key-value sets are talked about in sections on

the map and reduce areas underneath.

A Hadoop MapReduce program likewise has a part called the Driver. The driver

handles initializing the job with its subtle setup elements and indicating the mapper and
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the reducer classes for the job. It also advises the Hadoop stage to execute the code on the

predetermined input file(s) and to control the location of the output files.

MapReduce can exploit locality of data, preparing it on or close to the storage assets

so as to reduce the separation over which it must be transmitted. MapReduce programs are

called jobs in Hadoop.

2.7.1.1 InputReader or RecordReader

The InputSplit is characterized as a slice of work, yet does not portray how to get to

it. The RecordReader class stacks the data from its source and converts it into (key, value)

sets suitable for reading by the Mapper. The RecordReader instance is specified by the

InputFormat. The default TextInputFormat and InputFormat gives a LineRecordReader,

which treats every line of the info file as a new value. The key connected with every line

is its byte offset in the file. The RecordReader is invoked over and over on the input until

the whole InputSplit has been expended. Every initiation of the RecordReader prompts

another call to the map system for the Mapper.

2.7.1.2 Mapper

MapReduce operates exclusively on <key, value> pairs.

The input output structure is as follows:

• Job Input: <key, value> pairs

• Job Output: <key, value> pairs

The motivation behind the map stage is to sort out the data in an arrangement for

the processing done in the reduce stage. The data to the map capacity is as key-value pairs,

despite the fact that the information to a MapReduce program is a file or file(s). Naturally,
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the value is a data record and the key is the balance of the data record from the earliest

starting point of the data file.

The output comprises of a collection of key-value pairs which are input for the

reducer function. The content of the key-value pairs relies on upon the particular usage.

For instance, a typical beginning program implemented in MapReduce is to count

words in a file. The input to the mapper is every line of the file, while the output from every

mapper is a situated of key-value pairs where single word is the key and the number one is

the value.

To improve the processing limit of the map stage, MapReduce can run a few in-

distinguishable mappers in parallel. Since each mapper is the same, they create the same

result presently Map capacity.

2.7.1.3 Reducer

Each reduce function forms the intermediate values for a particular key created by

the map function and creates the output. Essentially there exists a one-one mapping in

the middle of keys and reducers. A few reducers can keep running in parallel since they

are independent of each other. The quantity of these reducers is chosen by the client. Of

course, it is one by default

2.7.1.4 MapReduce Data Flow

At the point when the mapping stage has finished, the intermediate (key, value)

pairs must be exchanged between nodes to send all qualities with the same key to a single

reducer. The Reduce tasks distributed across the nodes where the mapper executed. That is

the main communication step in MapReduce. Individual map undertakings do not exchange

data with each other, nor are they mindful of each other‘s presence. Correspondingly,
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Figure 2.8: HighLevel MapReduce Pipeline

distinctive reduce tasks do not communicate with each other. The user never expressly

marshals data starting with one machine then onto the next; all data exchange is taken care

of by the Hadoop MapReduce stage itself, guided certainly by the diverse keys connected

with values. That is a crucial component of Hadoop MapReduce‘s reliability. In the event

that nodes in the cluster falter, tasks must have the capacity to be restarted. In the event

that they have been performing indications, e.g., speaking with the outside world, then the

mutual state must be restored in a restarted assignment. By taking out correspondence and

indications, restarts can be taken care of all the more smoothly. The data flow is explained

in the Figure 2.9

.
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Figure 2.9: MapReduce Data Flow
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Chapter 3

EXISTING PROBLEMS AND PLANNED IMPROVEMENTS

Chapter 3 summarizes the current solution available and the issues faced in using

process. It will also explain the reason for choosing Apache Hadoop over other Hadoop

distributions and the motivation behind the architecture that was proposed.

3.0.2 Existing Solution to Execute CRanker

The following paragraphs describe the CRanker execution from the memory per-

spective to give an idea of the time and memory consuming activities. CRanker is a post-

database searching software for peptide identification. The goal of CRanker is to identify

correct PSMs output from the database searching tool SEQUEST. It was developed in Mat-

lab and C. There are certain steps involved in the execution and they are as follows:

1. "cranker read.exe" Read data of PSM records.

2. "cranker solve.exe" Calculate scores for each PSM.

3. "cranker write.exe" Put out the results.

All of the above steps have to be execute manually in a terminal window in the

Linux operating system by issuing the appropriate command. The execution of the above

steps must be sequential and should be done one after the other as the output of the initial

step would be the input for the next step.
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In step 1, CRanker reads and load the data in the text file i.e. "inputFileName.txt"

during this process all the data in the txt file is read and loaded into the main memory.

For the smaller data sets it may not be a problem as the entire data would fit into the main

memory at one go. In the main memory the data that was read from the "inputFileName.txt"

contains the raw PSM data. The raw PSM data that was consumed by the CRanker instance

would be used to produce the "inputFileName.mat" that is stored in the current directory.

Figure 3.1: CRanker Read Flow

In step 2 of CRanker, solve C-Ranker trains a classification model and calculates

the score for each PSM record, trained model, and calculated scores are stored in a file “in-

putFileName _score.mat”. The values of scores follow in the interval [–1, 1]. A PSM with

higher score indicates that it is more likely to be correct. During this process the "inputFile-

Name.mat" is again read and loaded into the main memory and where it will get processed

to calculate the scores. The time taken to read, load and process the "inputFileName.mat"

depends again on the size of the "inputFileName _score.mat" file. For the larger data sets

the .mat file would be in the large size as well and this may cause delay in execution of

CRanker. In fact, this is the most time consuming step in the overall CRanker execution

even for the smaller PSM data sets with 2 MB.
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Figure 3.2: CRanker Solve Process

In step 3 CRanker, output identified reliable PSMs to a text file named "inputFil-

eresult dd –mm –yyyy.txt", where dd –mm –yyyy indicates the current date. The output

file is again stored in the current directory. During this process, two files named "inputFile-

Name.mat" and "inputFileName _score.mat"are read and loaded in to the main memory,

then the correct PSM is written to the output file, the read and processing depends on the

size of the input files that are read by CRanker, the larger the file size the greater the burden

on the memory and the longer it takes to complete the process.

Figure 3.3: CRanker Write Process

During the execution of CRanker an interesting observation was made about MAT-

LAB Compiler Runtime (MCR) which is used to enable the execution of compiled MAT-
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LAB applications or components(CRanker in this case). This consumes the more memory

than the actual CRanker algorithm. There is an exponential increase in the memory con-

sumption based on the size of the input PSM data sets.

3.0.3 Existing Issues with CRanker

The main problem in the current execution of CRanker is the time it takes to process

to large data sets. The other problems include memory exceptions while running on low

hardware configuration machines and incomplete execution due to failure in one of the

steps in CRanker.

The entire execution of CRanker is confined to a single machine in the current

implementation. Failure in any one step of the CRanker halts the entire execution flow.

There are also some missing characteristics observed during the study of the CRanker for

this thesis. They are as follows:

• Resource sharing: CRanker doesn’t talk about the hardware and software resource

sharing to reduce the storage and execution costs.

• Openess: There is no information about extending the CRanker or how it can be

coupled with respect to the software and hardware changes.

• Concurrency: There is no concept of multiprogramming and multiprocessing to

handle the large PSM data sets. The multiprocessing is the current industry buzz

word to reduce the execution costs.

• Scalability: No information about the how the CRanker handles growth. How to

handle the execution timing using caching and data replication.
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PSM Data Set Size (KB) Memory Used (%) Time to Execute (hrs rounded)

pbmc_ orbit_ mips.txt 11221 60.5 7
pbmc_ orbit_ nomips.txt 12816 67 9
pbmc_ velos_ mips.txt 31422 76 11

pbmc_ velos_ nomips.txt 48486 81 14

Table 3.1: PBMC data execution on CRanker

• Fault tolerance: If computers fail during the processing, does CRanker has any

mechanism to handle the failure?

For example, it takes 12 hours to process a PSM data set of size 50 MB and during

the processing at 11th hour the system crashed, is there any way to handle these kind of

scenarios? As per the observation, there is no such feature in the CRanker as it is currently

aligned only to a single machine.

As a reliable and dependable application CRanker must adhere to all the above

specified properties which any application can do. However, this thesis is not about re-

implementing the CRanker so this research tries to address most of the above discussed

concerns by designing a framework.

Coming to the main focus of the CRanker which is reducing the execution time and

memory management, while running the CRanker on Human Peripheral Blood Mononu-

clear Cells (PBMC) data sets the CRanker memory and execution time are recorded and

shown in the Table 3.1.

The recorded results are based on the CRanker execution on a computer with Intel

i-5 processor which has 4 GB RAM and Linux Ubuntu as a operating system.

During execution, the processor and RAM are being shared by the other applica-

tions related to operating system that is running on the machine, so execution of CRanker
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maybe delayed. However, based on the multiple times of execution under idle condition

the values have been averaged. The aim is to design a framework to have a better mem-

ory management, reduce execution time and adhere to the principle characteristics that are

specified above.

3.1 Why Only Use Apache Hadoop for CRanker Execution

The following section specifies why Apache Hadoop distribution was chosen for

the implementation

Apache Software‘s open source data storage and processing framework are an allur-

ing alternative. Not only does the platform offer both distributed processing and computa-

tional capacities at a moderate ease of use, but it is also ready to scale to meet the foreseen

exponential increment in data. The data is produced by versatile innovation, online net-

working, the Internet of Things, and other rising advances. These focal points, alongside

solid informal and prominent usage by organizations, for example, Facebook, Yahoo, and

various Fortune 500 giants is driving the selection of Hadoop.

There are other Hadoop distributions from Hortonworks, Cloudera etc. However,

the reason for choosing the Apache Hadoop is, it comes under General public license. This

is open source and available only with Linux distribution.

Not only the above statements but the following case studies strongly motivated us

to choose Hadoop as a distributed platform for this thesis.

3.1.1 Case Studies Which Motivated the Choice of Apache Hadoop

When thinking about the execution of CRanker on the distributed platform I got

a chance to explore various case studies of Hadoop and the following are the ones which

impressed me the most.
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3.1.1.1 RNA-sequencing Analysis with Myrna

Sequencing output approaches many gigabytes every day, there is a developing re-

quirement for effective programming for investigation of transcriptome sequencing (RNA-

Seq) data. Myrna is a distributed cloud computing pipeline for figuring differential quality

expression in huge RNA-Seq datasets. The detailed usage of Myrna can be referred at

[Langmead, Hansen, Leek, et al., 2010]

3.1.1.2 Newyork Times

The New York Times has chosen to make all general space articles from 1851–1922

publicly accessible for nothing out of pocket. These articles are all pictures checked from

the first paper. Indeed from 1851–1980, each one of the 11 million articles are accessible

presently in PDF design.A great deal of work is required to produce a PDF adaptation of an

article. Every article is made up of various smaller TIFF pictures that should be scaled and

stuck together in a sound fashion. The New York Times rented 100 EC2 virtual machines

for a day to convert 11 million scanned articles to PDF [Zaharia, Konwinski, Joseph, Katz,

and Stoica, 2008].

3.1.1.3 A Bioinformatics Case Study by DDP Option Comparison for Sequence Mapping

A prevalent bioinformatics instrument for group mapping, called CloudBurst, shows

how distinctive DDP design mixes could be utilized for the same tool and think about their

representations. The more information about this can be referred in the article [Wang,

Crawl, Altintas, Tzoumas, and Markl, 2013].

These successful case studies inspired the use of Apache Hadoop as the distributed

execution platform for the CRanker.
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Chapter 4

PROPOSALS,ENVIRONMENT SETUP, DESIGN, AND IMPLEMENTATION

Chapter 4 discusses the details of the various proposals made to reduce the CRanker

execution time, better memory management, efficiency in terms of money, and resource

utilization. It also discusses the idea of parallelizing CRanker application execution, terms

needed in setting up the required environment, description of architecture, design, and

implementation.

4.1 Proposals Made

The main goal of this thesis is to reduce the execution time of the CRanker. It is

necessary to identify the possible solutions that are available to make this possible. After

some brainstorming, the solution was discovered to increase the computing power of the

machine where CRanker actually executes using High-Performance Computing Center for

execution and GPU computing. The elaboration of these ideas are as follows:

4.1.1 Observations Made on Increasing the Computation Power

There is unquestionably some linear computational power increase [Claasen, 1999]

in central processing unit (CPU) innovation that can be normal later on. On the other hand,

the greater part of today’s rate increment is as of now in view of multi-core CPU structural

architecture. Certain applications, for example, the distinguished identification of peptides

utilizing CRanker, will require altogether more computational force than the flow change

in CPU technology can offer. In a few regions future applications might be conceivable
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if the computational force can be expanded by no less than two orders of magnitude. An

increment in computational force is subsequently crucial in order to remain aware of current

scientific advancements.

For some standard applications, for a drawn out stretch of time, software engineers

did not need to stress over execution. Present day CPU producers have enhanced equipment

speed adequately. For a long time the only legitimate way to deal slow equipment was to

wait for CPUs to become faster. Moore’s Law [Bondyopadhyay, 1998], which states that

processing power doubles every 18 months, characterized the whole decade of the 1990s.

This was a consequence of changes in the entryways per-bite the dust check or transistors

per territory (the fundamental characteristic of CPUs that Moore based his law in light of),

the quantity of instructions executed per time unit (clock speed) and the alleged instruction

level parallelism (ILP), fundamentally importance the likelihood of performing more than

only one single operation inside of the same clock cycle (for instance, summing up two

registers and replicating the outcome to another register).

Today, this unnecessary increase in clock speed execution is over. Lately CPU

producers have begun offering CPUs with more computational cores rather than quicker

CPUs. As of 2003, the laws of material science put an end to the practice of incrementing

clock speed. One basic explanation behind this is that multiplying the clock speed means

dividing the electrical sign per clock cycle, which requires the physical size of the CPU to

be twice what it is right now. On the other hand, diminishing the physical measurements of

CPUs is restricted by the diffraction furthest reaches of the lithographic techniques utilized

for chip producing.

There are different techniques that are utilized to an build execution that can, in
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any event, partially make up for the constrained increment in clock speed. These are,

for instance, refined ILP plans, theoretical execution, and branch expectation, which are

the main remaining principles for execution change separated from the gate count. These

systems are what producers concentrate on today, bringing about feature rich CPUs that are

outfitted with an expanding number of computational cores. While an expanded clock cycle

naturally accelerates a current application, this is not the case with extra CPUs or cores. The

degree that the application can benefit by extra cores relies on the computational issue, the

algorithm used to fix it, and the application architecture. The performance improvement

is then absolutely subject to the developer, who needs to create enhanced code with a

particular end goal to get the greatest conceivable speedup.

For the following decade, the constraining factors on execution will be the capacity

to compose and revamp applications to scale at a rate that stays aware of the speed of the

core count. Laying out applications for concurrency may be the ‘new area’of adaptability

in multi-core systems.

It is always a better approach to use the cores on the CPU instead of using high-

power computational resources. Based on the current programming methodologies and

implementations, it is not easy to execute the program on all the available cores of the CPU.

Not to mention, CRanker uses only a single core while executing on a normal computer,

so this option is ruled out. High-Performance Computing is the other option that was

considered during the early stages of this thesis, and those observations are below.

4.1.2 Observations Made on Using High-Performance Computing

High-Performance Computing [Dowd, 1993] refers to the practice of aggregating

computation power in a way that delivers much higher throughput than one could get out
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of a normal desktop computer or workstation. This computation is generally used to solve

complex problems in science, technology, engineering, and business.

These are exceptionally intriguing machines by ideals of the advances inside them,

and the scale at which they are manufactured; sometimes an enormous number of proces-

sors make up a solitary machine. Therefore, supercomputers are extravagant, with the main

100 (or somewhere in that vicinity) machines on the planet costing upwards of $20M each.

The computer performance is determined by the hardware components used inside

it. All the components that can be found inside a personal computer can also be found in-

side high-performance computers, but there will be a greater amount of them. The ones that

can be found in small and medium-sized organizations today are truly clusters of comput-

ers. Every individual PC in a little cluster has somewhere between one and four processors,

and today‘s processors normally have between two to four cores. HPC individuals regu-

larly refer to the individual computers in a cluster as nodes. A cluster of enthusiasm to a

little business could have presently four nodes, or 16 centers. A typical cluster estimate in

numerous organizations is somewhere around 16 and 64 hubs, or from 64 to 256 cores.

The purpose of having an HPC is so that the individual nodes can cooperate to take

care of an issue bigger than any one computer can undoubtedly solve. Furthermore, much

the same as individuals, the nodes should have the capacity to converse with each other to

work together. Obviously computers converse with one another over systems, and there

is an assortment of PC system (or interconnection) alternatives accessible for a business

cluster.
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4.1.2.1 Software that Makes the Cluster Work

Much the same as our desktop or tablet, the High Performance Computing (HPC)

group will not keep running without programming. Two of the most famous operating

system choices in HPC are Linux (in all the different varieties) and Windows. Linux

presently rules HPC establishments, yet this partially because of HPC‘s legacy in super-

computing, vast scale machines, and UNIX. Deciding which framework to use should

depend on what the HPC will be expected to accomplish. The parallel architectures of

supercomputers regularly direct the utilization of exceptional programming methods to ex-

ploit their speed. Programming tools for distributed processing incorporate standard APIs,

for example, Message Passing Interface and Parallel Virtual Machine. Based on this High-

Performance Computing observation, the CRanker algorithm has to be re-implemented

using parallel programming techniques. Doing this could disturb the actual behavior of

CRanker and may result in inaccuracy of the final output. The higher costs involved in

using High-Performance computing centers also ruled out this option.

4.1.3 Observations Made on Using GPU Computing

GPU-accelerated computing [Owens, Houston, Luebke, Green, Stone, and Phillips,

2008] is the utilization of a graphics processing unit (GPU) together with a CPU to quicken

scientific, analytics, designing, consumer, and enterprise applications. The hardware ar-

chitecture of the GPU is designed to eliminate the von Neumann bottleneck by devoting

more transistors to data processing. Spearheaded in 2007 by NVIDIA, GPU accelerators

now power effective datacenters in government labs, colleges, enterprises, and small-and-

medium organizations around the globe. GPU-accelerated computing offers phenomenal
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application execution by offloading computer escalated segments of the application to the

GPU while the rest of the code still keeps running on the CPU. From a client‘s point of

view, applications essentially run faster. The Figure 4.1 (source from NVIDIA) shows how

it works.

Figure 4.1: GPU Processing

4.1.3.1 CPU vs. GPU Processing

An essential approach to comprehending the contrast between a CPU and GPU is

to think about how they process tasks. A CPU comprises of a couple cores improved for

successive serial processing while a GPU has a greatly parallel architecture comprising

of a vast number of smaller, more efficient cores intended for taking care of different as-

signments at the same time. Each stream processor has an individual memory interface.

Memory access latency can be further covered up by calculations. The same program can,

along these lines, execute on numerous data elements in parallel, obstructed by a single

memory interface. The GPU is particularly suited for issues that can be expressed as data

parallel computations in which the same project is executed on numerous data elements in
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parallel with a high proportion of arithmetic operations to common memory operations. On

account of the parallel execution of numerous data elements, there is a low necessity for

flow control. Algorithms that procure substantial data elements, which can be dealt with

in parallel, can be accelerated. Algorithms that can‘t be communicated in a data-parallel

manner, particularly those that depend on refined flow control, are not useful for GPU

processing.

4.1.4 What About Re-Implementing the CRanker Algorithm

An idea came to re-implement the CRanker in such a way by including the paral-

lelism concepts but the actual workflow of CRanker is complex and the implementation is

again a new research area. This thesis didn‘t focus much on re-implementing the CRanker

with parallelism concepts.

As CRanker has the data-driven work flow, i.e., CRanker execution is data-driven.

The input file containing the peptide data is parsed by CRanker which will perform actions

defined in it. Figure 4.2 shows the flow of data.

Figure 4.2: CRanker DataFlow
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The noticeable thing in the CRanker input files is that they are available in ".txt"

or ".xls" format. This gives us the confidence that the data available in the rows are not

dependent on each other. CRanker can process each row in the input file individually by

dividing the input file into small parts. Dividing the input file will not be a problem for

CRanker and it can process that data easily. This was tested against the data that split

against the rows of each split individual row that was processed by CRanker. The process

is displayed in the Figure 4.3

Figure 4.3: CRanker Input Split DataFlow

.
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4.2 Parallelizing the CRanker Application

Section 4.2 discusses ideas in parallelizing the CRanker application setting up the required

environment:

4.2.1 Finalized Idea for CRanker Execution and Approved Concept

As per our observations, CRanker can process each row in a given input file without

depending on the consequent rows, this exactly fits with the Hadoop execution framework.

As in a Hadoop cluster, each node processes the data located on its local storage on HDFS.

The data that is processed at the local node is independent of the data that is stored at

the other node. The CRanker instances that are installed at each of the Hadoop nodes

will consume and process the peptide data. During this work, all the nodes with CRanker

instances will execute the intermediate steps involved in the data processing at all the local

nodes. The detailed explanation will be available in the section for implementation and

execution.

4.3 Setting of Environment and Other Essentials

Section 4.3 discusses the methods for setting up the required hardware and software

to implement and execute this thesis.

A total of three nodes are used to set up the Apache Hadoop cluster. The three

nodes run with the Linux Ubuntu Ubuntu 14.04.2 LTS (Trusty Tahr) version operating

system which does not have the GUI. Interactions with the operating system are made

through the terminal only. The main reason for choosing a Linux operating system is

because of Apache Hadoop, which only comes with the Linux distribution, and Ubuntu is

the friendliest version of the Linux OS.
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4.3.1 Setting Up the Hardware Infrastructure

As Hadoop is intended to execute on a cluster of nodes, there is a need to configure

the cluster for Apache Hadoop and execute CRanker. For this thesis, numerous approaches

have been identified and finally Amazon Elastic Cloud Computing (EC2) [Amazon, 2010]

was chosen as a Infrastructure as a Service (IaaS). The main reason for choosing Amazon

EC2 services are: they are reliable, easy to maintain, efficient, and cost effective. They

can also be hired on a per hour basis. Utilizing Amazon EC2 eliminates the user need

to put resources into the equipment in advance, so with it, it is easy to create and deploy

applications quicker. The user can utilize Amazon EC2 to dispatch the same number or

a couple of virtual servers as the user needs, to arrange security and organization as well

as manage storage. Amazon Elastic Cloud Compute (EC2) empowers the user to scale up

or down to handle changes in prerequisites or spikes in popularity, lessening user needs to

estimate activity.

Some Features of Amazon EC2

• Virtual computing environments, known as instances.

• Preconfigured templates for user instances, known as Amazon Machine Images (AMIs),

that package the needed for the user server (including the operating system and ad-

ditional software).

• Various configurations of CPU, memory, storage, and networking capacity for differ-

ent instances, known as instance types.
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The Figure 4.4 (Sourced from Amazon Web Services user guide) shows about con-

necting the user to Amazon EC2 and its components.

Figure 4.4: Amazon EC2 instance access

The more instructions for configuring the Amazon EC2 instances are available at:

docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.

html

In this thesis, there are three nodes used for the execution of CRanker. One is used

as the Hadoop master node (Resource Manager) and the other two are used as slave nodes

(DataNodes).
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4.3.2 Setting Up the Software Infrastructure

Section 4.3.2 briefly discusses the process of setting up the CRanker and its required

software components and installing Apache Hadoop in the fully distributed mode.

4.3.2.1 Installing CRanker and Its Components

The steps involved in installing and setting up of CRanker are discussed in detail in

the user manual provided, along with the CRanker installation package [Xia, 2013].

4.3.2.2 MapReduce Next Generation - Cluster Setup

The details of installing and setting up the Hadoop cluster is contained in the fol-

lowing reference [Hadoop, 2015].

Now that the hardware and software setup is completed, the design and implemen-

tation is discussed in the section 4.4.

4.4 Proposed Framework Architecture, Design, and Implementation

Section 4.4 describes the proposed idea, execution, design, architecture and imple-

mentation.

4.4.1 Idea Execution and Design

The main goal of the thesis is to design and develop a program to make CRanker

execution faster to reduce the processing time of PSM data sets. To achieve this objective

Apache Hadoop MapReduce, a distributed data-processing model, and Hadoop Distributed

File System (HDFS) have been used.

Many bioinformatics algorithms are parallelizable, but parallelism is not readily

available in their original code. The user who needs to make the algorithm parallelizable

may have to rewrite the complete code.
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The other options which the user may consider:

1. Create or adjust existing software to distribute and oversee parallel jobs.

2. Change existing applications to make utilization of libraries that encourage distributed

programming, for example, RPC and RMI.

When changing applications, the exertion is intermittent since new versions of the first

sequential code may render the parallelized application obsolete. The measure of work

included may prompt parallel versions that slack and need components of the most recent

sequential tool version. Regularly, altered applications will exclude mechanisms to handle

failures naturally.

It is always good to go with the first option as it is too expensive to modify the

existing code. The source code may not be available, or the user may not have complete

knowledge of the algorithm. This is good when it is relatively easy to parallelize appli-

cations that can run on multiple nodes, each of which executes the sequential application

of a subset of the given input. However, this requires additional software or framework to

manage job distribution and fault tolerance. The work advocates the use of the MapRe-

duce framework which combines many features and lessons learned from the distributed

computing.

To better depict the parallelization process, it is useful to consider a particular al-

gorithm that is going through a process called CRanker. CRanker is used to identify the

correct PSM based on the post database searching. Given a set of the input data file within

PSM records, CRanker validates each PSM record individually. The usual approach to ex-
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ecuting CRanker in a distributed environment is to divide the input PSM data set so that

each separate instance of CRanker can process the divided input PSM data set.

Figure 4.5: CRanker Input File Split

Dividing the input PSM data set can be easily implemented using a scripting lan-

guage to identify the input PSM data sets, execute CRanker, and concatenate the result. For

example, a bash script would simply use csplit, ssh/rsh, and cat commands. In any case,

clients still face the accompanying difficulties:

• Discovering the perfect number of worker nodes to utilize (or that are accessible) and

split appropriately.

• Load balancing and giving balanced partitions, subsequent to the time of CRanker

execution is profoundly reliant on the size of a PSM data set.

• Recouping from the potential failures of a few working nodes with a specific end

goal to abstain from acquiring just incomplete results.

To handle the above-specified issues more efficiently, the use of MapReduce is

a good approach. MapReduce as a programming framework for distributed processing

with adaptation to internal failure was proposed by Google, propelled by functional lan-

guages, to acknowledge parallel computing on countless resources. The software engineer
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is obliged to execute a map and a reduce function. MapReduce framework handles au-

tomatically dividing the input PSM data set and distributing each chunk of PSM data set

to worker nodes (Mappers) on multiple machines. The output of each mapper is grouped

and sorted by an intermediate key, passing these values to working nodes (Reducers) on

multiple resources. The execution of mappers and reducers are monitored as to re-execute

them when failures are detected in any of those working nodes. These features greatly

simplify deployment and management of jobs, as jobs are submitted and monitored from a

centralized location.

The core part is to run the CRanker program in the MapReduce framework to assign

each mapper the execution of the CRanker operation for the subset of PSM data sets thus

eliminating the need of the reducer. However, the reducer may be required in the other

bioinformatics applications to arrange the output in the required manner. In this work,

Apache Hadoop, an open-source implementation of the MapReduce framework and HDFS,

was used to parallelize the execution of CRanker. The parallelization approach consists of

dividing the input PSM data set to store on HDFS and running multiple instances of an

unmodified CRanker version on each divided PSM data subset. Hadoop offers streaming

that allows easy execution of such third party applications. HDFS splits the input PSM data

set based on the block size established by the Hadoop user (default 64 MB). To combine

all the results that were generated by CRanker instances, the merge command of Hadoop

Distributed File System was used.

4.4.2 Architecture

Section 4.4.2 describes the architectural approach that was followed in this thesis.

The distributed approach architecture was carefully designed by keeping the Apache
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Hadoop architecture and Hadoop execution workflow in mind. Apache Hadoop architec-

ture consists of Hadoop Distributed File System as the bottom layer that is the self-healing

clustered storage system above HDFS. MapReduce is the distributed data processing frame-

work that can process the data that is stored in the HDFS. By using this advantage the input

PSM dataset can be stored in the HDFS and be dealt with by the MapReduce. The basic

functionality in MapReduce version 2 is to divide JobTracker, Resource Management, and

administration into separate daemons. The thought is to have a global ResourceManager

(RM) and per-application ApplicationMaster (AM). An application is either a single job in

the established sense of MapReduce jobs or a group of jobs.

Figure 4.6: Hadoop Resource Management Architecture

The ResourceManager has two important components: Scheduler and Application-

sManager. The Scheduler is in charge of assigning resources to the different running ap-

plications subject to recognizable imperatives of capacities, queues, and so forth. The

ApplicationsManager handles tolerating job-entries, arranging the first resource for exe-
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cuting the application particular to ApplicationMaster and gives the support of restarting

the ApplicationMaster container on failure. The NodeManager is the per-machine configu-

ration agent that handles containers, monitoring their asset utilization (CPU, memory, disk,

network), and reporting the same to the ResourceManager/Scheduler. The per-node Ap-

plicationMaster has the obligation of arranging proper asset containers from the Scheduler

following their status and observing for advancement.

By carefully considering the Hadoop Resource Management Architecture, the pro-

posed framework is designed, the architecture has taken the resource management leverage

from Apache Hadoop and the input PSM data set is stored in the HDFS. The PSM subsets

will automatically be divided and replicated in the HDFS and stored all over the nodes in

the Apache Hadoop cluster.

As shown in the Figure 4.7 the input PSM data set is determined and store in the

Hadoop Distributed File System. Input PSM data set split is based on HDFS block size

and replication factor values that are set during the Apache Hadoop cluster installation.

The designed architecture contains the JSON properties that is used to convert the data set

values into objects and inject them into the CRanker instance while execution. The usage

of JSON object files avoids the problem that was caused by PSM data set split.

In CRanker execution, the first step is to read the PSM data set and identify the

attribute names available in the starting row. The order of the attributes in data representa-

tion does not matter, but the names of the attributes must be correct. When the input PSM

data set gets split into chunks, the first row (attributes of PSM data) in the data set is only

available with one of the subsets and all other subsets will miss those attribute names. In

this case, each CRanker instance (Mapper) that executes the missing attribute input chunk
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Figure 4.7: Proposed Framework Architecture

treats the data subset as an individual set. It then fails to identify the attributes that caused

the failure of the MapReduce job (CRanker execution). This architecture is designed in

such a way as to overcome this problem using JSON objects to transmit data consisting

of attribute–s value pairs to all the mappers running on the nodes in the Apache Hadoop
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cluster. The proposed application accepts the input PSM data set without PSM attributes

and those attributes must passed in to the application as an user input parameters during

the execution of CRanker distributed execution command. For instance refer the CRanker

execution command on Apache Hadoop provided in appendix A.B.1.

4.4.3 Implementation

Section 4.4.3 describes the implementation of the proposed framework.

Figure 4.8: CRanker with MapReduce Dissected

The input PSM data file will split into blocks of defined size in hdfs-site.xml while

storing it on the Hadoop Distributed File System. The framework will trigger the CRanker
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execution (Mapper) where each data block is stored and process the data. The mapper will

then try to process the data which is available locally. Each mapper labeled as a MapReduce

job will contain all the CRanker execution tasks. The MapReduce job has the following

steps, and all the steps run sequentially:

1. "Read task" reads the PSM data subset and writes the data to ".mat" file that is stored

on the HDFS staging location at the local node.

2. "Solve task" reads the ".mat" file generated in the above step, calculates the score of

each PSM record and stores the data in the temp file on HDFS staging at the same

local node.

3. "Write task" reads the two temp files that are generated during steps one and two,

then writes out the identified reliable PSMs into HDFS.

Step three is the final step to execute inside Mapper. If all of the above steps were

successfully executed the job is considered as a pass otherwise, it fails. The job tracker will

monitor the execution of jobs and the jobs with failed status will get triggered by the job

tracker. HDFS replicates the data on multiple nodes. In case of node failures, the resource

manager will update the list of all available nodes through heartbeat. Using the replication

mechanism, the data in the failure node will be available on the other node and the mapper

will trigger the job to execute that data. For instance, Hadoop 2 has a better way to handle

failures in the NameNode. The user has a chance to run two multiple NameNodes alongside

one another, so that in the case of a NameNodes failure, the cluster will quickly switch over

to the other NameNode. The way it works is straightforward. Essentially, the DataNodes
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will send messages to both NameNodes, which is called heartbeat, so that if one falls flat

the other one will be prepared to work as part of the dynamic mode. What‘s more, for the

client, it just contacts each NameNode designed until it finds the dynamic one. So in the

event that it gets an answer saying to attempt somewhere else, or if the NameNode does

not answer, it realizes that it needs to utilize an alternate NameNode.
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Chapter 5

DEVELOPMENT AND EXECUTION

Chapter 5 will discuss the details about setting up the resources needed for devel-

opment, procedures in development and execution.

The first step is to find the resources that can help in development and execution of

the application. Chapter 5 mostly focuses on development and implementation by intro-

ducing the resources that were used during this process.

5.1 Setting up of Resources

Amazon Infrastructure as Service (IaaS) is used to setup the hardware resources. In

this process, two types of Amazon instances are used.

Initially, an Amazon instance of Type1 is launched. Software components like

Apache Hadoop and CRanker components are installed as specified in Chapter 4. After

the software setup is completed, the Amazon Machine Image (AMI) of Type1 is created

and is then used to launch the Type2 instances. AMI is used to launch as many cases as

are required in the future, which reduces the software setup time. AMI provides the user

Type1 Type2

CPU Intel Xeon Intel Xeon
Cores 1 2

Memory (GiB) 1 4
Cache(MB) 2 2

OS Ubuntu 14.10 Ubuntu 14.10

Table 5.1: Hardware used for development and execution
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with the flexibility to initiate the instance of a required hardware configuration. Developed

applications can be encapsulated into Amazon instances and, since AMI are used as tem-

plates to deploy multiple copies when required, only the template AMIs need maintenance.

When application updates are necessary, a new template AMI is created, and the created

copies are distributed by the admin for the users. For this thesis, two test beds (clusters)

were used. They are as follows:

1. Test bed 1: Resource Manager and two data nodes of type1 are used.

2. Test bed 2: Resource Manager of type1 and two data nodes of type2 are used.

5.2 Determining the Approach for CRanker Execution

Before describing the algorithm for the Distributed approach CRanker execution, it

is good to know the steps involved. The CRanker first reads the PSM data set that is a text

file and creates the ".mat" file then solves the .mat file by identifying the scores for each

PSM record and creates scores ".mat" file. It then uses both ".mat" and scores ".mat" to

complete the final step of writing the correct peptides information into the local file system.

This execution sequence should be implemented in the Apache Hadoop using MapReduce

and HDFS for processing and storage respectively.

Making an algorithm for a distributed approach does not change the execution be-

havior of CRanker. The CRanker will continue its normal execution and will identify the

correct PSMs based on the input PSM data provided to it. A new algorithm is then pro-

posed to validate the generated output. The proposed algorithm will compare the CRanker

output generated by distributed environment with the output generated by actual CRanker

execution. The file comparison algorithm details will be discussed in the coming sections.
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5.2.1 Outline of the Algorithm

In the proposed distributed algorithm, the JSON properties file will be created. The

file contains the staging directory location of CRanker, MCR root, and a cache location.

It will also contain the name of the algorithm to execute and the commands involved in

executing it. Along with those, it also contains input file and output file HDFS locations.

The file will be the sole configuration file for the entire application and any changes to the

file will impact the execution behavior of the framework. Once the configuration object is

prepared based on the values in JSON properties that object will be loaded into memory.

Then the file writer will open the files to write the staging values on to the local file system.

An option is available to check whether the header values (PSM data attributes) are required

at each stage. Completing this step will setup all the preliminary necessities to execute

CRanker, and all these steps will be enclosed in the method. Once the setup is complete, the

map implementation will write each record of the input split into intermediate staging files

on the local file system. Each mapper will have its own such files, and the file split becomes

the input for each CRanker instance that sits on the Apache Hadoop nodes. Finally, the

mapper starts closing all the file writers that were open during the setup. The environment

variables and the commands that are required to execute CRanker are readily available

and are already prepared in the setup. Now the shell script commands of CRanker start

execution as per the given order in the configuration file. The process will repeat at all the

nodes in the Apache Hadoop cluster. The code for MapReduce algorithm can be found

appendix A.B for more details.
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5.2.2 Execution of the Algorithm

The approach is designed in such a way that HDFS will split the input PSM data set

based on the specified block size. The PSM data subsets will then be distributed and stored

across all the DataNodes in the Apache Hadoop cluster. The mappers will try to consume

the data available at their local node and trigger the execution of a CRanker instance that is

already installed on that node. The CRanker processes the input PSM dataset and identifies

the correct Peptides.

When the PSM dataset is loaded into the HDFS it is divided into blocks based on the

specified block. HDFS will replicate the blocks at different nodes in the Apache Hadoop

cluster based on the replication factor that is defined by the Apache Hadoop administrator.

Once the task of blocks and replication is complete, it is now MapReduce‘s job to read,

process, and write the data in to HDFS again. The CRanker distributed execution input

PSM data set is loaded into HDFS using dfs commands. The loaded input PSM dataset is

split into blocks and stored in multiple nodes in the Apache Hadoop cluster.

The MapReduce job configuration is the main interface for a user to specify the

MapReduce job for Apache Hadoop execution. The job contains certain parameters that

can define the execution flow. Some of them may include Mappers, Reducers, InputFor-

matter, OutputFormatter, execution of Mappers and Reducers, and maximum attempts to

execute Mappers and Reducers. Job represents the CRanker execution job that is created

as part of the framework. In CRanker execution MapReduce job submission and execution

steps are as follows:

1. Checking the input data and output data specifications of the job.
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2. Computing the input PSM data set split values for the job.

3. Setting up the required information for the DistributedCache of the job.

4. Submitting the CRanker execution job to the resource manager and monitors the

status of the execution job.

InputFormat describes the input data specification of the job and in this context

the "FileInputReader" is the input reader for the Mapper. The input file that is the PSM

data subset will split into logical InputSplit instances. These logical instances will then be

assigned to the Mapper for execution. Mappers will write input splits to a staging area on

the local file system. Once the InputSplit is copied to the local file system from HDFS,

these staged input files will then be given to CRanker algorithm for execution. Typically,

InputSplit presents a byte-oriented view of the input. Apache Hadoop comes with the

configured single mandatory queue called default. All the MapReduce jobs are scheduled

in the default queue for execution but before scheduling to the default the DistributedCache

setup will be done. This facility is provided by the MapReduce framework to cache the

files that are needed by applications. Now the MapReduce job that contains the execution

of the CRanker algorithm will be submitted to the ResourceManager (RM). It is the RM‘s

responsibility to track and monitor the job. The failed jobs try to get executed again based

on the maximum attempts configured in the job. The submitted job contains the shell scripts

to execute all the steps of the CRanker. The input PSM dataset for CRanker is the input split

instance in this context, and CRanker reads the input split and the intermediate files during

the process. They are then stored in the staging directory of the local file system. Once

the steps in the CRanker execution complete the final output, it is moved into HDFS. Now,
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"OutputFormat" describes the output specification of the Mapreduce job. There is a check

to whether the specified output directory already exists, and it will clean up all the jobs after

execution. For example, it removes temporary output directories. The steps of execution

specified in the framework occur at each of the Mappers, and those Mappers consume all

the blocks of PSM datasets that are stored on the nodes of the Apache Hadoop cluster.The

CRanker execution result is stored in HDFS in the form of blocks, and these blocks are

distributed across all the nodes in the Apache Hadoop cluster. To combine all results, merge

command of HDFS is used, and the merged file can be downloaded to the local file system.

In this process, the reducer is not used as all the tasks of the CRanker are designed to be

performed in Mapper. This entire approach reduces the total time taken to the complete the

processing of large PSM data sets and improves the efficiency in processing. This entire

process is backed by the Apache Hadoop; CRanker will benefit from the advantages of the

Apache Hadoop

5.3 Determining the Joins for File Comparison

The output generated by the mappers will get merged into the distributed file system

command and then the generated output will need to be compared to the result produced by

the normal CRanker execution. The comparison can be done using normal java solution,

but Apache Hadoop also provides an approach to accomplish this. The distributed solution

for this is crucial to processing the large datasets, and this approach requires a join operation

with MapReduce. An algorithm was designed to perform the comparison with joins. In this

algorithm, the join is implemented on the reducer side as the map task will only pre-process

the tuples of datasets to organize them into the key value pairs. The map function reads

one tuple at a time from both of the datasets via an input stream from HDFS. The values
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from the column specified by the user on which the join is being done are fetched as keys

to the map function. The rest of the tuple is fetched as the value associated with that key.

The code for the algorithm implementation can be referred in appendix B.A

Figure 5.1: MapReduce Join

5.3.1 Outline of MapReduce Join Algorithm

Based on the idea of MapReduce joins, two different Mappers are created to read the

two input identified PSM datasets. Each mapper will generate the key value pairs based on

the user choice, i.e., the user will provide the column number for the key in both of the input

files, and the rest will be chosen as values. The input file reader will be "TextInputFormat"

for the two mappers and the output of them is the input of the reducer. However, the order

in which values arrive at the reducer is unspecified. Sorting in Apache Hadoop is performed

on a key-by-key basis, and all keys for a particular user are identical. For the reducer to

join the two data sets together it must read all values in the memory, find the one containing

the given user value, and then emit the remaining values along with it. The reducer will

identify the source of the value based on the prefix file tag added. On the reducer, every

key would have two values based on the given two file tags. (For simplicity let’s assume

only two values, in real time it can be more). Identify the records and from fileTag1, get
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the PSM corresponding to the given input key and from fileTag2, get the corresponding

values. After obtaining the values, increment the file counter and match counter. So finally

the output Key values from the reducer would be as follows:

• Key: column chosen by user in PSM data set.

• Value: rest of the values with the key.

Along with the matched key value pairs, the algorithm will also calculate the total

percentage matched based on the file counter and match counter in respect to the two input

files.
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Chapter 6

EVALUATIONS AND ANALYSIS

Chapter 6 covers the data collected during the CRanker normal execution and the

CRanker distributed execution. It also includes file comparison results between them. The

results are collected under three test cluster conditions. The hardware configurations in

those clusters are based on Type1 and Type2 as specified in Chapter 5. The types of testbeds

used for the evaluations in this thesis are specified in the Table 6.1

The test results are compared with normal CRanker execution against CRanker us-

ing Apache Hadoop single node setup, setup using "Cluster 1", and setup using "Cluster 2"

clusters. The PBMC datasets used are: "pbmc_orbit_ mips.txt", "pbmc_ orbit_nomips.txt",

"pbmc_ velos_ mips.txt", and "pbmc_ velos_ nomips.txt". Since Amazon EC2 has been

used as a Infrastructure as a Service (IaaS), the burden caused by the virtualization should

also be considered in line with the burden already being caused by Apache Hadoop during

execution.

Initially, CRanker localhost execution results are compared against the CRanker

on Apache Hadoop localhost installation and CRanker on Apache Hadoop Amazon EC2

DN(Type) NN(Type) RM(Type) Total Nodes(s)
Cluster 1 2 (Type 1) 1 (Type 1) 1 (Type 1) 3
Cluster 2 2 (Type 2) 1 (Type 1) 1 (Type 1) 3

Table 6.1: Test Beds Used for CRanker Distributed Execution Using Amazon EC2
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localhost
CPU Intel i5

Memory (GiB) 4
Cache (MB) 2

OS Ubuntu 14.04

Table 6.2: Test Bed for Apache Hadoop CRanker Execution on Localhost

to check the burden caused by Apache Hadoop and virtualization. There is a very mini-

mal effect on the burden caused by virtualization. However, running CRanker on Apache

Hadoop using single node setup has a huge effect on the execution time as it is significantly

increased. The reason for this is because Apache Hadoop and CRanker share the same

resources on a single computer. The figured graph 6.1 shows the differences:

Figure 6.1: CRanker Execution Burden Comparison
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The execution time for CRanker on a single node that is setup on the localhost has

more issues. The problem here is that the resources are being shared by CRanker, Apache

Hadoop, and other Operating system components. Next, the CRanker on a single node

that is setup on Amazon EC2 has almost the same execution time. There is a slight advan-

tage due to the non-GUI version of the Operating system dedicated to run only CRanker.

Clearly, this indicates that the Apache Hadoop burden is worse on CRanker while execut-

ing. Based on these results, Apache Hadoop execution is used to process large datasets on

huge clusters only after careful consideration.

6.1 Evaluating the Distributed Execution of CRanker Algorithm Using Apache

Hadoop Approach

Section 6.1 describes memory utilization and the execution time of CRanker using

various test setups.

6.1.1 Evaluating the Memory Considerations and its Analysis

Section 6.1.1 evaluates the memory consumption while executing the CRanker in

different test environments. When the “pbmc_ velos_ nomips.txt”dataset is used as the

input for CRanker on a single node (Type1) that is setup on EC2, the jobs failed multiple

times. Apache Hadoop tried to develop a reason and found it is due to a lack of enough

memory for the job execution. This instance triggered the need to evaluate the memory

consumption of MapReduce jobs, i.e., the execution of CRanker on Apache Hadoop clus-

ters. The CRanker memory consumption is assessed against the normal CRanker execution

on a single node on the localhost. The results are displayed on the bar chart that is shown

in the figured graph 6.2.

These results in the figured graph 6.2 portrayed that the CRanker execution on
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Figure 6.2: CRanker Normal Memory Usage Vs Apache Hadoop Jobs Memory Consump-
tion on Localhost

Apache Hadoop consumed more memory than the CRanker normal execution. The MapRe-

duce job is the first one to load into the memory and then the CRanker initiates, which fur-

ther consumes memory. Then, initiation of the CRanker instance consumes memory even

further due to its execution. All the MapReduce jobs will execute on a single machine,

so these results provide us with the insight to distribute the MapReduce jobs and setup an

Apache Hadoop cluster to process them.

After setting up the cluster, the experiment was conducted again. However, this

time the execution setup was with a Cluster 1. After the execution of the CRanker job on

the Cluster 1, the results were compared with the normal CRanker execution. An inter-

75



esting result was recorded as Cluster memory consumption is higher compared to normal

execution flow. The results of this experiment are shown in the figured graph 6.3.

Figure 6.3: CRanker Normal Memory Usage Vs Apache Hadoop Jobs Memory Consump-
tion on Cluster 1

Memory usage is higher in a Cluster 1 compared to the normal CRanker execu-

tion. When the Apache Hadoop resource manager starts dumping the jobs, these jobs may

frequently fail due to a lack of memory. The Apache Hadoop speculative algorithm will

keep trying to execute the failed jobs which keeps the memory occupied, and will surge the

memory utilization on the data nodes. In general, this is due to a lesser number of nodes

because if more nodes are available, the MapReduce jobs will get distributed across those

available nodes. Obviously, this will reduce the memory usage of the data node. To over-

come this problem, a better cluster was created (Cluster 2) with more powerful machines.
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A more powerful machine was necessary because this research does not have the resources

to add more nodes to the cluster. When the CRanker distributed execution is triggered

on the Cluster 2 for all the input data sets, the results are recorded and displayed in a bar

graph against the normal CRanker execution. The figured graph 6.4 shows the significant

reduction in the memory usage:

Figure 6.4: CRanker Normal Memory Usage vs Apache Hadoop Jobs Memory Consump-
tion on Cluster 2

The reduction in memory consumption is due to usage of powerful data nodes in the Cluster

2. These data nodes are capable of handling multiple MapReduce jobs simultaneously

which keeps the job execution successful. In most cases, there are no failures which keeps

the Apache Hadoop resource manager free. This complete successful execution keeps the

memory utilization free for most of the time.
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To summarize all the memory consumption results of CRanker, a line graph is used.

The line graph consists of the data that is collected from all the CRanker execution flows

on the different testbeds. The figured chart 6.5 displays the significant improvement in the

memory management of the CRanker application with the Apache Hadoop implementation.

Figure 6.5: Summary of CRanker Memory Utilization

6.1.2 Evaluating the CRanker Execution Time

Section 6.1.2 discusses the CRanker execution time results and analyzes the reasons

for the time taken to execute on different testbeds. The input datasets used for execution

are "pbmc datasets", which is specified above. The first test is the comparison of CRanker

normal flow execution time against the CRanker execution time on the Apache Hadoop
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single node that is on the localhost. The results are bit disappointing because the CRanker

execution using Apache Hadoop took longer to process the input datasets used. The time

of execution is displayed in the figured graph 6.6.

Figure 6.6: CRanker Execution Time:Normal Execution Vs Single Node Execution on
Localhost

The longer time to execute CRanker on a single node at localhost is because of

the memory consumption by both the Apache Hadoop and CRanker applications. The

Apache Hadoop jobs may not have sufficient memory and CPU to be scheduled, and this

may cause a delay in the execution. To evaluate the execution time of the CRanker on the

cluster setup cluster 1 is used, and the results are evaluated against the normal execution

flow of CRanker. The results are very interesting because for some data sets the execution
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time is higher than the normal execution flow and for others the execution time is less than

the normal execution. This is recorded and plotted as figured graph 6.7.

Figure 6.7: CRanker Execution Time:Normal Execution Vs Cluster 1

The values that are recorded in the graph 6.7 are the mean values based on four

executions in the table 6.3 on cluster 1. During each execution the values differ and are not

consistent. The inconsistency is mainly due to the amount of MapReduce job failures. The

more the jobs fail due to a lack of memory, the more times the Apache Hadoop resource

manager tries to execute the failed jobs, and this delays the CRanker execution time even

more. The below table focuses on the CRanker execution times that were recorded during

the test.

The execution results may not be convincing because at each instance, the total time
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PBMC data (KB) Attempt 1 (hrs) Attempt 2 (hrs) Attepmt 3 (hrs) Attempt 4 (hrs)
11221 6.5 7.3 8.2 7.4
12816 9.9 6.8 8.9 10
31422 10.2 12 9.8 8.7
48486 15.2 17.1 14.8 13.6

Table 6.3: CRanker Execution Times on Cluster 1

taken to complete the MapReduce jobs are different. Moreover, this behavior completely

depends on many factors like distribution cache, MapReduce job failures, and total time

taken to execute. There are certain scenarios that the CRanker execution completely fails

due to the lack of memory available on cluster 1 nodes. The scalable options are likely to

increase the number of nodes in the cluster or increase the computational power of data

nodes. Cluster 2 is then used to avoid the job failures and improve the execution condition.

On cluster 2, when the CRanker distributed algorithm is started, the execution performance

is much better than cluster 1 and the results are very promising. The recorded results are

recorded in the figured graph 6.8 against the normal CRanker execution.

There is an increase in the performance of execution when the CRanker distributed

execution algorithm is tested on "Cluster 2", mainly because of the "Type 2" data nodes.

The MapReduce job distribution is even and well managed here due to the abundant avail-

ability of resources that reduce the MapReduce job failures. The overall results are satis-

factory when the CRanker distributed execution algorithm is tested on the proper cluster.

The results show that the proposed algorithm has greatly reduced the CRanker execution

time. The above results clearly show that having more data nodes in the cluster can signif-

icantly increase the performance of CRanker and reduce the execution time. The summary

of execution time by various CRanker approaches are depicted the figured graph 6.9:

81



Figure 6.8: CRanker Execution Time:Normal Execution Vs Cluster 2

The main part of the evaluation and analysis is now concluded. The pending section

describes the algorithm designed to compare the two CRanker output files.

6.2 Evaluation and Analysis of File Comparison Algorithm

Section 6.2 summarizes the comparison of output results generated by CRanker

normal execution against the CRanker distributed execution, a step that could be the veri-

fication of the CRanker distributed execution algorithm. The graph below summarizes the

percentage of the data matched with the distributed approach against the normal approach.

It also depicts the matched percentage data.

Table 6.4 data is depicted in the figure graph ??

The percentage calculated is based on the total number of matches divided by the
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Figure 6.9: CRanker Execution Summary

file count value incremented with respect to the each row matched. It is represented by

following a mathematical formula.

match×100
f ilecount

(6.1)

The evaluations and analysis of algorithms of the CRanker distributed execution

and CRanker output comparison is hereby concluded.
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pbmc input data set Matched (%)
pbmc_ orbit_ mips.txt (%) 98
pbmc_ orbit_ nomips.txt (%) 96
pbmc_ velos_ mips.txt (%) 97
pbmc_ velos_ mips.txt (%) 96

Table 6.4: Matched Percentage of the CRanker Output

Figure 6.10: Matched Percentage of CRanker Output
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Chapter 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this thesis, the main focus is to improve the performance and execution of CRanker

by developing and implementing a CRanker distributed approach algorithm. Along with

this, the CRanker output comparison algorithm is also developed to compare the output

generated by different CRanker instances. The crux of the methodology is the joining of

MapReduce to deal with the parallel execution of applications with the embodiment of

programming and data in Amazon EC2 associated by networks.

The effects of the algorithms in CRanker distributed execution and CRanker output

comparison results are also summarized. CRanker distributed execution utilizing Apache

Hadoop displayed better performance over the most recent version of CRanker. CRanker

distributed execution utilizing Apache Hadoop has advantages of being less difficult to

improve, easier administration, and better maintainability because it effectively updates to

new forms of CRanker. This framework can easily accommodate applications like CRanker

with minimal changes. CRanker distributed execution utilizing Apache Hadoop indicated

performance gains with expansions in the number of accessible processors. Recognizable

distinction in execution time was observed when utilizing all resources. All of the pro-

gramming segments, except Amazon EC2, utilized as a part of this work are open-source

and accessible from the respectable project sites.
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For applications with a dependency structure that fits the MapReduce paradigm,

the CRanker distributed execution case study suggests that few if any, performance gains

would result from using a different approach that requires reprogramming. Conversely, a

MapReduce implementation such as Hadoop provides significant advantages such as man-

agement of failures, data, and jobs. It also provides advantages to CRanker concerns such

as resource sharing, concurrency, scalability, and fault tolerance.

The conclusion also reinforces similar claims of proponents of the MapReduce

approach and demonstrates them in the context of bioinformatics applications. Utilizing

Amazon EC2 with software and data required for execution of both the application and

MapReduce extraordinarily encourages the disseminated organization of successive codes.

The middleware utilized for creation, cloning and administration of Amazon Machine Im-

ages (AMI) can be presented to clients for easy maintenance.

7.2 Future Work

There is much scope for extended research in this area. The developed framework

can be tested with larger data sets of more than 1 GB in size on a cluster which has a

large amount of computing nodes to test the scalability. This can be tested with other

Bioinformatics algorithms which has the same execution behavior like CRanker. There is a

need to create a virtual cloud across different locations and set up the framework to execute

the distributed application instead of using Amazon EC2 cluster. Setting up the virtual

private cloud is necessary for scenarios like this to reduce costs and secure the classified

biological data. Using Apache Spark [Spark, 2014] instead of Apache MapReduce will

compute the datasets 100 times faster, and is currently generating more research interest.
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It can also be implemented using GPU computing [Owens et al., 2008], [NVidia, 2009]

which is currently inaccessible for this particular thesis.
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Appendix A
MAPREDUCE CODE FOR CRANKER DISTRIBUTED EXECUTION
This section shows the MapReduce code for CRanker Distributed Execution

A.A The driver for MapReduce CRanker distributed execution
1 package com . wku . m r e x e c u t o r . d r i v e r ;
2

3 i m p o r t j a v a . i o . B u f f e r e d R e a d e r ;
4 i m p o r t j a v a . i o . F i l e ;
5 i m p o r t j a v a . i o . F i l e R e a d e r ;
6 i m p o r t j a v a . i o . IOExcep t i on ;
7

8 i m p o r t o rg . apache . hadoop . con f . C o n f i g u r a t i o n ;
9 i m p o r t o rg . apache . hadoop . f s . F i l e S y s t e m ;

10 i m p o r t o rg . apache . hadoop . f s . L o c a t e d F i l e S t a t u s ;
11 i m p o r t o rg . apache . hadoop . f s . Pa th ;
12 i m p o r t o rg . apache . hadoop . f s . R e m o t e I t e r a t o r ;
13 i m p o r t o rg . apache . hadoop . i o . I n t W r i t a b l e ;
14 i m p o r t o rg . apache . hadoop . i o . Tex t ;
15 i m p o r t o rg . apache . hadoop . mapreduce . Job ;
16 i m p o r t o rg . apache . hadoop . mapreduce . l i b . i n p u t . F i l e I n p u t F o r m a t ;
17 i m p o r t o rg . apache . hadoop . mapreduce . l i b . o u t p u t . F i l e O u t p u t F o r m a t ;
18 i m p o r t o rg . apache . hadoop . u t i l . G e n e r i c O p t i o n s P a r s e r ;
19 i m p o r t o rg . codehaus . j e t t i s o n . j s o n . JSONArray ;
20 i m p o r t o rg . codehaus . j e t t i s o n . j s o n . JSONException ;
21 i m p o r t o rg . codehaus . j e t t i s o n . j s o n . JSONObject ;
22

23 i m p o r t com . wku . m r e x e c u t o r . mapper . ExecutorMapper ;
24

25 / * *
26 *
27 * Main d r i v e r t o e x e c u t e c e r t a i n a l g o r i t h m s u s i n g MapReduce framework .
28 *
29 * /
30 p u b l i c c l a s s D r i v e r {
31

32 p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) t h r ow s IOExcept ion ,
33 Clas sNotFoundExcep t ion , I n t e r r u p t e d E x c e p t i o n , JSONException {
34

35 C o n f i g u r a t i o n con f = new C o n f i g u r a t i o n ( ) ;
36

37 / / P a r s e and s e t Hadoop r e l a t e d p r o p e r t i e s ( s e t w i th −D) t h a t a r e
p a s s e d as a rgumen t s

38 S t r i n g [ ] o t h e r A r g s = new G e n e r i c O p t i o n s P a r s e r ( conf , a r g s )
39 . ge tRemain ingArgs ( ) ;
40

41 i f ( o t h e r A r g s . l e n g t h < 2) {
42 System . e r r
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43 . p r i n t l n ( " Usage : m r e x e c u t o r < a l g o r i t h m > < p r o p e r t i e s _ j s o n _ p a t h >
" ) ;

44 System . e x i t ( 2 ) ;
45 }
46

47 / / Read JSON c o n f i g u r a t i o n f i l e
48 System . o u t . p r i n t l n ( " Reading p r o p e r t i e s j s o n f i l e . . . " ) ;
49 F i l e R e a d e r c o n f F i l e R e a d e r = new F i l e R e a d e r ( new F i l e ( o t h e r A r g s [ 1 ] ) ) ;
50 B u f f e r e d R e a d e r b r = new B u f f e r e d R e a d e r ( c o n f F i l e R e a d e r ) ;
51

52 S t r i n g c o n f S t r = " " ;
53 S t r i n g l i n e = n u l l ;
54

55 w h i l e ( ( l i n e = br . r e a d L i n e ( ) ) != n u l l ) {
56 c o n f S t r += l i n e ;
57 }
58

59 c o n f F i l e R e a d e r . c l o s e ( ) ;
60 br . c l o s e ( ) ;
61

62 System . o u t . p r i n t l n ( " P r o p e r t i e s j s o n f i l e r e a d s u c c e s s f u l l y . . . " ) ;
63

64 / / P a r s e JSON S t r i n g i n t o JSON O b j e c t and g e t r e q u i r e d key−v a l u e s .
65 JSONObject jobConf = new JSONObject ( c o n f S t r ) ;
66 JSONArray a l g o r i t h m s = jobConf . getJSONArray ( " a l g o r i t h m s " ) ;
67 JSONObject cur ren tAlgoJSON = n u l l ;
68

69 f o r ( i n t i = 0 ; i < a l g o r i t h m s . l e n g t h ( ) ; i ++) {
70 / / Get p r o p e r t i e s JSON o b j e c t f o r a l g o r i t h m t o be e x e c u t e d
71 i f ( a l g o r i t h m s . ge tJSONObjec t ( i ) . g e t S t r i n g ( " name " )
72 . e q u a l s I g n o r e C a s e ( o t h e r A r g s [ 0 ] ) ) {
73 cur ren tAlgoJSON = a l g o r i t h m s . ge tJSONObject ( i ) ;
74 }
75 }
76

77 / / I f p r o p e r t i e s JSON O b j e c t i s n u l l , i t ' s n o t been i n s e t i n
p r o p e r t i e s f i l e , a b o r t .

78 i f ( cur ren tAlgoJSON == n u l l ) {
79 System . o u t . p r i n t l n ( "FATAL: C o n f i g u r a t i o n f o r a l g o r i t h m ' "
80 + o t h e r A r g s [ 0 ]
81 + " ' , c o u l d n o t be found i n c o n f i g u r a t i o n f i l e , ' "
82 + o t h e r A r g s [ 1 ] + " ' . A b o r t i n g . " ) ;
83 System . e x i t ( 1 ) ;
84 }
85

86 / / S e t a l g o r i t h m s p e c i f i c v a l u e s from c o n f i g JSON
87 con f . s e t ( "OUT_DIR" , cur ren tAlgoJSON . g e t S t r i n g ( " h d f s _ o u t _ d i r " ) ) ;
88 con f . s e t ( "ALGO_BIN_HOME" , cur ren tAlgoJSON . g e t S t r i n g ( " b i n a r y _ d i r " ) ) ;
89 con f . s e t B o o l e a n ( "ADD_DATA_HEADER" , cur ren tAlgoJSON . g e t B o o l e a n ( "

a d d _ d a t a _ h e a d e r " ) ) ;
90 con f . s e t ( "DATA_HEADER" , cur ren tAlgoJSON . g e t S t r i n g ( " d a t a _ h e a d e r " ) ) ;
91

92 / / Get t h e l i s t o f commands t h a t a r e t o be e x e c u t e d as p e r t o f t h i s
a l g o r i t h m
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93 JSONArray e x e c u t a b l e s = curren tAlgoJSON . getJSONArray ( " e x e c u t a b l e s " ) ;
94 S t r i n g [ ] cmd = new S t r i n g [ e x e c u t a b l e s . l e n g t h ( ) ] ;
95 f o r ( i n t i = 0 ; i < e x e c u t a b l e s . l e n g t h ( ) ; i ++) {
96 cmd [ i ] = e x e c u t a b l e s . ge tJSONObjec t ( i ) . g e t S t r i n g ( " command " ) ;
97 }
98 con f . s e t S t r i n g s ( "COMMANDS" , cmd ) ;
99

100 / / S e t g e n e r i c v a l u e s from c o n f i g JSON
101 con f . s e t ( "STAGE_DIR" , jobConf . g e t S t r i n g ( " s t a g e _ d i r " ) ) ;
102 con f . s e t ( "MCR_ROOT" , jobConf . g e t S t r i n g ( " m c r _ r o o t " ) ) ;
103 con f . s e t ( "MCR_CACHE_ROOT" , jobConf . g e t S t r i n g ( " m c r _ c a c h e _ r o o t " ) ) ;
104

105 / / S e t Job p r o p e r t i e s
106 Job j o b = Job . g e t I n s t a n c e ( con f ) ;
107 j o b . setJobName ( o t h e r A r g s [ 0 ] + "−MR−E x e c u t o r " ) ;
108 j o b . s e t J a r B y C l a s s ( D r i v e r . c l a s s ) ;
109 j o b . s e t M a p p e r C l a s s ( ExecutorMapper . c l a s s ) ;
110 j o b . setNumReduceTasks ( 0 ) ;
111 j o b . se tMapOutpu tKeyClass ( Text . c l a s s ) ;
112 j o b . s e t M a p O u t p u t V a l u e C l a s s ( I n t W r i t a b l e . c l a s s ) ;
113

114 / / S e t i n p u t f i l e p a t h . Th i s p a t h s h o u l d be HDFS one .
115 / / Mappers w i l l w r i t e i n p u t s p l i t s from t h i s i n p u t f i l e t o a s t a g i n g

a r e a on l o c a l f i l e sys tem .
116 / / These s t a g e d i n p u t f i l e s w i l l t h e n be g i v e n t o a l g o r i t h m ,

e x e c u t a b l e s .
117 F i l e I n p u t F o r m a t . a d d I n p u t P a t h ( job ,
118 new Pa th ( cur ren tAlgoJSON . g e t S t r i n g ( " h d f s _ i n _ d i r " ) ) ) ;
119

120 / / A lgo r i t hm e x e c u t a b l e s w i l l p roduce o u t p u t f i l e s i n s t a g i n g a r e a
which w i l l be c o p i e d t o HDFS

121 / / d i r e c t o r y r e p r e s e n t e d by below p a t h .
122 F i l e O u t p u t F o r m a t . s e t O u t p u t P a t h ( job ,
123 new Pa th ( cur ren tAlgoJSON . g e t S t r i n g ( " h d f s _ o u t _ d i r " ) ) ) ;
124

125 System . o u t . p r i n t l n ( " S u b m i t t i n g j o b on t h e c l u s t e r . . . " ) ;
126 i n t s u c c e s s = j o b . w a i t F o r C o m p l e t i o n ( t r u e ) ? 0 : 1 ;
127

128 i f ( s u c c e s s ==0) {
129 System . o u t . p r i n t l n ( " Job comple t ed s u c c e s s f u l l y . . . " ) ;
130 } e l s e {
131 System . o u t . p r i n t l n ( " Job f a i l e d . A b o r t i n g . " ) ;
132 System . e x i t ( 1 ) ;
133 }
134

135 / / Get h a n d l e r t o HDFS o u t p u t d i r e c t o r y
136 F i l e S y s t e m f s = F i l e S y s t e m . n e w I n s t a n c e ( con f ) ;
137 R e m o t e I t e r a t o r < L o c a t e d F i l e S t a t u s > i = f s . l i s t F i l e s ( new Pa th (
138 cur ren tAlgoJSON . g e t S t r i n g ( " h d f s _ o u t _ d i r " ) ) , f a l s e ) ;
139

140 System . o u t . p r i n t l n ( " C l e a n i n g up p a r t f i l e s from h d f s o u t p u t
d i r e c t o r y . . . " ) ;

141 w h i l e ( i . hasNext ( ) ) {
142 L o c a t e d F i l e S t a t u s f = i . n e x t ( ) ;
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143 / / D e l e t e a l l t h e ' p a r t ' f i l e s g e n e r a t e d by Mappers .
144 / / These p a r t f i l e s a r e empty and do n o t c o n t a i n o u t p u t .
145 / / A c t u a l o u t p u t i s c o n t a i n e d by t x t f i l e s w r i t t e n by a l g o r i t h m

e x e c u t a b l e s
146 i f ( f . i s F i l e ( ) && f . g e t P a t h ( ) . getName ( ) . s t a r t s W i t h ( " p a r t −" ) ) {
147 f s . d e l e t e ( f . g e t P a t h ( ) , t r u e ) ;
148 }
149 }
150 f s . c l o s e ( ) ;
151

152 System . o u t . p r i n t l n ( " Done . E x i t i n g . " ) ;
153 System . e x i t ( s u c c e s s ) ;
154 }
155 }
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A.B The MapReduce code for CRanker distributed execution
1 package com . wku . m r e x e c u t o r . mapper ;
2

3 i m p o r t j a v a . i o . B u f f e r e d R e a d e r ;
4 i m p o r t j a v a . i o . F i l e ;
5 i m p o r t j a v a . i o . F i l e F i l t e r ;
6 i m p o r t j a v a . i o . F i l e W r i t e r ;
7 i m p o r t j a v a . i o . IOExcep t i on ;
8 i m p o r t j a v a . i o . I n p u t S t r e a m ;
9 i m p o r t j a v a . i o . I n p u t S t r e a m R e a d e r ;

10 i m p o r t j a v a . u t i l . HashMap ;
11 i m p o r t j a v a . u t i l . Map ;
12

13 i m p o r t o rg . apache . commons . l o g g i n g . Log ;
14 i m p o r t o rg . apache . commons . l o g g i n g . LogFac to ry ;
15 i m p o r t o rg . apache . hadoop . f s . F i l e S y s t e m ;
16 i m p o r t o rg . apache . hadoop . f s . Pa th ;
17 i m p o r t o rg . apache . hadoop . i o . I n t W r i t a b l e ;
18 i m p o r t o rg . apache . hadoop . i o . Tex t ;
19 i m p o r t o rg . apache . hadoop . mapreduce . Mapper ;
20

21 / * *
22 * Th i s mapper does n o t h i n g b u t w r i t e s i n p u t s p l i t s t o a s t a g i n g a r e a
23 * on l o c a l f i l e sys tem and t h e n e x e c u t e b i n a r i e s o f a l g o r i t h m s which

use
24 * t h e s e s t a g e d f i l e s and produce o u t p u t .
25 *
26 * These o u t p u t f i l e s a r e t h e n c o p i e d back t o HDFS by t h i s mapper i n i t s

c l e a n u p s t e p .
27 *
28 * s e t u p ( ) phase i n i t i a l i z e s r e q u i r e d p r o p e r t i e s and o b j e c t s .
29 * map ( ) phase w r i t e s r e c o r d s from i n p u t s p l i t t o a s t a g i n g a r e a .
30 * c l e a n u p ( ) s t e p t r i g g e r s r e q u i r e d a l g o r i t h m s and c o p i e s back t h e i r

o u t p u t t o HDFS .
31 *
32 * /
33 p u b l i c c l a s s ExecutorMapper e x t e n d s Mapper < Objec t , Text , Text ,

I n t W r i t a b l e > {
34

35 / / Logs w i l l be a c c e s s i b l e on t h i s app ' s A p p l i c a t i o n m a s t e r ' s Web UI
and Job H i s t o r y s e r v e r .

36 p r i v a t e f i n a l s t a t i c Log l o g g e r = LogFac to ry . ge tLog ( ExecutorMapper .
c l a s s ) ;

37

38 / / P o i n t s t o d i r e c t o r y on l o c a l f i l e sys tem where i n t e r m e d i a t e f i l e s
a r e s t a g e d .

39 p r i v a t e S t r i n g s t a g i n g B a s e D i r n a m e = " " ;
40 / / P o i n t s t o d i r e c t o r y on l o c a l f i l e sys tem where i n t e r m e d i a t e i n p u t

f i l e s t o a l g o r i t h m a r e s t a g e d .
41 p r i v a t e S t r i n g s t a g i n g I n D i r n a m e = " " ;
42 / / P o i n t s t o d i r e c t o r y on l o c a l f i l e sys tem where i n t e r m e d i a t e oupu t

f i l e s from an a l g o r i t h m a r e s t a g e d .
43 p r i v a t e S t r i n g s t a g i n g O u t D i r n a m e = " " ;
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44 / / P o i n t s t o f i l e i n i n p u t s t a g i n g d i r i n which i n p u t s p l i t r e c o r d s a r e
w r i t t e n .

45 p r i v a t e S t r i n g s t a g i n g I n p u t F i l e = " " ;
46

47 p r i v a t e S t r i n g h d f s O u t D i r = " " ;
48

49 p r i v a t e F i l e W r i t e r s t a g e d I n p u t F i l e W r i t e r = n u l l ;
50 / / Th i s mapper ' s t a s k i d .
51 p r i v a t e S t r i n g myTaskId = " " ;
52 / / Th i s mapper ' s a t t e m p t i d .
53 p r i v a t e S t r i n g myAttemptId = " " ;
54

55 p r i v a t e S t r i n g d a t a H e a d e r = n u l l ;
56 p r i v a t e S t r i n g algoBinHome = n u l l ;
57 p r i v a t e S t r i n g mcrRoot = n u l l ;
58

59 / * *
60 * P r e p a r e s t h i s mapper i n s t a n c e f o r e x e c u t i o n .
61 * 1 . Reads c o n f i g u r a t i o n v a l u e s .
62 * 2 . Opens f i l e w r i t e r t o i n t e r m e d i a t e s t a g i n g i n p u t f i l e on l o c a l

f i l e sys tem .
63 * 3 . W r i t e s h e a d e r t o t h i s i n t e r m e d i a t e s t a g i n g i n p u t f i l e i f

r e q u i r e d .
64 * /
65 @Override
66 p r o t e c t e d vo id s e t u p ( Mapper < Objec t , Text , Text , I n t W r i t a b l e > . C o n t e x t

c o n t e x t )
67 t h ro ws IOExcep t ion , I n t e r r u p t e d E x c e p t i o n {
68 s u p e r . s e t u p ( c o n t e x t ) ;
69 / / Get t a s k and a t t e m p t i d s .
70 myTaskId = c o n t e x t . ge tTaskAt t emp t ID ( ) . ge tTaskID ( ) . t o S t r i n g ( ) ;
71 myAttemptId = c o n t e x t . ge tTaskAt t emp t ID ( ) . t o S t r i n g ( ) ;
72

73 l o g g e r . i n f o ( "My t a s k i d = " + myTaskId + " , my a t t e m p t i d = " +
myAttemptId ) ;

74

75 l o g g e r . i n f o ( " Reading p r o p e r t i e s from c o n f i g u r a t i o n o b j e c t " ) ;
76 / / Read p r o p e r t i e s from j o b c o n f i g u r a t i o n . These a r e s e t i n D r i v e r .
77 h d f s O u t D i r = c o n t e x t . g e t C o n f i g u r a t i o n ( ) . g e t ( "OUT_DIR" ) ;
78 l o g g e r . debug ( " h d f s O u t D i r =" + h d f s O u t D i r ) ;
79 s t a g i n g B a s e D i r n a m e = c o n t e x t . g e t C o n f i g u r a t i o n ( ) . g e t ( "STAGE_DIR" ) + "

/ "
80 + myTaskId + " / " + myAttemptId ;
81 l o g g e r . debug ( " s t a g i n g B a s e D i r n a m e =" + s t a g i n g B a s e D i r n a m e ) ;
82 algoBinHome = c o n t e x t . g e t C o n f i g u r a t i o n ( ) . g e t ( "ALGO_BIN_HOME" ) ;
83 l o g g e r . debug ( " algoBinHome=" + algoBinHome ) ;
84 mcrRoot = c o n t e x t . g e t C o n f i g u r a t i o n ( ) . g e t ( "MCR_ROOT" ) ;
85 l o g g e r . debug ( " mcrRoot=" + mcrRoot ) ;
86 d a t a H e a d e r = c o n t e x t . g e t C o n f i g u r a t i o n ( ) . g e t ( "DATA_HEADER" ) ;
87 l o g g e r . debug ( " d a t a H e a d e r =" + d a t a H e a d e r ) ;
88

89 s t a g i n g I n D i r n a m e = s t a g i n g B a s e D i r n a m e + " / i n / " ;
90 s t a g i n g O u t D i r n a m e = s t a g i n g B a s e D i r n a m e + " / o u t / " ;
91
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92 / / C r e a t e s t a g i n g d i r e c t o r i e s .
93 l o g g e r . i n f o ( " C r e a t i n g i n p u t s t a g i n g d i r e c t o r y : " + new F i l e (

s t a g i n g I n D i r n a m e ) . mkdi r s ( ) ) ;
94 l o g g e r . i n f o ( " C r e a t i n g o u t p u t s t a g i n g d i r e c t o r y : " + new F i l e (

s t a g i n g O u t D i r n a m e ) . mkdi r s ( ) ) ;
95

96 s t a g i n g I n p u t F i l e = s t a g i n g I n D i r n a m e + " / " + myAttemptId + " . t x t " ;
97 l o g g e r . debug ( " s t a g i n g I n D i r n a m e =" + s t a g i n g I n D i r n a m e ) ;
98

99 F i l e s f = new F i l e ( s t a g i n g I n p u t F i l e ) ;
100 s f . c r e a t e N e w F i l e ( ) ;
101 s t a g e d I n p u t F i l e W r i t e r = new F i l e W r i t e r ( s f ) ;
102 l o g g e r . i n f o ( " Opened s t a g i n g i n p u t f i l e w r i t e r " ) ;
103

104 / / Wr i t e h e a d e r t o t h i s mapper ' s s t a g e d i n p u t f i l e i f r e q u i r e d .
105 i f ( c o n t e x t . g e t C o n f i g u r a t i o n ( ) . g e t B o o l e a n ( "ADD_DATA_HEADER" , f a l s e ) )

{
106 l o g g e r . i n f o ( " Header w r i t t e n t o s t a g i n g i n p u t f i l e " ) ;
107 s t a g e d I n p u t F i l e W r i t e r . w r i t e ( d a t a H e a d e r + " \ n " ) ;
108 }
109 }
110

111 / * *
112 * Wr i t e each r e c o r d from i n p u t s p l i t t o i n t e r m e d i a t e s t a g i n g f i l e on

l o c a l f i l e sys tem
113 * Each mappper w i l l have i t ' s own such f i l e . Also , i f a l g o r i t h m

e x p e c t s h e a d e r i n i n p u t f i l e , t h e n each of t h i s f i l e s h o u l d have
h e a d e r t o o .

114 * Th i s h e a d e r can be s e t i n p r o p e r t i e s JSON
115 * /
116 p u b l i c vo id map ( O b j e c t key , Text va lue , C o n t e x t c o n t e x t )
117 t h ro ws IOExcep t ion , I n t e r r u p t e d E x c e p t i o n {
118 s t a g e d I n p u t F i l e W r i t e r . w r i t e ( v a l u e . t o S t r i n g ( ) + " \ n " ) ;
119 }
120

121 / * *
122 * R e l e a s e s r e s o u r c e s .
123 * Then t r i g g e r s r e q u i r e d a l g o r i t h m wi th i n t e r m e d i a t e s t a g e d i n p u t

f i l e .
124 * And o u t p u t from t h i s a l g o r i t h m i s w r i t t e n back t o HDFS .
125 *
126 * /
127 @Override
128 p r o t e c t e d vo id c l e a n u p (
129 Mapper < Objec t , Text , Text , I n t W r i t a b l e > . C o n t e x t c o n t e x t )
130 t h ro ws IOExcep t ion , I n t e r r u p t e d E x c e p t i o n {
131 s u p e r . c l e a n u p ( c o n t e x t ) ;
132 l o g g e r . debug ( " C l o s i n g s t a g e d i n p u t f i l e w r i t e r " ) ;
133 s t a g e d I n p u t F i l e W r i t e r . f l u s h ( ) ;
134 s t a g e d I n p u t F i l e W r i t e r . c l o s e ( ) ;
135

136 / / S e t e n v i r o n m e n t v a r i a b l e s f o r a l g o r i t h m ' s s h e l l s c r i p t s
137 S t r i n g [ ] env = new S t r i n g [ 1 ] ;

98



138 env [ 0 ] = "MCR_CACHE_ROOT=" + c o n t e x t . g e t C o n f i g u r a t i o n ( ) . g e t ( "
MCR_CACHE_ROOT" , " / tmp " ) ;

139

140 l o g g e r . debug ( "MCR_CACHE_ROOT = " + env [ 0 ] ) ;
141

142 / / Get t h e l i s t o f commands t h a t a r e r e q u i r e d t o t r i g g e r a l g o r i t h .
143 S t r i n g [ ] commands = c o n t e x t . g e t C o n f i g u r a t i o n ( ) . g e t S t r i n g s ( "COMMANDS"

) ;
144

145 / / M a i n t a i n a map of i n p u t and t e m p o r a r y f i l e p a t h s p a s s e d t o
a l g o r i t h m s c r i p t s .

146 / / Th i s a l l o w s us t o p a s s same p a t h s t o m u l t i p l e , d i f f e r e n t s c r i p t s
w i t h i n same a l g o r i t h m .

147 Map< S t r i n g , S t r i n g > argF i l eMap = new HashMap< S t r i n g , S t r i n g > ( ) ;
148 a rgF i l eMap . p u t ( "%INPUT_FILE%" , s t a g i n g I n p u t F i l e ) ;
149

150 i n t t m p _ c o u n t e r = 0 ;
151 f o r ( S t r i n g cmd : commands ) {
152 l o g g e r . debug ( " Found command s t r i n g = " + cmd ) ;
153 / / Rep lace s t a n d a r d v a r i a b l e s from s h e l l s c r i p t a rgumen t s .
154 cmd = algoBinHome + " / " + cmd . r e p l a c e A l l ( "%MCR_ROOT%" , mcrRoot ) ;
155 cmd = cmd . r e p l a c e A l l ( "%INPUT_FILE%" , s t a g i n g I n p u t F i l e ) ;
156

157 S t r i n g [ ] t o k e n s = cmd . s p l i t ( " " ) ;
158 f o r ( S t r i n g t o k : t o k e n s ) {
159 / / Check i f a t e m p o r a r y . mat f i l e p a t h i s t o be p a s s e d t o c u r r e n t

command .
160 i f ( t o k . s t a r t s W i t h ( "%TMP_MAT_FILE_" ) ) {
161 i f ( a rgF i l eMap . g e t ( t o k ) == n u l l ) {
162 a rgF i l eMap . p u t ( tok , s t a g i n g O u t D i r n a m e + " / " + myAttemptId +

" _ " + t m p _ c o u n t e r + " . mat " ) ;
163 t m p _ c o u n t e r ++;
164 }
165 cmd = cmd . r e p l a c e A l l ( tok , a rgF i l eMap . g e t ( t o k ) ) ;
166 }
167 }
168 / / T r i g g e r t h e e x e c u t i o n o f one s c r i p t from t h i s a l g o r i t h m .
169 l o g g e r . debug ( " E x e c u t a b l e command s t r i n g = ' " + cmd + " ' " ) ;
170 e x e c u t e S h ( cmd , env ) ;
171 }
172

173 l o g g e r . i n f o ( " Copying o u t p u t f i l e s t o HDFS" ) ;
174 / / Copy o u t p u t . t x t f i l e s g e n e r a t e d by a l g o r i t h m s c r i p t s t o HDFS

o u t p u t d i r e c t o r y .
175 F i l e S y s t e m f s = F i l e S y s t e m . n e w I n s t a n c e ( c o n t e x t . g e t C o n f i g u r a t i o n ( ) ) ;
176 F i l e o u t F i l e s = new F i l e ( s t a g i n g O u t D i r n a m e ) ;
177 F i l e [ ] t x t F i l e s = o u t F i l e s . l i s t F i l e s ( new F i l e F i l t e r ( ) {
178 p u b l i c b o o l e a n a c c e p t ( F i l e pathname ) {
179 r e t u r n ( pathname . i s F i l e ( ) && pathname . t o S t r i n g ( ) . endsWith (
180 " . t x t " ) ) ;
181 }
182 } ) ;
183 / / Copy each . t x t f i l e from s t a g e d o u t p u t d i r e c t o r y on l o c a l f i l e

sys tem t o HDFS
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184 f o r ( F i l e t x t F i l e : t x t F i l e s ) {
185 Pa th s r c P a t h = new Pa th ( t x t F i l e . t o S t r i n g ( ) ) ;
186 Pa th d e s t P a t h = new Pa th ( h d f s O u t D i r ) ;
187 l o g g e r . debug ( " Copying o u t p u t f i l e " + t x t F i l e . t o S t r i n g ( ) + " t o "

+ h d f s O u t D i r + " on HDFS" ) ;
188 f s . co pyF rom Loc a l F i l e ( s r c P a t h , d e s t P a t h ) ;
189 }
190 l o g g e r . debug ( " C l o s i n g FS h a n d l e r " ) ;
191 f s . c l o s e ( ) ;
192 }
193

194 / * *
195 * P r i v a t e u t i l i t y method t o t r i g g e r e x e c u t i o n o f s c r i p t and r e a d i t s

o u t p u t and e r r o r s t r e a m s .
196 *
197 * @param command S h e l l command t o be e x e c u t e d
198 * @param env Envi ronment v a r i a b l e s t o be s e t f o r t h i s s h e l l e x e c u t i o n
199 * @throws IOExcep t ion
200 * @throws I n t e r r u p t e d E x c e p t i o n
201 * /
202 p r i v a t e vo id e x e c u t e S h ( S t r i n g command , S t r i n g [ ] env ) th ro ws

IOExcept ion ,
203 I n t e r r u p t e d E x c e p t i o n {
204

205 l o g g e r . debug ( " S t a r t i n g e x e c u t i o n o f command ' " + command + " ' " ) ;
206 P r o c e s s p = Runtime . ge tRun t ime ( ) . exec ( command , env ) ;
207

208 l o g g e r . debug ( " Reading o u t p u t s t r e a m " ) ;
209 I n p u t S t r e a m i s = p . g e t I n p u t S t r e a m ( ) ;
210 I n p u t S t r e a m R e a d e r i s r = new I n p u t S t r e a m R e a d e r ( i s ) ;
211 B u f f e r e d R e a d e r b r = new B u f f e r e d R e a d e r ( i s r ) ;
212 S t r i n g i n = " " ;
213 do {
214 l o g g e r . debug ( i n ) ;
215 i n = br . r e a d L i n e ( ) ;
216 } w h i l e ( i n != n u l l ) ;
217

218 l o g g e r . debug ( " Reading e r r o r s t r e a m " ) ;
219 I n p u t S t r e a m es = p . g e t E r r o r S t r e a m ( ) ;
220 I n p u t S t r e a m R e a d e r e s r = new I n p u t S t r e a m R e a d e r ( e s ) ;
221 B u f f e r e d R e a d e r e b r = new B u f f e r e d R e a d e r ( e s r ) ;
222 S t r i n g e i n = " " ;
223 do {
224 l o g g e r . debug ( e i n ) ;
225 e i n = e b r . r e a d L i n e ( ) ;
226 } w h i l e ( e i n != n u l l ) ;
227

228 l o g g e r . i n f o ( " P r o c e s s e x i t e d wi th s t a t u s = " + p . w a i t F o r ( ) ) ;
229 }
230 }
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A.B.1 CRanker Execution Command
To Trigger the CRanker execution on the Apache Hadoop Cluster the following

command is issued on the Apache Hadoop master node terminal

1 hadoop / b i n / ya rn j a r mr−e x e c u t o r / t a r g e t / mrexecu to r −0.2−SNAPSHOT . j a r com .
wku . m r e x e c u t o r . d r i v e r . D r i v e r c r a n k e r mr−e x e c u t o r / p r o p e r t i e s . j s o n

2 ' s p e c t r u m p e p t i d e p r o t e i n i o n s x c o r r d e l t a c n s p r a n k h i t_mass '
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Appendix B
MAPREDUCE CODE FOR FILE COMPARISON

B.A MapReduce Code for File Comparison Using Joins
1 package com . wku ;
2

3 i m p o r t j a v a . i o . IOExcep t i on ;
4

5 i m p o r t o rg . apache . hadoop . con f . C o n f i g u r a t i o n ;
6 i m p o r t o rg . apache . hadoop . f s . Pa th ;
7 i m p o r t o rg . apache . hadoop . i o . LongWr i t ab l e ;
8 i m p o r t o rg . apache . hadoop . i o . Tex t ;
9 i m p o r t o rg . apache . hadoop . mapreduce . Job ;

10 i m p o r t o rg . apache . hadoop . mapreduce . Mapper ;
11 i m p o r t o rg . apache . hadoop . mapreduce . Reducer ;
12 i m p o r t o rg . apache . hadoop . mapreduce . l i b . i n p u t . M u l t i p l e I n p u t s ;
13 i m p o r t o rg . apache . hadoop . mapreduce . l i b . i n p u t . T e x t I n p u t F o r m a t ;
14 i m p o r t o rg . apache . hadoop . mapreduce . l i b . o u t p u t . F i l e O u t p u t F o r m a t ;
15 i m p o r t o rg . apache . hadoop . mapreduce . l i b . o u t p u t . Tex tOu tpu tFo rma t ;
16

17 p u b l i c c l a s s CSVCompare {
18

19 p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) {
20

21 i f ( a r g s . l e n g t h != 5) {
22 System . e r r
23 . p r i n t l n ( " I n c o r r e c t a rgumen t s . Expec ted a rgumen t s : < x l s f i l e

name 1> < x l s f i l e name 2> <column f i l e 1 > <column f i l e 2 > < o u t p u t pa th
>" ) ;

24 r e t u r n ;
25 }
26 i n t c o l 1 = 0 ;
27 i n t c o l 2 = 0 ;
28 t r y {
29 c o l 1 = I n t e g e r . p a r s e I n t ( a r g s [ 2 ] ) ;
30 c o l 2 = I n t e g e r . p a r s e I n t ( a r g s [ 3 ] ) ;
31 } c a t c h ( E x c e p t i o n e ) {
32 c o l 1 = 0 ;
33 c o l 2 = 0 ;
34 }
35 co l1 −−;
36 co l2 −−;
37 i f ( c o l 1 < 0 | | c o l 2 < 0) {
38 System . e r r
39 . p r i n t l n ( " I n c o r r e c t a rgumen t s . Expec ted a rgumen t s : < x l s f i l e

name 1> < x l s f i l e name 2> <column f i l e 1 > <column f i l e 2 > < o u t p u t pa th
>" ) ;

40 System . e r r
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41 . p r i n t l n ( "<column f i l e 1 > and <column f i l e 2 > must be an i n t e g e r
and g r e a t e r t h a n 0 " ) ;

42 r e t u r n ;
43 }
44

45 C o n f i g u r a t i o n con f = new C o n f i g u r a t i o n ( ) ;
46 con f . s e t I n t ( "com . wku . f i l e 1 c o l " , c o l 1 ) ;
47 con f . s e t I n t ( "com . wku . f i l e 2 c o l " , c o l 2 ) ;
48

49 Job j o b ;
50 t r y {
51 j o b = new Job ( conf , " x l s c o m p a r e " ) ;
52 } c a t c h ( IOExcep t ion e ) {
53 e . p r i n t S t a c k T r a c e ( ) ;
54 r e t u r n ;
55 }
56

57 j o b . s e t J a r B y C l a s s ( CSVCompare . c l a s s ) ;
58 j o b . s e t O u t p u t K e y C l a s s ( Text . c l a s s ) ;
59 j o b . s e t O u t p u t V a l u e C l a s s ( Text . c l a s s ) ;
60

61 j o b . s e t R e d u c e r C l a s s ( Reduce . c l a s s ) ;
62

63 j o b . s e t I n p u t F o r m a t C l a s s ( T e x t I n p u t F o r m a t . c l a s s ) ;
64 j o b . s e t O u t p u t F o r m a t C l a s s ( Tex tOu tpu tFo rma t . c l a s s ) ;
65

66 M u l t i p l e I n p u t s . a d d I n p u t P a t h ( job , new Pa th ( a r g s [ 0 ] ) ,
67 T e x t I n p u t F o r m a t . c l a s s , F i l e1Mapper . c l a s s ) ;
68 M u l t i p l e I n p u t s . a d d I n p u t P a t h ( job , new Pa th ( a r g s [ 1 ] ) ,
69 T e x t I n p u t F o r m a t . c l a s s , F i l e2Mapper . c l a s s ) ;
70 F i l e O u t p u t F o r m a t . s e t O u t p u t P a t h ( job , new Pa th ( a r g s [ 4 ] ) ) ;
71

72 t r y {
73 j o b . w a i t F o r C o m p l e t i o n ( t r u e ) ;
74 } c a t c h ( C l a s s N o t F o u n d E x c e p t i o n | IOExcep t ion | I n t e r r u p t e d E x c e p t i o n

e ) {
75 e . p r i n t S t a c k T r a c e ( ) ;
76 r e t u r n ;
77 }
78 }
79

80 p u b l i c s t a t i c c l a s s F i l e1Mapper e x t e n d s
81 Mapper < LongWri tab le , Text , Text , Text > {
82 p r i v a t e f i n a l s t a t i c S t r i n g f i l e T a g = " F1~" ;
83

84 p u b l i c vo id map ( LongWr i t ab l e key , Text va lue , C o n t e x t c o n t e x t )
85 t h ro ws IOExcep t ion , I n t e r r u p t e d E x c e p t i o n {
86 i n t colNum = c o n t e x t . g e t C o n f i g u r a t i o n ( ) . g e t I n t (
87 "com . wku . f i l e 1 c o l " , 0 ) ;
88 S t r i n g [ ] c o l s = v a l u e . t o S t r i n g ( ) . s p l i t (
89 " [ , ; ] ( ? = ( [ ^ \ " ] * \ " [ ^ \ " ] * \ " ) * [ ^ \ " ] * $ ) " ) ;
90 i f ( colNum < c o l s . l e n g t h ) {
91 S t r i n g s t r k e y = c o l s [ colNum ] ;
92 / / Remove q u o t e s from s t r i n g
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93 i f ( s t r k e y . c h a r At ( 0 ) == ' " '
94 && s t r k e y . c ha r At ( s t r k e y . l e n g t h ( ) − 1) == ' " ' ) {
95 s t r k e y = s t r k e y . s u b s t r i n g ( 1 , s t r k e y . l e n g t h ( ) − 1) ;
96 }
97 c o n t e x t . w r i t e ( new Text ( s t r k e y ) ,
98 new Text ( f i l e T a g + v a l u e . t o S t r i n g ( ) ) ) ;
99 }

100 }
101 }
102

103 p u b l i c s t a t i c c l a s s F i l e2Mapper e x t e n d s
104 Mapper < LongWri tab le , Text , Text , Text > {
105 p r i v a t e f i n a l s t a t i c S t r i n g f i l e T a g = " F2~" ;
106

107 p u b l i c vo id map ( LongWr i t ab l e key , Text va lue , C o n t e x t c o n t e x t )
108 t h ro ws IOExcep t ion , I n t e r r u p t e d E x c e p t i o n {
109 i n t colNum = c o n t e x t . g e t C o n f i g u r a t i o n ( ) . g e t I n t (
110 "com . wku . f i l e 2 c o l " , 0 ) ;
111 S t r i n g [ ] c o l s = v a l u e . t o S t r i n g ( ) . s p l i t (
112 " [ , ; ] ( ? = ( [ ^ \ " ] * \ " [ ^ \ " ] * \ " ) * [ ^ \ " ] * $ ) " ) ;
113 i f ( colNum < c o l s . l e n g t h ) {
114 S t r i n g s t r k e y = c o l s [ colNum ] ;
115 / / Remove q u o t e s from s t r i n g
116 i f ( s t r k e y . c h a r At ( 0 ) == ' " '
117 && s t r k e y . c ha r At ( s t r k e y . l e n g t h ( ) − 1) == ' " ' ) {
118 s t r k e y = s t r k e y . s u b s t r i n g ( 1 , s t r k e y . l e n g t h ( ) − 1) ;
119 }
120 c o n t e x t . w r i t e ( new Text ( s t r k e y ) ,
121 new Text ( f i l e T a g + v a l u e . t o S t r i n g ( ) ) ) ;
122 }
123 }
124 }
125

126 p u b l i c s t a t i c c l a s s Reduce e x t e n d s Reducer <Text , Text , Text , Text > {
127

128 p r i v a t e i n t F i l e 1 C o u n t = 0 ;
129 p r i v a t e i n t F i l e 2 C o u n t = 0 ;
130 p r i v a t e i n t Match = 0 ;
131

132 p r i v a t e s t a t i c f i n a l S t r i n g F i l e 1 T a g = " F1 " ;
133 p r i v a t e s t a t i c f i n a l S t r i n g F i l e 2 T a g = " F2 " ;
134

135 p u b l i c vo id r e d u c e ( Text key , I t e r a b l e <Text > v a l u e s , C o n t e x t c o n t e x t )
136 t h ro ws IOExcep t ion , I n t e r r u p t e d E x c e p t i o n {
137 / / Update f i l e c o u n t e r s and check i f l i n e matches
138 i n t sum = 0 ;
139 S t r i n g l i n e = n u l l ;
140 f o r ( Text v a l : v a l u e s ) {
141 S t r i n g t a g s [ ] = v a l . t o S t r i n g ( ) . s p l i t ( " ~" ) ;
142 i f ( t a g s [ 0 ] . e q u a l s ( F i l e 1 T a g ) ) {
143 l i n e = t a g s [ 1 ] ;
144 F i l e 1 C o u n t ++;
145 }
146 i f ( t a g s [ 0 ] . e q u a l s ( F i l e 2 T a g ) )
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147 F i l e 2 C o u n t ++;
148 sum ++;
149 }
150 i f ( sum == 2) {
151 / / Wr i t e whole l i n e
152 c o n t e x t . w r i t e ( n u l l , new Text ( l i n e ) ) ;
153 / / Update match c o u n t
154 Match ++;
155 }
156 }
157

158 @Override
159 p r o t e c t e d vo id c l e a n u p ( C o n t e x t c o n t e x t ) t h ro ws IOExcep t ion ,
160 I n t e r r u p t e d E x c e p t i o n {
161 / / Wr i t e c o u n t r e p o r t
162 i f ( F i l e 1 C o u n t == F i l e 2 C o u n t ) {
163 / / Same number o f rows i n bo th f i l e s
164 c o n t e x t . w r i t e ( new Text ( " Match p e r c e n t : " ) , new Text (
165 Double . t o S t r i n g ( ( Match * 100 / ( d ou b l e ) F i l e 1 C o u n t ) )
166 + " ( " + Match + " o u t o f " + F i l e 1 C o u n t + " ) " ) ) ;
167 } e l s e {
168 / / D i f f e r e n t number o f rows
169 c o n t e x t . w r i t e ( new Text ( " F i l e 1 match p e r c e n t : " ) , new Text (
170 Double . t o S t r i n g ( ( Match * 100 / ( d ou b l e ) F i l e 1 C o u n t ) )
171 + " ( " + Match + " o u t o f " + F i l e 1 C o u n t + " ) " ) ) ;
172 c o n t e x t . w r i t e ( new Text ( " F i l e 2 match p e r c e n t : " ) , new Text (
173 Double . t o S t r i n g ( ( Match * 100 / ( d ou b l e ) F i l e 2 C o u n t ) )
174 + " ( " + Match + " o u t o f " + F i l e 2 C o u n t + " ) " ) ) ;
175 }
176 }
177 }
178 }
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Appendix C
APACHE HADOOP CONFIGURATION FILES

Chapter C displays the configuration files used in the Apache Hadoop cluster.
C.A Apache Hadoop Master Node configuration Files

Section ?? displays the configurations needed to setup the Apache Hadoop Master
node in a cluster
C.A.1 MapReduce Configuration

MapReduce configuration parameters are stored in mapred-site.xml file. The con-
figurations made in this file will override the defaults of MapReduce parameters

1 <? xml v e r s i o n =" 1 . 0 " ?>
2 <? xml−s t y l e s h e e t t y p e =" t e x t / x s l " h r e f =" c o n f i g u r a t i o n . x s l " ?>
3 < !−−
4 L i c e n s e d under t h e Apache License , V e r s i o n 2 . 0 ( t h e " L i c e n s e " ) ;
5 you may n o t use t h i s f i l e e x c e p t i n c o m p l i a n c e wi th t h e L i c e n s e .
6 You may o b t a i n a copy of t h e L i c e n s e a t
7

8 h t t p : / /www. apache . o rg / l i c e n s e s / LICENSE−2.0
9

10 Un le s s r e q u i r e d by a p p l i c a b l e law or a g r e e d t o i n w r i t i n g , s o f t w a r e
11 d i s t r i b u t e d under t h e L i c e n s e i s d i s t r i b u t e d on an "AS IS " BASIS ,
12 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , e i t h e r e x p r e s s o r

i m p l i e d .
13 See t h e L i c e n s e f o r t h e s p e c i f i c l a n g u a g e g o v e r n i n g p e r m i s s i o n s and
14 l i m i t a t i o n s under t h e L i c e n s e . See accompanying LICENSE f i l e .
15 −−>
16

17 < !−− Put s i t e −s p e c i f i c p r o p e r t y o v e r r i d e s i n t h i s f i l e . −−>
18

19 < c o n f i g u r a t i o n >
20

21 < !−−p r o p e r t y >
22 <name>mapred . j o b . t r a c k e r < / name>
23 < v a l u e > h a d o o p m a s t e r : 5 4 3 1 1 < / v a l u e >
24

25 −−>
26

27 < p r o p e r t y >
28 <name>mapreduce . f ramework . name< / name>
29 < v a l u e > ya rn < / v a l u e >
30 < d e s c r i p t i o n >The r u n t i m e framework f o r e x e c u t i n g MapReduce j o b s .
31 Can be one of l o c a l , c l a s s i c o r ya rn .
32 < / d e s c r i p t i o n >
33 < / p r o p e r t y >
34

35 < p r o p e r t y >
36 <name>mapreduce . j o b t r a c k e r . a d d r e s s < / name>
37 < v a l u e > l o c a l < / v a l u e >
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38 < d e s c r i p t i o n >The h o s t and p o r t t h a t t h e MapReduce j o b t r a c k e r r u n s
39 a t . I f " l o c a l " , t h e n j o b s a r e run in−p r o c e s s a s a s i n g l e map
40 and r e d u c e t a s k .
41 < / d e s c r i p t i o n >
42 < / p r o p e r t y >
43

44 < p r o p e r t y >
45 <name>mapred . t a s k . t i m e o u t < / name>
46 < v a l u e >18000000< / v a l u e >
47 < / p r o p e r t y >
48

49

50 < / c o n f i g u r a t i o n >

107



C.A.2 HDFS Configuration
HDFS configuration parameters are stored in hdfs-site.xml. The configurations

made in this file will override the default parameters of HDFS. In this file user can de-
fine the replication factor, block size, DataNode, and NameNode locations.

1 <? xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF−8" ?>
2 <? xml−s t y l e s h e e t t y p e =" t e x t / x s l " h r e f =" c o n f i g u r a t i o n . x s l " ?>
3 < !−−
4 L i c e n s e d under t h e Apache License , V e r s i o n 2 . 0 ( t h e " L i c e n s e " ) ;
5 you may n o t use t h i s f i l e e x c e p t i n c o m p l i a n c e wi th t h e L i c e n s e .
6 You may o b t a i n a copy of t h e L i c e n s e a t
7

8 h t t p : / /www. apache . o rg / l i c e n s e s / LICENSE−2.0
9

10 Un le s s r e q u i r e d by a p p l i c a b l e law or a g r e e d t o i n w r i t i n g , s o f t w a r e
11 d i s t r i b u t e d under t h e L i c e n s e i s d i s t r i b u t e d on an "AS IS " BASIS ,
12 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , e i t h e r e x p r e s s o r

i m p l i e d .
13 See t h e L i c e n s e f o r t h e s p e c i f i c l a n g u a g e g o v e r n i n g p e r m i s s i o n s and
14 l i m i t a t i o n s under t h e L i c e n s e . See accompanying LICENSE f i l e .
15 −−>
16

17 < !−− Put s i t e −s p e c i f i c p r o p e r t y o v e r r i d e s i n t h i s f i l e . −−>
18

19 < c o n f i g u r a t i o n >
20 < c o n f i g u r a t i o n >
21

22 < p r o p e r t y >
23 <name> d f s . d a t a n o d e . d a t a . d i r < / name>
24 < v a l u e > f i l e : / / / home / ubun tu / hadoop_df s / d a t a / d a t a n o d e < / v a l u e >
25 < d e s c r i p t i o n >DataNode d i r e c t o r y < / d e s c r i p t i o n >
26 < / p r o p e r t y >
27

28 < p r o p e r t y >
29 <name> d f s . namenode . name . d i r < / name>
30 < v a l u e > f i l e : / / / home / ubun tu / hadoop_df s / d a t a / namenode< / v a l u e >
31 < d e s c r i p t i o n >NameNode d i r e c t o r y f o r namespace and t r a n s a c t i o n l o g s

s t o r a g e . < / d e s c r i p t i o n >
32 < / p r o p e r t y >
33

34

35

36 < p r o p e r t y >
37 <name> d f s . r e p l i c a t i o n < / name>
38 < v a l u e >2< / v a l u e >
39 < / p r o p e r t y >
40

41 < p r o p e r t y >
42 <name> d f s . p e r m i s s i o n s < / name>
43 < v a l u e > f a l s e < / v a l u e >
44 < / p r o p e r t y >
45

46

47 < p r o p e r t y >
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48 <name> d f s . b l o c k s i z e < / name>
49 < v a l u e >512k< / v a l u e >
50 < d e s c r i p t i o n >
51 The d e f a u l t b l o c k s i z e f o r new f i l e s , i n b y t e s .
52 You can use t h e f o l l o w i n g s u f f i x ( c a s e i n s e n s i t i v e ) :
53 k ( k i l o ) , m( mega ) , g ( g i g a ) , t ( t e r a ) , p ( p e t a ) , e ( exa ) t o s p e c i f y

t h e s i z e ( such
54 as 128k , 512m, 1g , e t c . ) ,
55 Or p r o v i d e c o m p l e t e s i z e i n b y t e s ( such as 134217728 f o r 128 MB)

.
56 < / d e s c r i p t i o n >
57 < / p r o p e r t y >
58

59

60 < p r o p e r t y >
61 <name> d f s . namenode . f s− l i m i t s . min−block−s i z e < / name>
62 < v a l u e >32768< / v a l u e >
63 < d e s c r i p t i o n >Minimum b l o c k s i z e i n b y t e s , e n f o r c e d by t h e Namenode

a t c r e a t e
64 t ime . Th i s p r e v e n t s t h e a c c i d e n t a l c r e a t i o n o f f i l e s w i th t i n y

b l o c k
65 s i z e s ( and t h u s many b l o c k s ) , which can d e g r a d e
66 p e r f o r m a n c e .
67 < / d e s c r i p t i o n >
68 < / p r o p e r t y >
69

70 < !−−
71 < p r o p e r t y >
72 <name> d f s . namenode . f s− l i m i t s . min−block−s i z e < / name>
73 < v a l u e >100< / v a l u e >
74 < d e s c r i p t i o n >minimum b l o c k s i z e o f t h e d a t a < / d e s c r i p t i o n >
75 < / p r o p e r t y >
76

77 −−>
78

79 < p r o p e r t y >
80 <name> d f s . d a t a n o d e . use . d a t a n o d e . hos tname < / name>
81 < v a l u e > f a l s e < / v a l u e >
82 < / p r o p e r t y >
83 < p r o p e r t y >
84 <name> d f s . namenode . d a t a n o d e . r e g i s t r a t i o n . ip−hostname−check < / name>
85 < v a l u e > f a l s e < / v a l u e >
86 < / p r o p e r t y >
87

88

89

90 < !−−
91 < p r o p e r t y >
92 <name> d f s . namenode . h t t p −a d d r e s s < / name>
93 < v a l u e >ec2 −52−10−149−153.us−west −2. compute . amazonaws . com:50070< / v a l u e >
94 < d e s c r i p t i o n >Your NameNode hostname f o r h t t p a c c e s s . < / d e s c r i p t i o n >
95 < / p r o p e r t y >
96

97 < p r o p e r t y >
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98 <name> d f s . namenode . s e c o n d a r y . h t t p −a d d r e s s < / name>
99 < v a l u e >ec2 −52−10−199−242.us−west −2. compute . amazonaws . com:50090< / v a l u e >

100 < d e s c r i p t i o n >Your Secondary NameNode hostname f o r h t t p a c c e s s . < /
d e s c r i p t i o n >

101 < / p r o p e r t y >
102 −−>
103

104 < p r o p e r t y >
105 <name> d f s . namenode . rpc−a d d r e s s < / name>
106 < v a l u e > h a d o o p m a s t e r : 9 0 0 0 < / v a l u e >
107 < d e s c r i p t i o n >
108 RPC a d d r e s s t h a t h a n d l e s a l l c l i e n t s r e q u e s t s . In t h e c a s e o f HA

/ F e d e r a t i o n where m u l t i p l e namenodes e x i s t ,
109 t h e name s e r v i c e i d i s added t o t h e name e . g . d f s . namenode . rpc−

a d d r e s s . ns1
110 d f s . namenode . rpc−a d d r e s s .EXAMPLENAMESERVICE
111 The v a l u e o f t h i s p r o p e r t y w i l l t a k e t h e form of nn−h o s t 1 : r p c −

p o r t .
112 < / d e s c r i p t i o n >
113 < / p r o p e r t y >
114

115 < / c o n f i g u r a t i o n >
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C.A.3 Core Site Configuration
NameNode is identified based on the configuration settings in the core-site.xml. All

the master and slave node should point their NameNodes to the single URI

1 <? xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF−8" ?>
2 <? xml−s t y l e s h e e t t y p e =" t e x t / x s l " h r e f =" c o n f i g u r a t i o n . x s l " ?>
3 < !−−
4 L i c e n s e d under t h e Apache License , V e r s i o n 2 . 0 ( t h e " L i c e n s e " ) ;
5 you may n o t use t h i s f i l e e x c e p t i n c o m p l i a n c e wi th t h e L i c e n s e .
6 You may o b t a i n a copy of t h e L i c e n s e a t
7

8 h t t p : / /www. apache . o rg / l i c e n s e s / LICENSE−2.0
9

10 Un le s s r e q u i r e d by a p p l i c a b l e law or a g r e e d t o i n w r i t i n g , s o f t w a r e
11 d i s t r i b u t e d under t h e L i c e n s e i s d i s t r i b u t e d on an "AS IS " BASIS ,
12 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , e i t h e r e x p r e s s o r

i m p l i e d .
13 See t h e L i c e n s e f o r t h e s p e c i f i c l a n g u a g e g o v e r n i n g p e r m i s s i o n s and
14 l i m i t a t i o n s under t h e L i c e n s e . See accompanying LICENSE f i l e .
15 −−>
16

17 < !−− Put s i t e −s p e c i f i c p r o p e r t y o v e r r i d e s i n t h i s f i l e . −−>
18

19 < c o n f i g u r a t i o n >
20 < p r o p e r t y >
21 <name> f s . d e f a u l t F S < / name>
22 < v a l u e > h d f s : / / h a d o o p m a s t e r : 9 0 0 0 < / v a l u e >
23 < d e s c r i p t i o n >Namenode URI< / d e s c r i p t i o n >
24 < / p r o p e r t y >
25 < / c o n f i g u r a t i o n >

111



C.A.4 Apache Hadoop Yarn Configuration
Yarn configuration parameters are stored in yarn-site.xml file. The values that con-

figured in this file will override the default values of yarn. This configurations in this file
decides the ResourceManager and NodeManager function

1 <? xml v e r s i o n =" 1 . 0 " ?>
2 < !−−
3 L i c e n s e d under t h e Apache License , V e r s i o n 2 . 0 ( t h e " L i c e n s e " ) ;
4 you may n o t use t h i s f i l e e x c e p t i n c o m p l i a n c e wi th t h e L i c e n s e .
5 You may o b t a i n a copy of t h e L i c e n s e a t
6

7 h t t p : / /www. apache . o rg / l i c e n s e s / LICENSE−2.0
8

9 Un le s s r e q u i r e d by a p p l i c a b l e law or a g r e e d t o i n w r i t i n g , s o f t w a r e
10 d i s t r i b u t e d under t h e L i c e n s e i s d i s t r i b u t e d on an "AS IS " BASIS ,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , e i t h e r e x p r e s s o r

i m p l i e d .
12 See t h e L i c e n s e f o r t h e s p e c i f i c l a n g u a g e g o v e r n i n g p e r m i s s i o n s and
13 l i m i t a t i o n s under t h e L i c e n s e . See accompanying LICENSE f i l e .
14 −−>
15 < c o n f i g u r a t i o n >
16

17 < !−− S i t e s p e c i f i c YARN c o n f i g u r a t i o n p r o p e r t i e s −−>
18

19

20 < p r o p e r t y >
21 <name> ya rn . nodemanager . aux−s e r v i c e s < / name>
22 < v a l u e > m a p r e d u c e _ s h u f f l e < / v a l u e >
23 < / p r o p e r t y >
24 < p r o p e r t y >
25 <name> ya rn . nodemanager . aux−s e r v i c e s . mapreduce . s h u f f l e . c l a s s < / name>
26 < v a l u e > org . apache . hadoop . mapred . S h u f f l e H a n d l e r < / v a l u e >
27 < / p r o p e r t y >
28 < p r o p e r t y >
29 <name> ya rn . r e s o u r c e m a n a g e r . r e s o u r c e − t r a c k e r . a d d r e s s < / name>
30 < v a l u e > h a d o o p m a s t e r : 8 0 2 5 < / v a l u e >
31 < / p r o p e r t y >
32 < p r o p e r t y >
33 <name> ya rn . r e s o u r c e m a n a g e r . s c h e d u l e r . a d d r e s s < / name>
34 < v a l u e > h a d o o p m a s t e r : 8 0 3 0 < / v a l u e >
35 < / p r o p e r t y >
36 < p r o p e r t y >
37 <name> ya rn . r e s o u r c e m a n a g e r . a d d r e s s < / name>
38 < v a l u e > h a d o o p m a s t e r : 8 0 5 0 < / v a l u e >
39 < / p r o p e r t y >
40

41 < p r o p e r t y >
42 <name> ya rn . nodemanager . pmem−check−e n a b l e d < / name>
43 < v a l u e > f a l s e < / v a l u e >
44 < / p r o p e r t y >
45

46 < p r o p e r t y >
47 <name> ya rn . nodemanager . vmem−check−e n a b l e d < / name>
48 < v a l u e > f a l s e < / v a l u e >
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49 < / p r o p e r t y >
50

51

52 < p r o p e r t y >
53 < d e s c r i p t i o n >The hostname of t h e RM. < / d e s c r i p t i o n >
54 <name> ya rn . r e s o u r c e m a n a g e r . hos tname < / name>
55 < v a l u e > hadoopmas t e r < / v a l u e >
56 < / p r o p e r t y >
57

58 < p r o p e r t y >
59 < d e s c r i p t i o n >Whether p h y s i c a l memory l i m i t s w i l l be e n f o r c e d f o r
60 c o n t a i n e r s .
61 < / d e s c r i p t i o n >
62 <name> ya rn . nodemanager . pmem−check−e n a b l e d < / name>
63 < v a l u e > f a l s e < / v a l u e >
64 < / p r o p e r t y >
65

66 < p r o p e r t y >
67 < d e s c r i p t i o n >Whether v i r t u a l memory l i m i t s w i l l be e n f o r c e d f o r
68 c o n t a i n e r s .
69 < / d e s c r i p t i o n >
70 <name> ya rn . nodemanager . vmem−check−e n a b l e d < / name>
71 < v a l u e > f a l s e < / v a l u e >
72 < / p r o p e r t y >
73

74 < p r o p e r t y >
75 < d e s c r i p t i o n >Whether t o e n a b l e l o g a g g r e g a t i o n . Log a g g r e g a t i o n

c o l l e c t s
76 each c o n t a i n e r ' s l o g s and moves t h e s e l o g s on to a f i l e −system , f o r

e . g .
77 HDFS, a f t e r t h e a p p l i c a t i o n c o m p l e t e s . Use r s can c o n f i g u r e t h e
78 " ya rn . nodemanager . remote−app−log−d i r " and
79 " ya rn . nodemanager . remote−app−log−d i r−s u f f i x " p r o p e r t i e s t o

d e t e r m i n e
80 where t h e s e l o g s a r e moved t o . Use r s can a c c e s s t h e l o g s v i a t h e
81 A p p l i c a t i o n T i m e l i n e S e r v e r .
82 </ d e s c r i p t i o n >
83 <name> ya rn . log−a g g r e g a t i o n −enab l e < / name>
84 < va lue > t r u e < / va lue >
85 </ p r o p e r t y >
86

87 </ c o n f i g u r a t i o n >
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C.B Apache Hadoop Slave Nodes configuration Files
Section C.B displays the configuration properties required to setup Apache Hadoop

slave nodes, in a cluster all the slaves have the same configuration properties. Ideally all
the slave nodes in a cluster refer towards the ResourceManager and NameNode(s).
C.B.1 MapReduce Configuration

mapred-site.xml

1 <? xml v e r s i o n =" 1 . 0 " ?>
2 <? xml−s t y l e s h e e t t y p e =" t e x t / x s l " h r e f =" c o n f i g u r a t i o n . x s l " ?>
3 < !−−
4 L i c e n s e d under t h e Apache License , V e r s i o n 2 . 0 ( t h e " L i c e n s e " ) ;
5 you may n o t use t h i s f i l e e x c e p t i n c o m p l i a n c e wi th t h e L i c e n s e .
6 You may o b t a i n a copy of t h e L i c e n s e a t
7

8 h t t p : / /www. apache . o rg / l i c e n s e s / LICENSE−2.0
9

10 Un le s s r e q u i r e d by a p p l i c a b l e law or a g r e e d t o i n w r i t i n g , s o f t w a r e
11 d i s t r i b u t e d under t h e L i c e n s e i s d i s t r i b u t e d on an "AS IS " BASIS ,
12 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , e i t h e r e x p r e s s o r

i m p l i e d .
13 See t h e L i c e n s e f o r t h e s p e c i f i c l a n g u a g e g o v e r n i n g p e r m i s s i o n s and
14 l i m i t a t i o n s under t h e L i c e n s e . See accompanying LICENSE f i l e .
15 −−>
16

17 < !−− Put s i t e −s p e c i f i c p r o p e r t y o v e r r i d e s i n t h i s f i l e . −−>
18

19 < c o n f i g u r a t i o n >
20

21 < !−−p r o p e r t y >
22 <name>mapred . j o b . t r a c k e r < / name>
23 < v a l u e > h a d o o p m a s t e r : 5 4 3 1 1 < / v a l u e >
24

25 −−>
26

27 < p r o p e r t y >
28 <name>mapreduce . f ramework . name< / name>
29 < v a l u e > ya rn < / v a l u e >
30 < d e s c r i p t i o n >The r u n t i m e framework f o r e x e c u t i n g MapReduce j o b s .
31 Can be one of l o c a l , c l a s s i c o r ya rn .
32 < / d e s c r i p t i o n >
33 < / p r o p e r t y >
34

35 < p r o p e r t y >
36 <name>mapreduce . j o b t r a c k e r . a d d r e s s < / name>
37 < v a l u e > l o c a l < / v a l u e >
38 < d e s c r i p t i o n >The h o s t and p o r t t h a t t h e MapReduce j o b t r a c k e r r u n s
39 a t . I f " l o c a l " , t h e n j o b s a r e run in−p r o c e s s a s a s i n g l e map
40 and r e d u c e t a s k .
41 < / d e s c r i p t i o n >
42 < / p r o p e r t y >
43

44 < p r o p e r t y >
45 <name>mapred . t a s k . t i m e o u t < / name>
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46 < v a l u e >18000000< / v a l u e >
47 < / p r o p e r t y >
48

49

50 < / c o n f i g u r a t i o n >
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C.B.2 HDFS Configuration
hdfs-site.xml

1 <? xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF−8" ?>
2 <? xml−s t y l e s h e e t t y p e =" t e x t / x s l " h r e f =" c o n f i g u r a t i o n . x s l " ?>
3 < !−−
4 L i c e n s e d under t h e Apache License , V e r s i o n 2 . 0 ( t h e " L i c e n s e " ) ;
5 you may n o t use t h i s f i l e e x c e p t i n c o m p l i a n c e wi th t h e L i c e n s e .
6 You may o b t a i n a copy of t h e L i c e n s e a t
7

8 h t t p : / /www. apache . o rg / l i c e n s e s / LICENSE−2.0
9

10 Un le s s r e q u i r e d by a p p l i c a b l e law or a g r e e d t o i n w r i t i n g , s o f t w a r e
11 d i s t r i b u t e d under t h e L i c e n s e i s d i s t r i b u t e d on an "AS IS " BASIS ,
12 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , e i t h e r e x p r e s s o r

i m p l i e d .
13 See t h e L i c e n s e f o r t h e s p e c i f i c l a n g u a g e g o v e r n i n g p e r m i s s i o n s and
14 l i m i t a t i o n s under t h e L i c e n s e . See accompanying LICENSE f i l e .
15 −−>
16

17 < !−− Put s i t e −s p e c i f i c p r o p e r t y o v e r r i d e s i n t h i s f i l e . −−>
18

19 < c o n f i g u r a t i o n >
20 < c o n f i g u r a t i o n >
21

22 < p r o p e r t y >
23 <name> d f s . d a t a n o d e . d a t a . d i r < / name>
24 < v a l u e > f i l e : / / / home / ubun tu / hadoop_df s / d a t a / d a t a n o d e < / v a l u e >
25 < d e s c r i p t i o n >DataNode d i r e c t o r y < / d e s c r i p t i o n >
26 < / p r o p e r t y >
27

28 < p r o p e r t y >
29 <name> d f s . namenode . name . d i r < / name>
30 < v a l u e > f i l e : / / / home / ubun tu / hadoop_df s / d a t a / namenode< / v a l u e >
31 < d e s c r i p t i o n >NameNode d i r e c t o r y f o r namespace and t r a n s a c t i o n l o g s

s t o r a g e . < / d e s c r i p t i o n >
32 < / p r o p e r t y >
33

34

35

36 < p r o p e r t y >
37 <name> d f s . r e p l i c a t i o n < / name>
38 < v a l u e >2< / v a l u e >
39 < / p r o p e r t y >
40

41 < p r o p e r t y >
42 <name> d f s . p e r m i s s i o n s < / name>
43 < v a l u e > f a l s e < / v a l u e >
44 < / p r o p e r t y >
45

46

47 < p r o p e r t y >
48 <name> d f s . b l o c k s i z e < / name>
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49 < v a l u e >512k< / v a l u e >
50 < d e s c r i p t i o n >
51 The d e f a u l t b l o c k s i z e f o r new f i l e s , i n b y t e s .
52 You can use t h e f o l l o w i n g s u f f i x ( c a s e i n s e n s i t i v e ) :
53 k ( k i l o ) , m( mega ) , g ( g i g a ) , t ( t e r a ) , p ( p e t a ) , e ( exa ) t o s p e c i f y

t h e s i z e ( such
54 as 128k , 512m, 1g , e t c . ) ,
55 Or p r o v i d e c o m p l e t e s i z e i n b y t e s ( such as 134217728 f o r 128 MB)

.
56 < / d e s c r i p t i o n >
57 < / p r o p e r t y >
58

59

60 < p r o p e r t y >
61 <name> d f s . namenode . f s− l i m i t s . min−block−s i z e < / name>
62 < v a l u e >32768< / v a l u e >
63 < d e s c r i p t i o n >Minimum b l o c k s i z e i n b y t e s , e n f o r c e d by t h e Namenode

a t c r e a t e
64 t ime . Th i s p r e v e n t s t h e a c c i d e n t a l c r e a t i o n o f f i l e s w i th t i n y

b l o c k
65 s i z e s ( and t h u s many b l o c k s ) , which can d e g r a d e
66 p e r f o r m a n c e .
67 < / d e s c r i p t i o n >
68 < / p r o p e r t y >
69

70 < !−−
71 < p r o p e r t y >
72 <name> d f s . namenode . f s− l i m i t s . min−block−s i z e < / name>
73 < v a l u e >100< / v a l u e >
74 < d e s c r i p t i o n >minimum b l o c k s i z e o f t h e d a t a < / d e s c r i p t i o n >
75 < / p r o p e r t y >
76

77 −−>
78

79 < p r o p e r t y >
80 <name> d f s . d a t a n o d e . use . d a t a n o d e . hos tname < / name>
81 < v a l u e > f a l s e < / v a l u e >
82 < / p r o p e r t y >
83 < p r o p e r t y >
84 <name> d f s . namenode . d a t a n o d e . r e g i s t r a t i o n . ip−hostname−check < / name>
85 < v a l u e > f a l s e < / v a l u e >
86 < / p r o p e r t y >
87

88

89

90 < !−−
91 < p r o p e r t y >
92 <name> d f s . namenode . h t t p −a d d r e s s < / name>
93 < v a l u e >ec2 −52−10−149−153.us−west −2. compute . amazonaws . com:50070< / v a l u e >
94 < d e s c r i p t i o n >Your NameNode hostname f o r h t t p a c c e s s . < / d e s c r i p t i o n >
95 < / p r o p e r t y >
96

97 < p r o p e r t y >
98 <name> d f s . namenode . s e c o n d a r y . h t t p −a d d r e s s < / name>
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99 < v a l u e >ec2 −52−10−199−242.us−west −2. compute . amazonaws . com:50090< / v a l u e >
100 < d e s c r i p t i o n >Your Secondary NameNode hostname f o r h t t p a c c e s s . < /

d e s c r i p t i o n >
101 < / p r o p e r t y >
102 −−>
103

104 < p r o p e r t y >
105 <name> d f s . namenode . rpc−a d d r e s s < / name>
106 < v a l u e > h a d o o p m a s t e r : 9 0 0 0 < / v a l u e >
107 < d e s c r i p t i o n >
108 RPC a d d r e s s t h a t h a n d l e s a l l c l i e n t s r e q u e s t s . In t h e c a s e o f HA

/ F e d e r a t i o n where m u l t i p l e namenodes e x i s t ,
109 t h e name s e r v i c e i d i s added t o t h e name e . g . d f s . namenode . rpc−

a d d r e s s . ns1
110 d f s . namenode . rpc−a d d r e s s .EXAMPLENAMESERVICE
111 The v a l u e o f t h i s p r o p e r t y w i l l t a k e t h e form of nn−h o s t 1 : r p c −

p o r t .
112 < / d e s c r i p t i o n >
113 < / p r o p e r t y >
114

115 < / c o n f i g u r a t i o n >
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C.B.3 Core Site Configuration
core-site.xml

1 <? xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF−8" ?>
2 <? xml−s t y l e s h e e t t y p e =" t e x t / x s l " h r e f =" c o n f i g u r a t i o n . x s l " ?>
3 < !−−
4 L i c e n s e d under t h e Apache License , V e r s i o n 2 . 0 ( t h e " L i c e n s e " ) ;
5 you may n o t use t h i s f i l e e x c e p t i n c o m p l i a n c e wi th t h e L i c e n s e .
6 You may o b t a i n a copy of t h e L i c e n s e a t
7

8 h t t p : / /www. apache . o rg / l i c e n s e s / LICENSE−2.0
9

10 Un le s s r e q u i r e d by a p p l i c a b l e law or a g r e e d t o i n w r i t i n g , s o f t w a r e
11 d i s t r i b u t e d under t h e L i c e n s e i s d i s t r i b u t e d on an "AS IS " BASIS ,
12 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , e i t h e r e x p r e s s o r

i m p l i e d .
13 See t h e L i c e n s e f o r t h e s p e c i f i c l a n g u a g e g o v e r n i n g p e r m i s s i o n s and
14 l i m i t a t i o n s under t h e L i c e n s e . See accompanying LICENSE f i l e .
15 −−>
16

17 < !−− Put s i t e −s p e c i f i c p r o p e r t y o v e r r i d e s i n t h i s f i l e . −−>
18

19 < c o n f i g u r a t i o n >
20 < p r o p e r t y >
21 <name> f s . d e f a u l t F S < / name>
22 < v a l u e > h d f s : / / h a d o o p m a s t e r : 9 0 0 0 < / v a l u e >
23 < d e s c r i p t i o n >Namenode URI< / d e s c r i p t i o n >
24 < / p r o p e r t y >
25 < / c o n f i g u r a t i o n >
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C.B.4 Apache Hadoop Yarn Configuration
yarn-site.xml

1 <? xml v e r s i o n =" 1 . 0 " ?>
2 < !−−
3 L i c e n s e d under t h e Apache License , V e r s i o n 2 . 0 ( t h e " L i c e n s e " ) ;
4 you may n o t use t h i s f i l e e x c e p t i n c o m p l i a n c e wi th t h e L i c e n s e .
5 You may o b t a i n a copy of t h e L i c e n s e a t
6

7 h t t p : / /www. apache . o rg / l i c e n s e s / LICENSE−2.0
8

9 Un le s s r e q u i r e d by a p p l i c a b l e law or a g r e e d t o i n w r i t i n g , s o f t w a r e
10 d i s t r i b u t e d under t h e L i c e n s e i s d i s t r i b u t e d on an "AS IS " BASIS ,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , e i t h e r e x p r e s s o r

i m p l i e d .
12 See t h e L i c e n s e f o r t h e s p e c i f i c l a n g u a g e g o v e r n i n g p e r m i s s i o n s and
13 l i m i t a t i o n s under t h e L i c e n s e . See accompanying LICENSE f i l e .
14 −−>
15 < c o n f i g u r a t i o n >
16

17 < !−− S i t e s p e c i f i c YARN c o n f i g u r a t i o n p r o p e r t i e s −−>
18

19

20 < p r o p e r t y >
21 <name> ya rn . nodemanager . aux−s e r v i c e s < / name>
22 < v a l u e > m a p r e d u c e _ s h u f f l e < / v a l u e >
23 < / p r o p e r t y >
24 < p r o p e r t y >
25 <name> ya rn . nodemanager . aux−s e r v i c e s . mapreduce . s h u f f l e . c l a s s < / name>
26 < v a l u e > org . apache . hadoop . mapred . S h u f f l e H a n d l e r < / v a l u e >
27 < / p r o p e r t y >
28 < p r o p e r t y >
29 <name> ya rn . r e s o u r c e m a n a g e r . r e s o u r c e − t r a c k e r . a d d r e s s < / name>
30 < v a l u e > h a d o o p m a s t e r : 8 0 2 5 < / v a l u e >
31 < / p r o p e r t y >
32 < p r o p e r t y >
33 <name> ya rn . r e s o u r c e m a n a g e r . s c h e d u l e r . a d d r e s s < / name>
34 < v a l u e > h a d o o p m a s t e r : 8 0 3 0 < / v a l u e >
35 < / p r o p e r t y >
36 < p r o p e r t y >
37 <name> ya rn . r e s o u r c e m a n a g e r . a d d r e s s < / name>
38 < v a l u e > h a d o o p m a s t e r : 8 0 5 0 < / v a l u e >
39 < / p r o p e r t y >
40

41 < p r o p e r t y >
42 <name> ya rn . nodemanager . pmem−check−e n a b l e d < / name>
43 < v a l u e > f a l s e < / v a l u e >
44 < / p r o p e r t y >
45

46 < p r o p e r t y >
47 <name> ya rn . nodemanager . vmem−check−e n a b l e d < / name>
48 < v a l u e > f a l s e < / v a l u e >
49 < / p r o p e r t y >
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50

51

52 < p r o p e r t y >
53 < d e s c r i p t i o n >The hostname of t h e RM. < / d e s c r i p t i o n >
54 <name> ya rn . r e s o u r c e m a n a g e r . hos tname < / name>
55 < v a l u e > hadoopmas t e r < / v a l u e >
56 < / p r o p e r t y >
57

58 < p r o p e r t y >
59 < d e s c r i p t i o n >Whether p h y s i c a l memory l i m i t s w i l l be e n f o r c e d f o r
60 c o n t a i n e r s .
61 < / d e s c r i p t i o n >
62 <name> ya rn . nodemanager . pmem−check−e n a b l e d < / name>
63 < v a l u e > f a l s e < / v a l u e >
64 < / p r o p e r t y >
65

66 < p r o p e r t y >
67 < d e s c r i p t i o n >Whether v i r t u a l memory l i m i t s w i l l be e n f o r c e d f o r
68 c o n t a i n e r s .
69 < / d e s c r i p t i o n >
70 <name> ya rn . nodemanager . vmem−check−e n a b l e d < / name>
71 < v a l u e > f a l s e < / v a l u e >
72 < / p r o p e r t y >
73

74 < p r o p e r t y >
75 < d e s c r i p t i o n >Whether t o e n a b l e l o g a g g r e g a t i o n . Log a g g r e g a t i o n

c o l l e c t s
76 each c o n t a i n e r ' s l o g s and moves t h e s e l o g s on to a f i l e −system , f o r

e . g .
77 HDFS, a f t e r t h e a p p l i c a t i o n c o m p l e t e s . Use r s can c o n f i g u r e t h e
78 " ya rn . nodemanager . remote−app−log−d i r " and
79 " ya rn . nodemanager . remote−app−log−d i r−s u f f i x " p r o p e r t i e s t o

d e t e r m i n e
80 where t h e s e l o g s a r e moved t o . Use r s can a c c e s s t h e l o g s v i a t h e
81 A p p l i c a t i o n T i m e l i n e S e r v e r .
82 </ d e s c r i p t i o n >
83 <name> ya rn . log−a g g r e g a t i o n −enab l e < / name>
84 < va lue > t r u e < / va lue >
85 </ p r o p e r t y >
86

87 </ c o n f i g u r a t i o n >
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LIST OF ABBREVIATIONS

AWS Amazon Web Services

CC Cluster Controller

CGI Common Gateway Interface

CPU Central Processing Unit

CRUD Create, Read, Update, Repeat

DDP Distributed Data-Parallelization

DES Data Encryption Standard

DHCP Dynamic Host Control Protocol

DOM Document Object Model

DN Data Node

EBS Elastic Block Storage Controller

EC2 Elastic Compute Cloud

GB Gigabyte

Gbps Gigabits per second

GFS Google File System

GiB Gigabyte

GPU Graphical Processing Unit

GUI Graphical User Interface

HDD Hard Disk Drive
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HDFS Hadoop Distributed File System

HPCC High-Performance Computing Center

HTML Hypertext Markup Language

I/O Input/Output

ILP Instruction Level Parallelism

JSON JavaScript Object Notation

LAN Local Area Network

LTS Long Term Support

MB/s Megabytes per second

Mbps Megabits per second

MCR Matlab Compiler Runtime

MySQL My Structured Qurey Language

NN Name Node

OS Operating System

PBMC Human Peripheral Blood Mononuclear Cells

PEP Posterior Error Probabilities

PSM Paralogous Sequence Mismatches

RAID Redundant Array of Independent Disks

RM Resource Manager

RMI Remote Method Invocation

RPC Remote Procedural call

SVM Support Vector Machine
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US United States

VM Virtual Machine

YARN Yet Another Resource Negotiator
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