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ESTIMATION OF THE SQUARED POPULATION CROSS-VALIDITY UNDER 

CONDITIONS OF PREDICTOR SELECTION 

 

Andrew Kircher   May 2015                     26 Pages 

Directed by: Reagan Brown, Elizabeth Shoenfelt, and Amber Schroeder 

Department of Psychological Sciences            Western Kentucky University 

The current study employed a Monte Carlo design to examine whether sample-

based and formula-based estimates of cross-validated R2 differ in accuracy when 

predictor selection is and is not performed. Analyses were conducted on three datasets 

with 5, 10, or 15 predictors and different predictor-criterion relationships. Results 

demonstrated that, in most cases, a formula-based estimate of the cross-validated R2 was 

as accurate as a sample-based estimate. The one exception was the five predictor case 

wherein the formula-based estimate exhibited substantially greater bias than the estimate 

from a sample-based cross validation study. Thus, formula-based estimates, which have 

an enormous practical advantage over a two sample cross validation study, can be used in 

most cases without fear of greater error. 
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Introduction 

Individuals in fields related to business, education, health, and psychology often 

engage in research in which variables are used to forecast the outcome of a given 

criterion (Punch, 2009; Saks & Allsop, 2007; Sekaran & Bougie, 2013; Spatz & Kardas, 

2008). The most common analytic technique for creating a predictive model is Ordinary 

Least Squares (OLS) linear regression analysis. An OLS linear regression uses a sample 

from the target population with the intent to create a model that accurately predicts the 

criterion variable. One of the results obtained from this analysis is an estimate of the 

predictive power (𝑅2) of the model. One of the unfortunate consequences of using a 

model developed on a sample of data is that the model is overly customized to the sample 

of data on which it was derived (Pedhazur, 1997; Raju, Bilgic, Edwards, & Fleer, 1999; 

Schmitt & Ployhart, 1999). In other words, the model will not predict as well when 

applied to other samples derived from the same population. In order to correct for 

overfitting, researchers calculate an estimate of 𝑅2 that reflect how well the predictors, as 

weighted in the regression equation, predict the criterion variable when applied to future 

samples of data. The estimate of the reduced, or shrunken, 𝑅2 can be computed through 

either empirical cross-validation or formula-based methods. Because of the relative ease 

of formula-based methods, these methods are often preferred over empirical cross-

validation.  

When conducting predictive research it is important for the model to be practical 

as well as accurate (Pedhazur, 1997). For practical application, a model may be 

simplified by removing predictors that only marginally improve the accuracy of the 

model as a whole. However, empirical processes for selecting which variables to include 
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in a model result in an increase of overfitting (Babyak, 2004). This study will examine 

how formula-based methods compare to empirical cross-validation in their ability to 

estimate the shrunken 𝑅2 accurately when predictors have been selected. In order to 

develop a comprehensive understanding, this paper will provide a conceptual background 

to review key concepts.  

Conceptual Background 

The goal of predictive research is to optimize the prediction of a given criterion 

(Pedhazur, 1997). In predictive research, variables are chosen a priori or are selected 

after an examination of the data based on their overall contribution to criterion prediction 

(Pedhazur, 1997). Often, these predictions are made using a linear regression analysis. A 

linear regression analysis uses a linear model to estimate the relationship between a 

criterion variable and a predictor variable. When a linear regression model has only one 

predictor variable, the model is a simple linear regression. The population simple linear 

regression model is as follows: 

𝑌𝑖 = 𝛼 + 𝛽1𝑥𝑖 + 𝜀𝑖  (1) 

Where: 

𝑌𝑖 is the criterion variable. 

𝑥𝑖 is the predictor variable. 

𝛽 is the beta weight; the amount of change in 𝑌𝑖 for every one-unit increase in 𝑥𝑖. 

𝛼 is the constant; the value of 𝑌𝑖 when the value of 𝑥𝑖 is zero.  

𝜀𝑖 is the error; the variability in 𝑌𝑖 not related to the predictor in the model. 

In most cases, one predictor alone cannot accurately forecast the outcome of a 

criterion variable; better prediction is possible with multiple predictors. A model with 
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multiple predictors is referred to as a multiple linear regression model. The population 

multiple linear regression model is as follows: 

𝑌𝑖 = 𝛼 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑘𝑥𝑖𝑘+ 𝜀𝑖  (2) 

Where: 

k is the number of predictors with in the model. 

Both the simple and multiple regression equations represent the population. 

However, it is often difficult, if not impossible, to obtain data from the entire target 

population. Therefore, researchers often rely on a sample of the population; the multiple 

regression model for a sample is represented by the following model: 

𝑦𝑖 = 𝑎 + 𝑏1𝑥𝑖1 + 𝑏2𝑥𝑖2 + ⋯ 𝑏𝑘𝑥𝑖𝑘 + 𝑒𝑖  (3) 

Where: 

𝑦𝑖 is the sample criterion value.  

𝑎 is the estimated constant.  

𝑏 is the estimated beta weight.  

𝑒 is the estimated error.  

Ordinary Least Squares  

One method used by researchers to determine the value of the parameters 𝑎 and 𝑏 

is Ordinary Least Squares (OLS). In the OLS model, parameters are differentially 

weighted for each predictor variable to minimize the Sum of Squares Error (SSE). The 

parameters chosen to minimize the SSE are the best fitting parameters for that set of data. 

The sample regression equation for the prediction of scores on Y given scores on various 

X variables (i.e., the prediction equation) is: 

𝑦′𝑖 = 𝑎 + 𝑏1𝑥𝑖1 + 𝑏2𝑥𝑖2 + ⋯ 𝑏𝑘𝑥𝑖𝑘  (4) 
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Where: 

𝑦′𝑖 is the predicted criterion value.  

The prediction equation allows for the computation of a predicted Y score for each person 

given that person’s scores on the various X variables. It does not yield actual scores on Y. 

The difference between an actual Y score and a predicted Y score is the error of prediction, 

e (literally: 𝑒𝑖 = 𝑦𝑖– 𝑦′𝑖). 

In the OLS regression, 𝑏s are weighted based on a given predictor variable’s 

relationship with both 𝑦𝑖 and the other predictor variables. The model then weighs 𝑏 in a 

way that minimizes the difference between 𝑦𝑖 and 𝑦′𝑖. These weights, called optimal 

weights, may lead to problems when a model derived on one sample is applied to other 

samples from the same population.  

Squared Multiple Correlation Coefficient 

To understand how well the model predicts the criterion, researchers calculate the 

squared multiple correlation coefficient (𝑅2). 𝑅2 is determined by dividing the sum of 

squares regression (SSR) by the sum of squares total (SST): 

𝑅2= 
SSR

SST
=

∑ (ŷi-y̅i)
2n

i=1

∑ (yi-y̅i)2n
i=1

                                 (5) 

R2 can also be computed by computed as one minus the ratio of SSE to SST: 

𝑅2 =  1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
                                                  (6) 

The values of 𝑅2 range from zero to one, with a value of zero indicating that there 

is not a linear relationship, and a value of one indicating that there is a perfect linear 

relationship. Although 𝑅2 is both useful and important to regression, several problems 

can cause a misrepresentation of 𝑅2. 
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The first problem is that the multiple regression model is derived from the sample 

that was used to generate the model; this process causes the model to be tailored to that 

particular sample, a phenomenon referred to as overfitting. All sample-based regression 

models have some degree of overfitting, causing the predictive power of the model 

(indexed by 𝑅2) to decrease when the model is applied to another sample from the same 

population; that is, the overall model will not predict the criterion as well in future 

samples as it did in the first sample. 

A second problem is that 𝑅2 typically increases when the number of predictor 

variables used in a model increases (even when the added variables are not significant). 

This increase in 𝑅2 occurs because in a given sample, the correlations differ from their 

true population values due to sampling error. Sampling errors that result in the inflation 

of sample correlations can result in overestimated regression coefficients and 𝑅2 values. 

Pedhazur (1997) noted that when in the population 𝑅2 is zero, the sample 𝑅2 is equal to 

k/(N-1) (where k is the number of predictors and N is the sample size). In other words, a 

sample 𝑅2 will have a value of one (i.e., a perfect correlation) when the number of 

predictors is equal to the sample size minus one, while the actual population 𝑅2 has a 

value of zero. Schmitt and Ployhart (1999) suggested that, in order to reduce the 

magnitude of the inflation in 𝑅2, the N:k ratio should be at least 10:1.  
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Predictor Selection 

In order to avoid having too many predictor variables, researchers should only 

select the predictors that produce a significant increase in R2 in conjunction with the other 

predictor variables. There are many approaches available for selecting predictors. Three 

of the most common are forward selection, backward elimination, and stepwise selection. 

Forward selection begins by entering the predictor variable that has the highest zero-order 

correlation with the criterion in an empty model. The next predictor variable entered is 

the one that produces the greatest increase to 𝑅2 relative to the rest of the predictors in 

the model. Predictors will continue to be entered in the model until no more of the 

available predictors can add a significant increase in 𝑅2. In contrast to forward selection 

is backward elimination, in which predictor variables are removed one at a time from a 

model containing all of the predictors. The predictor variable first removed is the one that 

will lead to the smallest (and non-significant) reduction in 𝑅2 relative to the rest of the 

predictors in the model. Predictor variables will continue to be removed until removing a 

predictor causes a significant reduction in 𝑅2. Finally, stepwise regression is a 

combination of both forward selection and backward elimination. After each variable is 

entered into the model using forward selection, backward elimination is used to 

determine if the variable should stay in the model. Predictor selection techniques such as 

forward, backward, and stepwise selection may seem ideal; however, these selection 

techniques are likely to increase overfitting problems. Predictor selection leads to 

overfitting because the process is influenced by the unique characteristics of the sample, 

which allows both the model and 𝑅2 to have a greater chance of being tailored to the 

sample. To be specific, the likelihood of retention for a given predictor variable is greater 
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for sampling error inflated correlations and lessor for sampling error deflated 

correlations. Thus, the resultant regression equation is likely to contain a set of predictors 

that are not the best at predicting the criterion. Therefore, it is suggested that researchers 

exercise caution when reviewing research that does not validate its model after utilizing 

predictor selection techniques (Society for Industrial and Organizational Psychology, 

Inc., 2003). 

Shrunken R2 

To correct for the effects of overfitting, researchers must adjust the sample 𝑅2 

(Society for Industrial and Organizational Psychology, Inc., 2003); this adjusted 𝑅2 is 

referred to as the shrunken 𝑅2. There are two methods used to estimate the shrunken 𝑅2, 

empirical (or sample-based) cross-validation and formula-based methods. In order to 

empirically cross-validate the data, the results from a regression analysis performed on 

one sample must be applied to a second sample so that predicted Y scores can be 

computed for each case in that sample. These predicted Y scores within that second 

sample are then correlated with the actual Y scores. The resultant correlation, once 

squared, is the cross-validated squared multiple correlation. The cross-validated squared 

multiple correlation serves as the estimate of the squared population cross-validity (𝑝𝑐
2). 

A major limitation of empirical cross-validation is the requirement of a second sample; 

attaining a second sample can be extremely difficult, time consuming, and costly.  

The alternate method to correct for overfitting is the formula-based method. With 

this approach various formulas are used to estimate the squared population cross-validity. 

These methods do not require a second sample and are therefore more time and cost 

effective than empirical cross-validation. Although the benefits offered by these methods 
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are tempting, the very nature of a statistical estimate (as opposed to an actual application 

to a second sample) may inspire skepticism regarding the relative accuracy of these 

formulas.  

Cross-Validation Research 

Raju et al. (1999) found that when using an OLS model, formula-based methods 

work just as well as empirical cross-validation in estimating 𝑝𝑐
2. The Raju et al. study also 

compared different formula-based methods and found that the Burket (1964) equation 

performed at least as well as other more complicated equations (e.g. Cattin, 1980). The 

Burket equation is as follows: 

𝑅𝐵𝑢𝑟𝑘𝑒𝑡 =
(𝑁𝑅2 − 𝑘)

𝑅(𝑁 − 𝑘)
                                       (7) 

Following the research of Raju et al. (1999), Schmitt and Ployhart (1999) 

conducted a study to determine which formula-based method produced the best estimate 

of 𝑝𝑐
2 after predictor selection. Each of the formulas was calculated with either all the 

predictors (𝑘𝑓𝑢𝑙𝑙) or only the remaining predictors after selection (𝑘𝑠𝑡𝑒𝑝). In addition, 

each of the formulas was calculated with either an 𝑅2 that used all the predictors (𝑅𝑓𝑢𝑙𝑙
2 ) 

or only the remaining predictors after selection (𝑅𝑠𝑡𝑒𝑝
2 ). These formulas were applied to 

three different data sets that varied in sample size, population validity, and the number of 

predictors. Based on the data gathered, it appeared the Burket𝑓𝑢𝑙𝑙 equation (computed 

using both 𝑘𝑓𝑢𝑙𝑙 and 𝑅𝑓𝑢𝑙𝑙
2 ) produced the least biased estimates of 𝑝𝑐

2. Although the 

Schmitt and Ployhart study did address the effects of predictor selection on formula-

based estimates of 𝑝𝑐
2, it did not address empirical cross-validation. That is, Schmitt and 

Ployhart identified the best formula from a group of possible formulas, but they did not 
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compare the effectiveness of formula-based estimates of 𝑝𝑐
2 to the effectiveness of 

empirical cross-validation. It is possible that even the best of these formulas is inferior to 

an empirical cross-validation in predictor selection situations. 

The Current Study 

Without a comparison of the effectiveness of formula-based methods to sample-

based cross-validation under circumstances involving predictor selection, it is unclear if 

these formula-based estimates are substantially less accurate than an empirical cross-

validation in the estimation of 𝜌𝑐
2. If the formula-based methods were found to estimate 

𝜌𝑐
2 at least as well as the empirical cross-validation under conditions involving predictor 

selection, it would be far more efficient to use the formula-based methods. The current 

study is designed to test if there is a difference between the two methods. 

Hypothesis: When predictors are selected via forward selection, the accuracy of 

estimates of the cross-validated 𝑅2 will differ between empirical and formula-

based estimates. 

The current study will employ a Monte Carlo design. A Monte Carlo procedure is 

optimal for this study because it allows for both the generation and manipulation of large 

datasets with known parameters. Having access to a population will allow for the actual 

population cross-validity (𝜌𝑐
2) to be calculated and compared to the estimates derived 

from the two techniques.  

This study will examine three datasets with a multiple regression equation 

developed with predictor selection and without predictor selection. In order to prevent 

confusion, statistical terms that pertain to conditions without predictor selection will be 
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denoted by the subscript “(ns),” while conditions with predictor selection will be denoted 

by the subscript “(s)” unless stated otherwise.  

In conditions without predictor selection: 

𝜌𝑐(𝑛𝑠)
2  is the squared population cross-validity for the full regression equation (i.e., 

without predictor selection). 

k(ns) is the total number of predictors (i.e., number of predictors before predictor 

selection). 

𝑅(𝑛𝑠)
2  is the squared sample multiple correlation coefficient for the full regression 

equation (i.e., without predictor selection). 

𝑅𝑐(𝑛𝑠)
2  is the squared sample cross-validity for the full regression equation (i.e., 

without predictor selection). 

Burket(ns) is the Burket adjustment to the sample squared multiple correlation 

computed with both k(ns) and 𝑅(𝑛𝑠)
2 . This equation is equivalent to Burketfull equation used 

in the Schmitt and Ployhart (1999) study. 

In conditions with predictor selection: 

𝜌𝑐(𝑠)
2  is the squared population cross-validity for the selected regression equation 

(i.e., with predictor selection). 

𝑅(𝑠)
2  is the squared multiple correlation coefficient for the selected regression 

equation (i.e., with predictor selection). 

k(s) is the number of selected predictors. 

𝑅𝑐(𝑠)
2  is the squared sample cross-validity from the predictor selected equation. 
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Burket(s) is the Burket adjustment to the sample squared multiple correlation 

computed with both k(s) and 𝑅(𝑠)
2 . This equation is equivalent to Burketstep equation used 

in the Schmitt and Ployhart (1999) study. 

Burket(hyb) is the Burket equation computed with both k(ns) and 𝑅(𝑛𝑠)
2 . Although 

Burket(hyb) is redundant with Burket(ns), the statistics are given different names to indicate 

a crucial difference in how they are assessed for accuracy. Accuracy of estimates of the 

cross-validated 𝑅2 are always determined by a comparison to a population cross-validity 

(obtained by an application of the sample regression equation to the population). The 

difference between the two statistics lies in which sample regression is applied. For 

Burket(ns), the regression equation developed on all of the predictors (i.e., no selection) is 

applied to the population. For Burket(hyb), it is the selected regression equation that is 

applied to the population. The Burket(hyb) is a true hybrid model: the Burket equation uses 

terms from the no selection condition to estimate the cross-validated 𝑅2, but it is the 

selected equation that is of interest; it is the selected equation that is cross-validated on 

the population. As a final note, Burket(hyb) is equivalent to Burketfull equation used in the 

Schmitt and Ployhart (1999). 

Schmitt and Ployhart (1999) found that when predictor selection is performed, the 

Burket(hyb) equation produced the least biased estimator of 𝜌𝑐
2. Therefore, the present 

study will use the Burket(hyb) equation when calculating the formula-based method for 

estimating 𝜌𝑐(𝑠)
2 . To provide a more comprehensive understanding of effects of predictor 

selection on the Burket equation, this study will include the Burket(s) equation as well as 

the Burket(ns) equation for the full regression equation. 
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Method 

Population Generation 

Three datasets, each representing a population consisting of 1,000,000 cases, were 

generated. Predictors in all three datasets were generated to have the same population 

multiple correlation of .50 with the criterion variable. Additionally, all predictor variables 

in each dataset were created to have intercorrelations of .30 (Appendix A, Appendix B, 

and Appendix C) . Consistent population multiple correlations and predictor 

intercorrelations allow for a more direct comparison of results between datasets. 

In a manner similar to Schmitt and Ployhart (1999), each dataset differed in the 

number of predictors and in the predictor-criterion relationship. The first dataset (D1) 

consisted of five predictors with individual predictor-criterion relationships ranging from 

.10 to .40. The second population dataset (D2) consisted of 10 predictors with individual 

predictor-criterion relationships ranging from .00 to .40. The third dataset (D3) consisted 

of 15 predictors with individual predictor-criterion relationships ranging from -.10 to .40. 

Appendices A-C list the correlation matrices for each dataset. Means and standard 

deviations for each variable were set to zero and one, respectively. For each dataset, 

samples were randomly selected from the population with a sample size of 150 cases, a 

sample size typical of personnel selection research (Schmitt & Ployhart, 1999). 

Procedure 

The following procedure was used to generate sample 𝑅2 values, formula-based 

estimates of cross-validities, sample-based cross-validities, and squared population cross-

validities for regression equations developed without predictor selection (i.e., all 
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predictors included) and with predictor selection (i.e., only significant predictors 

included). 

1. A sample of 150 cases was randomly selected from the population.  

2. A multiple regression equation, using all of the predictors, was generated from the 

sample data, yielding 𝑅(𝑛𝑠)
2 . 

3. Forward selection (probability of entry = .05) was applied to the same sample 

data, yielding a second regression equation and an 𝑅(𝑠)
2 . 

4. The 𝑅(𝑛𝑠)
2  obtained from Step 2 was adjusted using the Burket(ns) equation, 

yielding a formula estimate of 𝜌𝑐(𝑛𝑠)
2 . 

5. The 𝑅(𝑠)
2  obtained from Step 3 was adjusted using the Burket(s) and Burket(hyb) 

equations, yielding formula estimates of 𝜌𝑐(𝑠)
2 . 

6. A second sample of 150 cases, serving as the sample for a sample-based empirical 

cross-validation, was randomly drawn from the population.  

7. The OLS models from Steps 2 and 3 were applied to the sample from Step 6 to 

obtain predicted criterion scores in this second sample. The squared correlations 

between the predicted criterion scores and the criterion scores in the second 

sample were computed to obtain empirical estimates of 𝜌𝑐(𝑛𝑠)
2  and 𝜌𝑐(𝑠)

2 . That is, 

these squared correlations are the empirical cross-validated R2 without predictor 

selection (𝑅𝑐(𝑛𝑠)
2 ) and with predictor selection (𝑅𝑐(𝑠)

2 ).  

8. The OLS models from Steps 2 and 3 were applied to the entire population to 

obtain the actual 𝜌𝑐
2 without predictor selection (𝜌𝑐(𝑛𝑠)

2 ) and with predictor 

selection (𝜌𝑐(𝑠)
2 ). 
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9. The uncorrected sample 𝑅2 values as well as the various estimates of the cross 

validated 𝑅2 (the sample cross validated 𝑅2 values and the Burket estimates of the 

population cross validated 𝑅2) were compared to the actual cross validated 𝑅2 

values (𝜌𝑐(𝑛𝑠)
2  for the no selection condition and 𝜌𝑐(𝑠)

2  for the selected condition) 

to assess the accuracy of the corrected and uncorrected coefficients. Bias, the 

signed difference between the actual 𝜌𝑐
2 and its respective estimate, and squared 

bias, an index of the variability of the bias estimate, were computed. 

10. The process described in Steps 1-9 was repeated until it yielded 1000 complete 

samples for each dataset (i.e., D1, D2, D3). Samples are considered valid if they 

retained at least one predictor variable after selection. In the event that all 

predictor variables were removed after selection, both the sample in the selection 

condition and the corresponding sample without selection were replaced with the 

next computed sample.  

11. The results were then averaged across the 1000 samples, yielding a Mean Bias 

(MB) and a Mean Squared Bias (MSB) for each estimator.  

12. Cohen’s d was computed to assess the effect size for comparisons of various 

corrections for the estimates of 𝜌𝑐
2 (e.g., Burket(hyb) versus 𝑅𝐶(𝑠)

2 ). Cohen’s (1988) 

standards for effect sizes of d are .2 for small, .5 for medium, and .8 for large. 
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Results 

All samples for datasets D1 and D2 yielded valid (i.e., at least one predictor 

selected) results for the predictor selection portion of the analysis. For dataset D3 one of 

the 1000 samples resulted in zero predictors selected via forward selection; the results 

from this sample were deleted. A new sample was drawn; the results from the analysis of 

this new sample were retained in place of the original sample. 

Estimating 𝝆𝒄
𝟐: MB  

Table 1 shows mean and SD of Bias for estimates of 𝜌𝑐(𝑛𝑠)
2  and 𝜌𝑐(𝑠)

2  for each of 

the three datasets. There were several trends that were found to be consistent in both 𝜌𝑐
2 

conditions (i.e., 𝜌𝑐(𝑛𝑠)
2  and 𝜌𝑐(𝑠)

2 ). First, the uncorrected squared multiple correlation 

coefficients (i.e., 𝑅(𝑛𝑠)
2  and 𝑅(𝑠)

2 ) were found to produce the greatest amount of bias across 

all three datasets (𝑅2 overestimated by .04 at a minimum). These results were no surprise 

and are the reason why cross-validation exists. Second, in most conditions, bias was 

greater for datasets with more predictors. Other factors held constant, more predictors in 

a model increases the likelihood and impact of sampling error. Third, both the sample 

cross-validation and the Burket equation are effective at reducing bias. Fourth, when 

predictor selection is performed, Burket(hyb) exhibits less bias than Burket(s). Last of all, in 

both conditions, a sample-based cross-validation exhibits less bias than any of the Burket 

corrected values; however, the magnitude of that difference was trivial for datasets D1 

and D2.  
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Table 1 

Mean and SD of Bias  

     D1  D2  D3 

 Variable  N   M SD   M SD   M SD 

𝜌𝑐(𝑛𝑠)
2   

𝑅(𝑛𝑠)
2    1000  -0.043 0.060  -0.087 0.057  -0.133 0.060 

𝑅𝑐(𝑛𝑠)
2    1000   0.001 0.060  -0.005 0.058  -0.004 0.057 

Burket(ns)  1000   0.005 0.063   0.004 0.062  -0.002 0.066 

 

𝜌𝑐(𝑠)
2   

 

𝑅(𝑠)
2   1000  -0.049 0.059  -0.063 0.058  -0.078 0.068 

𝑅𝐶(𝑠)
2    1000   0.001 0.058  -0.005 0.058  -0.003 0.058 

Burket(s)  1000  -0.022 0.058  -0.032 0.056  -0.047 0.064 

Burket(hyb)  1000  -0.020 0.059  -0.009 0.059  -0.004 0.068 

Note: All bias statistics in the 𝜌𝑐(𝑛𝑠)
2  condition represent the difference between the 

population cross-validated 𝑅2 of the regression equation based on the all predictors and 

the named variable. All bias statistics in the 𝜌𝑐(𝑠)
2  condition represent the difference 

between the population cross-validated 𝑅2 of the regression equation based on the 

selected predictors and the named variable. 

Estimating 𝝆𝒄
𝟐: MSB  

Table 2 shows mean and SD of Squared Bias of 𝜌𝑐(𝑛𝑠)
2  and 𝜌𝑐(𝑠)

2  for each of the 

three datasets. In both the 𝜌𝑐
2 conditions, the uncorrected squared multiple correlation 

coefficients (i.e., 𝑅(𝑛𝑠)
2  and 𝑅(𝑠)

2 ) were found to produce the greatest amount of variably in 

bias across all three datasets. For D1, the differences MSB values across all conditions 

were small and consistent. For D2 and D3, uncorrected 𝑅2 was worse than any method 

for estimating 𝜌𝑐
2. All methods for estimating 𝜌𝑐

2 performed about the same.   
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Table 2  

Mean and SD of Squared Bias  

     D1  D2  D3 

 Variable  N   M  SD  M SD  M SD 

𝜌𝑐(𝑛𝑠)
2   

𝑅(𝑛𝑠)
2    1000  0.005 0.008  0.011 0.011  0.021 0.017 

𝑅𝑐(𝑛𝑠)
2    1000  0.003 0.004  0.003 0.005  0.003 0.004 

Burket(ns)  1000  0.004 0.006  0.004 0.005  0.005 0.006 

 

𝜌𝑐(𝑠)
2   

 

𝑅(𝑠)
2    1000  0.006 0.008  0.007 0.009  0.011 0.012 

𝑅𝐶(𝑠)
2    1000  0.003 0.004  0.003 0.005  0.003 0.004 

Burket(s)  1000  0.004 0.006  0.004 0.006  0.006 0.008 

Burket(hyb)  1000  0.004 0.006  0.004 0.005  0.005 0.006 

 

Effect Size Analysis 

Rather than compute significance tests for the above comparisons, tests that have 

no meaning in a Monte Carlo analysis, the differences between various cross-validation 

techniques were assessed using effect sizes. Table 3 shows the effect size for the 

differences in bias between various cross-validation techniques. Within the no selection 

condition, bias values for a sample-based cross-validation and a Burket estimate of the 

cross-validated 𝑅2 were similar; the largest difference in bias was only .06 standard 

deviations (Cohen’s d). Thus, consistent with Raju et al. (1999), a formula-based estimate 

of the cross-validated 𝑅2 is as accurate as a sample-based cross-validation study. 

For the predictor selection condition, sample cross-validation was more accurate 

than Burket(s), with Cohen’s d values ranging from .35 to .71. Sample cross-validation 
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was also more accurate than Burket(hyb), but only for D1 (d = .32). As the number of 

predictors increased from 5 to 10 (and beyond), the difference between the two 

techniques was trivial (ds < .10). Finally, consistent with Schmitt and Ployhart (1999), 

Burket(hyb) exhibited less bias than Burket(s) for datasets D1 and D2 (ds ranged from .39 to 

.64). 

Table 3  

Effect Size Estimates for Differences in Bias  

  Cohen’s d 

Comparison  D1  D2  D3 

Burket(ns) vs. 𝑅𝐶(𝑛𝑠)
2   0.055  -0.013  -0.029 

Burket(s) vs. 𝑅𝐶(𝑠)
2    0.356  0.474  0.711 

Burket(hyb) vs. 𝑅𝐶(𝑠)
2   0.318  0.075  0.016 

Burket(s) vs. Burket(hyb)  0.035  0.393  0.644 
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Discussion 

The purpose of the current study was to determine whether the accuracy of 

estimates of the cross-validated 𝑅2 differed between empirical and formula-based 

methods when predictors are selected via forward selection. The results of the study 

found that when predictor selection is performed, a sample-based cross-validation is 

superior to a Burket(s) (i.e., the Burket adjustment to the sample squared multiple 

correlation computed with both k(ns) and 𝑅(𝑛𝑠)
2 ) estimate of the cross validated 𝑅2 across 

all conditions. However, when predictor selection is performed, a sample-based cross-

validation is superior to a Burket(hyb) (i.e., the Burket equation computed with both k(ns) 

and 𝑅(𝑛𝑠)
2 ) estimate of the cross validated 𝑅2 only when there are five predictors, most of 

which are useful (on average, 80% of the five predictors were selected). For situations in 

which there are many predictors, most of which are not useful (on average 30% or fewer 

of the predictors in the 10 and 15 predictor datasets were selected), Burket(hyb) is as 

accurate as a sample-based cross-validation and is more accurate than Burket(s). Thus, 

Burket(hyb) should be preferred to a sample-based cross-validation unless there are very 

few predictors, most of which are retained. 

When predictor selection is not performed, Burket’s equation provides an 

accurate estimate of the cross-validated 𝑅2. Estimates from Burket’s equation are as 

accurate as a sample-based cross-validation study. These findings are consistent with the 

results found by Raju et al. (1999). Given the vast difficulty of obtaining a second sample 

for a sample-based cross-validation as well as the inherent problems with sample splitting 

techniques (Murphy, 1983), the Burket equation should be the preferred method.  
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Limitation and Future Research 

Considering this study only examined one sample size, 150, it is unclear whether 

the empirical and formula-based estimates of the cross-validated 𝑅2 would produce 

similar results at other samples sizes. This is a possible limitation because smaller 

samples sizes lead to an increase in sampling error. Therefore, it is recommended that 

future studies replicate this study using various samples sizes.  

In order to allow for better comparisons between the datasets, all of the predictor 

variables were set to have intercorrelations of .3. Future studies may want to replicate this 

study with different intercorrelations because stronger intercorrelations may lead to 

erroneous predictors being selected. This study also used a population multiple 

correlation between the criterion and predictor variables of .5 across all datasets. In doing 

so, it led to the five predictor model retaining more predictors (as a percent of the 

predictors) than the 10 and 15 predictor models. (The five predictor model had four 

predictors with correlations greater than .20, whereas the 10 and 15 predictor models had 

two and one, respectively.). Future studies should be conducted to test different multiple 

correlations across several datasets containing five predictor models.  

This study examined three variations in the subjects to predictor ratio (i.e., N:k 

ratio), 10:1, 15:1, and 30:1. It is worth noting that the only case in which Burket(hyb) 

exhibited substantially greater bias than a sample-based cross-validation was when the 

subjects to predictor ratio was 30:1. Future studies should test to see if these results 

would hold true as the N:k ratio varies. Furthermore, whereas the N:k rule of 10:1 is better 

than no guideline at all, it still leads to inefficiencies in determining the desirable N size 

(Green, 1991). Green (1991) suggested that it would be more appropriate to conduct a 
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power analysis to determine the appropriate N. After conducting a power analysis, 

researchers will be able to determine the sample size required to detect a given effect size 

within a given degree of confidence. Perhaps future studies could incorporate power 

analyses to determine how estimates of 𝜌𝑐
2 are affected. 

Finally, Raju et al. (1999) suggested that when compared to equal weights 

models, OLS models are more prone to overfitting due to their use of optimal weighting. 

It is unknown if an equal weights procedure, combined with predictor selection, cross-

validates as well as an optimal weighting procedure. Researchers should consider 

addressing this issue in a future study.  

Conclusion 

In summary, when predictor selection is performed, a sample-based cross-

validation is superior to a Burket estimate of the cross validated 𝑅2 when there are only 

five predictors, most (on average 80%) of which are useful. For situations in which there 

are many predictors, very few (on average, a maximum of 30%) of which are useful, 

Burket(hyb) is as accurate as a sample-based cross-validation and is more accurate than 

Burket(s). Thus, Burket(hyb) should be preferred to a sample-based cross-validation, unless 

there are very few predictors, most of which are retained. In addition, when all predictors 

are retained, the Burket equation estimates the cross-validated 𝑅2 as well as a sample-

based cross-validation study. Given the costs associated with a sample-based cross-

validation study and the efficiency of the Burket estimators in most situations, there are 

strong reasons to prefer them over the sample-based effort.  
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APPENDIX A: 

Dataset D1: Intercorrelations for Predictors and Criterion 

 

 

 

  

 x1 x2 x3 x4 x5 

x1 1.0     

x2 .30 1.0    

x3 .30 .30 1.0   

x4 .30 .30 .30 1.0  

x5 .30 .30 .30 .30 1.0 

y .10 .26 .31 .33 .40 
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APPENDIX B: 

Dataset D2: Intercorrelations for Predictors and Criterion 

 

 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 

x1 1.0          

x2 .30 1.0         

x3 .30 .30 1.0        

x4 .30 .30 .30 1.0       

x5 .30 .30 .30 .30 1.0      

x6 .30 .30 .30 .30 .30 1.0     

x7 .30 .30 .30 .30 .30 .30 1.0    

x8 .30 .30 .30 .30 .30 .30 .30 1.0   

x9 .30 .30 .30 .30 .30 .30 .30 .30 1.0  

x10 .30 .30 .30 .30 .30 .30 .30 .30 .30 1.0 

y .00 .05 .05 .10 .10 .10 .15 .19 .30 .40 
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APPENDIX C: 

Dataset D3: Intercorrelations for Predictors and Criterion 

 

 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 

x1 1.0               

x2 .30 1.0              

x3 .30 .30 1.0             

x4 .30 .30 .30 1.0            

x5 .30 .30 .30 .30 1.0           

x6 .30 .30 .30 .30 .30 1.0          

x7 .30 .30 .30 .30 .30 .30 1.0         

x8 .30 .30 .30 .30 .30 .30 .30 1.0        

x9 .30 .30 .30 .30 .30 .30 .30 .30 1.0       

x10 .30 .30 .30 .30 .30 .30 .30 .30 .30 1.0      

x11 .30 .30 .30 .30 .30 .30 .30 .30 .30 .30 1.0     

x12 .30 .30 .30 .30 .30 .30 .30 .30 .30 .30 .30 1.0    

x13 .30 .30 .30 .30 .30 .30 .30 .30 .30 .30 .30 .30 1.0   

x14 .30 .30 .30 .30 .30 .30 .30 .30 .30 .30 .30 .30 .30 1.0  

x15 .30 .30 .30 .30 .30 .30 .30 .30 .30 .30 .30 .30 .30 .30 1.0 

y -.10 .00 .00 .05 .05 .05 .05 .05 .10 .10 .10 .10 .14 .15 .40 
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