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Mercury is one of the most serious heavy metal pollution sources that threaten 

people’s health. For decades, people have developed many technologies and materials to 

capture mercury from flue gas of coal-fired plant. Currently, the most effective material 

for mercury absorption is powdered activated carbon, which shows increased efficiency 

when modified with halogen functional groups such as bromine. Metal-organic 

frameworks (MOFs) have potential applications in mercury capture due to their fantastic 

properties such as high porosity and high thermal stability. More important, their pore 

sizes and topology structures can be controlled through choosing different organic 

ligands in the syntheses. However, their mercury removal properties have not been 

studied so far. In this project, mercury absorption properties of selected known porous 

MOFs were studied, and the syntheses of new porous MOFs with functional groups for 

mercury absorption were investigated. 

Three known porous MOFs for mercury sorption properties were investigated. 

One of these MOFs, compound 3 shows a total efficiency greater than 90% in laboratory 

scale tests. Moreover, three new MOFs: [Cu(Br2BDC)2](HTEA)2 ，

[Co2(BrBDC)(HCOO)2(DMF)2]   and Zn2(BrBDC)(Trz)2•3H2O, (BrBDC = 2,5-

dibromoterepthalicate, DMF =dimethylformamide, TEA = trimethylamine, 



xii 

Trz=1,2,4-triazole) were synthesized successfully. The first two compounds have 

two-dimensional structures, while the last compound contains three-dimensional 

channels with opening over 4.7 Å. 
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CHAPTER I 

 

INTRODUCTION 

 

 Mercury has been a notorious environmental pollutant for several decades. It can 

harm kidneys, livers, and central nervous systems after being absorbed by human beings 

through different ways. Studies indicated that coal-burning power plants are the main 

source of mercury pollution, which accounts for about 40% of total mercury emissions in 

America. In Dec. 2011, the Environmental Protection Agency (EPA) announced a new 

regulation that requires coal- and oil-fired power plants to control the amount of mercury 

emission. Their goal is to reduce mercury emissions by approximately 90 percent.1  

            Mercury is mainly found in three forms in coal-derived flue gases: elemental 

(Hg0), divalent (Hg2+) and particle-bound (Hg(p))2. For many years, people have 

developed many different technologies to remove mercury sources, such as air pollution 

control devices and selective catalytic reduction systems, both of are capable of removing 

Hg but not at the desired level and mainly target for removal Hg2+ and Hg(p) rather than 

Hg0.3 Currently, the most effective material for mercury absorption is powdered activated 

carbon. Its elemental Hg0 absorption can be enhanced by impregnating with sulfur and 

various halogens.4 However, it has many drawbacks, such as bad performance on for high 

sulfur coals because of competitive adsorption of sulfur trioxide in coal-fired flue gas.5 

Thus, to develop a new porous material for mercury removal from coal fired power plants 

is very important. 6 

 MOF (metal-organic framework) materials have been known as coordination 

polymers because they usually form extended structures using organic ligands and metal 
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ions. Most of the connecting centers in MOF structures are transition metals, which have 

empty d orbitals and can act as acceptors Lewis acid to receive electrons from ligands to 

form coordination bonds. Extending this kind of structure in three dimensions can 

generate MOF materials with high porosity. As a class of porous materials, MOFs have 

attracted extensive attention owing to their high surface area, low densities, high porosity, 

thermal stability and adjustable chemical functionalities. They have been studied for a 

variety of applications, such as gas sorption7, gas separation8, biomedical applications9, 

and catalysis10. 

Many MOFs have been found to exhibit permanent porosity and show pore 

windows ranging from 5 to 25 Å.11 MOFs with ultrahigh porosity (up to 90% free 

volume) and enormous internal surface areas, extending 10000 m2/g have been 

synthesized through ligand extension.6 For example, IRMOF-74-III-CH2NH2, can take up 

CO2 as high as 3.2 mmol per gram at 800 Torr,12 MOF-519 has a volumetric methane 

capacity of 279 cm3cm−3 at 298 K and 80 bar.13  

Many MOFs have been synthesized containing halogen group through a post-

synthesized method.14 In contrast to this, MOFs impregnated with halogen, such as 

bromine or chlorine, and synthesized together as one step would appear more convenient 

and cost effective a method. However, the investigation on the application of MOFs on 

mercury removal from flue gases has not been reported. In comparison with activated 

carbon, many MOF parameters such as surface area, pore volume, pore opening can be 

controlled. In addition, MOFs can be functionalized with many groups such as -Cl, -Br 

and –COOH, to modify the degree of chemical adsorption as well. The research 

presented here aims to investigate mercury adsorption performance of selected known 
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MOFs in simulated flue gases and the synthesis of new MOFs with the intent of testing 

their mercury absorption ability. 
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CHAPTER II 

 

Literature Review 

2.1. Introduction 

            Porous materials encompass a broad range of uses in the industrial processes such 

as absorption and catalysis. Zeolites are quintessential examples among the class of 

crystalline aluminosilicate materials with interconnected pores of 4~13Å.15 Compared to 

zeolites, activated carbons, being an amorphous porous material, have higher porosity 

and specific surface area and dominate a large part of the solid porous material market.16 

Metal organic frameworks evolved from coordination and solid-state/zeolite 

chemistry that were labeled as coordination polymers.17 They were formed by metal ions 

as nodes and organic ligands as linkers. Seminal work established by Hoskins and 

Robson, who set the basis for the future development of MOFs in their paper,17b, 18 

triggered the interest in porous coordination polymers and MOFs around 1990. After that, 

research on MOFs was popularized by Yaghi 19 et al. especially after MOF-5 was 

reported. Until now, MOF-5 and Cu-BTC (HKUST-120) were still among the most 

studied MOFs mainly due to their robust porosity. From 2002, a series of Zn-

dicarboxylate MOFs were synthesized and thereby form the concept of isoreticular 

structure MOFs21 (IRMOF, Zn4O(BDC-X)3, X=Br, NH2, C3H7O), which were prepared 

by using a variety of 1,4-benzenedicarboxylate acid (BDC) and other elongated 

dicarboxylate acids with functional groups such as phenols, alkylamines and thiols.22 

With the number MOFs made of single ligands increased, mixed-linker MOFs have 
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appeared since 2001.23 The biggest advantage of MOF porous materials is that the 

number of possible combinations of inorganic and organic components to form resulting 

structures is incredible and is indeed reflected by the enormous publications from this 

field in the last two decades.24 Moreover, MOFs demonstrated unique properties such as 

magnetism25 and luminescence26 compared to other porous materials.   

2.2 Design of MOFs 

   MOF materials possess tunable pore sizes, structure diversity, and other advantages. 

It is very important to get a full knowledge of how these inorganic parts and organic parts 

are connected to each other for the design of MOF structures. MOFs can be synthesized 

by self-assembly of organic ligands and metal ions. At the early stage of MOFs’ synthesis, 

direct assembly of new MOFs from particular metal nodes and organic linkers is the main 

approach. First row transition metals such as Zn, Cu and Co are well known to be able to 

coordinate with carboxylate groups under hydro and solvothermal conditions to form 

crystals. 

2.2.1 Organic Ligands as Building Blocks of MOFs 

         The basic requirement for organic ligands is it can form coordination bonds with a 

central metal or secondary building units (SBU). The pore volume and surface area of 

MOFs can be controlled by choosing different organic ligands for a specific application.27 

Until now, benzene-carboxylate groups (scheme 1) are the main source due to their 

rigidity and consequent tendency to form rigid metal carboxylate clusters. Ligands with 

this linear orientation mostly generate square planar or cubic MOFs. 
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Benzene-1,4-dicarboxylic acid                                    Benzene-1, 3, 5-tricarboxylic acid 

Scheme 1. Selected organic ligands with carboxylate groups. 

          Pyridine and triazole as shown in scheme 2, are also good choices since they 

contain N atoms which have lone pair electrons that can form coordinate covalent bonds 

with metal ions.   

  
 

 

 

 

 

 

1,2,4-triazole                                           2-methylimidazole 

 

 

 

 

4,4’-bipyridine 

Scheme 2. Selected organic ligands with aromatic nitrogen. 
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2.2.2 Design Methods 

Two methods for MOF design have been developed after systematic and 

comprehensive research on MOFs through many years. One is the templating method and 

the other involves construction from secondary building units (SBU).28 The design of the 

topology of a MOF is more complicated. This relates to the type of linkers as well as 

SBUs. For example, a tetrahedral linker combined with an 8-connected cubical SBU in a 

2:1 ratio could get fluorite (flu) topology; however, platinum sulfide (pts) topology will 

result when the same linker is combined with a 4-connected square planar.29 The SBU 

forms of MOFs are affected by many variables.  For example, larger angle between the 

carboxylates and the benzene ring induced by other substituents, may lead to larger 

deformation degree of the SBU.30 

2.2.3 Post-synthetic Modification 

   In order to improve the performance of certain aspects of MOF materials, post-

synthetic modification has become a focus. Chemical modulation can involve multiple 

approaches such as doping with metal ions or organic functional groups31. In most cases, 

the pore size and pore shape of a MOF can be controlled through this approach, which 

can modify the selectivity of a MOF on adsorbed gases and the gas uptake capacities.32  

Cohen and co-workers successfully reacted acetic anhydride with amino groups of 

IRMOF-3, (Zn4O(H2N-BDC)3), which is an amino-substituted version of IRMOF-1 

(Zn4O(BDC)3). This process is realized by treating IRMOF-3 with dilute acetic anhydride 

solution in CDCl3 under ambient conditions31. Also, it was found that doping with 

lithium in MOFs could greatly improve H2 uptake capacity near ambient conditions.33 
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2.3 Synthesis Method 

The most widely used method for MOF synthesis is the solvothermal method. This 

is due to the process being simple and easily controlled. However, there are drawbacks 

such as time consuming and usually large particle sizes.  

2.3.1 Conventional Synthesis 

         The most popular method of synthesizing MOFs is the solvothermal method. The 

process of this method is to mix the reactants and solvent together, then seal them in a 

Teflon reactor, and heat the reactor at a temperature of 100~200oC. The mixture will 

react under autogenous pressure above the boiling point of the solvent. The reactants 

dissolve slowly with the increased temperature and react to form nice crystalline products. 

This method requires less time and the equipment is simple and can be used for certain 

reactants that are insolvable at or below the room temperature. In addition, most products 

are perfect crystals, which can then be analyzed by the single crystal XRD technique.34 

 Product formations are greatly determined by the reaction temperature. Usually 

more condensed structures are observed at higher temperatures35. In order to get proper 

crystals and reaction rates, an increasing reaction temperature is needed for certain 

MOFs, especially if kinetically more inert ions are used. This method can be used for the 

syntheses of a wide variety of MOFs which are among the most extensively studied. 

These include among others: MOF-5, MOF-74, MOF-177, Cu-BTC (HKUST-1) or ZIF-

8.36 This method sometimes termed the direct precipitation reaction, shows that the 

crystallization of some MOFs take place on a short time-scale37. 
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2.3.2 Centrifugal Separation 

Recent work has been reported38 on a rapid room-temperature colloidal chemistry 

route to produce nanocrystal ZIF-8. The process was to stir the mixture for about two 

hours after adding a methanolic solution of Zn(NO3)2•6H2O into a methanolic solution of 

2-methylimidazole. The product was then centrifuged several times and washed with 

ethanol. After drying the product overnight in an oven, nanocrystals of ZIF-8 were 

obtained. Monodisperse nano-sized porous materials can have improved its properties for 

specific application such as gas storage and separation.  

2.3.3 Microwave-Induced Thermal Method  

           Microwave-assisted homogeneous and heterogeneous nucleation of zeolites have 

already been confirmed to be a useful way to synthesize powders and films of zeolites.39 

Yeonshick40 developed a novel microwave MOF synthesis method the microwave-

induced thermal method, to rapidly synthesize MOF-5. The experiment process was 

firstly to a prepare precursor solution, then put the substrates which are nanoporous 

anodized alumina discs coated with various conductive thin films into the container 

containing the precursor solution. Irradiated with 500W power microwave for 5 to 30 

seconds to induce the MOF-5 film growing in the container. The advantages of this 

method are rapid and the resulting products are nanoporous film with high kinetics. 

2.3.4 Ultrasonic Irradiation 

Ling-Guang Qiu et al.41 reported for the first time the synthesis of a fluorescent 

microporous MOF, Zn3(BTC)2•12H2O through a ultrasonic process. Under ambient 
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temperature and pressure conditions, the reaction of zinc acetate dihydrate and benzen-

1,3,5-tricarboxylic acid (H3BTC) were mixed in a solvent and the mixture was irradiated 

by ultrasonic for about 5 min. The crystals in nanoscale were obtained with much more 

higher yield (75.3%) than the crystals synthesized by the hydrothermal method. It was 

reported the ultrasonic time could increase the yield.  

2.4 Applications of MOF Material 

2.4.1 Gas Storage 

           Being porous materials, the application of MOFs on gas is of para,ount importance. 

Many MOFs have synthesized for CO2 capture from flue gas.42 The biggest shortcomings 

for traditional technologies for gas absorption are that equipment sizes are too large and 

energy is consumed too high.43 In contrast to this, MOFs are a low cost, and relatively 

easily regenerated among other advantages.44 Additionally, most show promise as storage 

materials for hydrogen, methane and other clean energy, MOFs have already triggered 

extensive attention and have achieved encouraging results. For example, MOF-519 

exhibits high methane volumetric storage capacity of 279cm3cm-3 at 298K and 80bar has 

been reported.13 

2.4.2 Adsorptive Separations 

The gas separation process being realized by MOF materials is derived from the 

differences in adsorption/desorption behavior of components of a mixture.15 Rational 

design about the pore sizes and other properties at the molecular level may result in 

unique interactions with certain guest molecules rather than others and thus achieve 
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unusual chemicophysical adsorption.8 For example, homochiral MOFs possess the 

potential on enantio-separation which is still a challenge.15 

2.4.3 Biomedical/Drug Deliver 

         Some MOF materials have high amount of drug loading ability since they possess 

useful features such as high BET surface area, excellent biocompatibility and functional 

diversity. Some of them on a nanometer scale might provide an approach to design novel 

theranostic nanomedical devices. Also some MOFs on the mesoporous scale might 

possess the ability of loading biological molecules such as anticancer drugs into their 

pores45. Patricia et al. for the first time showed the remarkable capacity of Ibuprofen 

hosting and delivery by MIL-100 and MIL-101. They also pointed out that the enormous 

possibilities for the design of new MOFs including their advantages to adapt to the 

structure of the drugs and their dosage requirements.46 

2.4.4 Asymmetric Catalysis 

           Because of their pore structures and large specific surface area, MOFs can be 

functionalized using metal ions and ligands to produce catalytic sites. In the last few 

decades, researchers have recognized that MOFs could be used in asymmetric catalysts 

after incorporation of a chiral ligand or proper chiral catalytic units or open metal sites or 

inside pores.47 POST-1 is the first example of MOFs which exhibited catalytic features 

for an asymmetric chemical reaction as reported by Kim et al.48 The advantages of MOFs 

as asymmetric catalyst are they avoid the tedious separation process as required in a 

general synthesis method which yield for racemic mixtures and they don’t require large 
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amounts of chiral agents as in the traditional stoichiometric synthetic method. 

Furthermore, they could increase the yields of the pure enantiomers.47 

2.4.5 Luminescent Materials 

            Luminescent materials have a broad application in lighting, organic pigments, 

drug tracer and many other area.49 Traditional luminescent materials include inorganic 

and organic luminescent materials. MOF materials are very promising as a 

multifunctional luminescent material because both the organic and the inorganic part can 

produce luminescence. Additionally, ligand to metal charge transfer (LMCT) and metal 

to ligand charge transfer (MLCT) may also result as a luminescence property of certain 

MOF materials.45   Yuexin Guo14b synthesized TABD-MOF-1, -2, -3 which were 

constructed from Mg2+, Ni2+, and Co2+
， respectively with deprotonated 4,4’-(Z,Z)-1,4-

diphenylbuta-1,3-diene-1,4-diyl as sensors. Their luminescent properties were modified 

by changing metal ions. When using specific metal ions, the luminescent feature of this 

sensor could be “turned off” and only “turned on” when it was exposed to a five-

membered heterocyclic ring explosives. The “fluorescence switch” may be triggered 

quickly and was very sensitive. 
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CHAPTER III 

Research Methods and Instruments 

3.1 Materials and Synthesis Method 

3.1.1 Chemicals 

Table 3-1 is a list of chemicals used in this research project. 

Table 3.1 all the chemicals used in this project 

Name of the chemical Formula Company Name Grade 

1,2,4-triazole C2H3N3 Aldrich 98% 

Copper(II) sulfate pentahydrate CuSO4•5H2O Aldrich Lab Grade crystals 

2-methylimidazole C4H6N2 Alfa Aesar 97% 

Zinc Nitrate hexahydrate Zn(NO3)2•6H2O Alfa Aesar 99% 

Benzene 1,3,5-tricarboxylic acid C6H3(CO2H)3 Alfa Aesar 98% 

Copper(II) nitrate trihydrate Cu(NO3)2•3H2O Fischer scientific Lab Grade crystals 

2,5-dibromoterepthalic acid C8H4Br2O4 Accela 97% 

Cobalt(II) nitrate hexahydrate Co(NO3)2•6H2O Mallinckrodt, INC  

Triethylamine C6H15N Alfa Aesar 99% 

N,N’-dimethylformamide C3H7NO Alfa Aesar 99.8+% 

Methanol CH3OH Alfa Aesar Lab Grade 

Ethanol C2H5OH Alfa Aesar Lab Grade 

Nitrogen gas     N2 Air Gas Compressed 
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3.1.2 Hydro/Solvothermal Synthesis  

The main steps of hydro/solvothermal synthesis are to mix reactants into a solvent 

and heat to a certain temperature (several hundred degrees Celsius) in the steel pressure 

vessel (autoclave) Crystals grow under autogenous pressure. The autoclaves must be 

made by thick steel material which could stand a high-pressure and high-temperature 

environment for a long synthesis time. Figure 3.1 shows an autoclave used in this thesis 

research.  

 

 

Figure 3.1 Autoclave used in the synthesis 

3.2 Instruments 

3.2.1 Single Crystal X-Ray Diffraction 

Crystal lattice structures can diffract X-ray, and the diffraction information 

corresponds with specific crystal structure information. Therefore, the crystal information 
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including crystal symmetry, unit cell dimensions, details of site-ordering, atomic 

positions and space group can be identified by studying its diffraction ray. The X-ray 

single crystal diffraction equipment is designed based on this theory. It mainly includes 

the emitter, sample stage, detector and signal conversion. The emitter is a cathode ray 

tube that could generate X-ray. Signals will be detected by the detector. The single crystal 

used for the single crystal X-ray diffraction should have a regular shape without cracks 

and blemishes; color and transparency should be consistent. The size of the crystal 

between 0.3 mm to 0.7 mm is reasonable.  

The instrument used for single crystal X-ray Diffraction in my project is Bruker  

Quazar diffractometer. The data was processed with the SAINT software50 and corrected 

for absorption with SAD-ABS51. 

 

 

 

Figure 3.2. Bruker Quazar Single Crystal X-ray Diffractometer. 
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3.2.2 Powder X-Ray Diffraction 

Once the crystal structure of a new compound is determined by the single X-ray 

diffraction, powder X-ray diffraction could be used to test if the synthesized sample 

possessed the same crystal structure with the single crystal or not. Powder X-ray 

diffraction is a rapid analytical and non-destructive analytical technique used for phase 

identification. In addition, powder X-ray not only can be used for crystal quantitative 

analysis, but also could determine the lattice parameter, grain size and miller index 

precisely.  

The X-ray usually emitted by “Cu” atom or “Mo” atom and the sample should 

be finely grounded before testing to diminish its preferred orientation.   

 

 

Figure 3.3. ARL Thermo Powder X-Ray Diffractometer. 
 

The instrument used for Powder X-Ray Diffraction in my project is the ARL 

Thermo X-ray Diffractometer with Cu-Kα radiation. The sample was swept from 2θ=3º 
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to 60º with a speed of 1.2º/minute. The X-ray generator was set to 20 kV and 20 mA. The 

picture of the ARL Thermo X-ray Diffractometer is shown in Figure 3.3 

3.2.3 Carbon Hydrogen and Nitrogen Analyzer 

          Most elemental analyses such as C, H, N and S are based on redox reaction. 

Samples are finely grounded, wrapped by a tin foil and delivered to the combustion tube 

by an autosampler.  A small amount of pure oxygen is used to aid combustion of organic 

or inorganic samples. After combustion, samples undergo further catalytic redox 

processes to convert C, H, and N to a variety of detectable gases.  

           The instrument used in my project for C, H, N and other element determination is 

Leco True-Spec CHN Determinator. The carrier gas is helium in 99.99% purity and the 

pressure is 35psi±10%. The purity of the oxygen is 99.99% and the pressure is 35psi±

10%. The furnace used for combustion can be heated up to as high as 1050℃. 

 

 

Figure 3.4. Leco True-Spec CHN Analyzer. 
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3.2.4 Thermogravimetric Analysis 

          The thermogravimetric analysis is a technique used for measuring the quality 

change of a material with temperature changes. It is understood that the measured mass 

of a sample will change when it undergoes sublimation, vaporization, decomposition or 

loss of crystalliferous water. If any of these processes take place, then the 

thermogravimetric curve will make a sharp decline. Through thermogravimetric analysis, 

analysts can get information such as at what temperature the mass of samples can change, 

or how much matter was lost. 

  Instrument Hi-Res TGA 2950 thermal gravometric analyzer was used to test the 

thermal stability of samples. The flow nitrogen atmosphere in the rate of 15ml/min. The 

temperature ramp rate is 10 ℃/min from 23℃ to 700℃. Figure 3.5 is the picture of the 

equipment. 

 

 

Figure 3.5. Hi-Res TGA 2950 thermal gravimetric analyzer. 
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3.2.5 Infrared Spectroscopy 

           Infrared spectroscopy is a useful analytical technique for structure analysis and 

functional group identification of materials. The basic principle of infrared spectroscopy 

is vibrations of molecules in a sample can absorb infrared radiations with specific 

wavelengths. Every material possesses unique infrared spectrum decided by its structures 

and symmetry. Thus, infrared spectroscopy could be used for qualitative analysis. 

            The infrared spectra were recorded from 400 to 4000 cm-1 on a Perkin Elmer 

Spectrum One FTIR spectrometer using KBr pellets. The background scan was 

collected with KBr pellets.  

 

Figure 3.6. Perkin Elmer Spectrum One FTIR spectrometer. 

3.2.6 Scanning Electron Microscope（SEM）  

The principle of SEM is when a sample is scanned using a very thin high-energy 

electron beam, the excited region can produce secondary electrons, Auger electrons, 
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characteristic X-ray and other microscopic particles. Therein, the secondary electrons 

came from 5-10 nm depth of the surface and they are very sensitive to the state of the 

sample surface and can effectively show the sample morphology. The SEM instrument is 

composed of an electron optical system, a signal collection and display system, a vacuum 

system and a power system. For purpose of this research, all the SEM tests were realized 

by JEOL 5400LV scanning electron microscope (SEM) at an accelerating voltage of 20 

kV after gold-palladium mix deposition. Figure 3.7 is the picture of the equipment.  

 

Figure 3.7.   JEOL 5400LV scanning electron microscope (SEM). 

3.2.7 Transmission Electron Microscope (TEM) 

TEM is a microscope in which samples are irradiated with an accelerated electron 

beam. The electrons will change directions of movements when colliding with atoms of 

the sample, thereby producing solid angle scattering. The size of the scattering angle of 

the sample relates to density and thickness of the sample, and can form images with 

different light and shade. The main parts of the TEM are the electron gun, collecting 
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mirror, sample room, and transmission mirror. All the TEM images exhibited in this 

research project were realized by JEM-1400 Plus Electron Microscope. Figure 3.8 is the 

picture of the instrument.  

 

 

Figure 3.8. JEM-1400 Plus Electron Microscope. 

3.2.8 Mercury Absorption Test 

Mercury absorption test was conducted on a fixed bed bench scale sorbent screen 

facility at the Institute for Combustion Science & Environmental Technology of WKU. 

Tests were carried out using a simulated gas similar totypical flue gas constituents from 

firing the Powder River Basin coal. The gas stream passed through a temperature-

controlled fixed-bed column containing ~100 mg of sorbents at 150 °C 
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CHAPTER IV 

Synthesis, characterization and mercury absorption test of known MOFs: 

[Cu3(trz)3(OH)3(H2O)4]·4.5 H2O, Zn(MeIM)2  and Cu3(BTC)2(H2O)3   

4.1 Introduction 

         The first part of my project was to investigate the mercury absorption properties 

of selected known porous MOFs using simulated flue gases.  [Cu3(trz)3(OH)3(H2O)4]·4.5 

H2O (1), Zn(MeIM)2 (2) and Cu3(BTC)2(H2O)3 (3) were selected based on their excellent 

thermal stabilities and larger pore sizes. The solvent accessible void of 1 is 41.4% of the 

unit cell volume with pores of 17×13×13Å. The framework of 1 can be stable as high as 

300°C,.52 2 has extremely high BET surface area and Langmuir surface area, both of 

which are more than 1500m2/g.53 Its thermal stability can be up to 500°C. 3 possesses the 

BET surface area of 692.2m2/g and Langmuir surface area of 917.6m2/g54. Its framework 

structure can keep intact as high as 240°C. In addition, the framework of 3 has open 

metal sites after coordinated water molecules are removed. Studies have shown that gases 

such as H2 and CO2 can be absorbed on the copper  open metal sites,55 it is expected that 

these metal site can enhance the absorption of mercury as well. 

  These three materials were prepared using the methods descripted in literature and 

their structures and stabilities were analyzed by PXRD, and TGA and mercury absorption 

was examined on a fixed bed bench scale sorbent screen facility.  
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4.2 Synthesis  

4.2.1 Synthesis of [Cu3(trz)3(OH)3(H2O)4]·4.5 H2O (1) 

1 was synthesized according to the following experiment procedure52 through the 

hydrothermal reaction. Copper sulfate pentahydrate 0.163 g (CuSO4 • 5H2O, 0.628 

mmol), 1,2,4-triazole 0.048 g (Htrz, 0.694 mmol), and DI water 5.00ml (556 mmol) were 

mixed together into a 23 mL PTF cup. After stirred briefly, the cup was sealed and heated 

at 200°C for 48 h. After cooled to room temperature, products were filtered, washed with 

deionized water, and dried in air over night. Blue octahedral crystals of 

[CuII
3(trz)3(OH)3(H2O)4]·4.5 H2O were obtained. 

4.2.2 Synthesis of Zn(MeIM)2 (2) 

2 was synthesized according to Janosch Cravillon et al.36 First zinc nitrate 

hexahydrate 0.587 g (0.00197 mol), and 2-methylimidazole (MeIM) 1.298g (0.0158 mol) 

were dissolved into 40 mL of methanol separately and stirred briefly. Then the MeIM 

solution was poured into the Zn(NO3)2·6H2O solution. The mixture was stirred at room 

temperature for 2 h resulting in a milky colloidal gel. Then, the milky colloidal was 

centrifuged for 15 min and washed with ethanol. The centrifugation was repeated three 

times. After centrifugation, the product was dried at 60℃  for 12h. Finally, white 

crystalline products of Zn(MeIM)2 were obtained 

4.2.3 Synthesis of Cu3(BTC)2(H2O)3 (3) 
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 3 was synthesized according to Donald J. Darensbourg et al.56  Cu(NO3)2•3H2O 

(1.419 g, 0.00589 mol) was added into 6.0 mL DI water and stirred till it was dissolved. 

Meanwhile, BTC (1,3,5-benetricarboxylate acid 0.619 g 0.00279 mol) was dissolved in 

6.0 mL ethanol. These two solutions were mixed and transferred a 23mL PTF cup. The 

cup was sealed, placed into an oven and heated at 110℃ for 18h. After the oven was 

cooled to room temperature, products of dark-green crystals were filtered, washed with 

deionized water, and dried in air over night. 

4.3 Results and Discussion of [Cu3(trz)3(OH)3(H2O)4]·4.5 H2O (1) 

4.3.1 The Structure Description of 1 

 

 

 

 

 

 

 

 

Figure 4.1. (a) A wire representation of the 3D structure of [Cu3(trz)3(OH)3(H2O)4]·4.5 H2O (1), 

(b) Coordination environment of copper. Black: C Blue: Cu Red: O Cyan: N. 

a) b) 
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Figure 4.1a shows the 3D open framework structure of compound 1. Each Cu ion 

connects with three N atoms from three 1,2,4-triazole molecules, one µ3-OH− group,  two 

terminal water molecules, or one water and on terminal OH− group. In total, there were 

six coordinating ligands for each Cu, forming a distorted octahedron configuration. The 

Cu3N6 triangular ring (Figure 4.1b) can be considered as a cluster. Each cluster links to 

six same clusters in equatorial and axial positions, forming a three-dimensional structure 

with three-dimension channels.  

4.3.2 Thermal Stabilities of [Cu3(trz)3(OH)3(H2O)4]·4.5 H2O (1) 

 
 

Figure 4.2. Thermal stabilities of [Cu3(trz)3(OH)3(H2O)4]·4.5H2O (1). Blue: simulated from 

SXRD. Red: experimental; Green: heated at 150°C for 12h; purple: heated at 180°C for 12h; 

black: heated at 210°C for 12h. 
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Figure 4.2 is PXRD patterns for samples of 1 after heated at different 

temperatures for 12h. PXRD patterns  of samples heated at 150 °C and 180 °C show no 

differences from those of the unheated samples or the simulated PRXD patterns. This 

suggested that the framework of 1 stable up to 180 °C. After heated at 210°C for 12h, 

compound 1 changed to amorphous, as can be seen from the PXRD pattern in Figure 4.2.   

4.3.3 Thermal-gravimetric Analysis of [Cu3(trz)3(OH)3(H2O)4]·4.5 H2O (1) 

 

Figure 4.3. (a) TGA plot of [Cu3(trz)3(OH)3(H2O)4]·4.5H2O (1) before heating, (b) TGA plots of 

1 after heating at 150°C, 180 °C and 210 °C kept for 12h. 

  

As shown in the TGA plot in Figure 4.3, a 13.43% weight loss between room 

temperature and 186°C is observed for compound 1. This is corresponding to the removal 

of 4.5 crystallization water molecules per formula unit. The PXRD pattern of 1 after 

heated at 180°C for 12h has shown the framework structure of is stable after the removal 

of water at this temperature. The removal of coordination water and the decomposition of 

the organic ligand are observed in two steps:  from 300°C to 360°C, and from 600°C to 

700℃.  

a) b) 



 
 

27 
 

             In order to study the temperature at which the crystalline water is removed, 

samples of compound 1 were heated in an oven at different temperatures followed by 

TGA analysis of the heated samples. Figure 4.3(b) shows the TGA plots of samples of 1 

heated at a 150, 180, 210°C. Among them, the blue line refers to the sample after heated 

at 150°C for 12h, the orange line represents the sample after heated at 180°C for 12h and 

the grey line is the sample heated at 210°C for 12h. The TGA plots of the samples heated 

at 150 °C and 180 °C show no significant difference. However, the TGA plot of the 

sample after heated at 210°C shows a significant difference in the temperature of 120°C- 

500°C from those of heated at 150 °C and 180 °C. This suggested the sample heated at 

210 °C before TGA had partially lost its coordination water, therefore the TGA weight 

loss of the sample heated at 210°C is less than those of the samples heated at 150°C and 

at 180°C. 

4.3.4 SEM Measurement of [Cu3(trz)3(OH)3(H2O)4]·4.5 H2O (1) 

 

Figure 4-6  

 

 

 

 

 

 

 

Figure 4.4. SEM image of [Cu3(trz)3(OH)3(H2O)4]·4.5H2O. 
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Figure 4.4 shows the SEM image of 1. It can be seen that the crystal is octahedral, 

and the edge length is about 40 µm. Particle size distribution is important for the 

absorption ability of sorbents.57 Usually, smaller-sized particles lead to higher surface 

area and thus stronger adsorption capacity. It also can increase the overall adsorption 

kinetics. 

4.3.5 Mercury Absorption Test of [Cu3(trz)3(OH)3(H2O)4]·4.5 H2O (1) 

 

Figure 4.5. Mercury absorption measurement of  [Cu3(trz)3(OH)3(H2O)4]·4.5H2O (1). 

We tested the mercury absorption ability of the framework of 1 on simulated 

flue gas using a fix bed furnace. The sample for mercury absorption experiments was 

prepared by heating 1 in an oven at 150℃ for 12h to remove the crystalline water. Figure 

4.5 shows the mercury absorption plot. The plot indicated that the mercury concentration 
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of the simulated flue gas passing through the sample did not change significantly, 

suggesting that the sample of compound 1 did not absorb significant amount of mercury. 

There are a number of reasons that the sample we tested for mercury absorption did show 

expected activity. First, it is possible only a small portion of the water in the pores of 1 

was removed at 150℃.8 Second, the sample may have low selectivity on mercury over 

other gas molecules such CO2 or N2. Third, large pore sizes do not necessary lead to 

higher absorption capacity. The materials should have appropriate pore sizes for the 

kinetic diameters of the guest molecules. The size of the pores often plays a critical role 

in the absorption process.58 

This results suggest that it is necessary to incorporate functional group such as 

S59 and Cl in the pores of the framework materials to enhance their mercury absorption. 

As previously mentioned, mercury prefers to be absorbed in divalent form such as HgS57 

or HgCl2. Most researchers proved that the mercury absorption process was not only a 

physical absorption process but also a chemical adsorption process.60 Thus, incorporation 

of functional groups may increase chemical absorption. 
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4.4 Results and discussion of Zn(MeIM)2 (2) 

4.4.1 The Structure of Zn(MeIM)2 (2) 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.6. (a) Three dimensional structure of Zn(MeIM)2 (2) (b) Coordination environment of 
Zinc. Blue: Zn; Black: C; Cyan: N. 

 

a) 

b) 
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As shown in Figure 4.6, the Zn ion is four-coordinated with nitrogen atoms from 

four MeIM molecules. These four nitrogen atoms form a tetrahedron. There are two kinds 

of rings in this structure: one is a 12-membered ring composed by 6 units of Zn-N 

tetrahedral and 6 units of MeIM, another is an 8-membered ring composed by 4 units of 

Zn-N tetrahedral and 4 units of MeIM. 8 units of the 12-membered ring and 8 units of the 

8-membered ring compose a cage, extended in this structure periodically, resulting in 

three dimensional channels, and resulting in extremely high BET and Langmuir surface 

area of more than 1500 m2/g.38 The angle of metal-IM-metal is close to 145°, that is 

similar to the Si–O–Si angle of zeolite structure (Si–O–Si angle is 144°).61  

 

4.4.2 Thermal Stabilities of Zn(MeIM)2 (2) 

 
Figure 4.7. Thermal stabilities of Zn(MeIM)2 (2). Blue: simulated from SXRD. Red 

experimental; Green: heated at 150°C for 12h; purple: heated at 180°C for 12h; black: heated 
at 210°C for 12h. 
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PXRD was used to study the stabilities of the framework of 1 after heated at 150, 

180 °C and 210 °C for 12h. As shown in Figure 4.7, the PXRD patterns remain the same 

after 1 was heated at 210 °C for 12h. Moreover, its structure is stable even boiled in 

benzene, methanol, water, and aqueous sodium hydroxide for 1-7 days.62 The PXRD 

patterns collected at designated intervals showed that the samples keep their three-

dimensional structures intact. Its high resistance to water and temperature could be 

explained by two aspects. First, the hydrophobic –CH3 (methyl) group could prevent 

water molecules from attacking the Zn-N tetrahedron units. Second, the bond between IM 

and Zn/Co is among the most stable of N-donor ligands.62-63  

4.4.3. Thermogravimetric Analysis of Zn(MeIM)2 (2) 

 

 

 

Figure 4.8. TGA plot of Zn(MeIM)2 (2)  before heating, (b) TGA plots of 2 after heating at 150°C, 

180°C and 210 °C kept for 12h. 

The thermal stability of compound 2 was investigated by thermal gravimetric 

analysis. As shown in figure 4.8a, the TGA curve exhibits a gradual mass loss more than 

33 % from 30 °C to ca. 700 °C, which is attributed to the removal of part of guest 

a) b) 
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molecules such as methanol and maybe some residual ethanol from the cavities. 

Although TGA plot of compound 2 does not show major mass lost below 500°C, optical 

inspection of the sample powder showed that its color has changed from white to light 

yellow after heated at 210°C for 12h. This suggests some structural changes such as the 

coordination number change of metal ions have happened. The sample started to 

decompose at around 550°C. TGA plots of the samples after heated at different 

temperatures indicate that the solvent or guest molecules can be removed by heating.  

4.4.4 TEM Image of Zn(MeIM)2 (2) 

 

 
 

Figure 4.9. TEM image of Zn(MeIM)2 (2). 
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The TEM image of 2 as nanoparticles is shown in Figure 4.9. The uniform particles 

are between 30 nm and 50 nm in diameter. Most of the particles are spherical, 

corresponding to its 3D structure analysis.64  

4.4.5 Mercury Absorption Test of Zn(MeIM)2 (2) 

 

 
Figure 4.10. Mercury absorption measurement of Zn(MeIM)2 (2). 

 

 

The sample of 2 for mercury absorption test was prepared by heating the sample at 

180 °C for 12 h to remove any solvent or gust molecules in the framework of 2. Figure 

4.10 shows the mercury absorption test result of 2. Simulated flue gas with the mercury 

concentration of 14.0µg/m3 was allowed to pass through a fixed-bed furnace loaded with 

a sample of 2 for 70 mins. No significant changes of mercury concentration in the 

simulated flue gas were observed after the flue gas passed through the sample. This result 
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suggests the sample of 2 did not show expected absorption ability even though it 

possesses high surface area (BET surface 1650m2/g)36.    

4.5 Results and Discussion of Cu3(BTC)2(H2O)3  (3) 

4.5.1 Structure of Cu3(BTC)2(H2O)3 (3) 

 

 

 

 

 

 

 

 

 

Figure 4.11. (a). Three dimension structure of Cu3(BTC)2(H2O)3 (3). (b). Coordination 
environment of copper Black: C; Red: O; Blue: Cu. 

a) 

b) 
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The framework of 3 is a 3D coordination structure with 3D channels (as shown in 

Figure 4.11). The secondary building unit of 3 has a tetracarboxylate paddlewheel 

configuration containing two metal ions bonded to four benzene tricarboxylate (BTC) 

linkers as shown in figure 4.11b. They bonded together through BTC ligands, and 

extended to three dimensions to form a 3D channel structure which is composed of large 

central cavities (diameter 9.0 Å) surrounded by small windows (diameter 3.5 Å).65  The 

water ligands weakly bonded to Cu atoms. These coordinated waters can be removed by 

heating and leave the framework of 3 with open metal sites on Cu ions..  

4.5.2 Thermal Stabilities of Cu3(BTC)2(H2O)3 (3) 

 

 

 
 
 
 
 
 
 
 

 

 

 

Figure 4.12. Thermal stabilities of compound Cu3(BTC)2(H2O)3 (2).  Blue: simulated from 
SXRD. Red experimental; Green: heated at 150°C for 12h; purple: heated at 180°C for 12h; 

black: heated at 210°C for 12h. 
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As shown in Figure 4.12, thermal stabilities of 3 were studied by heating sample 

of 3 at different temperatures in an oven for 12 h. The heated samples were examined 

with PXRD for their crystal structures. Simulated XRD patterns from single crystal 

structure, 66 and experimental PXRD for sample without preheating are also include in 

Figure 4.12. The PXRD plots in Figure 4.12 show on changes in the experimental 

temperature range in comparison with the simulated PXRD patterns, suggesting the 

stability of the framework of 3 at 210 °C.67  

4.5.3 Thermogravimetric Analysis of Cu3(BTC)2(H2O)3 (3) 

 

Figure 4.13. (a) TGA plot of Cu3(BTC)2(H2O)3 (2) before heating. (b) TGA plots of 3 after 
heating at 150°C, 180 °C and 210 °C kept for 12h. 

 
 
 

Figure 4.13a shows the TGA plot of 3 before it was heated in an oven. The weight 

loss before 140 °C can be attributed to crystalline water and coordinated water molecules. 

The weight loss in the range 345°C -385°C can be attributed to the decomposition of the 

organic ligand.   

a) b) 
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TG analysis was performed as well on samples of 3 that had been heated at different 

temperatures in an oven. As shown in Figure 4.13, after the sample of 3 heated at 180 °C 

or 210 °C most of the water molecules are removed. Our PXRD results showed that 3 is 

stable up to 210 °C. These results suggested that water can be removed from the 

framework structure of 3, but the framework did not collapse. 

4.5.4 SEM Measurement of Cu3(BTC)2(H2O)3 (3) 

 

Figure 4.14. SEM image of Cu3(BTC)2(H2O)3 (2). 

As shown in Figure 4.14, the crystals of all samples of 3 were octahedral. The 

particle sizes are similar and around 4-10 micrometers.   
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4.5.5 Mercury Absorption Test of Cu3(BTC)2(H2O)3 (3) 

 

 

 

 

 

 

 

Figure 4.15. Mercury absorption pattern of Cu3(BTC)2(H2O)3 (2). 

 

        Samples of 3 used for mercury test were heated at 180 °C for 12h beforehand to 

remove water in the framework. As shown in Figure 4.15, the mercury concentration in 

simulated flue gas has decreased significantly (over 90%) after the flue gas passed 

through the sample in a fix-bad furnace. This indicated that 3 has excellent mercury 

absorption ability under the experimental condition.  

For all the three selected MOFs, they all are stable at the experimental condition 

and all have excellent surface areas. However, only 3 shows excellent mercury absorption 

ability. One possible explanation is that the framework of 3 has open metal sites which is 

highly effective for gas absorption.42 Generally speaking, smaller pore sizes would 

produce stronger attraction forces acting on the adsorbent molecules due to the 

overlapping potentials from the surrounding walls.42 The framework structure of 3 has 
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large cavities and relatively small openings. This could help enhance its ability on 

mercury absorption as well. 

4.6 Conclusions 

Three known porous MOF materials were synthesized using the hydrothermal 

method. The porous frameworks of these materials are stable after the guest 

molecules/solvents were removed by heating in air. Among these three framework 

materials tested for mercury absorption, the framework of compound 3 shows excellent 

ability on absorption of mercury at 150 °C. A temporary explanation is that the 

framework of 3 has open metal sites and appropriate pore openings for mercury 

absorption. 
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CHAPTER V 

Syntheses, structures and properties of new MOFs: [Cu(BrBDC)2](TEA)2 and 

Co2(BrBDC)(HCOO)2(DMF)2, and Zn2(BrBDC)(Trz)2••••3H2O 

5.1 Introduction 

        Based on the results of the mercury adsorption study on selected known 

MOFs, the next step was to design and synthesize new porous MOFs with 

appropriate pore openings and open metal sites for mercury absorption. So far the 

most effective porous material for element mercury removal is powdered 

activated carbon, especially those impregnated with halogens, which can act as 

active sites for capturing mercury species.68 Based on the fact that MOF materials 

share similar absorption properties with other porous materials, MOFs 

impregnated with halogen may provide the potential for improving the mercury 

absorption. Furthermore, halogen could increase the polarizability of the organic 

linker.69 In this chapter, we focused on the synthesis of new MOFs using ligands 

containing halogen functional groups. We chose 2,5-dibromoterepthalic acid 

(BrBDC) as the main ligand for MOF synthesis because it contains two 

carboxylate groups that can bind to metal ions and secondary groups for possible 

mercury absorption. In addition to using one ligand in the synthesis of MOFs, 

another approach we used to make new MOFs is to use mixed ligands in a 

synthesis. Three new MOF materials were synthesized based on these ideas: 2D 
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structure MOFs, [Cu(BrBDC)2](TEA)2 (TEA=triethylamine, 4) and 

Co2(BrBDC)(HCOO)2(DMF)2 (5), and 3D MOF Zn2(BrBDC)(Trz)2•3H2O 

(Trz=1,2,4-triazole, 6). Detailed structural analyses with full characterization 

including X-ray diffraction, infrared spectra, thermogravimetric analyses, and 

elemental analyses are illustrated. 

5.2 Synthesis 

5.2.1 Synthesis of [Cu(BrBDC)2](HTEA)2 (4) 

0.154 g Cu(CH3COO)2•H2O was mixed with 0.500 g 2,5-dibromoterepthalic acid 

and 0.220 mL triethylamine (TEA) in 1.0 mL methanol. The reaction mixture was 

transferred to a 3”×4” Teflon bag, which was then sealed and placed in a 45ml Teflon-

lined autoclave. The autoclave was placed in an oven and was heated up to 90°C in 12 

hours, kept at 90°C for 12 hours, then cooled to 30°C in 18 hours. The resulting products 

were then filtered using a vacuum filtration system and washed with methanol. Blue 

crystals of compound 4 were obtained in 48.3% yield (0.340 g). Anal. Calcd for 

[Cu(BrBDC)2](HTEA)2 

5.2.2. Synthesis of Co2(BrBDC)(HCOO)2(DMF)2 (5) 

A mixture of 2,5-dibromoterepthalic (0.0770 g; 0.238 mmol), formic acid (0.0210 g; 

0.450 mmol), Co(NO3)2•6H2O (0.138 g; 0.474 mmol) and 4.0 mL DMF was placed in a 

3”×4” Teflon bag. The bag was sealed and placed in a 45ml Teflon-line autoclave. The 

autoclave was then placed in an oven programmed and heated at 150 °C for 24 hours. 
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After cooled naturally, the products were filtered and washed with DI water. Pink crystals 

were obtained in 74.2% yield (0.119g) 

5.2.3. Synthesis of Zn2(BrBDC)(Trz)2•3H2O (6) 

Zinc nitrate hexahydrate (0.600 g, 2.00 mmol), BrBDC (0.330g, 1.00 mmol), 1,2,4-

triazloe (0.0700 g, 0.00100 mol) and TEA (0.110g, 1.00 mmol) in 2:1:1:1 mole ratio were 

mixed with 3.6 ml DI water in a 45 mL Teflon cup. The mixture was stirred with a 

magnetic bar for 1h. Then the Teflon cup was sealed in an autoclave and heated at 150°C 

for 72h. After cooling to room temperature, the products were filtered and washed with 

deionized water, dried in air overnight. The product contain yellow crystals of 4 and 

colorless crystals whose structure is known. The yellow crystals are manually selected for 

further analysis. The crystal data of 4 is shown in table 5.1.   
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5.3 Results and Discussion of [Cu(BrBDC)2](TEA)2 (4) 

5.3.1 Description of crystal Structure of  [Cu(BrBDC)2](HTEA)2 (4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. (a) Two dimensional structure of [Cu(BrBDC)2](TEA)2 (4). (b) Coordination 

environment of copper grey: C; Purple: Br; Green: Cu; Red: O; Blue: N. 

a) 

b) 
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As shown in Figure 5.1(a), each copper metal ion connects to four other 

metal ions through four Br2BDC ligands to form a negatively charged 2D network. 

The HTEA+ counter ions are located in between the layers. Moreover, as there is a 

hydrogen atom bonded to the nitrogen of the HTEA+, it is a charged ammonium 

ion. Thus, the interaction between Cu(II) and the HTEA+ ion is mainly ionic. 

Compound 4 can also be viewed as an uninodal 4-connected net with a point 

symbol of (44,62) according to the topological analysis using TOPOS40 program. 

The crystal structure of compound 4 is 2-D, in P-1(2) space group with triclinic 

crystal system.70 The bond angles surrounding copper are 90.776° and 89.224°.  

The four carboxylate groups coordinated to each copper are in two planes which 

are almost perpendicular to each other (88.20(6)°). The copper ion also shows to 

have weak interactions with four oxygen atoms of the carboxylate groups 

coordinated to it (shows in figure 5-1 (b) with dash line: Cu·· ·O contact: 2.904Å×2 

and 2.898 Å×2). 71 In this compound, each carboxylate groups are not coplanar 

with the benzene ring of the ligand. The dihedral angle is 43.0(1) °. This could be 

caused by the hydrogen bonds between the Br2BDC ligand and the HTEA+ ion. 

Using copper(II) chloride as the source of copper, a new phase 

[Cu(Cl2BDC)2](HTEA)2 (Cl2BDC = 2,5-dichloroterepthalic acid) was isolated 

from the products. This compound is isostructural to compound 4. The stacking of 

the layers forms one-dimensional channels of ca 5.8×6.4 Å along the b direction, 

with the counter ions in the channels. 
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Table 5.1 Crystallographic data for [Cu(BrBDC)2](TEA)2 (4) 

Formula C28H36Br4CuN2O8 

Mol. wt 911.77 

Crystal system Triclinic 

Space group P  

a(Å) 9.0470(7) 

b(Å) 9.9015(8) 

c(Å) 10.9860(9) 

α(°) 76.252(4) 

β(°) 68.805(3) 

γ(°) 69.874(4) 

V(Å3) 854.3(1) 

Z 1 

ρ (Mg/m3) 1.772 

µ (mm−1) 5.364 

Wavelength(Å) 0.71073 

Temperature(K) 296 

Reflections collected/unique 6841[0.0215] 

Goodness-of-fit(F2) 0.997 

Final R indices [I > 2σ(I)] R1=0.0321, wR2=0.0668 

R indices (all data) R1=0.0513, wR2=0.0729 
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5.3.2 Thermal Stabilities of  [Cu(BrBDC)2](HTEA)2 (4) 

 

 

 

 
 
 
 
 
 
 

 
 
 

 

Figure 5.2. PXRD patterns of [Cu(BrBDC)2](TEA)2 (4). Blue: simulated from SXRD; red: 

experimental. 

The purity of the bulk sample was examined by PXRD. As shown in Figure 5.2, the 

experimental PXRD pattern of 4 agree very well with that of simulated from the single 

crystal structure. This indicates the synthesized sample of 4 is pure. 

 

5.3.3 Thermogravimetric Analysis of [Cu(BrBDC)2](HTEA)2 (4) 
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Figure 5.3. TGA pattern of [Cu(BrBDC)2](TEA)2 (4). 

The TGA plot of 3 is shown in Figure 5.3. Between 120 °C and 360 °C, a total 

weight loss of 75.7% is recorded. This includes a weight loss of 21.3% at 120-230 °C, 

which can be attributed to the removal of HTEA+ (cal 22.42%). The decomposition of the 

Br2BDC ligand occurs at 230 °C.  

5.3.4 FTIR pattern of  [Cu(BrBDC)2](HTEA)2 (4) 

 

Figure 5.4. The IR spectra for [Cu(BrBDC)2](TEA)2 (4). 
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The FTIR spectra of compound 4 are shown in figure 5-4. The band at 1638 cm-1 is 

the C=O vibration and the band at 1584 cm-1 is from C=C of the benzene ring. 

5.4 Results and discussion of Co2(BrBDC)(COO)2(DMF)2 (5) 

5.4.1 Structure Description of Co2(BrBDC)(COO)2(DMF)2 (5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.5. (a) Two dimensional structure of Co2(BrBDC)(COO)2(DMF)2 (5). (b) Coordination 
environment of cobalt Red: O; Purple: Co; Black: C; Cyan: N; Yellow: Br. 

b) 

a) 
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Compound 5 was initially synthesized from BTC, cobalt nitrate and BrBDC 

under solvothermal conditions. However, BTC was not found in the structure of 5. 

Instead, HCOO− was found to coordinate to Co(II) in the structure. We then used 

formic acid to replace BTC in the synthesis and successfully made compound 5. It 

is known that carboxylate groups on aromatic rings are unstable and may be 

removed under solvothermal conditions. Decarboxylate was observed for similar 

ligands such as 1,2,4-triazole-3-carboxylic acid.72 3-amino-1,2,4-triazole-5-

carboxylic acid73, and 1,2,3-benzenetricarboxylic acid.73-74 Normally, after one or 

more carboxylate groups were removed, the residue of the ligand would 

incorporate into the resulting structures. However, in 5, the removed carboxylate 

coordinates to the cobalt ions. It is believe that the decarboxylate procedure 

requires the high temperature and basic condition.74 However, we did not add 

bases to the reaction mixture in the synthesis of 5. 

The structure of compound 5 consists of a layered network built from cobalt 

ions and organic ligands. The cobalt(II) ion exhibits an octahedral coordination 

geometry and is six-coordinated to three formate ions, two Br2BDC ligand ions, 

and one DMF molecule. Six Co-O octahedron form a cluster, three this kind of cluster 

occupy vertex form a triangle connected by 2,5-dibrBDC. So, there are two types of 

hexagonal pores. One is formed by the six CoO6 polyhedral, the other one is the central 

of the triangle. The Co-O bond lengths range from 2.054(1)Å to 2.127(1) Å. Each 

Br2BDC, as a tetradentate ligand, binds to four cobalt ions through its carboxylate 

groups.75 The cluster is dangled with six Br2BDC ligands to form a pedal, wheel. 
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The pedal wheel building units are connected by sharing their the Br2BDC ligands 

into a 2D layered networks. The stacking of the layers along the c direction forms 

one-dimensional channels.76  

 Table 5.2 Crystallographic data for Co2(BrBDC)(COO)2(DMF)2 (5) 

Formula C8H9BrCoNO5 

Mol. wt 338.00 

Crystal system Hexagonal 

Space group P  

a(Å) 16.046(1) 

b(Å) 16.046(1) 

c(Å) 7.6321(9) 

α(°) 90.00 

β(°) 90.00 

γ(°) 120.00 

V(Å3) 1701.8(3) 

Z 6 

ρ (Mg/m3) 1.979 

µ (mm−1) 5.038 

Wavelength(Å) 0.71073 

Temperature(K) 296 

Reflections collected/unique 4820[0.0382] 

Goodness-of-fit(F2) 1.041 

Final R indices [I > 2σ(I)] R1=0.0299, wR2= 0.0700 

R indices (all data) R1=0.0392, wR2= 0.0749 
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5.4.2 Thermal Stabilities of Co2(BrBDC)(COO)2(DMF)2 (5) 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5.6 XRD patterns of Co2(BrBDC)(COO)2(DMF)2(4). Blue: simulated from SXR; red 
experimental. 

The purity of the sample has been confirmed by the PXRD analysis of 5. As shown 

in the figure 5.6, experimental PXRD patterns and those of simulated PXRD pattern from 

the single crystal structures match very well. 

5.4.3 Thermogravimetric Analysis of Co2(BrBDC)(HCOO)2(DMF)2 (5) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.7. TGA plot of Co2(BrBDC)(COO)2(DMF)2 (4). 
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 The TGA plot of 5 shows a total weight loss of 29.9% begin at around 130°C 

up to 350°C, which can be attributed to the removal of DMF. The next weight loss 

is due to the decomposition and removal of organic ligands. The second weight 

loss between 350-460°C is 34.7%. 

5-4-4 FTIR of Co2(BrBDC)(COO)2(DMF)2 (5) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.8. The IR spectra for Co2(BrBDC)(COO)2(DMF)2 (4).  
 

The IR spectra of 5 show vibrational bands in the range of 1620–1550 cm-1 

corresponding to the stretching vibrations of the carboxylic groups.77 The absorptions at 

1400–1363 cm-1 are the characteristic bands of the symmetric vibrations of carboxylic 

groups.78 The lack of absorption of characteristic of any protonated forms if carboxylic 

groups between (1715–1680 cm-1) or (1730–1690 cm-1) manifest the complete 

deprotonation of the BrBDC ligand or formate ligand. 
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5.5. Results and discussion of Zn2(BrBDC)(Trz)2••••3H2O (6) 

5.5.1 Description of Crystal Structure of Zn2(BrBDC)(Trz)2•3H2O (6) 

 

 

 

 

 

  

 

Figure 5.9 (a) Three dimensional Structure of Zn2(BrBDC)(Trz)2•3H2O (6), (b) 8-membered ring 

formed by Zn dimer. Black: C; Yellow: Br; Red: O; Blue: Zn; Cyan: N. 

Single-crystal X-ray diffraction analysis reveals that 6 crystallizes in the 

tetragonal system and its space group is P4 (75). Compound 6 couldn’t be made if TEA is 

not used in the reaction mixture. This could be caused by the fact that 1,2,4-triazole 

molecule only can coordinate into open framework under deprotonated form.79,80 There 

are four unique Zn atoms in the asymmetric unit. Each of them has the same coordination 

form and coordination number.  Three of coordination ligands of the Zn atom are 1,2,4-

triazole molecules. The fourth ligand of Zn is O atom from the carboxylate group. Zn1 

and Zn4 connect to each other into a dimer through two Trz molecules to form an eight-

membered ring (figure 5-9 (b)). Zn5 and Zn6 are located at adjacent layers, which are 

a) b) 
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connected by BrBDC ligands. The 3D framework of 6 contains 1D channels along the c 

axis (figure 5-9 (a)). A compound with similar crystal structure to 6 has been reported by 

Hyunsoo Park’s.81  

Table 5.3 Crystallographic data for Zn2(BrBDC)(Trz)2•3H2O (6) 

 
Formula C48H40Br8N24O28Zn8 

Mol. wt 2563.28 

Crystal system tetragonal 
Space group P4/ncc 

a(Å) 13.4824(3) 

b(Å) 13.4824(3) 

c(Å) 27.0886(5) 

α(°) 90° 

β(°)                              90° 

γ(°) 90° 

V(Å3) 4923.92(18) Å3 

Z 2 
ρ (Mg/m3) 1.729 

µ (mm−1) 5.233 

Wavelength(Å) 0.71073 Å 
Temperature(K) 569(2) K 

Reflections collected/unique 112955 

[Rint] 0.0730 
Goodness-of-fit(F2) 1.132 

Final R indices [I > 2σ(I)] R1 = 0.1068, wR2 = 0.3145 

R indices (all data) R1 = 0.1326, wR2 = 0.3474 
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5.5.2 Thermal Stabilities of Zn2(BrBDC)(Trz)2•3H2O (6) 

 
 

Figure 5.10. (a) Thermal stabilities of Zn2(BrBDC)(Trz)2•3H2O (6). Blue: simulated from SXRD; 
red: experimental; green: heated at 150℃ for 12h; purple: heated at 180℃ for 12h; black: heated 

at 210℃ for 12h. (b) Partial enlarged patterns between angle 5.9° and 15.9°. 

 

The PXRD pattern of synthesized sample of 6 matches well with the simulated 

PXRD pattern from the single crystal structure of 6, indicating the sample of 6 is pure.  

After heated at over 150 °C, some peaks showed a slightly shift to high angles in 

comparison with the unheated sample.  This can be attributed to the departure of the 

water resulting in the decrease of the cell unit parameters.82 However, the framework of 6 

did not collapse indicating the flexibility of the framework, which is not common in Zn 

triazolate-dicarboxylate pillared-layer MOFs.83  

 

 

a) b) 
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5.5.3 Thermal-gravimetric Analysis of Zn2(BrBDC)(Trz)2•3H2O (6) 

 

Figure 5.11. a) TGA plot of Zn2(BrBDC)(Trz)2•3H2O (6). (b) TGA plots of 6 after heated at 
150℃, 180℃ and 210℃ kept for 12h. 

 

Figure 5.11 (a) shows the TGA plot of 6. The weight loss occurred from room 

temperature to 220°C corresponds to 3 units of water molecules. As can be seen from 

Figure 5.11b, the water molecules in channels of the framework of 6 can be removed by 

heating the samples of 6 in an oven for 12 hours. 

5.5.4 FTIR of Zn2(BrBDC)(Trz)2•3H2O (6) 

 

 

 

 

a) b) 
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Figure 5.12. The IR spectra of Zn2(BrBDC)(Trz)2•3H2O (6). 

As shown in Figure 5.12, at the IR band at 1060 cm-1 can be attributed to C-O 

deformation. The band at 1601 cm-1 is associated with stretching vibrations of the C=O 

bond. The band at 1700 cm-1 was assigned to the stretching vibrations of the C-O bond. 

The bands in range of 700 cm-1 to 1200 cm-1 can be assigned to C-H and C-C bending of 

the benzene ring. The small peak at around 3200 cm-1.84 corresponds to O-H group of 

water molecule.82c 

5.6 Conclusions  

 

Three new metal-organic frameworks have been hydrothermally synthesized using 

transition metal ions and the 2,5-dibromoterepthalate ligand.  The structure of 4 consists 

of anionic layered networks balanced with cationic HTEA+ ions located in between 

the layers. While the structure of 5 is a neutral 2D coordination network containing 
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hexagonal rings of clusters formed by six CoO6 octahedra. Compound 6 is a 3D 

open framework with one-dimensional channels. 
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ABBREVIATIONS AND SYMBOLS 

Htrz                                        1,2,4-trizaole 

MeIM                                     2-methylimidazole 

BTC                                        Benzene 1,3,5-tricarboxylic acid 

BrBDC                                    2,5-dibromoterepthalic acid 

DMF                                        N,N-Dimethylformamide 

TEA                                         trimethylamine 

BET                                         Brunauer-Emmett-Teller surface area 

XRD                                         X-Ray Diffraction 

PXRD                                       Powder X-Ray Diffraction 

SEM                                         Scanning electron microscope  

TEM                                         Transmission electron microscope 
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