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The axolotl (Ambystoma mexicanum) has been used as a model organism for 

studying development, genetics, and regeneration.  Although the sensory hair cells of the 

lateral line of this species have been shown to be able to regenerate, it is not known 

whether this also occurs in the inner ear.  In fact, little is known about the hearing 

capabilities of the axolotl or other salamander species.  I recorded auditory evoked 

potentials (AEPs) of six axolotls at eleven frequencies (0.1, 0.25, 0.4, 0.6, 0.8, 1, 1.5, 2, 

3, 4, and 6 kHz) in order to produce baseline audiograms of underwater pressure 

sensitivity.  Individuals were then subjected to a 48-hour, 150 Hz sound exposure at 

approximately 170 dB (re 1 µPa).  AEPs were then performed to measure hearing 

thresholds immediately after sound exposure and at 2, 4, and 8 days post-sound exposure 

(DPSE).   

In the baseline audiogram, axolotls were most sensitive at 600 Hz, with an 

additional peak of sensitivity at 3 kHz.  Following sound exposure, axolotls experienced 

a 6 to 12 dB temporary threshold shift (TTS) after sound exposure, with TTS being 

greatest at low frequencies near the 150 Hz stimulus frequency (i.e., 100 and 250 Hz).  

Hearing sensitivity returned to control levels within 8 DPSE.  This indicates that axolotls 

do possess the ability to recover hearing sensitivity after damage following acoustical 
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trauma.  This study is the first to document hearing loss in the axolotl.  Future studies are 

needed to correlate this hearing loss and recovery to sensory hair cell loss and 

regeneration in the axolotl inner ear.
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INTRODUCTION 

 

Salamanders are an excellent biological model for studying the processes of 

development and regeneration.   Stone (1933, 1937) was the first to document limb and 

tail regeneration in salamanders, while more recent studies show that the sensory cells of 

the lateral line system are also able to regenerate (Balak et al. 1990).  The axolotl 

(Ambystoma mexicanum) is a species of mole salamander that exhibits paedomorphosis, 

remaining in its aquatic larval form its entire life, making it a particularly interesting 

model for sensory development and regeneration (Shaffer 1993).  

While the axolotl continues to show potential as a model organism for various 

disciplines, its status in the wild is not as positive.  The range of this species is now 

limited to only two highly-managed bodies of water in the Mexican High Plateau, making 

the axolotl critically endangered in the wild.  The water source of these aquatic habitats is 

no longer natural – the supply comes from treatment plants.  Additionally, these habitats 

contain up to 10 introduced fish species, some of which act as predators to the axolotl at 

various life stages (Alcocer-Durand and Escobar-Briones 1992, Zambrano et al. 2007). 

The pressures of this complex aquatic habitat require the use of various sensory systems.  

Axolotls can elucidate information about their environment through both olfaction and 

vision, but little is known about how well they perceive and interpret vibrational stimuli 

using the sensory cells of the inner ear and lateral line (Eisthen et al. 1994, Deutschlander 

1995).   

The lateral line system of the skin of fish and aquatic amphibians contain 

mechanoreceptive sensory organs known as neuromasts, which detect movement and 

vibration in the surrounding water (Lombard 1980, Lewis and Narins 1999, Bleckmann 
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and Zelick 2009).  Surface neuromasts are composed of sensory hair cells that are 

covered by a gelatinous cupula which couples them to the surrounding water.  These 

sensory organs are vital to vestibular perception and detecting disturbances in the aquatic 

environment, particularly vibrational movement of the water (Popper and Fay 1999).  A 

keen awareness of vibrations in the surrounding water is important for both predator 

detection and prey capture for aquatic species (Coombs and Montgomery 1999, Coffin et 

al. 2013).  When lateral line neuromasts are lost following damage, their sensory hair 

cells can regenerate in both fishes and aquatic amphibians, including axolotls (Balak et 

al. 1990, Northcutt et al. 1994).   

As hair cells in the teleost lateral line are morphologically, physiologically, and 

functionally similar to those found in the inner ear (Monroe et al. 2015), and since 

auditory hair cells have been shown to regenerate in numerous other non-mammalian 

vertebrates (e.g, fishes, Smith et al. 2006; urodele amphibians, Taylor and Forge 2005; 

lizards, Avallone et al. 2003; birds, Corwin and Cotanche 1988), it is likely that the 

sensory hair cells of the inner ear of axolotls are also able to regenerate.  This has never 

been examined in axolotls.  In fact, little is known about their hearing ability in general.   

The goal of this study was two-fold: to characterize axolotl hearing sensitivity 

within a frequency range of 100 Hz to 6000 Hz, as well as to examine the effects of 

sound exposure and recovery on their hearing abilities to ascertain whether the axolotl 

could be a potential model to investigate inner ear hair cell regeneration.  In accordance 

with previous studies of non-mammalian vertebrates, I predicted that sound exposure 

would produce hearing loss and that the complete recovery of hearing capabilities in the 

axolotl would occur after sound exposure. 
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MATERIALS AND METHODS 

 

Axolotls were obtained from the Ambystoma Genetic Stock Center (Lexington, 

KY, USA) and maintained individually in 9.5 L flow-through tanks.  Mean (± S.E.) total 

length, snout-vent length, and mass of the axolotls (N=6) were 19.9 (± 0.6) cm, 10.2 (± 

0.2) cm, and 59.0 (± 2.5) g, respectively.  Electrophysiological hearing tests were 

performed using a modified version of the current Auditory Evoked Potential (AEP, 

Table 1) method currently employed for studying the hearing of fishes (Smith et al. 2006, 

Smith et al. 2011, Uribe et al. 2013, Ladich and Fay 2013).  Axolotls were anesthetized 

with tricaine methanesulfonate (MS-222) at a concentration of 2 g/L. Anesthetized 

individuals were then suspended using a thin, flexible, plastic mesh in a 19-L tank in 

order to generate baseline audiograms.  The mesh around each individual was attached to 

an overhead clip (Fig. 1), keeping it 6 cm below the surface of the water and 22 cm above 

a UW-30 underwater speaker (Electro-Voice, Burnsville, MN).  Electrical interference 

was minimized by keeping the tank within a Faraday cage.  This cage was located within 

a sound-attenuation room to reduce background noise (WhisperRoom, Inc., Knoxville, 

TN).  Three stainless steel sub-dermal electrodes (27 gauge; Rochester Electro-Medical, 

Inc., Tampa, FL) were used to obtain physiological responses: a ground electrode in the 

tail muscle, a reference electrode on the tip of the nose, and a recording electrode 

centrally over the brainstem, approximately 1 cm posterior to the eyes (Fig. 1).  

 BioSig software (Tucker Davis Technologies, Alachua, FL) was used to generate 

pure tone stimuli at eleven different frequencies (0.1, 0.25, 0.4, 0.6, 0.8, 1, 1.5, 2, 3, 4, 

and 6 kHz).  All tones were played first at a phase of 90° and then again at 270° in order 
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to cancel out any electrical signal emitted by the underwater speaker that could 

potentially interfere with the AEP traces.  Each frequency was tested by decreasing the 

sound pressure level in 5 dB steps until an AEP trace was no longer visible.  The lowest 

sound pressure level at which an AEP waveform was visible was noted as the threshold 

for each frequency.  The collective thresholds for these eleven frequencies were used to 

produce audiograms.  

 After control levels were established, axolotls were experimentally sound-

exposed for 48 hours.  The sound exposure maintained a constant 150 Hz tone at a mean 

sound pressure level throughout the 19-L tank of 170 dB (re 1 µPa).  This was 

determined by characterizing sound pressure for a number of depths within the 22.5-cm 

deep exposure setup.  The sound levels ranged from 161.5 near the water’s surface to 

174.7 dB (re 1 µPa) 1 cm from the speaker.  Axolotls were allowed to swim freely 

throughout the sound exposure tank.  After deafening, AEP hearing tests were performed 

0, 2, 4, and 8 days post-sound exposure (DPSE) using the same procedures for control 

audiograms.  All procedures were conducted under the approval of the Western Kentucky 

University Institutional Animal Care and Use Committee (Animal Welfare Assurance # 

A3558-01).  In order to compare control level hearing thresholds of the baseline 

audiogram to those of the audiograms generated for 0, 2, 4, and 8 DPSE, overall paired t-

tests (averaged across all frequencies) were performed for each experimental day. 

Additional paired t-tests were performed to compare thresholds for each frequency.  P-

values were adjusted for multiple comparisons using Holm’s sequential Bonferroni 

method (Abdi 2010, Eichstaedt et al. 2013).  Paired t-tests were only performed for 

comparisons where standard error bars did not overlap in order to retain statistical power. 
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Additionally, two-way ANOVAs were performed to address frequency and day 

effects on TTS.  TTS was calculated as the post-sound exposure threshold minus the 

mean control (pre-sound exposure) threshold.  Finally, a linear regression was performed 

to examine the relationship between TTS and DPSE.  All tests were performed at the 

alpha = 0.05 level.  SYSTAT 13 software (SYSTAT Software, Inc., San Jose, CA) was 

used for all statistical analyses. 

 

RESULTS 

 

Axolotls detected the sound stimuli at all frequencies examined from 0.1 to 6 

kHz.  The baseline axolotl audiogram (control) exhibited two peaks of sensitivity, at 0.6 

and 3 kHz, where their thresholds were 118 and 123 dB re 1 µPa, respectively (Fig. 2).  

Hearing thresholds were tested for differences associated with sex, mass, total length, and 

snout-to-vent length and no significant differences were found due to sex or size.  Initial 

overall paired t-tests (averaged across all frequencies) showed that there was a significant 

difference between the control and 0 DPSE thresholds (t = 2.01, df = 5, p = 0.036).  This 

departure from control levels indicates that the sound exposure significantly damaged the 

hearing ability of the axolotls (i.e. caused a temporary threshold shift).  There was also a 

significant effect of sound exposure at 2 DPSE (t = 2.01, df = 5, p = 0.001).  By 4 and 8 

DPSE, there was no longer a significant overall difference between control and 

experimental audiograms, but at 4 DPSE there was a significant interaction between 

treatment and frequency, meaning that sound-exposed axolotls only had higher thresholds 

than controls at specific frequencies. 



6 
 

In addition to overall paired t-tests, additional paired t-tests were performed to 

examine treatment differences by individual frequency.  Hearing thresholds were 

significantly different from control levels for 0.1, 0.8, and 2 kHz at 0 DPSE, and at 0.1, 1, 

and 2 kHz for 2 DPSE (Fig. 2, Table 2).  While there was no significant overall 

difference between control and sound-exposed thresholds at 4 DPSE and 8 DPSE, 

significant differences were exhibited at 0.1 kHz at 4 DPSE.  

Separate ANOVAs were performed to test for frequency and day effects on TTS.  

Analyses were performed using frequencies less than or equal to 600 Hz as these 

frequencies were most strongly affected by the low frequency of the experimental sound 

exposure.  TTS significantly differed with frequency at 2 DPSE (F3,20 = 7.22, p=0.002), 4 

DPSE (F3,20 = 43.37, p<0.001), and 8 DPSE (F3,20 = 3.16, p=0.047).  As a 150 Hz tone 

was used for the sound stimulus, TTS was greatest at the lower frequencies tested (100 

and 250 Hz; Fig. 3).  TTS also significantly differed by day for each frequency, with TTS 

being greatest immediately after sound exposure and least at 8 DPSE: 100 Hz (F3,20 = 

10.03, p<0.001), 250 Hz (F3,18 = 5.97, p=0.005), 400 Hz (F3,20 = 5.41), and 600 Hz (F3,20 = 

3.79, p=0.027).  TTS decreased linearly with time following sound exposure, with 

thresholds returning to control levels by 8 DPSE (Fig. 4).  
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Figure 1 – Electrode placement in the axolotl auditory evoked potential (AEP) setup.  
The red, black, and green electrodes are recording, reference, and ground electrodes, 
respectively.  The UW-30 underwater speaker (light blue) is shown below the axolotl. 
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Figure 2 – Four graphs showing mean (± S.E.) control (filled circles) and the 
experimental (open circles) thresholds for 0, 2, 4, and 8 days post-sound exposure 
(DPSE).  Asterisks mark significant differences between treatment and control 
thresholds using Holm’s sequential Bonferroni-corrected p-values at the alpha level of 
0.05 (see Table 2).  
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Figure 3 – Mean (±SE) temporary threshold shift (TTS) as a function of test frequency 
and day post-sound exposure (DPSE).  
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Figure 4 – Mean (± S.E.) temporary threshold shift (TTS) as a function of days post-
sound exposure (DPSE). Regression analysis shows a significant negative linear 
relationship between the two variables, indicating improvement of hearing over time.  

 

TTS = -1.1(DPSE) + 7.98 

R2 = 0.2; P<0.001 



11 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviation Definition 

AEP Auditory Evoked Potential 

AP Amphibian Papilla 

DPSE Days Post Sound Exposure 

MS-222 Tricaine Methanesulfonate 

TTS Temporary Threshold Shift 

Table 1 – Alphabetically-ordered abbreviations from the text with corresponding 
definitions. 
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Table 2 – Holm’s sequential Bonferroni-corrected p-values for all frequencies at each 
Day Post-Sound Exposure (DPSE). Comparisons that show significance at the alpha 
level of 0.05 are bolded.  Dashes indicate comparison was not made due to 
overlapping error bars. 
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DISCUSSION 

 

Axolotl baseline hearing 

In general, there is little information known about hearing in aquatic salamanders, 

although hearing ability has been examined in some terrestrial salamanders as well as 

other species of amphibians.  For example, behaviorally-determined audiograms have 

been generated for the olm (Proteus anguinus), a blind cave salamander, as sound is a 

vital stimulus to a species without a sense of sight.  Sound was detected between a 

frequency range of 10 Hz and 10 kHz, with peak sensitivities occurring at approximately 

2 kHz and 10 kHz (Bulog and Schlegel 2000).  Previous researchers have used a more 

proximate approach by applying vibration directly to the oval window of the inner ear 

(Hilton 1949).  A vibrational probe was used to directly stimulate the inner ear of the 

Eastern newt (Notophthalmus viridescens), and subsequent eighth cranial nerve responses 

were recorded.  The results showed an overall peak frequency of sensitivity at 0.4 kHz, 

although 11 of the 28 recordings displayed W-shaped vibrational audiograms, meaning 

they showed two peaks of sensitivity (Ross and Smith 1982).  Hearing tests performed on 

adult tiger salamanders from a 0.1 to 1 kHz range also showed a two-peak trend, with 

lower frequency sensitivity attributed to particle motion detection and higher frequency 

sensitivity attributed to pressure detection (Hetherington and Lombard 1983).  All of 

these findings show similarities to my resulting baseline audiogram, as my data reveal 

that axolotls can detect pressure from at least 0.1 to 6 kHz, with two peaks of sensitivity 

at both 0.6 and 3 kHz.  Lastly, recent hearing tests performed in air on the axolotl display 

a W-shape with two peaks of sensitivity, for both vibrational/particle motion stimuli 

(shaker table) exposure and pressure (loudspeaker) exposure.  This novel exploration into 
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aerial axolotl audition shows that this species can detect aerial sound in the frequency 

range of at least 0.2 to 1.3 kHz, with peak sensitivities occurring at both 80 and 240 Hz 

for particle motion and 80 and 320 Hz for pressure (Christensen et al. 2015a).  

I hypothesize that the two peaks of sensitivity are related to the axolotl’s 

phylogenetic position in relation to the evolution of hearing.  In general, fishes tend to 

hear best at frequencies lower than 1 kHz (Fay 1988).  These sensitivity peaks could 

correspond to those of both ancestral fish relatives (as lower frequency sounds are more 

prevalent and travel farther in aquatic environments) as well as terrestrial tetrapod 

relatives (as higher frequency stimuli are often more important in terrestrial 

environments).  The axolotl does not spend any part of its life cycle outside of the aquatic 

environment, and therefore does not possess any anatomical adaptations for terrestrial 

hearing, such as a tympanum.  The axolotl shares this characteristic with the first 

terrestrial vertebrates, who did not develop a tympanic middle ear until approximately 

100 MY after their appearance on land (Christensen et al. 2015a).  This suggests that 

salamanders are no more suited to hearing on land than fishes would be.  However, 

amphibians do possess unique hearing adaptations such as the amphibian papilla (AP), 

which is a specialized auditory sensory organ thought to be responsible for the bulk of 

amphibian acoustic sensitivity (Lewis and Narins 1999).  

The anatomy of the AP suggests that it is responsible for detecting substrate 

vibrations and fluid displacement, a function analogous to that of the lateral line (Smith 

1968).  Direct vibrational stimulus to the oval window of one ear causes a cascade of 

vibration that passes through both the right and left AP in salamanders, classifying their 

hearing as binaural (Wever 1978).  Amphibians also have a columella bone which is an 
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adaptation for conducting acoustic energy to the ear.  In the axolotl, the columella bone is 

free in both the juvenile and adult life stages, but fused to the bony labyrinth known as 

otic capsule in the terrestrial tiger salamander (Ambystoma tigrinum).  The fusion to the 

otic capsule surrounding the inner ear suggests that vibrations affecting the columella are 

directly imparted to the inner ear, enhancing acoustic detection in the tiger salamander, 

but not the axolotl (Christensen et al. 2015a).  It has also been long known that 

amphibians such as salamanders, frogs, and toads are sensitive to seismic substrate 

vibrations (Ross and Smith 1978, Narins 1990).  Anatomical and physiological studies 

show that this sensitivity is largely due to the sacculus of the inner ear and not the AP 

(Lewis et al. 1982). 

Another hearing adaptation of aquatic vertebrates is the use of enclosed volumes 

of air to amplify sound energy, such as the swim bladders of fish.  Some fish possess 

Weberian ossicles, which are derived vertebrae used to amplify sound pressure stimuli by 

connecting the inner ear to the swim bladder (Fay and Popper 1980, Popper and Fay 

1999).  The use of air volumes mediating salamander hearing has been examined in the 

tiger salamander (Ambystoma tigrinum), a close relative to the axolotl (Hetherington and 

Lombard 1983).  This study found that when the mouth cavity was filled with air, sound 

pressure was transduced as vibrations that were transmitted to the inner ear, likely due to 

the proximity of the inner ear to the mouth.  Another potential mode of pressure 

transduction for salamanders is via air volumes in lung cavities. 

Recent work by Christensen et al. (2015a) measured air volumes in both the 

mouth and lungs of the axolotl, examined their hearing in water across six frequencies 

ranging from 80 Hz to 640 Hz, and also assessed their hearing ability in air.  CT scans of 
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axolotls did not show any air in the mouth cavity of conscious specimens, and negligible 

volumes in anaesthetized individuals.  This indicates that there is no evidence for the use 

an air-filled mouth cavity to transduce pressure stimuli in this species.  However, the 

lungs of both juvenile and adult axolotls contained 2–3 ml air, which corresponds to a 

resonance frequency of 0.4 to 0.5 kHz.  This finding suggests that axolotls may be able 

use air in the lung cavity to transduce sound pressure into particle motion in the inner ear, 

a phenomenon also noted in lungfish (Christensen 2015b).  It should be noted, however, 

that this study did not find any distinct anatomical connection between the lung cavity 

and the inner ear.  Christensen et al. (2015a) also examined particle motion versus 

pressure detection in water across the previously mentioned frequencies.  The six 

frequencies tested in this study partially overlap the frequency range used in the current 

study, showing similar trends in audiogram shape across frequencies.  The results of the 

aquatic particle motion and pressure sensitivity tests showed that axolotls detect particle 

motion as the primary stimulus at low frequencies and pressure at those above 120 Hz.   

However, it is possible that some of the detection of low frequency particle 

motion found by Chistensen et al. (2015a), as well as the low frequency sensitivity in my 

results, could be attributed to the lateral line sensory cells, as they are specialized for low 

frequency detection (Coombs and Montgomery 1999, Coffin et al. 2013).  The 

underwater sound pressure sensitivities of axolotls reported by both Christensen et al. 

(2015a) and my current work exhibit an upside-down U-shape at lower frequencies, with 

thresholds being lower at 80 or 100 Hz, increasing for intermediate frequencies, and then 

decreasing again at 640 or 700 Hz.  The increased sensitivity at 100 Hz shown in my 

generated baseline audiogram could be ascribed to the low frequency sensitivity of the 
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lateral line system.  In order to generate an audiogram based solely on inner-ear 

sensitivity, the AEP procedure should be repeated following chemical or mechanical 

ablation of the lateral line (Higgs and Radford 2013). 

 

Effects of sound exposure and recovery 

This study is the first example of experimental hearing loss in a salamander 

species.  Here I show that the axolotl auditory system is susceptible to damage from 

intense sounds like that of other vertebrates, and like other non-mammalian vertebrates, 

can recover from some acoustic trauma to the auditory system within a matter of days.  

Although not measured directly in this study, it is presumed that the hearing loss was due 

to damage to the auditory hair cells of the inner ear.  This hypothesis will need to be 

confirmed in future axolotl studies, but previous studies of hearing loss in fishes show a 

significant correlation between inner ear hair cell loss and hearing loss (Hastings et al. 

1996, Smith et al. 2004, Schuck and Smith 2009, Smith et al. 2011, Monroe et al. 2015). 

Fishes exposed to loud sounds exhibit sensory hair cell damage and temporary 

threshold shifts (TTS) in some species, with hearing recovering as hair cells regenerate 

(Lombarte 1993, Smith 2006).  For example, regeneration of the inner ear sensory hair 

cells of goldfish (Carassius auratus) return to baseline levels within 14 days following 

intense noise exposure for 21 days (Smith et al. 2004).  However, fishes are not the only 

organisms with this capability.  Sensory hair cell regeneration has been found in every 

non-mammalian vertebrate examined so far, including salamanders (Balak et al. 1990, 

Avallone et al. 2008, Brignull et al. 2009, Monroe et al. 2015). 
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The lateral line system of the axolotl has been shown to regenerate following laser 

ablation or fluorescent excitation, with the first new hair cells appearing 3-5 days after 

neuromast ablation (Balak et al. 1990).  It was concluded that mature sensory epithelia 

that have been completely depleted of hair cells can still generate new hair cells, and that 

preexisting hair cells are not necessary for regeneration.  The striking similarity of lateral 

line hair cells to inner ear hair cells (Popper and Fay 1999), suggests that amphibians 

should be able to regenerate auditory hair cells as well.  This, indeed, is the case.  The 

American bullfrog (Lithobates catesbeianus) can recover lost hair cells in the AP after 

noise-induced damage (Simmons et al. 2014).  Recovery from hair cell damage occurred 

over a time course of nine days, which is comparable to the 8-day recovery that was 

observed in axolotls.  

Recovery rates have been shown to vary between the sensory cells of the lateral 

line system and those of the inner ear in fish species.  In zebrafish (Danio rerio), 

neuromasts of the lateral line system are able to regenerate back to control levels after 

about 72 hours following chemical ablation with a large proportion of cell proliferation 

occurring in the first day post-damage (Hernandez 2007, Coffin et al. 2013).  In contrast, 

inner ear hair cell bundles in the zebrafish require more time to fully regenerate following 

damage, taking approximately 14 days to return to control levels following acoustical 

trauma (Smith et al. 2011).  If this disparity between the timing of sensory hair cell 

regeneration of the lateral line and inner ear is also found in the axolotl, it could have 

affected the results of this study if any of the lateral line sensory cells were damaged 

during the 48-hour sound exposure.  If this is the case, the 8-day time course for hearing 

recovery found in this experiment envelopes a shorter lateral line recovery within that 8-
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day period.  As mentioned previously, in order to assess the importance of the lateral line 

sensory cells in both the baseline audiogram of this species as well as its role in hearing 

recovery, this study should be replicated following ablation of the lateral line neuromasts. 

In response to the low frequency (150 Hz) stimulus used in this experiment to 

induce hearing loss, threshold shifts were greatest at the two lowest frequencies tested 

(100 and 250 Hz; Fig. 3).  This is likely because the inner ear sensory epithelia of the 

axolotl are tonotopically organized.  That is, there is an orderly arrangement of frequency 

response in the auditory sensory organs.  Although this has not been specifically studied 

in any salamander species, it has in other aquatic or semi-aquatic taxa such as fishes and 

anuran amphibians.  For example, the goldfish (Carasius auratus) saccule is 

tonotopically organized, with intense, low frequency sounds damaging hair cells in the 

caudal portion, while high frequency sounds affect the rostral saccule (Smith et al. 2011).  

Frogs have a three-part auditory system that detects low (the sacculus), mid (the AP), and 

high (the basilar papilla) frequencies (Smotherman and Narins 2000).  At a finer scale of 

analysis, the AP is further tonotopically organized.  The AP of the northern leopard frog 

(Rana pipiens pipiens) exhibit three morphologically distinct regions that that differ in 

hair cell length and shape, which correlates to tonotopic sensitivity of the AP (Simmons 

et al. 1994). 

Due to their susceptibility to hearing loss after sound exposure and then 

subsequent recovery, axolotls may make a good model organism for examining the 

process of inner ear hair cell regeneration.  Zebrafish are currently a popular model 

organism for such studies (Schuck and Smith 2009, Sun et al. 2011), but the use of 

salamanders such as axolotls has some distinct advantages.  First, the axolotl requires low 
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maintenance in captivity, similar to that of the zebrafish, making it easy to keep and 

propagate in a laboratory setting.  Second, the axolotl’s popularity in genetic, 

developmental, and gerontological studies has led to the design of many different genetic 

strains and mutants of this species, including various color morphs which may prove 

useful to hearing research investigating oto-protective pigmentation (Shaffer 1993, Roy 

and Gatien 2008, Coffey 2014).  Third, although there are various model organisms with 

some capacity for tissue regeneration (such as mouse and chicken embryos, Drosophila 

imaginal discs, and zebrafish), only a salamander such as an axolotl has been shown to 

regenerate entire tails, limbs, and even spinal cords (Clarke et al. 1988).  The 

regeneration of so many different tissue types in one organism yields deeper insight into 

the application of these findings for humans and other organisms that do not possess that 

ability (Roy and Gatien 2008, McCusker and Gardiner 2011).  Finally, specific to 

auditory regeneration, axolotls have a larger inner ear epithelium, potentially easing the 

difficulties of dissection and culturing of sensory epithelium associated with a model as 

small as the zebrafish.  Future studies addressing inner ear hair cell densities, tonotopy, 

and sensory hair cell regeneration in the axolotl inner ear will be needed to develop the 

axolotl as a biomedical model for the hearing sciences.  
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