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This thesis is comprised of two main parts: Monotonicity results on discrete

fractional operators and discrete fractional rheological constitutive equations. In the

first part of the thesis, we introduce and prove new monotonicity concepts in discrete

fractional calculus. In the remainder, we carry previous results about fractional

rheological models to the discrete fractional case. The discrete method is expected

to provide a better understanding of the concept than the continuous case as this

has been the case in the past. In the first chapter, we give brief information about

the main results. In the second chapter, we present some fundamental definitions

and formulas in discrete fractional calculus. In the third chapter, we introduce

two new monotonicity concepts for nonnegative or nonpositive valued functions

defined on discrete domains, and then we prove some monotonicity criteria based

on the sign of the fractional difference operator of a function. In the fourth chapter,

we emphasize the rheological models: We start by giving a brief introduction to

rheological models such as Maxwell and Kelvin-Voigt, and then we construct and

solve discrete fractional rheological constitutive equations. Finally, we finish this

thesis by describing the conclusion and future work.

vi



Chapter 1

INTRODUCTION

In recent decades the field of discrete fractional calculus has attracted the

interest of researchers from several areas including mathematics, biology, physics,

chemistry, engineering and even finance and social sciences [15], [16], [18], [19].

Particularly, in the area of viscoelasticity, a significant effort has been made in

describing more closely the behavior of materials by using fractional mathematical

model.

The concept of monotonicity is very important in mathematics. Unfortunately,

in theory and applications of fractional calculus, researchers faced a lack of mono-

tonicity results for fractional operators. Dahal and Goodrich in [10] and Goodrich

in [12] initiated monotonicity analyse of the discrete fractional operators. However,

they did not consider monotonicity results for fractional orders between zero and

one. Therefore, in the first part of this thesis we concentrate on non-integer orders

which lead us to introduce new definitions of monotonicity concepts.

The mechanical properties of biomaterials are often represented by linear dif-

ferential equations developed from physical models of springs and dashpots. How-

ever, it was recognized that biological tissues exhibit more complex behavior such

as hysteresis, fatigue, and memory that could not be accounted for by using com-

binations of ideal springs and dashpots [16]. Since the tissues within the human

body are viscoelastic in nature, it is important to apply proper viscoelastic relations

when investigating the mechanics of deformation [13]. Testing and modeling of the
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mechanical properties of biological soft tissues presents a unique set of challenges.

Fractional calculus is used to construct stress-strain relationships for viscoelastic

materials.

It has been recognized that rheological constitutive equations with fractional

derivatives have long played an important role in the description of the properties of

viscoelastic materials [19]. In the rheological constitutive equations this requires the

replacement of the first-order derivatives by fractional order derivatives. Because

the fractional derivative of a function depends on its whole time history and not on

its instantaneous behavior, they are perfectly suited for the description of materials

with memory, such as polymers or tissues [8]. The above given reasons led us

to construct discrete fractional rheological models. Discrete models characterize a

material by a finite number of springs and dashpots.

2



Chapter 2

PRELIMINARIES

The main purpose of this chapter is presenting some fundamental definitions

and formulas in discrete fractional calculus so that the thesis is self-contained.

The forward difference operator (∆), for a function f ∶ Na → R is defined by

∆f(t) = f(t + 1) − f(t),

where Na = {a, a + 1, a + 2, . . .}.

If the function f is defined on a product space, X × Y , where X is a discrete space,

then the definition of forward difference operator becomes

∆tf(t, s) = f(t + 1, s) − f(t, s).

2.1. Falling and Rising Factorial Power Functions

In this section, we focus on the falling factorial power function since the def-

inition of the discrete fractional difference and sum operators involve them. In

addition to that, we give the definition and some properties of the rising factorial

power function which plays an important role in the monotonicity results of the

following chapter.

2.1.1. Falling Factorial. The falling factorial power function is defined by

[14], which is

t(r) = t(t − 1)(t − 2) . . . (t − r + 1), r ∈ N.
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Let Γ denote the usual special Gamma function and let t > 1. For µ ∈ R, the falling

factorial power function is

t(µ) = Γ(t + 1)
Γ(t + 1 − µ) .

Throughout, we assume that if t + 1 − µ ∈ {0,−1, . . . ,−k, . . .}, then t(µ) = 0.

We consider a map t→ t(µ) from the set {t ∈ R ∶ t and t+ν do not belong to Z−∪{0}}

to the set of real numbers R.

Theorem 2.1.1. [1] Let µ ∈ R and t ∈ R − {. . . ,−2,−1,0}. Then

(i) ∆t(µ) = µt(µ−1),

(ii) µ(µ) = Γ(µ + 1).

2.1.2. Rising Factorial. The rising factorial power function is defined by [?,

5], which is

tr = t(t + 1)(t + 2) . . . (t + r − 1), r ∈ N

and t0 = 1.

Let ν be any real number. Then the rising factorial power function is

tν = Γ(t + ν)
Γ(t) .

We note that the Gamma function is not defined at zero and negative integers.

Therefore we consider a map t→ tν from the set {t ∈ R ∶ t and t+ ν do not belong to

Z− ∪ {0}} to the set of real numbers R.
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Lemma 2.1.2. [3] Let α and β be any real numbers and t ∈ R− {. . . ,−2,−1,0}.

Then

(i) tα(t + α)β = tα+β,

(ii)
k

∑
n=0

tn

Γ(n + 1) = (t + 1)k
Γ(k + 1) .

2.2. Fractional Sum and Difference Operators

The fractional sum operator of a function f(t) is denoted by ∆−ν
a f(t) and the

fractional difference operator of a function f(t) is denoted by ∆ν
af(t) with arbitrary

positive real order ν, starting at a. We consider the forward fractional sum as

defined by Miller and Ross [17]

∆−ν
a f(t) =

t−ν

∑
s=a

(t − σ(s))(ν−1)

Γ(ν) f(s), (2.1)

where ν ≥ 0, a ∈ R, and σ(s) = s+ 1. Define Nt0 = {t0, t0 + 1, t0 + 2, . . .} and note that

∆−ν
a maps functions defined on Na to functions defined on Na+ν . Further, we shall

consider the Riemann-Liouville fractional difference

∆µ
af(t) = ∆m−ν

a f(t) = ∆m(∆−ν
a f(t)),

where µ > 0, m − 1 < µ ≤m, m denotes a positive integer, and −ν = µ −m.

There are several ways to establish (2.1). Here we exemplify a simple process of

defining the fractional summation as indicated in [19].
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Let T be a time scale, which is an arbitrary nonempty closed subset of the real

numbers. For t ∈ T the backward jump operator ρ ∶ T→ T is defined by

ρ(t) ∶= sup{s ∈ T ∶ s < t}.

We say that t is left-scattered if ρ(t) < t. The set Tκ is derived from the time scale

T as follows:

Tκ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

T − {M}, M is the left − scattered maximum

T, Otherwise.

Theorem 2.2.1. [7] Let a ∈ Tκ, and assume f ∶ T × Tκ → R is continuous at

(a,t), where t ∈ Tκ with t > a. Also assume that f∆(t, .) is rd-continuous on [a, σ(t)],

where f∆ denotes the derivative of f with respect to the first variable. Then

g(t) ∶= ∫
t

a
f(t, τ)∆τ implies g∆(t) = ∫

t

a
f∆(t, τ)∆τ + f(σ(t), t). (2.2)

As a special case, taking T = Z in Theorem 2.2.1 we have,

Theorem 2.2.2. Let a ∈ Z, and assume f ∶ Z×Z→ R is a function, where t ∈ Z

with t > a. Then

g(t) =
t−1

∑
s=a

f(t, s)

implies

∆tg(t) =
t−1

∑
s=a

∆tf(t, s) + f(t + 1, t).

Proof. By definition of the forward difference operator, we have

∆tg(t) =
t

∑
s=a

f(t + 1, s) −
t−1

∑
s=a

f(t, s)

6



=
t−1

∑
s=a

[f(t + 1, s) − f(t, s)] + f(t + 1, t)

=
t−1

∑
s=a

∆tf(t, s) + f(t + 1, t).

�

Let F1 and F2 be defined on Z and a, t ∈ Z with t ≥ a. Then, by Theorem 2.2.2 we

have

∆t (
t−1

∑
s=a

F1(t − σ(s))F2(s)) =
t−1

∑
s=a

∆F1(t − σ(s))F2(s) + F1(a)F2(t). (2.3)

To find a general rule for the summation procedure of (2.3) we take the difference

(n−1) times and the function F1 is chosen in such a manner that the function itself

and its first (n−1) differences vanishe at t = a (i.e., ∆n−1F1(a) = 0). Now, apply the

difference on both sides of (2.3), we get

∆2
t (

t−1

∑
s=a

F1(t − σ(s))F2(s)) = ∆t (
t−1

∑
s=a

∆F1(t − σ(s))F2(s)) +∆F1(a)F2(t)

=
t−1

∑
s=a

∆2F1(t − σ(s))F2(s) + 2∆F1(a)F2(t).

If we apply the difference on both sides to the above equation one more time, we

obtain

∆3
t (

t−1

∑
s=a

F1(t − σ(s))F2(s)) = ∆t (
t−1

∑
s=a

∆2F1(t − σ(s))F2(s) + 2∆F1(a)F2(t))

=
t−1

∑
s=a

∆3F1(t − σ(s))F2(s) + 3∆2F1(a)F2(t).

7



In order to obtain the n − th difference, we follow the above procedure. Therefore

we have

∆n
t (

t−1

∑
s=a

F1(t − σ(s))F2(s)) =
t−1

∑
s=a

∆nF1(t − σ(s))F2(s) + n∆n−1F1(a)F2(t)

=
t−1

∑
s=a

∆nF1(t − σ(s))F2(s),

where n ∈ N0. Choose F1(t) =
t(n)

n!
. Hence, the above equality becomes

∆n
t (

t−1

∑
s=a

(t − σ(s))(n)
n!

F2(s)) =
t−1

∑
s=a

∆n ((t − σ(s))(n)
n!

)F2(s) =
t−1

∑
s=a

F2(s). (2.4)

Now, if we choose f(t) = ∆t (
t−1

∑
s=a

F2(s)) and apply the difference on both sides of

(2.4) we obtain

∆n+1
t (

t−1

∑
s=a

(t − σ(s))(n)
n!

F2(s)) = ∆t (
t−1

∑
s=a

F2(s)) = f(t).

Next, taking the (n + 1)-fold summation of f(t) we have

t−1

∑
s=a

t−1

∑
s=a

. . .
t−1

∑
s=a

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n+1 term

f(t) =
t−1

∑
s=a

(t − σ(s))(n)
n!

F2(s) = F (t).

Therefore,

F (t) = ∆
−(n+1)
a f(t) = 1

Γ(n + 1)
t−1

∑
s=a

(t − σ(s))(n)F2(s).

Now, it is possible to define an operator ∆−ν even when the positive number ν is

not necessarily an integer, namely by the expression (2.1).

We would like to close this section by giving a geometric illustration of discrete

fractional derivatives. In order to do that we use given data, then plot it for different

8



α values between zero and one in mathematica (see in Appendix). Therefore, we

obtain

Figure 2.2.1. A geometric illustration of discrete fractional derivatives.

By looking at this graph, one observes that

● As α approaches to 1, the discrete fractional derivative “∆α
0 g(t)” gets closer

to the difference operator “∆g(t)”,

● As α approaches to 0, the discrete fractional derivative “∆α
0 g(t)” gets closer

to the function “g(t)”.

9



2.3. A Discrete Transform Method of Solution

In this section we will define the discrete transform (R-transform) by

Rt0(f(t))(s) =
∞

∑
t=t0

( 1

s + 1
)
t+1

f(t). (2.5)

Rt0(f(t))(s) is the Laplace transform on the time scale of integers [7, 11].

The R-transform plays an important role by solving discrete fractional differ-

ence equations. We will need this method to be able to solve discrete rheological

models. Therefore, we will state some properties of the R-transform for the conve-

nience of the reader.

Lemma 2.3.1. [1] For any ν ∈ R ∖ {. . . − 2,−1,0},

(i) Rν−1(t(ν−1))(s) = Γ(ν)
sν

(ii) Rν−1(t(ν−1)αt)(s) = αν−1Γ(ν)
(s + 1 − α)ν .

We shall also need to make use of a convolution theorem given in [1]. Let

h(t) = t(ν−1) and g(t) = αt. Define the convolution

(h ∗ g)(t) =
t−ν

∑
s=0

(t − σ(s))(ν−1)g(s),

where ν ∈ R ∖ {. . . − 2,−1,0}.

Now we obtain a standard property for Rν(h(t))(s)R0(g(t))(s).

Lemma 2.3.2. [1] For any ν ∈ R ∖ {. . . − 2,−1,0}, we have

Rν((h ∗ g)(t))(s) = Rν−1(h(t))(s)R0(g(t))(s). (2.6)

10



The above lemma was proven for g(t) = αt in [1]. One can easily notice that the

proof can be carried to where g is any function for t ∈ N0.

We introduce a few more properties of the R-transform. Treat ∆νf(t) as a

convolution and apply Lemma 2.3.2 to obtain

Ra+ν(∆−νf(t))(s) = s−νRa(f(t))(s). (2.7)

Lemma 2.3.3. [1] For 0 < ν < 1 and the function f defined for ν −1, ν, ν +1, . . . ,

we have

R0(∆νf(t))(s) = sνRν−1(f(t)) − f(ν − 1). (2.8)

11



Chapter 3

MONOTONICITY RESULTS ON DISCRETE

FRACTIONAL OPERATORS

In the papers [10, 12], the authors obtained the following monotonicity and

convexity results based on the sign of the fractional difference operator of a nonneg-

ative real valued function defined on N0, where N0 = {0,1,2, . . .}.

Theorem 3.0.4. [10] Let y ∶ N0 → R be a nonnegative function satisfying

y(0) = 0. Fix ν ∈ (1,2) and suppose that ∆ν
0y(t) ≥ 0 for each t ∈ N2−ν. Then y is

increasing on N0.

Theorem 3.0.5. [12] Fix µ ∈ (N−1,N), for N ∈ N3 given, and let y ∶ N0 → R be

a given function satisfying ∆jy(0) = 0 for each j ∈ {0,1,2, . . . ,N − 3}, ∆N−2y(0) ≥ 0,

and ∆µ
0y(t) ≥ 0 for each t ∈ NN−µ. Then ∆N−1y(t) ≥ 0, for each t ∈ N0.

We note that the above two results do not include the case where ν is between

zero and one.

The main purpose of this thesis is to obtain monotonicity results for ν ∈ (0,1).

First we introduce ν-increasing and ν-decreasing functions for any positive real

number ν. We give some restrictions on ν to compare these new monotonicity

concepts with the traditional ones. We restate the following monotonicity criterion

of the discrete calculus in the discrete fractional calculus:

Let f ∶ N0 → R.

f is monotone increasing on N0 if and only if ∆f(t) ≥ 0 for all t ∈ N0.

12



For this purpose we consider a forward fractional difference operator of Riemann-

Liouville type as in the papers [2 − 7]. We then prove some monotonicity criteria

for a function f which is defined on N0 and has a sign (positive or negative) for ∆νf

when ν is between 0 and 1.

We introduce two new monotonicity concepts. Let ν be any positive real num-

ber.

Definition 3.0.6. Let y ∶ N0 → R be a function satisfying y(0) ≥ 0. y is called

a ν-increasing function on N0, if

y(a + 1) ≥ νy(a) for all a ∈ N0.

Note that if y is increasing on N0 and 0 < ν < 1, then y is ν-increasing on N0. Also,

if y is ν-increasing on N0 and ν ≥ 1, then y is increasing on N0. If ν = 1, then y is

increasing on N0 if and only if y is ν-increasing on N0.

Definition 3.0.7. Let y ∶ N0 → R be a function satisfying y(0) ≤ 0. y is called

a ν-decreasing function on N0, if

y(a + 1) ≤ νy(a) for all a ∈ N0.

Note that if y is decreasing on N0 and 0 < ν < 1, then y is ν-decreasing on N0. Also,

if y is ν-decreasing on N0 and ν ≥ 1, then y is decreasing on N0. If ν = 1, then y is

decreasing on N0 if and only if y is ν-decreasing on N0.

13



Example 3.0.8. We note that any increasing function on N0 with positive

initial point is ν-increasing.

Example 3.0.9. Consider g(t) = e−t on N0. We claim that the function g

is ν-increasing when ν ∈ (0,1/e]. This can be easily verified. In fact, we multiply

each side of the inequality 0 < ν ≤ 1/e by e−t. This implies that 0 < νe−t ≤ e−(1+t).

Therefore, by Definition 3.0.6, g(t) = e−t is ν-increasing on N0.

3.1. ν-Increasing Functions

Theorem 3.1.1. Let y ∶ N0 → R be a function satisfying y(0) ≥ 0. Fix ν ∈ (0,1)

and suppose that

∆ν
0y(t) ≥ 0 for each t ∈ N1−ν .

Then, y is ν-increasing on N0.

Proof. We will prove that y is ν-increasing by mathematical induction. First,

we observe that

∆ν
0y(t) = ∆∆

−(1−ν)
0 y(t) = ∆

⎡⎢⎢⎢⎢⎣

1

Γ(1 − ν)
t−(1−ν)

∑
s=0

(t − σ(s))(−ν)y(s)
⎤⎥⎥⎥⎥⎦
≥ 0.

14



Let s(t) = 1

Γ(1 − ν)
t−(1−ν)

∑
s=0

(t − σ(s))(−ν)y(s). Since ∆s(t) ≥ 0, s(t) is an increasing

function on N1−ν . This implies that

s(2 − ν) − s(1 − ν) = 1

Γ(1 − ν)(1 − ν)
(−ν)y(0) + 1

Γ(1 − ν)(−ν)
(−ν)y(1) − 1

Γ(1 − ν)(−ν)
(−ν)y(0)

= 1

Γ(1 − ν)[∆(−ν)(−ν)y(0) + (−ν)(−ν)y(1)]

= 1

Γ(1 − ν) [−νΓ(1 − ν)
Γ(2) y(0) + Γ(1 − ν)

Γ(1) y(1)] ≥ 0.

Therefore, we have

y(1) ≥ νy(0).

Now, let us assume that the induction hypothesis is valid up to n = k − 1. Hence we

have

y(k) ≥ νy(k − 1) ≥ ν2y(k − 2) ≥ . . . ≥ νky(0) ≥ 0. (3.1)

We want to prove that for n = k, the inequality

y(k + 1) ≥ νy(k) (3.2)

is valid. To prove (3.2) we first calculate,

s(k + 1 − ν) = 1

Γ(1 − ν)
k

∑
s=0

(k + 1 − ν − σ(s))(−ν)y(s)

and

s(k + 2 − ν) = 1

Γ(1 − ν)
k+1

∑
s=0

(k + 2 − ν − σ(s))(−ν)y(s).

Since s(t) is increasing, we have

15



s(k + 2 − ν) − s(k + 1 − ν)

= 1

Γ(1 − ν)
k+1

∑
s=0

(k + 1 − ν − s)(−ν)y(s)

− 1

Γ(1 − ν)
k

∑
s=0

(k − ν − s)(−ν)y(s) ≥ 0.

Performing the sum operations above, we have

1

Γ(1 − ν)[(k + 1 − ν)(−ν)y(0) + (k − ν)(−ν)y(1)

+ (k − 1 − ν)(−ν)y(2) + . . . + (2 − ν)(−ν)y(k − 1) + (1 − ν)(−ν)y(k) + (−ν)(−ν)y(k + 1)]

− 1

Γ(1 − ν)[(k − ν)
(−ν)y(0) + (k − 1 − ν)(−ν)y(1) + (k − 2 − ν)(−ν)y(2)

+ . . . + (1 − ν)(−ν)y(k − 1) + (−ν)(−ν)y(k)] ≥ 0.

Then grouping the like terms we obtain the following inequality:

1

Γ(1 − ν)[[(k + 1 − ν)(−ν) − (k − ν)(−ν)]y(0) + [(k − ν)(−ν) − (k − 1 − ν)(−ν)]y(1)

+ [(k − 1 − ν)(−ν) − (k − 2 − ν)(−ν)]y(2)

+ . . . + [(2 − ν)(−ν) − (1 − ν)(−ν)]y(k − 1) + [(1 − ν)(−ν) − (−ν)(−ν)]y(k) + (−ν)(−ν)y(k + 1)] ≥ 0.

Next we rewrite the coefficients of y(0), y(1), . . . y(k + 1) with ∆ operator as follows

1

Γ(1 − ν)[∆(k − ν)(−ν)y(0) +∆(k − 1 − ν)(−ν)y(1) +∆(k − 2 − ν)(−ν)y(2)

+ . . . +∆(1 − ν)(−ν)y(k − 1) +∆(−ν)(−ν)y(k) + (−ν)(−ν)y(k + 1)] ≥ 0.
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After performing the ∆ operator using the power rule in Theorem 2.1.1 (i), we

obtain

1

Γ(1 − ν)[(−ν)(k − ν)
(−ν−1)y(0) + (−ν)(k − 1 − ν)(−ν−1)y(1) + (−ν)(k − 2 − ν)(−ν−1)y(2)

+ . . . + (−ν)(1 − ν)(−ν−1)y(k − 1) + (−ν)(−ν)(−ν−1)y(k) + (−ν)(−ν)y(k + 1)] ≥ 0.

Then using the definition of falling factorial power, we have

1

Γ(1 − ν)[(−ν)
Γ(k − ν + 1)

Γ(k − ν + 1 + ν + 1)y(0) + (−ν) Γ(k − 1 − ν + 1)
Γ(k − 1 − ν + 1 + ν + 1)y(1)

+ (−ν) Γ(k − 2 − ν + 1)
Γ(k − 2 − ν + 1 + ν + 1)y(2) + . . . + (−ν) Γ(1 − ν + 1)

Γ(1 − ν + 1 + ν + 1)y(k − 1)

+ (−ν) Γ(−ν + 1)
Γ(−ν + 1 + ν + 1)y(k) + Γ(−ν + 1)y(k + 1)] ≥ 0.

Next we simplify the above expression as the following

y(k + 1) + (−ν)
Γ(1 − ν)[

Γ(k − ν + 1)
Γ(k + 2) y(0) + Γ(k − ν)

Γ(k + 1)y(1) +
Γ(k − 1 − ν)

Γ(k) y(2)

+ . . . + Γ(2 − ν)
Γ(3) y(k − 1) + Γ(1 − ν)

Γ(2) y(k)] ≥ 0.

So, we have

y(k + 1) + (−ν)
Γ(1 − ν)[

(k − ν)(k − 1 − ν) . . . (2 − ν)(1 − ν)Γ(1 − ν)
Γ(k + 2) y(0)

+ (k − 1 − ν)(k − 2 − ν) . . . (2 − ν)(1 − ν)Γ(1 − ν)
Γ(k + 1) y(1)

+ (k − 2 − ν)(k − 3 − ν) . . . (2 − ν)(1 − ν)Γ(1 − ν)
Γ(k) y(2)

+ . . . + (1 − ν)Γ(1 − ν)
Γ(3) y(k − 1) + Γ(1 − ν)

Γ(2) y(k)] ≥ 0.
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Only by one simple algebraic step we obtain

y(k + 1) ≥ (k − ν)(k − 1 − ν) . . . (2 − ν)(1 − ν)ν
Γ(k + 2) y(0)

+ (k − 1 − ν)(k − 2 − ν) . . . (2 − ν)(1 − ν)ν
Γ(k + 1) y(1) + (k − 2 − ν)(k − 3 − ν) . . . (2 − ν)(1 − ν)ν

Γ(k) y(2)

+ . . . + (1 − ν)ν
Γ(3) y(k − 1) + ν

Γ(2)y(k).

By the induction assumption (3.1), we have

y(k + 1) − νy(k) ≥ (k − ν)(k − 1 − ν) . . . (2 − ν)(1 − ν)ν
Γ(k + 2) y(0)

+ (k − 1 − ν)(k − 2 − ν) . . . (2 − ν)(1 − ν)ν
Γ(k + 1) y(1) + (k − 2 − ν)(k − 3 − ν) . . . (2 − ν)(1 − ν)ν

Γ(k) y(2)

+ . . . + (1 − ν)ν
Γ(3) y(k − 1) ≥ 0.

Hence, we conclude that for each k ∈ N,

y(k + 1) − νy(k) ≥ 0.

�

In the proof of the next theorem, the rising factorial power function plays an

important role.

Theorem 3.1.2. Let y ∶ N0 → R be a function satisfying y(0) ≥ 0. Fix ν ∈ (0,1)

and assume that y is an increasing function on N0. Then,

∆ν
0y(t) ≥ 0 for each t ∈ N1−ν .
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Proof. We want to show that

∆ν
0y(t) = ∆∆

−(1−ν)
0 y(t) = ∆

⎡⎢⎢⎢⎢⎣

1

Γ(1 − ν)
t−(1−ν)

∑
s=0

(t − σ(s))(−ν)y(s)
⎤⎥⎥⎥⎥⎦
≥ 0.

Similarly, let

s(t) = 1

Γ(1 − ν)
t−(1−ν)

∑
s=0

(t − σ(s))(−ν)y(s).

To complete the proof, we need to show that s(t) is increasing on N1−ν .

For any natural number k with k ≥ 1 we show that

s(k + 1 − ν) − s(k − ν) ≥ 0,

is valid. In fact, we have

s(k + 1 − ν) − s(k − ν)

= 1

Γ(1 − ν)
k

∑
s=0

(k + 1 − ν − σ(s))(−ν)y(s) − 1

Γ(1 − ν)
k−1

∑
s=0

(k − ν − σ(s))(−ν)y(s)

= 1

Γ(1 − ν)
k−1

∑
s=0

∆k(k − ν − σ(s))(−ν)y(s) +
1

Γ(1 − ν)(−ν)
(−ν)y(k)

= 1

Γ(1 − ν)
k−1

∑
s=0

(−ν)(k − ν − σ(s))(−ν−1)y(s) + y(k)

= y(k) − νy(k − 1) + 1

Γ(1 − ν)
k−2

∑
s=0

(−ν)(k − ν − σ(s))(−ν−1)y(s)

= y(k) − νy(k − 1) + ν

Γ(1 − ν)
k−2

∑
s=0

(k − ν − σ(s))(−ν−1)(y(k − 1) − y(s))

+ 1

Γ(1 − ν)
k−2

∑
s=0

(−ν)(k − ν − σ(s))(−ν−1)y(k − 1)

≥ y(k) − νy(k − 1) + y(k − 1)
Γ(1 − ν)

k−2

∑
s=0

(−ν)(k − ν − σ(s))(−ν−1)
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= y(k) − y(k − 1) + y(k − 1) + y(k − 1)
Γ(1 − ν)

k−1

∑
s=0

(−ν)(k − ν − σ(s))(−ν−1)

≥ y(k − 1)(1 + 1

Γ(1 − ν)
k−1

∑
s=0

(−ν)(k − ν − σ(s))(−ν−1)).

Then using Theorem 2.1.1 (ii) and the definitions of falling and rising factorial power

functions, we have

s(k + 1 − ν) − s(k − ν) ≥ y(k − 1) 1

Γ(1 − ν)
k

∑
s=0

(−ν)(k − ν − σ(s))(−ν−1)

= y(k − 1)
k

∑
s=0

(−ν)s
s!

.

By Theorem 2.1.2 (ii), we have
k

∑
s=0

(−ν)s
s!

= (1 − ν)k
k!

. Therefore, we obtain

s(k + 1 − ν) − s(k − ν) ≥ y(k − 1)(1 − ν)
k

k!
.

Choosing α = k − 1 and β = 1 in Theorem 2.1.2 (i), we rewrite the notation

(1 − ν)k
k!

= (1 − ν)k−1

(k − 1)!
(1 − ν + k − 1)1

k
.

By the definition of the rising factorial power function, we say
(1 − ν)k−1

(k − 1)! ≥ 0. Hence,

we have

s(k + 1 − ν) − s(k − ν) ≥ y(k − 1)(k − ν)
k

≥ 0.

This completes the proof. �

As a conclusion of the above obtained results, with y(0) ≥ 0 and for 0 < ν < 1

we have the following list of statements:

● If y is increasing function on N0 if and only if ∆y(t) ≥ 0 for all t ∈ N0.
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● If y is increasing function on N0 then y is ν-increasing function on N0.

● If y is increasing function on N0 then ∆ν
0y(t) ≥ 0 for each t ∈ N1−ν .

● If ∆ν
0y(t) ≥ 0 for each t ∈ N1−ν then y is ν-increasing function on N0.

● If ∆y(t) ≥ 0 for all t ∈ N0 then y is ν-increasing function on N0.

● If ∆y(t) ≥ 0 for all t ∈ N0 then ∆ν
0y(t) ≥ 0 for each t ∈ N1−ν .

We can summarize all these statements by using the diagram below for 0 < ν <

1,

∆ν
0y(t) ≥ 0 y(t) is ν − increasing

y(t) is increasing ∆y(t) ≥ 0

The above proof can be easily carried over to the proof of the following result.

Theorem 3.1.3. Let y ∶ N0 → R be a function satisfying y(0) > 0. Fix ν ∈ (0,1)

and assume that y is a strictly increasing function on N0. Then,

∆ν
0y(t) > 0 for each t ∈ N1−ν .

Corollary 3.1.4. Let h ∶ [1,+∞)N × R → R be a nonnegative, continuous

function, and let A be a nonnegative real number. Then the unique solution of the

discrete fractional IV P

∆ν
0y(t) = h(t + ν − 1, y(t + ν − 1)), t ∈ N1−ν

y(0) = A,
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y is ν-increasing and nonnegative.

3.2. ν-Decreasing Functions

In a similar way, the above results can be obtained for the function which takes

a negative value at the initial point of its domain. For the convenience of the reader

we would like to include the proof of the next theorem.

Theorem 3.2.1. Let y ∶ N0 → R be a function satisfying y(0) ≤ 0. Fix ν ∈ (0,1)

and suppose that

∆ν
0y(t) ≤ 0 for each t ∈ N1−ν .

Then, y is ν-decreasing on N0.

Proof. We will prove that y is a ν-decreasing function on N0 by mathematical

induction. We observe that

∆ν
0y(t) = ∆∆

−(1−ν)
0 y(t) = ∆

⎡⎢⎢⎢⎢⎣

1

Γ(1 − ν)
t−(1−ν)

∑
s=0

(t − σ(s))(−ν)y(s)
⎤⎥⎥⎥⎥⎦
≤ 0.

Let s(t) = 1

Γ(1 − ν)
t−(1−ν)

∑
s=0

(t − σ(s))(−ν)y(s). Since ∆s(t) ≤ 0, s(t) is a decreasing

function on N1−ν . This implies that

s(2 − ν) − s(1 − ν) = 1

Γ(1 − ν)
1

∑
s=0

(2 − ν − σ(s))(−ν)y(s) − 1

Γ(1 − ν)
0

∑
s=0

(1 − ν − σ(s))(−ν)y(s)

= 1

Γ(1 − ν)(1 − ν)
(−ν)y(0) + 1

Γ(1 − ν)(−ν)
(−ν)y(1) − 1

Γ(1 − ν)(−ν)
(−ν)y(0)

= 1

Γ(1 − ν)[∆(−ν)(−ν)y(0) + (−ν)(−ν)y(1)]

= 1

Γ(1 − ν) [−νΓ(1 − ν)
Γ(2) y(0) + Γ(1 − ν)

Γ(1) y(1))] ≤ 0.
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This implies that

y(1) ≤ νy(0).

Now, we assume that the induction hypothesis is valid up to n = k − 1. Thus we

have

y(k) ≤ νy(k − 1) ≤ ν2y(k − 2) ≤ . . . ≤ νky(0) ≤ 0. (3.3)

We want to show that for n = k, the inequality

y(k + 1) ≤ νy(k) (3.4)

is valid. Now, in order to prove (3.4) we calculate

s(k + 1 − ν) = 1

Γ(1 − ν)
k

∑
s=0

(k − ν − s)(−ν)y(s)

and

s(k + 2 − ν) = 1

Γ(1 − ν)
k+1

∑
s=0

(k + 1 − ν − s)(−ν)y(s).

Since s(t) is decreasing, we have

s(k + 2 − ν) − s(k + 1 − ν)

= 1

Γ(1 − ν)
k+1

∑
s=0

(k + 1 − ν − s)(−ν)y(s)

− 1

Γ(1 − ν)
k

∑
s=0

(k − ν − s)(−ν)y(s) ≤ 0.
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By performing the sum operations above, we obtain

1

Γ(1 − ν)[(k + 1 − ν)(−ν)y(0) + (k − ν)(−ν)y(1)

+ (k − 1 − ν)(−ν)y(2) + . . . + (2 − ν)(−ν)y(k − 1) + (1 − ν)(−ν)y(k) + (−ν)(−ν)y(k + 1)]

− 1

Γ(1 − ν)[(k − ν)
(−ν)y(0) + (k − 1 − ν)(−ν)y(1) + (k − 2 − ν)(−ν)y(2)

+ . . . + (1 − ν)(−ν)y(k − 1) + (−ν)(−ν)y(k)] ≤ 0.

Then by grouping the terms we get the following inequality:

1

Γ(1 − ν)[[(k + 1 − ν)(−ν) − (k − ν)(−ν)]y(0) + [(k − ν)(−ν) − (k − 1 − ν)(−ν)]y(1)

+ [(k − 1 − ν)(−ν) − (k − 2 − ν)(−ν)]y(2)

+ . . . + [(2 − ν)(−ν) − (1 − ν)(−ν)]y(k − 1) + [(1 − ν)(−ν) − (−ν)(−ν)]y(k) + (−ν)(−ν)y(k + 1)] ≤ 0.

Now, we rewrite the coefficients of y(0), y(1), . . . y(k+1) with ∆ operator as follows

1

Γ(1 − ν)[∆(k − ν)(−ν)y(0) +∆(k − 1 − ν)(−ν)y(1) +∆(k − 2 − ν)(−ν)y(2)

+ . . . +∆(1 − ν)(−ν)y(k − 1) +∆(−ν)(−ν)y(k) + (−ν)(−ν)y(k + 1)] ≤ 0.
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After performing the ∆ operator using the power rule in Theorem 2.1.1 (i) and the

definition of the falling factorial power, we obtain

1

Γ(1 − ν)[(−ν)(k − ν)
(−ν−1)y(0) + (−ν)(k − 1 − ν)(−ν−1)y(1) + (−ν)(k − 2 − ν)(−ν−1)y(2)

+ . . . + (−ν)(1 − ν)(−ν−1)y(k − 1) + (−ν)(−ν)(−ν−1)y(k) + (−ν)(−ν)y(k + 1)]

= 1

Γ(1 − ν)[(−ν)
Γ(k − ν + 1)

Γ(k − ν + 1 + ν + 1)y(0) + (−ν) Γ(k − 1 − ν + 1)
Γ(k − 1 − ν + 1 + ν + 1)y(1)

+ (−ν) Γ(k − 2 − ν + 1)
Γ(k − 2 − ν + 1 + ν + 1)y(2) + . . . + (−ν) Γ(1 − ν + 1)

Γ(1 − ν + 1 + ν + 1)y(k − 1)

+ (−ν) Γ(−ν + 1)
Γ(−ν + 1 + ν + 1)y(k) + Γ(−ν + 1)y(k + 1)] ≤ 0.

Next we simplify the above expression, then we have

y(k + 1) + (−ν)
Γ(1 − ν)[

(k − ν)(k − 1 − ν) . . . (2 − ν)(1 − ν)Γ(1 − ν)
Γ(k + 2) y(0)

+ (k − 1 − ν)(k − 2 − ν) . . . (2 − ν)(1 − ν)Γ(1 − ν)
Γ(k + 1) y(1)

+ (k − 2 − ν)(k − 3 − ν) . . . (2 − ν)(1 − ν)Γ(1 − ν)
Γ(k) y(2)

+ . . . + (1 − ν)Γ(1 − ν)
Γ(3) y(k − 1) + Γ(1 − ν)

Γ(2) y(k)] ≤ 0.

By a simple algebraic step and the induction assumption (3.3), we have

y(k + 1) − νy(k) ≤ (k − ν)(k − 1 − ν) . . . (2 − ν)(1 − ν)ν
Γ(k + 2) y(0)

+ (k − 1 − ν)(k − 2 − ν) . . . (2 − ν)(1 − ν)ν
Γ(k + 1) y(1) + (k − 2 − ν)(k − 3 − ν) . . . (2 − ν)(1 − ν)ν

Γ(k) y(2)

+ . . . + (1 − ν)ν
Γ(3) y(k − 1) ≤ 0.

25



Therefore, we conclude that for each k ∈ N,

y(k + 1) ≤ νy(k)

which means that y is a ν-decreasing function for all n on N0. �

Since following theorem can be proved in a similar way as in Theorem 3.1.2,

so we omit the proof.

Theorem 3.2.2. Let y ∶ N0 → R be a function satisfying y(0) ≤ 0. Fix ν ∈ (0,1)

and assume that y is decreasing function on N0. Then,

∆ν
0y(t) ≤ 0 for each t ∈ N1−ν .

Corollary 3.2.3. Let h ∶ [1,+∞)N × R → R be a nonpositive, continuous

function, and let A be a nonpositive real number. Then the unique solution of the

discrete fractional IV P

∆ν
0y(t) = h(t + ν − 1, y(t + ν − 1)), t ∈ N1−ν

y(0) = A,

y is ν-decreasing and nonpositive.
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Chapter 4

DISCRETE FRACTIONAL RHEOLOGICAL MODELS

The plan of this chapter is the following. We recall the essential notions of

linear viscoelasticity in order to present our notations for the mechanical models.

We limit our attention to the basic mechanical models, characterized by two and

four parameters.

We will consider a range of approaches to the linear theory of viscoelasticity

from integer-order models to discrete fractional calculus models.

4.1. Integer-Order Rheological Models

The word viscoelastic is derived from the words “ viscous ” and “ elastic ”; a

viscoelastic material exhibits both viscous and elastic behavior– a bit like a fluid and

a bit like a solid. One can build up a model of linear viscoelasticity by considering

combinations of the linear elastic spring and the linear viscous dash-pot. These are

known as rheological models.

4.1.1. The Linear Elastic Spring and Viscous Dash-Pot. The springs are

assumed to obey Hooke’s Law, which responds as a linear elastic spring of constant

stiffness E as:

σ(t) = Eε(t) (4.1)

where σ is the stress and ε is the strain that occurs under the given stress.
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The dash-pots are assumed to obey Newton’s Fluid Law, which responds with

a strain-rate proportional to stress:

σ(t) = ηdε(t)
dt

(4.2)

where η is the constant coefficient of viscosity.

σ
E

σ

Figure 4.1.1. The linear

elastic spring.

σ

η

σ

Figure 4.1.2. The linear

viscous dash-pot.

Hooke’s Law represents the rheological constitutive equation of an ideal solid, whereas

Newton’s Law corresponds to an ideal fluid. Therefore, relations (4.1) and (4.2) are

not universal laws, but only mathematical models for an ideal solid material and

for an ideal fluid, neither of which exists in the real world. In fact, real materials

combine properties of those two limit cases and lie somewhere between ideal solids

and ideal fluids, if materials are sorted with respect to their firmness [18].

In order to derive the rheological constitutive equations for viscoelastic mate-

rials, one starts by combining a small number of springs and dashpots in series or

parallel.
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4.1.2. The Maxwell Model. The serial connection of the two basic elements

gives Maxwell’s Model of viscoelasticity. Therefore, the sum of the strain of spring

(ε1) and dash-pot (ε2) is equal to the total strain (ε). Also, equilibrium requires

that the stress (σ) be the same in both elements. One thus has the following three

equations in four unknowns:

ε1(t) =
1

E
σ(t), dε2(t)

dt
= 1

η
σ(t), ε(t) = ε1(t) + ε2(t)

To eliminate ε1 and ε2, differentiate the first and third equations, and put the first

and second into the third. We obtain the continuous Maxwell model which is written

as

dσ(t)
dt

+ 1

τ
σ(t) = Edε(t)

dt
(4.3)

where τ = η

E
has the units of time. This constitute equation has been put in what

is known as the standard form– stress on left, strain on right.

In this model, the stress relaxes or decays with time constant τ following a unit

step function in applied strain. This stress relaxation behavior is characteristic of a

viscoelastic material.
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ε

ε1

ε2

σ

σ

σ1

σ2

ε = ε1 + ε2

σ = σ1 = σ2

Figure 4.1.3. The Maxwell model.

4.1.3. The Kelvin-Voigt Model. The parallel connection of the two basic

elements gives Kelvin-Voigt’s Model. This model assumes that there is no bending

in this type of parallel arrangement, so that the strain experienced by the spring is

the same as that experienced by the dash-pot. Therefore, we have

ε(t) = 1

E
σ1(t),

dε(t)
dt

= 1

η
σ2(t), σ(t) = σ1(t) + σ2(t)

where σ1 is the stress in the spring and σ2 is the stress in the dash-pot.
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Eliminating σ1 and σ2 leaves the constitutive law of the Kelvin-Voigt model, which

is written as

σ(t) = Eε(t) + ηdε(t)
dt

. (4.4)

ε = ε1 = ε2

σ2 σ1

σ = σ1 + σ2

σ

σ

Figure 4.1.4. The Kelvin-Voigt model.

4.2. The Discrete Fractional Order Elements in Constitutive Models of

Viscoelasticity

The next step in developing fractional viscoelasticity models is to combine a

fractional order element with other mechanical components. The behavior of these

systems can be described by fractional order differential constitutive equations. In
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order to show how the fractional order models behave in a number of usual dynamic

experiments on viscoelastic solids, Smith and Vries in [19] used various conventional

experiments, such as constant-rate-of-deformation test, relaxation test, creep test,

hysteresis experiment and oscillatory experiment to compare fractional models with

integer-order models.

The goal is to develop models whose solutions are more appropriate for de-

scribing complex physical or physiological systems, as in [16].

This fractional order element is characterized by the fractional order differential

equation

σ(t) = Eτ γ d
γε(t)
dtγ

(4.5)

and includes three parameters (γ,E, τ).

Since our purpose is constructing discrete fractional models, instead of using

(4.5) we need discrete fractional order elements, which give the fractional difference

equation

σ(t) = Eτ γ∆γε(t), (4.6)

where 0 < γ ≤ 1.
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E
η (γ,E, τ)

Figure 4.2.1. Elastic, viscous, and fractional order viscoelastic mod-

els for ideal elastic (γ = 0, τ = 1), viscous (γ = 1,Eτ = η), and fractional

order (γ,E, τ) elements.

Before we define discrete fractional models, we state and prove a theorem which

will help us to solve the equations of these new models.

Theorem 4.2.1. Assume 0 < ν < 1 and f is defined on Nν−1 for t ∈ N0. The

discrete fractional difference equation

∆αz(t) + λz(t + α − 1) = f(t + α − 1) (4.7)

has the general solution

z(t) = z(α − 1)E(t,−λ,α) + [f(t + α − 1) ∗E(t,−λ,α)] , (4.8)

where E(t,−λ,α) =
∞

∑
n=0

(−λ)n
Γ((n + 1)α)(t + n(α − 1))((n+1)α−1).
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Proof. Applying the R-transform on both sides of (4.7), we obtain

R0 (∆αz(t)) (s) + λR0 (z(t + α − 1)) (s) = R0 (f(t + α − 1)) (s).

By Lemma (2.3.3), we have

sαRα−1 (z(t)) − z(α − 1) + λR0 (z(t + α − 1)) (s) = R0 (f(t + α − 1)) .

Also, by (2.5) we have

R0 (z(t + α − 1)) = ( 1

s + 1
)

1−α

Rα−1 (z(t)) .

Therefore, we obtain

sαRα−1 (z(t)) − z(α − 1) + λ

(s + 1)1−α
Rα−1 (z(t)) = R0 (f(t + α − 1)) .

Only by one simple algebraic step we obtain

Rα−1 (z(t)) [sα +
λ

(s + 1)1−α
] = R0 (f(t + α − 1)) + z(α − 1).

We solve this equation for Rα−1 (z(t)), we get

Rα−1 (z(t)) =
1

sα + λ
(s+1)1−α

[R0 (f(t + α − 1)) + z(α − 1)] . (4.9)

Now, we need to arrange
1

sα + λ
(s+1)1−α

as

1

sα + λ
(s+1)1−α

= 1

sα
1

1 + λ
sα(s+1)1−α

= 1

sα
1

1 + λ(s+1)α−1

sα

.
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In fact, we have the following series expansion

1

sα + λ
(s+1)1−α

= 1

sα
(1 − λ(s + 1)α−1

sα
+ λ

2(s + 1)2α−2

s2α
− λ

3(s + 1)3α−3

s3α
+ . . .)

= 1

sα
− λ(s + 1)α−1

s2α
+ λ

2(s + 1)2α−2

s3α
− λ

3(s + 1)3α−3

s4α
+ . . . .

Now, we take this equality and plug into (4.9), we obtain

Rα−1 (z(t)) = F (s) ( 1

sα
− λ(s + 1)α−1

s2α
+ λ

2(s + 1)2α−2

s3α
− λ

3(s + 1)3α−3

s4α
+ . . .)

+z(α − 1) ( 1

sα
− λ(s + 1)α−1

s2α
+ λ

2(s + 1)2α−2

s3α
− λ

3(s + 1)3α−3

s4α
+ . . .) ,

where F (s) = R0 (f(t + α − 1)) (s).

Before going further, we need to rewrite the notations
1

sα
,
(s + 1)α−1

s2α
,
(s + 1)2α−2

s3α
, . . .

by using the R-transform.

To do that we need to use Lemma 2.3.1 (i), first we have

1

sα
= 1

Γ(α)Rα−1 (t(α−1)) . (4.10)

We write the second term as

1

s2α
= 1

Γ(2α)R2α−1 (t(2α−1)) . (4.11)

Therefore, by the definition of the R-transform we have

R2α−1 (t(2α−1)) (s) =
∞

∑
t=2α−1

( 1

s + 1
)
t+1

t(2α−1).
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Let t→ t + α − 1, then we have

R2α−1 (t(2α−1)) (s) =
∞

∑
t=α

( 1

s + 1
)
t+α−1+1

(t + α − 1)(2α−1)

= 1

(s + 1)α−1

∞

∑
t=α−1

( 1

s + 1
)
t+1

(t + α − 1)(2α−1)

= (s + 1)1−αRα−1 ((t + α − 1)(2α−1)) (s).

Therefore, (4.11) becomes

(s + 1)α−1

s2α
= 1

Γ(2α)Rα−1 ((t + α − 1)(2α−1)) (s). (4.12)

Similarly, we can write

1

s3α
= 1

Γ(3α)R3α−1 (t(3α−1)) (s). (4.13)

Now, we have

R3α−1 (t(3α−1)) (s) =
∞

∑
t=3α−1

( 1

s + 1
)
t+1

t(3α−1).

Let t→ t + 2α − 2, then we obtain

R3α−1 (t(3α−1)) (s) =
∞

∑
t=α+1

( 1

s + 1
)
t+2α−2+1

(t + 2α − 2)(3α−1)

= 1

(s + 1)2α−2

∞

∑
t=α−1

( 1

s + 1
)
t+1

(t + 2α − 2)(3α−1),

since for t = α and t = α − 1, the summand is zero. By the definition of the R-

transform we have

R3α−1 (t(3α−1)) (s) = (s + 1)2−2αRα−1 ((t + 2α − 2)(3α−1)) (s).
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Therefore, (4.13) becomes

(s + 1)2α−2

s3α
= 1

Γ(3α)Rα−1 ((t + 2α − 2)(3α−1)) (s). (4.14)

Now, to find F (s) ( 1

sα
− λ(s + 1)α−1

s2α
+ λ

2(s + 1)2α−2

s3α
− λ

3(s + 1)3α−3

s4α
+ . . .), we need

to use convolution product. By the definitions of the R-transform and the falling

factorial, we see that Rα−2(f(t))(s) = Rα−1(f(t))(s). Therefore, we rewrite the

equations (4.10), (4.12), and (4.14) we obtain

Rα−1 (z(t)) = F (s)Rα−2 (
1

Γ(α)t
(α−1) − λ

Γ(2α)(t + α − 1)(2α−1) + λ2

Γ(3α)(t + 2α − 2)(3α−1) − . . .)

+z(α − 1)Rα−1 (
1

Γ(α)t
(α−1) − λ

Γ(2α)(t + α − 1)(2α−1) + λ2

Γ(3α)(t + 2α − 2)(3α−1) − . . .) .

Since there is a pattern among these terms, we rewrite them by using the summation

operator. Therefore, we have

Rα−1 (z(t)) = F (s)Rα−2 (E(t,−λ,α)) (s) + z(α − 1)Rα−1 (E(t,−λ,α)) (s), (4.15)

where E(t,−λ,α) =
∞

∑
n=0

(−λ)n
Γ((n + 1)α)(t + n(α − 1))((n+1)α−1), t ∈ Nν−1.

Now, choosing ν = α − 1 in Lemma 2.3.2, equation (4.15) becomes

Rα−1 (z(t)) = Rα−1 [f(t + α − 1) ∗E(t,−λ,α) + z(α − 1)E(t,−λ,α)] (s). (4.16)

Finally, we apply the inverse R-transform to equation (4.16), then we obtain the

general solution of Theorem 4.2.1. �
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4.2.1. Generalized Discrete Maxwell Model with Single Fractional Or-

der Element. By choosing a discrete time domain, we convert the derivative op-

erator to a difference operator in equation (4.3). Therefore, we would obtain the

discrete Maxwell model, which is

∆σ(t) + 1

τ
σ(t) = E∆ε(t). (4.17)

If we replace the spring in the Maxwell model with a generalized fractional order

element, we can establish the appropriate constitutive relationship in the following

manner.

σ

σ

η2

(α,E, τ1)

Figure 4.2.2. The fractional Maxwell model.
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Thus, the stresses σ1 and σ2 for the individual elements are given by

σ1(t) = E1τ
α
1

dαε1(t)
dtα

and σ2(t) = η2
dε2(t)
dt

.

Our purpose is to write these above equations in a discrete domain instead of a

continuos domain.

We replace the spring in the discrete Maxwell model with a generalized fractional

element (4.6), then we have

σ1(t) = E1τ
α
1 ∆αε1(t) and σ2(t) = η2∆ε2(t).

For 0 < α < 1, we have

∆ε1(t) = ∆1−α [∆αε1(t)] = ∆1−α [σ1(t)
E1τα1

] .

Since ε1(t) + ε2(t) = ε(t) and σ(t) = σ1(t) = σ2(t), we have

∆ε1(t) +∆ε2(t) = ∆ε(t).

We can rewrite the strain relationship as the following fractional order difference

equation

1

E1τα1
∆1−ασ(t) + 1

η2

σ(t − α) = ∆ε(t).

If we let τα−1 = E1τα1
η2

and E = E1
τα1
τα
, we obtain the discrete fractional order equation

of the Maxwell model for t = 0,1,2, . . . ,

∆1−ασ(t) + τα−1σ(t − α) = Eτα∆ε(t) (4.18)
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where σ(t) is defined on {−α,1 − α,2 − α, . . .}.

To solve (4.18), we will apply the R- transform to the equation. Then, we obtain

1

τα−1
R0 (∆1−ασ(t)) +R0 (σ(t − α)) = EτR0 (∆ε(t)) . (4.19)

Now, we choose ν = 1 − α in Lemma 2.3.3 and apply it to (4.19). We get

1

τα−1
s1−αR−α (σ(t)) − 1

τα−1
σ(−α) +R0 (σ(t − α)) = EτR0 (∆ε(t)) .

If we apply the equality in [11], which is

R0 (∆ε(t)) = −ε(0) + sR0 (ε(t)) ,

then we obtain

1

τα−1
s1−αR−α (σ(t)) − 1

τα−1
σ(−α) +R0 (σ(t − α)) = Eτ (−ε(0) + sR0 (ε(t))) .

Assume that the initial conditions are zero, then we have

1

τα−1
s1−αR−α (σ(t)) +R0 (σ(t − α)) = EτsR0 (ε(t)) . (4.20)

Now, let I(t) = t − α and (σ ○ I)(t) = σ(t − α), then by definition of the discrete

R-transform we obtain

R0 ((σ ○ I)(t)) (s) =
∞

∑
t=0

( 1

s + 1
)
t+1

(σ ○ I)(t)

=
∞

∑
t=0

( 1

s + 1
)
t+1

σ(t − α).
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Choose u = t − α, then we have

R0 (σ(u)) (s) =
∞

∑
u=−α

( 1

s + 1
)
u+α+1

σ(u)

Hence, we write

R0 (σ(t − α)) (s) = ( 1

s + 1
)
α

R−α (σ(t)) .

Take this above equality and plug into (4.20), we get

1

τα−1
s1−αR−α (σ(t)) + ( 1

s + 1
)
α

R−α (σ(t)) = EτsR0 (ε(t)) .

Therefore, we have

R−α (σ(t)) [(τs)1−α + (s + 1)−α] = EτsR0 (ε(t)) . (4.21)

Now, we solve (4.21) for R−α (σ(t)) . Then we have

R−α (σ(t)) = EτsR0 (ε(t))
(τs)1−α + (s + 1)−α = Eττα−1

[ s1−ατα−1 + 1
(s+1)α ] τα−1

= Eτα

s1−α + (s+1)−α

τ1−α

= Eτα

s1−α + λ(s + 1)−α = Eτ
α

s1−α

⎛
⎝

1

1 + λ(s+1)−α

s1−α

⎞
⎠

where R0 (ε(t)) =
1

s
and λ = 1

τ 1−α
.

In fact, we have the following series expansion

1

1 + λ(s+1)−α

s1−α

= 1 − λ(s + 1)−α
s1−α

+ λ
2(s + 1)−2α

s2−2α
− λ

3(s + 1)−3α

s3−3α
+ λ

4(s + 1)−4α

s4−4α
− . . . .
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Therefore, we obtain

R−α (σ(t)) = Eτα ( 1

s1−α
− λ(s + 1)−α

s2−2α
+ λ

2(s + 1)−2α

s3−3α
− λ

3(s + 1)−3α

s4−4α
+ λ

4(s + 1)−4α

s5−5α
− . . .) .

Now, applying the inverse R-transform we have

σ(t) = Eτα [R−1
α ( 1

s1−α
) − λR−1

α ((s + 1)−α
s2−2α

) + λ2R−1
α ((s + 1)−2α

s3−3α
) − . . . ] . (4.22)

The equation (4.22) is a special case of Theorem 4.2.1. Therefore, applying the same

process, we find the solution of the discrete fractional Maxwell model as

σ(t) = Eτα
∞

∑
n=0

λn

Γ[(n + 1)(1 − α)](t + n(1 − α − 1))((n+1)(1−α)−1),

which is known as the Mittag-Leffler function in [2].

4.2.2. Generalized Discrete Kelvin-Voigt Model with Single Fractional

Order Element. The discrete Kelvin-Voigt model is

σ(t) = Eε(t) + η∆ε(t). (4.23)

Adding a spring in parallel with the dash-pot unit allows for the relaxation plateau

to be observed experimentally. This is the Kelvin-Voigt Fractional model given by

[9], which is

σ(t) = E0ε(t) +E1τ
αd

αε(t)
dtα

, (4.24)
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and consisting of elastic and viscoelastic terms. E0 and E1 may have different values;

however τ can be modified so that

σ(t) = E0ε(t) +E0τ
′αd

αε(t)
dtα

. (4.25)

This form is convenient when expressing the time-domain behavior in response to a

step stimulus.

σ

σ

E(α,E1, τ1)

Figure 4.2.3. The Kelvin-Voigt fractional model.
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Similarly, we rewrite the Kelvin-Voigt model by using a discrete time domain. There-

fore, the equation (4.25) becomes

σ(t) = E0ε(t + α − 1) +E0τ
′α∆αε(t) (4.26)

which can be solved by using similar methods that we used before.

4.2.3. The Four-Parameter Model. In addition to the discrete fractional

Maxwell and Kelvin-Voigt models, we give the following model based on four pa-

rameters, a continuous version of which was given in [15], as the most adequate for

representing the viscoelastic behavior of certain materials from a rheological point

of view:

b∆ασ(t) + σ(t + α − 1) = E1∆αε(t) +E0ε(t + α − 1), (4.27)

where 0 < α ≤ 1, with b ≥ 0, E0 ≥ 0, E1 > 0, b ≤ E1

E0
. For a known tension σ(t), we

find that (4.27) can be represented as follows:

∆αz(t) + λz(t + α − 1) = f(t + α − 1) (4.28)

with z(t + α − 1) = b

E1

σ(t + α − 1) − ε(t + α − 1), λ = E0

E1

, A = bE0 −E1

E2
1

, and

f(t + α − 1) = Aσ(t + α − 1), where t = 0,1,2, . . . , and z(t) is defined on Nα−1.

By Theorem 4.2.1, the solution of the equation (4.28) is

z(t) = z(α − 1)E(t,−λ,α) + [f(t + α − 1) ∗E(t,−λ,α)] ,
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where E(t,−λ,α) =
∞

∑
n=0

(−λ)n
Γ((n + 1)α)(t + n(α − 1))((n+1)α−1).

Therefore, the solution of the equation (4.27) is

ε(t) = b

E1

σ(t)−[ b
E1

σ(α−1)−ε(α−1)]E(t,−λ,α)−[bE0 −E1

E2
1

σ(t + α − 1) ∗E(t,−λ,α)] .
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Chapter 5

CONCLUSION AND FUTURE WORK

The fields of fractional calculus and discrete fractional calculus have attracted

the interest of researchers from several areas. The theory of discrete fractional calcu-

lus and the theory of fractional calculus are parallel to each other in many directions.

In these fields, there are still many open questions waiting to be answered. In this

thesis, we closed some of the gaps in the analysis of discrete fractional operators and

we constructed discrete fractional rheological constitutive equations. In the second

chapter, we presented fundamental definitions and formulas in discrete fractional

calculus for the convenience of the reader. In the third chapter, we introduced two

new monotonicity concepts for a nonnegative or nonpositive valued function defined

on a discrete domain. We gave examples to illustrate connections between these new

monotonicity concepts and the traditional ones. We then proved some monotonicity

criteria based on the sign of the fractional difference operator of a function f , ∆νf

with 0 < ν < 1. In the fourth chapter, we carried previous results about fractional

rheological models to the discrete fractional case. We started this chapter by giving

a brief introduction to Maxwell and Kelvin-Voigt models, and then we constructed

and solved discrete fractional rheological constitutive equations.

For future work, we would like to see applications of monotonicity results on

discrete fractional operators. Moreover, because discrete fractional rheological mod-

els are relatively new and undeveloped, some experimental data will be analyzed in

terms of the proposed model containing discrete fractional derivatives. We also will

46



pay some attention to the relationship between fractional rheological models and

discrete fractional rheological models of the theory of linear viscoelasticity.
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APPENDIX

An Illustration of Discrete Fractional Derivatives

The following Mathematica codes were used to compute and plot the graph in Figure

2.2.1.

● g[0] ∶= 0.53, g[1] ∶= 0.56, g[2] ∶= 0.65, g[3] ∶= 0.79, g[4] ∶= 0.92, g[5] ∶= 0.99,

g[6] ∶= 1.05, g[7] ∶= 1.05, g[8] ∶= 1.05, g[9] ∶= 1.05, g[10] ∶= 0.98, g[11] ∶= 0.92,

g[12] ∶= 0.88, g[13] ∶= 0.84, g[14] ∶= 0.77,

● y[t,alp] ∶= 1/Gamma[1−alp]Sum[(Gamma[t+1−s−alp]∗g[s])/Gamma[t+

1−s], s,0, t]−1/Gamma[1−alp]Sum[(Gamma[t−s−alp]∗g[s])/Gamma[t−

s], s,0, t − 1];

● DiscreteP lot[y[t,0], y[t,0.2], y[t,0.4], y[t,0.6], y[t,0.8], g[t + 1] − g[t], t,0,14,

P lotLegends− > ”Expressions”].
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Boston, 2001.

[8] C. Coussot, Fractional Derivative Models and Their Use in The Characteriza-
tion of Hydropolymer and in-Vivo Breast Tissue Viscoelasticity , Master’ s Thesis,
University of Illinois at Urbana-Champaign,2008.

[9] C. Coussot, et al, Fractional Derivative Models for Ultrasonic Character-
ization of Polymer and Breast Tissue Viscoelasticity,Ultrasonics, Ferroelectrics,
and Frequency Control, IEEE Transactions, Vol. 56, 4, pp.715–726, 2009.

[10] R. Dahal, G. S. Goodrich, A Monotonocity Result for Discrete Fractional
Difference Operators, Archiv der Mathematik, Vol.102, pp. 293–299, 2014.

[11] R. Donahue, The Development of A Transform Method for Use in Solving
Difference Equations, Master’ s Thesis, University of Dayton, 1987.

[12] G. S. Goodrich, A Convexity Result for Fractional Differences, Applied
Mathematics Letters, Vol.35, pp. 158–162, 2014.

49



[13] C. E. Jamison, R. D. Marangoni, A. A. Glaser, Viscoelastic Properties
of Soft Tissue by Discrete Model Characterization, Journal of Manufacturing
Science and Engineering, Vol. 90, 2, pp. 239–247, 1968.

[14] W. G. Kelley, A. C. Peterson, Difference Equations; An Introduction
with Applications , Academic Press, 2004.

[15] A. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Appli-
cations of Fractional Differential Equations , Elsevier Science Limited, Vol. 204,
2006.

[16] R. L. Magin, Fractional Calculus in Bioengineering , Begell House, 2006.

[17] K. S. Miller, B. Ross, Fractional Difference Calculus, in Univalent
Functions, Fractional Calculus, and Their Applications (Kōriyama, 1988), Ellis
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