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The use of sunlight has always been a major goal in the design and operation of 

commercial buildings to minimize electrical consumption of artificial lighting systems. 

Glazing systems designed to allow optimal visible light transmission also allow 

significant unwanted direct solar heat gain caused by infrared light. Conversely, glazing 

systems that are designed to reflect unwanted direct solar heat gain significantly reduce 

the transmittance of visible light through windows. The goal of this research was to 

characterize the performance of water as gap-fill for double-glazing units in eliminating 

the compromises that exist in current glazing systems with respect to light and heat 

transmittance. An in situ test approach and computer simulations were conducted to 

measure the performance of water-filled glazing units against air-filled glazing units. The 

thermal transmittance and solar heat gain coefficient values obtained from both the field 

experiments and computer simulations, glazing units with air-fill proved better than the 

glazing units with non-flowing water-fill. However, the high convective coefficient and 

the high thermal mass of the water can be used to its advantage when it is allowed to flow 

at peak temperatures, thus, maintaining lower temperature swings indoor. This can lead 

to a reduction of about 50-70% direct solar heat and still maintain high visibility.  
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Introduction 
 

The rapid growing energy consumption in the world has raised concerns about 

meeting future demands without having adverse effect on the environment. A number of 

agencies including the International Energy Agency have advocated the efficient use of 

energy by the various sectors of the economy (Pe´rez-Lombard, 2008). The use of energy 

by the building sector accounts for a significant part of the world’s energy use and 

emissions (Jelle, 2011). In buildings, energy consumption emanates from many sources 

including air-conditioning, heating, lighting, and household electrical appliances. Heating 

and air conditioning alone accounts for about 80% of the energy needs of residential 

buildings (Fulvio, Beccali, Cellura, & Mistretta, 2008). From Figure 1, windows and 

lighting needs contribute a higher percentage to energy losses and end uses in buildings. 

In the United States, windows account for about 3% (that is approximately 2 quads of 

annual energy) in energy consumption regarding heat gain and heat loss in buildings 

(Arasteh, Goudey, & Kohler, 2008). Due to these hikes in electricity consumption, it is 

imperative to find window systems that take advantage of natural daylighting and yet 

prevents direct heat gain into the indoor space. Making such decisions usually result in 

compromises between thermal transmittance and light transmittance. The nature of these 

compromises are dependent on the geographic location of the building, orientation of the 

building and the purpose of the building. 
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Figure 1. Relative average disaggregated end uses and losses of energy in buildings.  

Note: MELS, miscellaneous electric loads or plug loads; infiltration, leakage of air into 

and out of conditioned space (Judkoff, 2008, p. 449). 

Research into highly insulating glazing systems is fulfilling an important role in 

reducing energy consumption in the 21st century. In the last 25 years, there have been 

major technological advancements in glazing systems that is solving some of the 

significant challenges relating to its heat loss control, and transmittance of daylight with 

minimal solar heat gain (Selkowitz, 1999). Since heat transfer takes place through 

conduction, convection, and radiation, glazing systems with high thermal performance 

should be able to regulate heat loss and heat gain through all the three heat transfer 

mediums. The suppression of convective and conductive heat transfer can be done by 

filling multiglazed window gaps with fluids or gases with low thermal conductance such 

as argon, krypton, or sulphur hexafluoride. Larger gap widths to a certain limit increase 

the thermal performance of glazing units (Menzies & Wherrett, 2005). Some of the 
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glazing systems on the market include low-E glass and multi-pane glasses with various 

combinations of clear and low-E glasses. The low-E glass is effective in reducing 

radiative heat transfer, but also affects the amount of visible light transmission entering 

through it. This introduces trade-offs in thermal and visible light transmission of glazing 

units. The goal of this research was to investigate systems that can eliminate such 

compromises, thereby, reducing electricity consumption associated with lighting, cooling, 

and heating loads in buildings. 

Problem Statement 

The research problem of this study is the energy consumption of glazed buildings 

and sustainability of the environment. Glazing units permit natural lighting in a building, 

which offsets cost associated with artificial lighting. The light from the sun comes with 

infrared radiations that increase solar heat gain across glazing units. Consequently, 

compromises are usually made between daylight transmittance and the thermal 

performance of traditional glazing systems (Selkowitz, 1999). One of the solutions 

proposed in this research is to use liquid fills (water) in double glazing units instead of air 

or inert gases to control the transmittance of infrared radiation while allowing visible 

light to transmit through the unit. The proposed product is environmentally friendly since 

the liquid (water) that will be used is benign and has no negative impact on the 

environment. 

Significance of the Research 

Understanding the causal effect of glazing systems on the energy consumption of 

buildings will allow a greater accountability for electric energy use. While traditional 

glazing systems allow for compromises between daylight transmittance and thermal 
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performance, this study seeks to eliminate such compromises by optimizing thermal 

performance with improved light transmittance. This development in glazing systems has 

the potential to reduce energy consumption significantly. A reduction in electrical energy 

consumption will consequently lead to reduced carbon emissions into the atmosphere. 

Purpose of the Research 

The objective of this research is to investigate the effects of fluids (water) on the 

thermal and optical properties of glazed window systems. Traditional multiglazed 

window systems have their gaps filled with air or inert gases to limit heat transfer across 

the window, but these systems have failed to produce the desired effects, which is high 

thermal performance with optimal visible light transmittance. This research seeks to 

characterize the performance of water as gap fill for double glazing window systems. The 

dependent variables of this study are the thermal transmittance, solar heat gain, and 

visible light transmittance of glazing units. The independent variables of the study are the 

type of gap fill, gap width, the heat loads from the sun, and the area of the test specimen.  

Hypothesis 

1. Glazing units with water fill in its cavity have a higher thermal transmittance, low 

solar heat gain coefficient, and high visible light transmittance as compared to 

double glazing units with air-filled gaps. 

2. Glazing units with moving water-fills reduce heat transfer rate in and out of room 

space by more than 50%. 

3. The parameters that affect the reduction of solar load gain are related to the 

optical and thermal properties of the glass and the glazing fluids. 
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Assumptions 

The assumptions for this study are 

1. The difference between the surface heat transfer coefficient of the glass unit and 

the window frame (PVC board was used in this research) is small enough and will 

therefore not affect the results. 

2. In situ testing of the specimen simulates heat transfer expected in field 

installations. 

3. The surround panel used has a thermal resistance value close to that of an actual 

wall. 

4. The heat loss exchanges between the surround panel and fenestration is 

insignificant. 

Limitations and Delimitations 

The intensity of solar radiations is not constant throughout the year and not the 

same for every geographic location. This study is more suitable for hot climates and 

climates with diurnal weather conditions. Other critical performance properties such as 

the structural, acoustic and blast properties of glazing units were not considered in this 

study. 

Definition of Terms 

Conduction: It is the transfer of heat through solids or a fluid medium without 

movement of the hot material except on a molecular scale (Butterworth, 1977). 

Convection: It is the transfer of heat through fluids, either by random motion of 

the molecules or by the bulk fluid (Incropera, DeWitt, Bergman, & Lavine, 2011). 
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Diurnal weather conditions: This refers to the variations in meteorological 

parameters such as temperature and relative humidity during the day (National Oceanic 

and Atmospheric Administration, 2015). 

Heat flux: It is the quantity of heat transferred per unit area (Butterworth, 1977). 

Quads of energy: It is equivalent to one quadrillion British thermal units, i.e. 1015 

BTU (American Physical Society, 2015). 

 Radiation: It is the exchange of heat between bodies that are not in direct contact 

and does not require any intermediary heat carrier (Butterworth, 1977).  

Solar heat gain coefficient (SHGC): It is the ratio of solar gain entering through 

the window to the amount of incident solar radiation (National Fenestration Rating 

Council Incorporated, 2004).  

Thermal Transmittance (U-Value): It is the amount of heat transferred through a 

unit area of an object when there is a temperature difference across both sides of the 

object (American Society for Testing and Materials, ASTM C1199-12, 2012). 

Visible Light Transmittance: It is the ratio of the visible light entering a glazing 

unit to the incident visible light (National Fenestration Rating Council Incorporated, 

2004). 
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Review of Literature 
 

Buildings are designed to shelter occupants from the bare effects of changing 

weather conditions. The quality of comfort occupants of a building enjoy is a function of 

many variables including climatic conditions, building assembly, building thermal 

envelope and the availability of sustainable building materials. Achieving indoor comfort 

comes at a cost. It is incumbent on the owner and the builder to make economically 

viable choices of materials in order to enhance the efficiency of the building. Moreover, a 

significant amount of energy can be saved by the proper selection of materials as well as 

design of the building. Notable among the criteria for good thermal comfort is the choice 

and components of the building thermal envelope. The thermal envelope of the building 

acts as a separator between the outdoor climatic conditions and the indoor conditions. It 

comprises of all the structural elements, insulation materials for the roof and walls, 

windows, doors, and floor slabs of the building. The type of insulation materials used in 

the envelope contributes largely to the energy savings in a building space. Other room 

conditioners such as space air-conditioning and heating can be greatly reduced and 

savings on energy achieved by knowing the right insulation material to use (Al-Homoud, 

2005). 

A greater consumption of energy takes place during the operational phase of 

buildings for heating, cooling, ventilation, lighting, and other electrical appliances usage. 

This can be reduced by focusing on the factors that affect energy consumption in a 

building. Builders can take advantage of building façade concepts and building envelopes 

to limit energy use resulting from changing outdoor and weather conditions. Some of the 

alternatives available include envelope alternatives; types of fenestrations and glazing 
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systems; thermal mass and insulating properties of building materials; lighting 

requirements and daylight controls; and HVAC systems and controls. In moving towards 

a zero building energy performance goal, a holistic approach involving a thorough 

assessment of all indoor environment quality has to be used. Developing systems that can 

resolve some of the issues regarding heat gain, heat loss, and daylight requires an 

understanding of the spectral properties of sunlight and transparent materials. One of the 

building façade elements that have been studied over the years for regulating the amount 

of solar radiation entering into a building space is window and glazing systems (Kim & 

Todorovic, 2013). 

Energy Conservation Potential of Glazing Systems 

The sun’s energy is vital to life on earth. The sun emits its energy in a range of 

wavelengths and energy capacities. Most of this energy that is transmitted through a 

glazing unit is in the visible light spectrum with red light at the low-energy end of the 

visible spectrum and violet light, at the high-energy end. Infrared is part of the sun’s 

radiation that produces thermal effects when absorbed. For highly glazed commercial 

buildings, solar heat gain from infrared radiation contributes to the heat loads of the 

building, and this translates into high-energy use from the operation and maintenance of 

air conditioning systems (Gueymard & duPont, 2009).  Moreover, energy consumption 

for lighting in commercial buildings is on the high side and further increases the heat 

supplied to a roomspace. From Figure 2, lighting from commercial buildings consumed 

20% of energy use, which was the highest, followed by space heating that accounted for 

16%, then 14% of energy use for space cooling. Over all, lighting, space-heating, and 
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space-cooling accounts for about 50% of energy use in the buildings sector (Sawyer, 

2014). 

 

Figure 2. U.S. 2010 primary energy end-use (Sawyer, 2014, p. 1). 

The selection of a glazing system plays an important role in determining a 

building’s energy performance. The two major energy related functions glazings play in 

energy efficiency is the thermal performance and lighting of buildings. The thermal 

performance, which is normally expressed as the U-value or the R-value, shows the 

insulation potential of the building element or envelope. A material with low thermal 

transmittance (U-value) reduces the amount of heat gain and losses to the indoor 

environment. The walls, roofs, and slabs of buildings are normally insulated with 

materials of very low thermal conductance and as such; do not pose a significant source 

of energy loss in a building. Therefore, to minimize heat loss or gain in a building façade, 

windows or glazing units with a low thermal transmittance value, and a high visible 
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transmittance have to be selected to reduce consumption associated with heating, cooling, 

and lighting in a building (Selkowitz, 1999). 

Some of the products under research that are able to adapt to the changing 

weather and climatic conditions include smart glass (electrically switchable glass), micro 

blinds, gasochromic glass, and liquid crystal devices. Most dynamic windows under 

development use spectrally selective (chromogenic) materials to control solar radiation 

transmittance, thereby, transforming the static properties of the window to have a 

dynamic ability in solar transmittance control. Though dynamic windows perform 

satisfactorily during summer and winter in reducing energy consumption, the cost of 

mass production is prohibitively high and the time for payback is often too long to be 

economically viable (Gil-Lopez & Gimenez-Molina, 2013). 

Window and Glazing Systems 

Windows, as essential elements of building facades have been used in buildings 

for daylight and ventilation purposes. It improves the aesthetics and defines the nature of 

space indoors. Studies have shown that, access to natural light and a well-ventilated space 

improves the health, comfort, and productivity of people. Notwithstanding, windows 

represent a major dent in the thermal insulation of buildings, contributing significantly to 

the heating and air conditioning loads of facilities. Since the use of the sun’s energy is a 

major goal in the design of energy efficient buildings, glazing systems can be designed to 

allow optimal visible light transmission with less unwanted heat gain (Selkowitz, 1999). 

Glazing units and window systems are made up of glass pane(s), frames, spacers, 

gap fills, and sealants as shown in Figure 3. The number of glass panes can be one, two, 

three or four, depending on the level of insulation desired. The primary components of 
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glass are usually a blend of metallic oxides, predominantly silica, which do not crystallize 

when cooling from solid to liquid state. Glasses have transparent features because of its 

non-crystalline or amorphous structure. Clear glass is obtained by adding antimony or 

manganese to the melt to decolorize the green colorization from iron impurities in the 

sand. Metallic compounds are normally added to the mix to get different glass colors 

(Lyons, 2007). Due to the high amount of energy required to melt silica for glass, it is 

very expensive to manufacture pure silica glass. To reduce the temperature for heating 

and the embodied energy, sodium oxide from soda and calcium oxide from limestone can 

be added to the mix (Josey, 1997).  

 

Figure 3. Parts of a window system. 

The principal composition of modern glass for construction is 70-74% silica, 12–

16% sodium oxide, 5–12% calcium oxide, 2–5% magnesium oxide with small quantities 

of aluminum, iron, and potassium oxides. The production of glass is relatively energy 

intensive with 15000 kWh/m3 as compared to concrete with 625 kWh/m3 energy 

consumption. The appropriate use of glass in design of buildings gives it a better pay 

back in terms of its energy efficiency (Lyons, 2007). Based on the method of production, 

there are four types of glass used for construction. They are ordinary annealed glass, 

Glass pane

Spacer

Frame

Gap
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toughened glass, laminated glass, and insulating glass units. Annealed glass is the most 

frequently used architectural glass.  It has good surface flatness and not subject to 

distortion. When broken, it breaks into sharp dangerous shards. It is therefore not safe to 

use annealed glass at locations where it can easily break. Annealed glass can be 

strengthened or tempered with heat or chemicals. The resultant strength and resistance to 

thermal stresses of a tempered glass is at least four times the strength of an ordinary 

annealed glass. Due to the toughened nature, it is difficult to cut the glass pieces after 

production. The glass therefore has to be cut in the required sizes prior to processing. 

When tempered annealed glass breaks, it shatters into many small fragments. This type of 

glass is suitable for safety glazing under certain conditions (Josey, 1997). Laminated 

glass, another type of glass, comprises of two or more layers of glass adhered together 

with a plastic interlayer. It is normally used for safety glazing because it remains intact 

even if one layer cracks. When it cracks, it does so without disintegrating. The plastic 

interlayer can provide varying optical and thermal properties by incorporating 

photochromic or thermo-chromic material in the interlayer. The last and most used glass 

unit for insulation is the insulating glass. It consists of two or more layers of glass with a 

spacer that encloses an air space. The air space usually contains inert gases or gels that 

reduce heat gain and loss through the glazing unit (Lyons, 2007). 

Glass must be supported securely in a frame to make it structural and maximize 

its useful life span by preventing wind loads from shattering it. The type of frame used 

affects the overall thermal performance of the window system. Several researchers are 

examining the manufacture of highly insulating frames to reduce heat loss through 

frames. The type of frame used is dependent on the operating system of the window. The 
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structure of the frame has to fit the way the window is opened. Window frames are 

normally made of wood, Aluminum, glass façade, or PVC with Aluminum cladding. The 

choice of spacers also affects the overall thermal transmittance of the window system. 

Spacers keep glass panes apart at a uniform dimension. Some of the other functions of 

spacers include, accommodating stresses imposed on the glass panes due to thermal 

expansion and pressure; provide gas tight seals to prevent leakage; and provide moisture 

barriers by putting desiccants in the spacers. Using insulating spacers have the potential 

of reducing U-value by about 12% for highly insulating glazing systems. It is important 

to choose frames and spacers with high insulating values in order to improve the thermal 

performance of the window system (Gustavsen, Jelle, Arasteh, & Kohler, 2007). 

Solar Properties of Glazing Units 

As solar radiation passes through a medium, three things are bound to happen. 

Some of it is reflected, a portion is absorbed, and the rest is transmitted. Each of these 

properties can be optimized depending on its application to get the desired results. For a 

glass window wherein it is required to admit daylight and either prevent solar heat gain or 

allow solar heat gain, the optical properties can be altered to get the desired results 

(LBNL, 2013). Figure 4 below shows the percentages of solar radiation reflected, 

absorbed, or transmitted by a quarter-inch clear glass. 
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Figure 4. ¼-inch clear glass showing proportions of solar radiation reflected, absorbed, 

and transmitted (Efficient Windows Collaborative, 2014). 

Physical properties of glazing units.  

The physical properties of glazing units include transmittance, reflectance, and 

absorptance. Transmittance refers to the proportion of the solar radiation that can pass 

through the glazing. Since the sun emits its energy in different wavelengths, glazing 

units’ transmittance can be defined by the kind of wavelength it is allowing to pass 

through. When the transmittance is in the visible light spectrum, it is called visible light 

transmittance, if it is in the UV light spectrum; it is referred to as UV-transmittance. 

Putting together all the transmittance gives the total solar energy transmittance of the 

glazing unit. The visible light transmittance of a glazing unit gives an indication of how 

effective it is in providing daylight and a clear view of the outdoor environment (LBNL, 

2013). 

When solar energy is incident on a surface, a portion of it is reflected back into 

the atmosphere. The reflectivity of glass is dependent on the quality of the glass surface, 

the presence of surface coating, and the angle of incidence of the solar radiation. The 

sharper the angle of incidence, the more the light is reflected rather than transmitted or 

absorbed. For clear glass, it reflects about 50% and above for angle of incidence greater 
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than 70 degrees. The reflectivity of a glass surface can be increased by applying metallic 

coatings. This produces mirror-like surfaces, reflecting most of the incident light. Most of 

the coatings on the market reflect all the spectrum of the solar radiation. It is however 

undesirable to apply such coatings on glazing units. Coatings that are spectrally selective 

are more appropriate due to its ability to allow transmission of visible light and reflect 

radiation in the infrared spectrum for hotter climates, or admit infrared transmission in 

colder climates (Efficient Windows Collaborative, 2014; LBNL, 2013). 

 Glass absorbs radiant energy that is neither reflected nor transmitted. The 

absorbed energy increases the temperature of the glass. The absorptance of glass can be 

increased by adding chemicals that trap radiant energy. If it absorbs energy in the visible 

light spectrum, the glass appears dark, but if it absorbs in the UV or infrared spectrum, 

there is no significant change in color or appearance of the glass. Absorptive glasses are 

normally used in solar hot water heating applications. They are also used to reduce direct 

solar heat gain of indoor space environment (Efficient Windows Collaborative, 2014).  

When glass absorbs heat or light, it is either reradiated or convected away by the 

air current on the surface of the glass. The ability of a material to reradiate absorbed heat 

is its emissivity. When the emissivity of the glass facing indoor environment is high, it 

radiates more heat to the room space, causing unwanted heat gain in summer conditions 

or hotter climates. Therefore, reducing the emissivity of glass improves its thermal 

resistance. A typical glass has emissivity of 0.84; meaning it emits 84% of absorbed 

radiant energy (Efficient Windows Collaborative, 2014; LBNL, 2013). 
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Thermal Performance of Glazing 

The thermal performance of a glazing unit is a function of the solar energy 

transmittance, the reflectance of the glass, emissivity of the glass panes, the width of 

interspace, type of cavity fill, and the material and configuration of the spacer around the 

perimeter of the glazing cavity. The thermal performance of glazing units is rated based 

on their thermal transmittance and the solar heat gain coefficient. To reduce direct solar 

heat gain, glass manufacturers apply low-emissivity coating to the surface of glass panes 

to reflect long-wave radiant energy (infrared). Though low-e glass reduces solar heat 

gain, it reduces the transmittance of visible light through windows significantly. 

Numerous combinations of glass panes and gas fills have been developed to remediate 

such conditions but have seen little success. The primary deficiency, which is either low 

visible light transmission or high solar heat gain, persists (Apte, Arasteh, & Huang, 

2003).  

Single-pane clear glazing has low thermal performance and high visible light 

transmittance. It is suitable for applications where thermal performance is not required. 

Replacing the single glazing with double-pane glazing containing air-filled gaps will 

increase the thermal performance. Further adding low emissivity coating will make the 

product perform better in its thermal performance but will reduce visible light 

transmission. The coating acts as a filter with spectrally varying optical properties to 

reflect the infrared component of the sun’s radiation (Apte, Arasteh, & Huang, 2003). 

The spectral properties of the coating can however be treated to include parts of the 

visible light and infrared spectrum in order to allow for daylighting, solar heat gain and 

cooling (LBNL, 2013). 
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The gap in a double glazing unit has an optimum width for every gas, beyond 

which convection increases, resulting in an increase in thermal transmittance. When the 

air gap is too small (that is lower than the optimum), conduction takes place in the 

interspace and increases the U-value. It is therefore imperative to find the optimum gap 

width required for the lowest thermal transmittance possible for the glazing unit. The 

optimum gap width for air and Argon fills is 12 mm, and Krypton is 6 mm (Lawrence 

Berkeley National Laboratory (LBNL), 2013). 

However, as interest in the concept of zero-energy buildings increase, other high 

performance glazing alternatives units are still being researched. One of such high 

performance glazing technologies, dynamic glazing systems, that can change their solar 

heat gain properties with seasonal variations, are still being developed.  

Thermal Mass Effect 

Buildings made of concrete insulation, earth, and solid wood are known to reduce 

heating and cooling loads. These building materials are used mostly in hot climates and 

they provide a fairly comfortable thermal atmosphere for the occupants even without air 

conditioners. The thermal mass of the building absorbs heat gain from the sun, and excess 

heat from the light and other appliances in the building. The absorbed heat energy is 

delayed and released with time. This helps to flatten out thermal waves caused by 

atmospheric temperature swings. Studies conducted by Kosny et al. (2001) revealed that 

cooling and heating loads for buildings with massive walls could be far lower than 

buildings with lightweight wood. 

Using the thermal mass of a building is an effective way of controlling the heating 

and cooling loads of a building. Usually, the thermal performance of a building is 
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measured by the steady state R-value, which does not account for the dynamic thermal 

performance of envelope systems. Even though most homeowners use lightweight wood 

in building, massive structures built of materials with a high thermal mass can help to 

regulate the heating and cooling loads, thereby reducing the energy consumption of those 

buildings. The measurement systems and analysis for steady state thermal transmittance 

can however not be used to analyze dynamic thermal performance of buildings. In order 

for the measurement systems to reflect the dynamic response to weather conditions, 

thermal mass effect has to be incorporated in the analysis. In a research conducted by 

Kosny, Kossecka, Desjarlais, and Christian (2001), they suggested a method called 

dynamic benefit for massive systems (DBMS) to evaluate the effective R-value. The 

DBMS evaluation is done by comparing the thermal performance of a massive wall to a 

lightweight wood frame wall. The resulting DBMS is multiplied by the steady state R-

value to get the R-value equivalent for massive systems. In addition, thermal structure 

factors (heat capacity, R-value, and response factors) can be used to assess the thermal 

mass heat storage capacity of the wall. 

Glazing Systems with Fluid Fills 

Glazing systems with fluid fill gaps have been poorly marketed, so its influence in 

reducing energy consumption has not been realized. Water is the most common fluid with 

low cost, and a significant impact on heat exchange. Due to water’s high opacity to 

infrared, it can be used to trap the infrared thermal radiation from the sun, store it for 

some time, and gradually dissipate the heat. Moreover, water is highly transparent, 

allowing the visible part of light to pass through, while blocking infrared (Gil-Lopez & 

Gimenez-Molina, 2013). Water molecules exchange energy at a rapid rate in the form of 
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vibrations on the surface of the water mass. When energy from infrared light pulse is 

incident on the surface of water, the hydrogen bond between the water molecules vibrate. 

The outermost molecules with single OH groups pointing into the air are highly efficient 

at capturing the energy and conducting it into the water. The energy transfer on the 

surface is slower as compared to the downward transfer of energy. Water therefore, can 

act as a good absorber and distributor of energy (Zhang, Piatkowski, Bakker, & Bonn, 

2011). The transparency of water provides the opportunity to use transparent facades, 

such as glass, to maximize the use of sunlight energy.  

Chow, Li, & Lin (2011) conducted research on using flowing water in a double 

glazing unit as a pre-water heater in buildings where hot water is required. The 

performance of the combinations of clear-and-clear, absorptive-and-clear, and reflective-

and-clear glass panes were studied and evaluated. Considering all working and weather 

conditions, the absorptive-and-clear glass combinations were found to have the highest 

efficiency as a water-preheating device. The disadvantage of using this combination is its 

low visible light transmission as compared to the clear-and-clear glass combination. For 

heat gain reduction (U-factor and solar heat gain coefficient), a double glazing system 

with flowing water was found to be better than an air sealed double glazing unit. 

Increasing the water flow velocity to 0.01 m/s in summer increases the rate of heat 

exchange between the water column and the outer ambient air temperatures. To fulfill 

pre-water heating functions of the glazing unit, the velocity of flow should be kept low; 

that is in the laminar flow regime. The advantage of using a moving fluid (water) medium 

over air is that the convective heat transfer between the glass surfaces and the water 

stream is higher than that of air and as such, it acts as a solar heat collector. Due to the 
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higher specific heat capacity of water as compared to other fluids, it can store more heat 

and removed later, than for the same volume of air. In addition, the removed heat 

component can be reused for other purposes (Chow, Li, & Clarke, 2011). 

Heat Transfer across Glazing Units 

Glass has been an essential part of building envelopes for admitting daylight, 

visual interaction with the outdoors, and for ventilation purposes when it is operable, for 

a long time. All of these benefits come with unwanted heat gain and loss. With proper 

orientation, though not always practicable, a building with glass windows can take 

advantage of the benefits and reduce the heating and cooling loads of the building. A 

window is normally recognized as an energy loser in a building envelope due to its low 

thermal resistance, and these losses have to be compensated using HVAC. The boundary 

air film layers on glazing units provide most of the thermal resistance of windows. Some 

of the other factors that influence the thermal resistance of glasses include the glass 

emissivity, air temperature, and wind velocity. Multiglazed windows are filled with air or 

gases to increase the insulating properties of windows.  The transfer of heat across the 

gap in a multiglazed window is a function of the height and width of the gap, the thermal 

conductivity of the fill, viscosity, and the thermal expansion coefficient of the gap fill. 

Convective heat transfer is insignificant for a sufficiently small gap width and height. As 

the gap widens, heat transfer takes place by conduction on the boundary air film layer, 

and convection in the air gap. As the gap is widened further, conductive, and convective 

heat transfer, remain fairly constant. In this situation, increasing the gap width increases 

the heat flow rather than reduce it. Radiative heat transfer contributes significantly (about 

two-thirds) to heat flow in ordinary clear double-glazing, and therefore, it is imperative to 
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use radiative transfer barriers such as low emittance coating to reduce the heat flow. The 

conductive and convective heat transfer can then be reduced by replacing the air fill with 

gas fills of high viscosity and lower thermal conductivity such as inert gases  (Menzies & 

Wherrett, 2005; Wasley & Utzinger, 1996; Department of Energy, 1997). The solar 

thermal and optical properties of a window system are described below. 

Thermal transmittance: It is affected by the apparent thermal conductance of the 

test specimen and the total heat supplied to the specimen. According to ASTM standard 

C1199-12 (2012), the thermal transmittance of a fenestration can be calculated from the 

equation: 

𝑈𝑈𝑈𝑈 = 𝑄𝑄𝑠𝑠/[𝐴𝐴𝑠𝑠 (𝑡𝑡ℎ − 𝑡𝑡𝑐𝑐)]…………..…......... (1) 

Where Us is the thermal transmittance, Qs is the heatflow through the test 

specimen, As is the projected area of the test specimen, th is the average roomside 

temperature, and tc is the weather side average temperature in Equation 1. 

Table 1 shows different configurations of glazing units with their corresponding 

thermal transmittance values. As the number of glass panes increase, the U-value 

decreases. Moreover, the kind of inert gas filling the cavity has an influence on the U-

value of the fenestration system. 
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Table 1 

The U-value of Glazing Units with Different Configurations and Cavity Fills 

Glazing U-Value (W/m2 K) 

Glazing Configuration Cavity fill 

  Air Argon Krypton 

Single pane, 4mm 5.8 

  Double glazing (4-12-4)mm 2.9 2.7 2.6 

Triple glazing (4-12-4-12-4)mm 2.0 1.9 1.7 

Double glazing with single coating(4-12-E4)mm 1.6 1.3 1.1 

Triple glazing with single coating(4-12-4-12-E4)mm 1.3 1 0.8 

Triple glazing with double coating (4E-12-4-12-E4)mm 1 0.7 0.5 

 
Note: 4mm is the thickness of the glass and 12mm is the spacing of the cavity. Adapted 

from Selkowitz (1999, p.15). 

Solar Heat Gain Coefficient: For locations where solar heating is required, it is 

desirable to have a higher SHGC, whereas a lower SHGC is well suited for cooling 

dominant conditions. SHGC is the single most significant determiner of the cooling loads 

of a building. The intensity of heat supplied through this means surpasses heat transfer 

due to temperature differential developed on both sides of the glazing unit. Solar heat 

gain comes from the direct and diffuse radiation from the sun and those reflected from 

the ground and other objects around (LBNL, 2013;  Stein & Reynolds, 2000). 

Visible Light Transmittance: This determines the amount of daylight that a 

building receives through a glazing material. In commercial buildings where lighting 

contributes significantly to energy consumption, a glazing material with high visible 

transmittance will reduce energy use significantly. VT is influenced by the type of glass, 
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number of glass panes, and the presence of emissivity coatings on the glass. VT could be 

as high as above 90 percent for water white clear glass to about only 10 percent for 

highly reflective glass surfaces. Glare for glazing units with high visible light 

transmittance can be mitigated by using shades and blinds to get the required amount of 

light to the indoor space (LBNL, 2013). 

  

23 



  

Methodology 
 
Experimental Design 

Traditional multiglazed windows have their gaps filled with air or inert gases to 

reduce convective and conductive heat transfer. This research sought to characterize the 

performance of fluid filled glazing systems. The experimental setup measured the heat 

transfer rate of solar radiation across a double glazing unit with fluid fill. The optical and 

thermal properties of the glazing system were investigated and compared to the 

performance of an air filled double glazing unit. A heat transfer computational fluid 

dynamics model was developed to simulate the performance of both setup under the same 

environmental conditions and to establish operational parameters for the fluid-filled 

glazing unit. 

Variables 

Infrared is the part of the sun’s spectrum that causes direct heat gain across 

glazing units. A glazing unit, therefore, should either reflect the infrared radiation or 

redirect it to prevent unwanted heat gains in the room space. The amount of heat 

associated with infrared radiation transmitting through a glazing unit has to be regulated 

to maintain good thermal comfort. In this research, the independent variables that affect 

the heat transfer properties of the test specimen (double glazing unit) are the area of glass, 

the net rate of heat transfer through the glazing unit, and the temperature differential 

across the glazing unit. The net rate of heat transfer depends on the width of the gap 

interspace, the type of gap fill, the apparent thermal conductance of the individual 

components of the glazing assembly, and the solar irradiance for the setting of the 

apparatus. The physical and mechanical properties of the glass and the gap width of the 
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glazing assembly remained constant for the experimental setups. The solar irradiance was 

recorded at every 15 minutes interval. The gap was filled with air, and later with water to 

evaluate the performance of water-filled glazing relative to air-filled glazing unit. 

Instrumentation and Materials 

The instruments that were used in experimental measurements included: 

Pyranometer (Middleton Solar EQ08): This instrument was used to measure total 

solar radiation. It measures solar irradiance within the visible light and near infrared 

spectrum (i.e. 380-3000 nm). The range of solar irradiance is from 0 to 4000 W/m2 with a 

sensitivity of 18μV/Wm-2.  

Thermocouples: Type T and K thermocouples were used to measure the surface, 

air and water temperatures of the test specimen.  

Data logger and acquisition software: A data logger (OMB-DAQ 55) with an 

expansion module (OMB-PDQ2) was used to collect the temperature data from the 

thermocouples. Millivolt signals from the thermocouples were converted to temperature 

data directly using the data logger’s software. The software allows for portability of data 

from the software’s native file format to Matlab, LabView, and Excel platforms. 

Computational fluid dynamics Model and Window Simulation Software: These 

were used to develop a model to characterize the thermal properties of the liquid in the 

glazing system. It also provided similar conditions to enable comparison of the air-filled 

and fluid-filled glazing units. 

Construction of the Test Bench 

A glazing unit with liquid fill (water) of size 1.2 m by 1.2 m was chosen as the 

test specimen. The test box for the glazing unit was built of steel channel (as shown in the 
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working drawing in Figure 5) and Expanded Polystyrene insulation (EPS) board with an 

R-Value of 20 (the R-20 was obtained by adhering two R-10 EPS boards with 2-inch 

thickness each) to prevent heat losses. An adhesive caulk was used to seal the joints of 

the insulation board to prevent air leakage, thereby, focusing attention on the thermal 

performance of the glazing unit. The steel channels and the polystyrene boards were 

coated with a black Jack elastomeric coating (white in color) to act as a radiant barrier to 

further reduce the interaction of the steel with the thermal properties of the glazing unit as 

shown in Figure 6. The double glazing unit was built with a quarter inch tempered glass 

of dimensions 46 inch by 46 inch. A PVC board was used as a spacer to maintain a one 

and half inch consistent space between the two glasses. The glass and the PVC board 

were adhered together with a fish aquarium silicone caulk to prevent water leakage. The 

frame around the glass was made of PVC board in order to reduce heat transfer 

interactions of the frame and the glass. The picture of the glazing unit is as seen in Figure 

7. 
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Figure 5. Working drawing for test bench construction. 

 

 

Figure 6. Fabricated test bench with an open aperture. 
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Figure 7. Glazing unit under fabrication. 

Experimental Procedures 

Design considerations. 

ASTM C119-12 was used as a guide in designing the experimental procedure. 

Thid standard provides the procedures for measuring the steady-state thermal 

transmittance of fenestration systems using the hot box method. Section 4.3 of the 

manual however, states that the test procedure can be used to test products at other 

conditions other than the conditions described in the document for research purposes or 

product development. Since this experiment does not use the hotbox method the 

procedure was modified to suit the field testing. ASTM C1363-11 was used together with 

ASTM E1423-14 to define the locations and density of the temperature sensors on the 

glazing unit to get accurate surface temperature measurements. Moreover, since the 

research was conducted in situ, ISO 15099 was used to calculate the various heat transfer 

coefficients in order to obtain the U-values presented in appendix A1. The thermal 

transmittance values that were determined were true experimental values but not 
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standardized thermal transmittance due to the modifications made to the experimental set 

up. The values obtained from both the air-filled and fluid-filled were compared to study 

the trend of heat transfer variations over the testing period. 

Procedures. 

Three different experimental setups were used in this research, and they are 

described as follows: 

Experiment 1: A homogenous continuous surround panel (expanded polystyrene 

board) was installed in the aperture of the test bench and temperature sensors were 

attached to both sides of the panel. The density of the temperature sensors attached were 

nine sensors, equally and symmetrically spaced on each side of the expanded polystyrene 

as seen in Figure 8 (American Society for Testing and Materials, ASTM C1199-12, 2012; 

ASTM C1363-11, 2011). The surface temperature on both sides of the surround panel 

were measured and averaged. The net heat flow through the panel was determined and 

compared to the amount of heat that was supplied to the surround panel by the sun’s 

radiation. 

Experiment 2: The extruded polystyrene board in the aperture was removed and 

replaced with the test specimen with closed air fill, and temperature data were recorded. 

The sensor density was also nine sensors on each side of the test specimen as shown in 

Figure 8. Figure 9 shows a picture taken from the field-testing.  
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Figure 8. Schematic of thermocouple grid for experiments 1 and 2. 

 

 

Figure 9. Picture of experimental setup 2 simulating air-filled glazing unit. 

Experiment 3: The gap between the glass panes was then filled with water and 

temperature probes were inserted as seen in the configuration in Figure 10. Temperature 

sensors were attached to the surface of the glass on each side as seen in Figures 11 and 

12. 
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Figure 10. Thermocouple grid and temperature probes placement for experiment 3. 

 

 

Figure 11. Picture of water-filled glazing unit with thermocouples attached. 
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Threats to Validity 

Below are some of the factors that posed a threat to the validity of the study: 

1. History – Developments in the manufacturing process of glazing systems with 

better thermal and optical performance can affect this study. This study was based 

on the assumption that there is always a trade-off between the optical and thermal 

properties of traditional glazing units.  

2. Selection of glazing material – A double glazing unit with known physical 

properties was selected for this study. The study can be generalized for other 

glazing units with different physical properties by developing a mathematical 

model as seen in Appendix A that permits other researchers to manipulate in order 

to adapt to other glazing units with fluid-fill cavities. 

3. Setting- The experiment was conducted in-situ to get an approximate 

representation of the effects of infrared radiation on fenestration units. Weather 

conditions affect the amount of insolation supplied to fenestration units. In order 

to get a consistent set of data, the experiment was conducted on days with similar 

weather conditions. Moreover, computer simulation with similar environmental 

conditions was run on the model developed to compare both the air-filled and 

fluid-filled glazing units. 
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Results and Discussions 
 

For each of the experiments, a day with low to no cloud cover was chosen to 

avoid a higher percentage scattering of the sun’s radiation. The first set of data, which 

was for the characterization panel (expanded polystyrene walls), was gathered on August 

15, 2014 to estimate the quantity of heat that was lost or gained from the surroundings of 

the test box. This formed the baseline for calculating the amount of heat lost or gained 

through the walls. The results showed that an insignificant amount of heat was lost or 

gained through the expanded polystyrene walls as compared to the glazing test specimen. 

The maximum quantity of heat entering or leaving through the walls was 2.94 W as 

shown in Table A2 of appendix A. A summary of the data gathered for this setup and the 

properties of the EPS are in Table A1 of the appendix.  

The second and third set of data were gathered to analyze the effect of air and 

water fill on the trend of variation for the room side glass surface and room side air 

temperatures during the day. Only the trend in variation could be analyzed because the 

data were taken on different days with slightly varying environmental conditions. Other 

dependent variables such as solar heat gain coefficient and thermal transmittance could 

not be compared in the experimental phase due to the slightly varying environmental 

conditions. 

The second set of data was gathered on the 24 and 25 of September 2014, for 

periods of the day with no cloud cover, and on October 27, 2014 to compare with the data 

from the 24 and 25 of September 2014. This experiment simulated the performance of a 

double glazing window with sealed air-fill in the gap as expected in field installations. 

The parameters of interest were the surface temperatures of the double glazing window 
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on the outside and inside, the outside ambient air temperature variation, and the room 

side air temperature. 

The third set of data was gathered on September 26, 27, and the 8 October 2014. 

This experiment was conducted to simulate the performance of water-filled glazing 

windows in reducing solar heat loads supplied into indoor building space. The variables 

of interest for this setup were the surface temperatures of the double glazing window on 

the outside and inside, the outside ambient air temperature variation, water temperature, 

and the room side air temperature. These set of data helped to study the trend in the 

variation of the rate of heat transfer into the room for both the air-fill and water-fill 

glazing units. The data also provided insight into the behavior of the water in heat 

transfer. 

The room air temperatures recorded for the window glazing with sealed-air fill 

showed a steep continuous rise in temperature from the time of recording to sunset as 

seen in Figures 12 through 14. It can also be seen that the recorded temperatures of the 

room for all the three days (24 September, 25 September, and 27 October) were almost 

always higher than the glass surface temperatures. This is because the air-gap provides no 

means of heat storage to delay transmission of direct solar heat gain. The only heat 

storage possible is absorption of heat by the glass, which is negligible.  
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Figure 12. Graphs showing air-filled glazing unit. Temperatures were recorded on 

September 24, 2014. 

 

Figure 13. Graphs showing glazing unit with air fill. Temperatures were recorded on 

September 25, 2014. 
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Figure 14. Graphs showing glazing with air fill. Temperatures were recorded on October 

27, 2014. 

The room air temperature of the window glazing with water on the other hand 

rose gradually from morning to late afternoon as shown in Figures 15 through 17. The 

glass surface temperatures were lower than the room temperature almost the entire time. 

As the temperature of the water got relatively higher, it began to reradiate heat into the 

room and the atmosphere. This could show that the water is able to collect and retain heat 

from the sun and allows some amount to be transmitted when there is a temperature 

difference between the water and the room air temperature or outside air. 
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Figure 15. Graphs showing a water-filled glazing unit. Experimental temperatures 

recorded on September 26, 2014. 

 

Figure 16. Graphs showing a water-filled glazing unit. Experimental temperatures were 

recorded on September 27, 2014 
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Figure 17. Graphs showing a water-filled glazing unit. Experimental temperatures were 

recorded on October 8, 2014. 
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Analysis 
 

Analysis of the data gathered was done by using Window 7.3 simulation software 

designed by the Lawrence Berkeley National Laboratory (LBNL W7.3), which is an open 

source software. A computational fluids dynamic (CFD) model was designed with 

MatLab for this research in order to analyze the properties of the fluids. The algorithm 

developed for the CFD analysis and heat transfer rate is found in Appendix B of this 

paper. It was developed using ISO 15099. 

Assumptions for Data Analysis 

1. The glass was assumed straight with a smooth surface. 

2. The thermophysical properties of the fluids used for calculations were 

considered constant for the range of temperatures in this data analysis. 

3. The temperature distribution on each surface of the glass was assumed 

uniform. This reason for doing so was that the temperature of the surface was 

area weighted and an average calculated. 

Heat Transfer Properties of the Fluids in Glazing Cavity 

The heat transfer in the glazing cavity is influenced by the thermophysical 

properties of the fluid. The thermophysical properties of the fluids (water and air) are 

shown in Table 2. The heat transfer properties of both water and air can be simulated 

using computational fluid dynamics and the LBNL W7.3 software. The algorithm that 

was used is found in Appendix B of this paper. 
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Table 2 

Thermophysical Properties of Air and Water 

Property Water Air 

Conductivity (W/mK) 0.60  0.0241 

Viscosity (Kg/ms) 0.0089  1.722E-5 

Specific heat (J/KgK) 4184  1006.103 

Density (Kg/m3) 1000 1.292 

Prandtl 6.206 0.7197 

Heat transfer coeff (W/m2K) 97.73 2.807 

 
Simulations 

Computation simulations were run with Lawrence Berkeley’s Window 7.3 at the 

same environmental conditions to determine the thermal transmittance, solar heat gain 

coefficient, and visible light transmittance for both glazing units. The NFRC 100-2010 

summer environmental conditions were used as shown in Table 3. 
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Table 3 

Environmental Conditions Based on NFRC 100-2010 

Parameter Value 

Inside air temperature 24.0 °C 

Effective room temperature (Radiation) 24.0 °C 

Effective room emissivity (Radiation) 1.00 

Outside air temperature 32.0 °C 

Convection Coefficient 15 W/m2K 

Outside wind speed 2.75 m/s 

Effective sky temperature (Radiation) 24 °C 

Effective sky emissivity (Radiation) 1.00 

Direct solar radiation 783 W/m2 

  
The ouput parameters of the glazing units were calculated based on the glazing 

configuration 6mm-38.1mm-6mm (i.e., 6mm glass, 38mm gap width, and 6mm glass). 

The optical properties of the 6mm glass are presented in table 4 below. 

Table 4 

Optical Properties of 6 mm Clear Glass 

Parameter Value 

Solar transmittance 0.771 

Solar reflectance 0.070 

Visible transmittance 0.884 

Visible reflectance 0.080 

Infrared transmittance 0 

Infrared emissivity 0.84 

Conductivity 1 
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Hypothesis 1: 

The thermal transmittance, solar heat gained coefficient, and visible light 

transmittance for both glazing systems were evaluated using the LBNL W7.3 software as 

shown in Table 5. The results obtained from the LBNL W7.3 simulations are consistent 

with the results obtained from the field experiments as shown in Tables A3 and A4 of the 

appendix A. Both results show that glazing units with air-sealed gaps have better thermal 

properties as compared to glazing units with water fill gap. This is due to the high 

convective heat transfer coefficient of water as compared to the air as shown in Table 2 

above. The solar heat gain coefficient of the glazing containing water is however lower 

than the air-filled glazing as stated in hypothesis 1. The visible light transmittance for 

both systems were the same and therefore, hypothesis 1 can be supported based on the 

evidence presented. 

Table 5 

Center of Glass Results from LBNL Window 7.3 Simulation 

Variable Water Air 

U-Factor (W/m2-K) 4.856 2.585 

SHGC 0.696 0.706 

Relative heat gain (W/m2) 543 532 

Visible light transmittance 0.786 0.786 

 
The calculation procedure of the U-value for the glazing unit considers the 

conductivity, convective heat transfer coefficient, and the radiative heat coefficient of the 

individual components of the unit, but does not account for heat stored by the 

components as shown in Equation 2. 
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𝑈𝑈 = � 1
ℎ𝑒𝑒

+ 1
ℎ𝑡𝑡

+ 1
ℎ𝑖𝑖
�
−1

……………………….(2) 

Where; 

he is the outdoor heat transfer coefficient, which depends on the windspeed 

around the glazing system, outdoor climatic factors and the surface emissivity of the 

outdoor glass. 

hi is the indoor heat transfer coefficient, which is based on the radiative heat 

conductivity and convective heat transfer coefficient of the indoor environment as well as 

the glazing surface emissivity. 

ht is the overall thermal conductance of the glazing system, which is dependent on 

the radiative and convective heat transfer coefficient of the glazing cavity fill. 

Figures 18 and 19 show the impact heat storage by the glazing cavity fluid has on 

the amount of heat transmitted into indoor space. The graph shown in Figure 18 shows 

that air does not store heat and therefore allows direct solar heat to be transmitted into 

indoor space. As long as the water stores heat as shown in Figure 19, it reduces the 

amount of heat transmitted into indoor space. Therefore, calculating only the thermal 

transmittance of the glazing system to assess its thermal performance is inadequate to 

characterize the nature of the fluid in the glazing cavity. 
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Figure 18. Graphs showing the rate of heat storage and rate of heat transfer by an air-

filled glazing unit. 
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Figure 19. Graphs showing rate of heat storage by water and the rate of heat 

transmittance by the glazing unit. 
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significantly. The equations below show the mass and volume flow rate required to 

dissipate the heat supplied by the sun’s radiation. A change in temperature of 4°C was 

considered as the temperature difference in the water column to necessitate a flow 

condition in the cavity. 

𝑚𝑚 = ℎ
𝑐𝑐𝑝𝑝×𝑑𝑑𝑑𝑑

……………….…..(3) 

𝑄𝑄 = ℎ
𝑐𝑐𝑝𝑝×𝜌𝜌×𝑑𝑑𝑑𝑑

 …………….…..(4) 

Where: 

 m is the mass flow rate (kg/s) 

h is the heat flow rate (kW) 

dt is the temperature difference 

Q is the volume flow rate (m3/s) 

Cp is the specific heat capacity of water (4.184 kJ/kg-K) 

ρ is the density of the fluid (kg/ m3) 

Using a heat flow rate of 543 W/m2 for a glazing area of 1.3651 m2, the mass flow 

rate to dissipate all the heat is 0.044290 kg/s, and the volume flow rate is 4.429E-5 m3/s. 

The volume of the gap of the test specimen that was used is 0.0520 m3, and therefore 

means a constant fluid flow velocity of 3.244E-5 m/s or 0.116 m/h is required during the 

peak periods to dissipate unwanted solar heat gain. This proves that hypothesis 2 can be 

accepted. 

Hypothesis 3: 

Tables 2 and 3 show the thermal and optical properties of the glass and glazing 

units that were used to compute the thermal performance of the glazing unit. Since they 
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were the variables that were used in the computation and they were directly related to the 

thermal performance variables, hypothesis 3 can be accepted. 
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Conclusion 
 

From the results and analysis of this research, the researcher was able to provide 

evidence to support the hypotheses stated in the Introduction section. For glazing units 

containing water fills, the thermal transmittance is higher, the solar heat gain coefficient 

is lower, and the visible light transmittance remains the same as compared to the glazing 

unit containing air-fill, hence, Hypothesis 1 is has been supported. 

In evaluating the thermal performance of a water fill-glazing unit, it is imperative 

to talk in terms of rate of heat transfer and thermal storage than thermal transmittance. 

This is because the thermal transmittance gives no indication of the amount heat stored in 

a glazing unit. From the graphs in Figures 18 and 19, using water rather than air reduces 

heat transmitted into indoor space during peak hours of sunshine. The heat stored in the 

water column can then be removed from the cavity by allowing the water to flow at a 

velocity using the mass flow rate relation. Allowing the water to move at the right mass 

flow rate as indicated by the mass flow rate relation can reduce heat transfer in and out of 

the room by more than 50% as shown in the analysis section. Therefore, Hypothesis 2 

can be supported. Moreover, since the calculation procedure was based on the thermal 

and optical parameters of the glass and the fluids, Hypothesis 3 can be supported. 

Finallly, given that the visible light transmittance (VT) of the water-filled glazing 

system did not vary from the VT of the air-filled glazing unit as shown in the results of 

the simulations, a high VT can still be maintained. This helps to reduce the compromises 

that exist when a glazing unit with an emissive coating is used to reduce thermal 

transmittance.  
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Appendix A: Data 
 
Table A1  

Properties of Materials Used for the Experiments 

Property Value 

Conductance of glass with air (W/m2.K) 0.627 

Thickness of glass (m) 0.00635 

Width of air gap (mm) 0.038 

Area of glass surface (m2) 1.3651 

Height of glass (m) 1.1684 

Width of glass (m) 1.1684 

Emissivity  0.84 

Visible Transmittance 0.884 

Area of expanded Polystyrene board (EPS) (m2) 1.45 

Thickness of EPS (m) 0.1016 

Apparent conductance of EPS (W/m2K) 0.049187 
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Table A2 

Surface Temperatures of EPS and Quantity of Heat Gained or Lost through the Walls (15 

August 2014) 

Time Out 
surface 
temp 

In 
surface 
temp 

Q (W) Total Q 
(W) 

9:55 25.4 28.4 0.21 0.83 

10:00 25.8 28.4 0.18 0.72 

10:05 26.0 29.6 0.25 1.02 

10:10 26.3 29.6 0.23 0.92 

10:15 26.7 30.3 0.26 1.03 

10:20 27.0 30.5 0.25 0.99 

10:25 27.3 30.9 0.25 1.02 

10:30 27.7 30.9 0.23 0.90 

10:35 28.0 30.8 0.19 0.78 

10:40 28.3 31.0 0.19 0.75 

10:45 28.7 31.8 0.22 0.87 

10:50 28.8 32.2 0.24 0.96 

10:55 29.2 32.1 0.20 0.81 

11:00 29.6 30.8 0.09 0.36 

11:05 29.8 31.6 0.12 0.48 

11:10 29.9 33.3 0.24 0.95 

11:15 30.3 32.6 0.16 0.64 

11:20 30.5 33.4 0.21 0.83 

11:25 30.9 32.4 0.11 0.43 

11:30 31.1 33.6 0.18 0.72 

11:35 31.5 32.9 0.10 0.41 
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Time Out 
surface 
temp 

In 
surface 
temp 

Q (W) Total Q 
(W) 

11:40 31.7 33.4 0.12 0.49 

11:45 31.8 33.6 0.13 0.52 

11:50 32.3 32.1 -0.01 -0.05 

11:55 32.3 33.5 0.08 0.33 

12:00 32.6 32.0 -0.05 -0.18 

12:05 32.5 33.1 0.04 0.17 

12:10 32.8 34.3 0.11 0.43 

12:15 33.0 31.5 -0.10 -0.41 

12:20 33.2 30.7 -0.17 -0.69 

12:25 32.9 35.5 0.18 0.74 

12:30 33.3 32.6 -0.05 -0.21 

12:35 33.1 33.8 0.05 0.18 

12:40 33.2 33.5 0.02 0.07 

12:45 33.5 31.4 -0.15 -0.59 

12:50 33.2 35.5 0.16 0.64 

12:55 33.2 36.6 0.24 0.96 

13:00 33.1 38.0 0.34 1.37 

13:05 33.4 33.8 0.03 0.10 

13:10 33.6 31.7 -0.13 -0.53 

13:15 33.8 31.6 -0.15 -0.61 

13:20 33.3 38.1 0.33 1.33 

13:25 33.7 39.3 0.40 1.59 

13:30 33.5 35.9 0.16 0.66 

13:35 33.8 32.3 -0.11 -0.43 

13:40 34.0 32.2 -0.12 -0.49 
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Time Out 
surface 
temp 

In 
surface 
temp 

Q (W) Total Q 
(W) 

13:45 33.7 40.3 0.46 1.84 

13:50 33.5 41.3 0.54 2.17 

13:55 33.3 42.7 0.66 2.65 

14:00 34.2 33.1 -0.07 -0.29 

14:05 34.1 33.1 -0.07 -0.27 

14:10 33.1 37.8 0.33 1.31 

14:15 32.2 42.2 0.70 2.82 

14:20 31.0 41.5 0.73 2.94 

14:25 31.0 41.4 0.73 2.93 

14:30 31.7 44.7 0.91 3.65 

14:35 32.6 35.3 0.19 0.78 

14:40 34.7 32.3 -0.17 -0.67 

14:45 34.4 35.7 0.09 0.36 

14:50 33.2 39.3 0.42 1.70 

14:55 34.2 33.9 -0.02 -0.07 

15:00 34.6 32.5 -0.15 -0.59 

15:05 34.4 32.2 -0.16 -0.62 

15:10 33.9 36.2 0.16 0.63 

15:15 32.9 38.0 0.36 1.43 

15:20 32.3 42.4 0.71 2.85 

15:25 31.8 40.1 0.58 2.31 

15:30 33.1 36.0 0.20 0.80 

15:35 32.8 38.6 0.41 1.63 

15:40 33.4 36.2 0.20 0.79 

15:45 33.2 35.9 0.20 0.78 
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Time Out 
surface 
temp 

In 
surface 
temp 

Q (W) Total Q 
(W) 

15:50 33.4 34.7 0.09 0.36 

15:55 34.0 33.3 -0.05 -0.19 

16:00 33.8 32.3 -0.10 -0.42 
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Table A3 

Temperature Data and U-value for Double-Glazing with Water on 8 Oct 2014 

Time Tg4 Tg1 Trm T_air U-value 

 

ｰC ｰC ｰC ｰC 

 9:05 20.5 21.1 19.4 18.5 4.029 

9:10 21.2 21.3 19.7 18.9 4.088 

9:15 21.7 21.4 20.0 19.0 4.116 

9:20 21.8 21.0 20.4 19.5 4.087 

9:25 21.7 20.8 20.7 19.6 4.045 

9:30 21.8 20.7 20.9 20.1 4.029 

9:35 22.2 21.1 21.2 19.9 4.055 

9:40 22.4 21.2 21.5 20.2 4.031 

9:45 22.6 21.4 21.7 20.5 4.046 

9:50 22.8 21.7 21.9 21.3 4.058 

9:55 22.8 21.8 22.2 21.5 4.016 

10:00 23.4 22.5 22.3 21.8 4.110 

10:05 23.9 23.1 22.8 21.9 4.123 

10:10 24.2 23.5 23.0 22.0 4.137 

10:15 25.1 24.6 23.1 22.5 4.237 

10:20 25.7 25.1 23.5 22.6 4.264 

10:25 26.5 25.7 23.5 23.1 4.336 

10:30 27.2 26.7 23.7 23.2 4.370 

10:35 27.7 27.1 23.8 23.6 4.392 

10:40 28.0 27.3 24.2 23.7 4.398 

10:45 28.4 27.7 24.5 23.1 4.416 

10:50 28.6 27.6 24.5 24.0 4.441 
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Time Tg4 Tg1 Trm T_air U-value 

 ｰC ｰC ｰC ｰC  

10:55 29.1 28.3 24.9 23.6 4.468 

11:00 29.1 28.3 25.1 23.1 4.463 

11:05 29.0 28.1 25.2 24.1 4.455 

11:10 29.2 28.2 25.2 24.6 4.472 

11:15 29.3 28.5 25.5 23.5 4.458 

11:20 29.1 28.2 25.6 26.5 4.444 

11:25 29.2 28.4 25.9 24.7 4.452 

11:30 28.8 28.0 26.4 28.0 4.375 

11:35 29.0 28.4 26.0 27.9 4.428 

11:40 29.6 28.9 26.1 28.8 4.466 

11:45 29.8 29.5 26.2 28.9 4.482 

11:50 29.9 29.4 26.4 29.5 4.479 

11:55 29.2 28.8 27.3 27.6 4.363 

12:00 29.0 28.3 27.1 29.1 4.369 

12:05 29.1 28.5 27.0 27.8 4.362 

12:10 29.0 28.5 27.2 29.4 4.351 

12:20 29.6 29.2 27.2 30.5 4.421 

12:25 29.5 29.2 27.7 29.4 4.364 

12:30 29.9 29.7 27.8 27.8 4.397 

12:35 29.7 29.4 27.6 30.2 4.398 

12:40 29.6 29.2 28.2 30.3 4.330 

12:45 29.3 29.1 28.5 29.3 4.248 

12:50 29.7 29.4 28.4 30.3 4.327 

12:55 29.8 29.7 28.5 29.5 4.325 

13:00 30.1 30.1 28.8 28.5 4.320 
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Time Tg4 Tg1 Trm T_air U-value 

 ｰC ｰC ｰC ｰC  

13:05 30.0 29.9 29.2 29.2 4.258 

13:10 29.4 29.1 29.6 32.0 4.052 

13:15 29.7 29.6 29.7 32.7 3.940 

13:20 29.6 29.8 30.1 33.7 4.224 

13:25 29.0 29.6 31.2 30.3 4.439 

13:30 28.7 29.4 31.4 32.8 4.484 

13:35 28.9 30.1 31.7 32.6 4.498 

13:40 29.2 31.0 31.0 33.7 4.425 

13:45 29.5 32.1 30.6 31.1 4.333 

13:50 28.8 32.3 31.5 30.2 4.482 

13:55 28.2 32.4 31.9 33.6 4.547 

14:00 28.3 33.7 32.0 34.2 4.556 

14:05 28.8 35.9 32.7 35.1 4.594 

14:10 28.9 37.2 34.3 29.9 4.674 

14:15 29.2 38.9 34.6 31.8 4.680 

14:20 30.7 41.8 35.4 32.6 4.689 

14:25 32.7 45.4 36.7 29.8 4.698 

14:30 33.9 46.3 37.2 32.6 4.685 

14:35 35.0 46.3 39.7 30.3 4.769 

14:40 36.4 46.5 39.6 30.7 4.716 

14:45 38.9 47.7 40.4 32.3 4.625 

14:50 40.0 47.6 43.0 31.7 4.773 

14:55 42.3 49.4 44.9 33.1 4.807 

15:00 43.1 50.5 47.2 30.0 4.911 

15:05 44.5 50.2 46.4 30.5 4.785 
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Time Tg4 Tg1 Trm T_air U-value 

 ｰC ｰC ｰC ｰC  

15:10 45.8 51.1 46.2 33.5 4.591 

15:15 47.2 52.7 48.2 33.5 4.747 

15:20 49.1 54.6 49.5 33.3 4.680 

15:25 49.5 54.6 48.7 32.9 4.763 

15:30 47.9 52.9 47.6 30.0 4.585 

15:35 46.7 51.0 48.9 29.8 4.844 

15:40 44.0 46.5 48.4 31.8 4.925 

15:45 43.5 46.2 51.2 30.5 5.047 

15:50 41.2 42.7 53.3 32.8 5.134 

15:55 42.1 44.6 54.3 29.8 5.152 

16:00 41.4 43.2 54.5 30.8 5.158 

16:05 39.0 40.9 55.7 30.7 5.187 

16:10 38.1 39.5 54.8 30.9 5.171 

16:15 36.8 39.2 54.4 29.7 5.162 

16:20 35.5 38.1 54.7 27.4 5.169 

16:25 29.7 31.8 49.4 26.6 5.011 

16:30 25.8 26.0 46.2 26.3 4.939 

16:35 23.1 22.8 44.5 25.7 4.904 

16:40 20.2 19.7 43.5 26.0 4.883 

16:45 18.7 17.9 42.6 25.1 4.864 
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Table A4 

Temperature data and U-Factor for Glazing with Air on 27 Oct. 2014 

Time Tg4 Tg1 Trm T_air U-Factor 

 

ｰC ｰC ｰC ｰC 

 9:20 22.8 22.4 18.2 20.8 2.529 

9:25 24.0 23.0 18.8 21.3 2.619 

9:30 24.8 23.4 19.6 21.9 2.657 

9:35 25.5 23.7 20.2 22 2.677 

9:40 25.8 23.8 20.8 22.3 2.684 

9:45 26.1 24.0 21.3 22.6 2.696 

9:50 26.3 24.2 21.9 22.9 2.700 

9:55 26.4 24.4 22.4 23.3 2.674 

10:00 26.5 24.9 23.1 23.6 2.615 

10:05 26.7 25.4 23.8 23.9 2.527 

10:10 27.6 27.1 24.7 24.1 2.475 

10:15 28.3 28.1 25.4 25 2.395 

10:20 28.5 29.1 26.4 24.8 2.510 

10:25 27.5 28.0 26.3 24.1 2.507 

10:30 26.8 26.8 26.4 23.5 2.383 

10:35 25.7 25.5 26.5 24.2 2.480 

10:40 26.2 25.8 26.9 25 2.546 

10:45 26.5 26.5 27.5 24.8 2.374 

10:50 26.9 27.0 28 25.7 2.494 

10:55 26.5 27.3 28.7 25.4 2.633 

11:00 27.0 27.8 29 26.1 2.649 

11:05 26.8 27.9 29.5 25.9 2.685 
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Time Tg4 Tg1 Trm T_air U-Factor 

 ｰC ｰC ｰC ｰC  

11:10 26.3 27.8 29.9 25.6 2.729 

11:15 26.0 27.7 30.1 26.5 2.740 

11:20 25.6 27.4 30.1 25.3 2.740 

11:25 24.7 26.5 30 24.8 2.742 

11:30 24.5 26.1 30 24.7 2.732 

11:35 24.2 25.7 29.9 24.6 2.716 

11:40 24.1 25.4 30.1 26.8 2.698 

11:45 24.7 26.1 30.2 26.4 2.715 

11:50 25.1 26.7 30.5 27 2.740 

11:55 24.8 26.8 30.6 26.6 2.765 

12:00 25.2 27.0 30.5 25.7 2.759 

12:05 25.2 26.9 30.5 26 2.755 

12:10 25.2 27.0 30.8 25.6 2.768 

12:15 24.8 26.7 30.8 27.5 2.779 

12:20 25.5 27.7 31.2 29 2.813 

12:25 25.4 27.9 31.5 28.8 2.832 

12:30 25.7 28.2 31.9 29.7 2.844 

12:35 25.9 28.8 32.4 29.5 2.867 

12:40 26.0 29.1 32.9 29.9 2.898 

12:45 26.0 29.6 33.3 30 2.921 

12:50 25.6 29.6 33.6 29.4 2.949 

12:55 25.7 29.9 33.9 30.6 2.968 

13:00 25.6 30.3 34.3 31.7 3.001 

13:05 25.0 30.7 35.2 30.6 3.037 

13:10 24.6 31.0 35.4 30.5 3.072 
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Time Tg4 Tg1 Trm T_air U-Factor 

 ｰC ｰC ｰC ｰC  

13:15 24.3 31.8 36.3 30.6 3.115 

13:20 24.3 33.0 36.9 30.1 3.147 

13:25 24.2 34.2 37.9 29.6 3.191 

13:30 24.1 35.6 38.8 29.4 3.225 

13:35 24.0 36.4 39.8 28.6 3.248 

13:40 23.4 36.2 41.3 29.9 3.264 

13:45 23.7 37.4 42 30.1 3.291 

13:50 23.0 37.1 43.7 29.6 3.302 

13:55 23.2 37.0 44.6 30.5 3.301 

14:00 23.8 38.3 45.7 29.6 3.323 

14:05 24.0 38.3 46.8 29.4 3.322 

14:10 22.1 36.0 47.9 29.6 3.328 

14:15 22.8 36.4 48.8 29.7 3.331 

14:20 24.2 38.0 49.3 29.9 3.335 

14:25 23.9 38.3 50.8 29.8 3.347 

14:30 23.8 38.0 51.2 31 3.372 

14:35 24.3 39.0 52.8 30.3 3.371 

14:40 24.8 39.5 53.9 30.7 3.379 

14:45 23.1 38.4 53.9 29.8 3.382 

14:50 23.1 37.6 54.2 31.5 3.380 

14:55 21.9 36.8 58.1 31.4 3.279 

15:00 22.9 38.1 56.7 31 3.276 

15:05 23.4 38.4 57.7 32.4 3.285 

15:10 22.2 38.2 57.5 29.8 3.283 

15:15 20.4 36.4 58.5 30.7 3.291 
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Appendix B: Algorithm for Heat Transfer Analysis 
 
𝑄𝑄1 = 𝛾𝛾𝑒𝑒1𝐺𝐺, Reflected solar radiation at surface of outer glass……………………….(1) 

𝑄𝑄2 = 𝜏𝜏𝑒𝑒𝐺𝐺, Solar radiation transmitted through the glazing system to the indoor 

environment……………………………………………………………………………...(2) 

𝑄𝑄3 = ℎ𝑐𝑐1�𝑇𝑇𝑔𝑔1 − 𝑇𝑇𝑎𝑎�, Convective heat flow from surface 1 to the ambient……………(3) 

𝑄𝑄4 = ℎ𝑐𝑐4�𝑇𝑇𝑔𝑔4 − 𝑇𝑇𝑟𝑟𝑟𝑟�, Convective heat flow from surface 4 to room space…………....(4) 

𝑄𝑄5 = ℎ𝑟𝑟1�𝑇𝑇𝑔𝑔1 − 𝑇𝑇𝑒𝑒�, Radiative heat flow from surface 1 to the ambient environment, 

including the sky and surrounding solid surfaces…………………………………….…(5) 

𝑄𝑄6 = ℎ𝑟𝑟4�𝑇𝑇𝑔𝑔4 − 𝑇𝑇𝑠𝑠�, Radiative heat flow from surface 4 to the room surfaces………..(6) 

𝑄𝑄7 = 𝜌𝜌𝑤𝑤𝑑𝑑𝑤𝑤𝐶𝐶𝑤𝑤
𝜕𝜕𝑑𝑑�𝑤𝑤
𝜕𝜕𝜕𝜕

,  Rate of heat storage at the water volume………………………….(7) 

𝑄𝑄8 = 𝑚𝑚𝑓𝑓𝐶𝐶𝑓𝑓�𝑇𝑇𝑤𝑤𝑓𝑓 − 𝑇𝑇𝑤𝑤𝑤𝑤�,  Rate of heat extraction by the water…………………….(8) 

ℎ𝑐𝑐1 = 2.8 + 3.0𝜗𝜗,  Convective heat transfer coefficient of outer pane facing outside….(9) 

ℎ𝑟𝑟1 = 𝜎𝜎�𝜃𝜃𝑎𝑎2+𝜃𝜃12�(𝜃𝜃𝑎𝑎+𝜃𝜃1)
1 𝜀𝜀𝑎𝑎� +1 𝜀𝜀1� −1

,  Radiative heat transfer coefficient on the surface of the outer pane 

facing outside…………………………………………………………………………..(10) 

ℎ𝑐𝑐𝑤𝑤 = 𝑘𝑘
𝐷𝐷
𝑁𝑁𝑁𝑁, Convective heat transfer coefficient of the outer pane facing the room 

(cavity)…………………………………………………………………………………(11) 

ℎ𝑐𝑐4 = 4.3, Convective heat transfer coefficient of the inner pane facing room……….(12) 
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ℎ𝑟𝑟4 = 𝜎𝜎�𝜃𝜃42+𝜃𝜃𝑠𝑠2�(𝜃𝜃4+𝜃𝜃𝑠𝑠)
1 𝜀𝜀4� + (1−𝜀𝜀𝑠𝑠)(𝐻𝐻𝑟𝑟𝑟𝑟+𝑊𝑊𝑟𝑟𝑟𝑟)

𝜀𝜀𝑠𝑠.2(𝐻𝐻𝑟𝑟𝑟𝑟𝑊𝑊𝑟𝑟𝑟𝑟+𝐻𝐻𝑟𝑟𝑟𝑟𝐿𝐿𝑟𝑟𝑟𝑟+𝐿𝐿𝑟𝑟𝑟𝑟𝑊𝑊𝑟𝑟𝑟𝑟)

, Radiative heat transfer coefficient of the 

inner pane facing room…………………………………………………………………(13) 

𝑄𝑄𝑟𝑟 = 𝜏𝜏𝑒𝑒𝐼𝐼𝑛𝑛 + �ℎ𝑐𝑐,4 + ℎ𝑟𝑟,4��𝑇𝑇𝑔𝑔,4 − 𝑇𝑇𝑤𝑤�, Quantity of room heat gain through window….(14) 

Nomenclature 

C Specific heat capacity, kJ/(kgK) 

D,d thickness; depth, m 

G solar irradiance, W/m2 

H height, m 

h heat transfer coefficient, W/(m2K) 

k thermal conductivity, W/(mK) 

L characteristics length, m 

m mass flow rate, kg/s 

Nu Nusselt number 

Pr Prandtl number 

Ra Rayleigh number 

Re Reynolds number 

Q heat flow rate, W/m2 
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T temperature, ᵒC 

t time, s 

v flow velocity, m/s 

W width, m 

Greek letters used 

α absorptance 

ɛ emittance 

ɤ reflectance 

Ө absolute temperature, K 

μ dynamic viscosity, kg/(ms) 

ρ density, kg/m3 

σ Stefan-Boltzmann’s constant = 5.67 x 10-8W/(m2K4) 

τ transmittance 

Subscripts 

a ambient, air 

c convective 

e environment, effective 
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g glass 

i inside 

r radiative 

rm room 

s room surface 

w water 

1 weatherside glass surface 

4 roomside glass surface 
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