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ABSTRACT 

 

 

 

 

Poly(3-hexylthiophene)-functionalized silsesquioxane nanoparticles were 

prepared from direct hydrolysis and condensation of P3HT-silane precursor using 

“grafting from” and “grafting to” methods. The size, shape, and surface morphology of 

these polymer grafts particles were visualized using transmission electron microscopy 

and scanning electron microscopy. Their compositions confirmed by FTIR, 

thermogravimetric analysis and elemental analysis. The XRD analysis revealed the 

polymer orientation and packing pattern of the nanocomposites, indicating the highly 

ordered lamella stacks of P3HT polymer chains. The photovoltaic performance of the 

blends of P3HT-nanohybrid with the C60 derivative PCBM was evaluated upon 

annealation in different temperatures, ranging from 50°C to 150 °C. The power 

conversion efficiency of the best test device was 2.46% (3.8%) for the device 

configuration of ITO/PEDOT:PSS/P3HT-NPs:PCBM/LiF/Al. 

 

 

 

 

 

 

 

 

 

Keywords: P3HT, OPVs, Solar Cells, Siloxanes, Photovoltaics, Nanocomposites. 



iii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dedicated to my friends and family for always being there for me and for helping me get 

his far in life.  Thank you. 

  



iv 
 

 

ACKNOWLEDGMENTS 

 

 

 

 

This project was made possible by the support of so many people.   I am grateful 

for the help of my advisor, Dr. Hemali Rathnayake.  She has made it possible for me to 

accomplish a great deal within this project as well as outside of it.  Her willingness to 

give me so much of her time and effort has helped to shape me into the scholar and 

fellow I have become.  I would like to thank my committee—Dr. Lester Pesterfield and 

Dr. Justin Litke—for their encouragement and insightfulness.  I would also like to thank 

Amar Patel for his contribution to this project and Jenna Binion for her help with 

characterizations and device fabrication as well as Dr. John Andersland for TEM support, 

Dr. Quentin for XRD analysis, and Pauline Norris for elemental analysis. 

I would like to thank Louis Stokes Alliance of Minority Participation (LSAMP) 

for providing financial support in helping to make this project possible.  I would also like 

to thank the Chemistry Department for their support in making it possible for me to 

present my research at the regional and national levels. 

Finally, I would like to thank my family and friends for their support and 

encouragement they have given me needed to complete this thesis and my undergraduate 

career. 

 



v 
 

VITA 

 

 

December 18, 1988............Born – Wilmington, Delaware 

 

2007...................................Berea Community High School, Berea, Kentucky 

 

2010...................................Became an ACS Member 

 

2010, 2011.........................Louis Stokes Alliance of Minority Participation Recipient 

 

2011...................................Kentucky Academy of Sciences, Poster Presentation, 1
st
 Place 

 

2012...................................ACS National Meeting, San Diego, Poster Presentations 

 

2012...................................Kentucky Nanotechnology Symposium, Poster Presentation 

 

2012...................................National Science Foundation Graduate Research Fellowship 

 Recipient 

 

2012...................................Accepted into Vanderbilt Graduate Research Program 

 

 

Publications 

 

Nicholas Wright, Amar Patel, Jenna Binion, and Hemali Rathnayake. “Poly(3-

hexykthiophene)-functionalized Siloxane Nanoparticles for Organic-based Solar Cells.” 

Polymeric Materials Science & Engineering 2012, 106, 431.  

 

Nicholas Wright, Amar Patel, Jenna Binion Debra Jo Scardino, Nathan I. Hammer, and 

Hemali Rathnayake, “Poly(thiophene) functionalized ormosils for Organic based solar 

cells.” Chem. Mater. 2012, Submitted. 

 

 

Fields of Study 

 

Major Field: ACS Chemistry 

 

Minor Field: Mathematics



 vi 

TABLE OF CONTENTS

 

Page 

 

Abstract................................................................................................................................ii 

Dedication...........................................................................................................................iii 

Acknowledgments..............................................................................................................iv 

Vita......................................................................................................................................v 

List of Figures....................................................................................................................vii 

Chapters: 

1. Introduction...............................................................................................................1 

I. Organic Photovoltaic Cells.............................................................................2 

II. Improving Organic Photovoltaic Performance...............................................8 

2. Research Objective and Project Goals....................................................................12 

3. Experimental Methods............................................................................................14 

4. Results and Discussion............................................................................................22 

I. Synthesis.......................................................................................................22 

II. Characterization............................................................................................28 

III. Photovoltaic Performance.............................................................................32 

5. Conclusion...............................................................................................................35 

References..........................................................................................................................36 

 



 vii 

LIST OF FIGURES

 

 

 

 

Figure                Page 

1.1    Single layer organic photovoltaic device....................................................................5 

1.2    Bilayer organic photovoltaic cell................................................................................6 

1.3    Bulk herterojunction organic photovoltaic cell...........................................................7 

4.1    P3HT Nanoparticle TEM..........................................................................................28 

4.2    P3HT Nanoparticle TEM..........................................................................................28 

4.3    IR analysis of the “grafting to” P3HT-SSQ Nanoparticles.......................................29 

4.4    UV-vis of P3HT-SSQ NPs.......................................................................................30 

4.5    Fluorescence emission spectra of P3HT-SSQ NPs...................................................30 

4.6    P3HT Nanoparticle TEM..........................................................................................31 

4.7    P3HT Nanoparticle TEM..........................................................................................31 

4.8    The device components and layers of the OPV........................................................32 

4.9    Current Density vs. Voltage......................................................................................33 

 

 

 

 

 



 viii 

LIST OF SCHEMES

 

 

 

 

Schemes              Page 

4.1    Preparation of P3HT SSQ nanoparticles using the modified Stöber Method...........23 

4.2    Preparation of P3HT SSQ nanoparticles using Grignard Metathesis.......................26 



 ix 

LIST OF TABLES

 

 

 

 

Tables               Page 

4.1    Reaction conditions for creating “grafting to” P3HT nanoparticles.........................23 

4.2    Reaction conditions for creating “grafting from” P3HT nanoparticles....................27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 1 

CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Several different attempts, such as artificial photosynthesis, have been made to 

create photovoltaic devices that can mimic the photosynthetic process of plants.  

Attempts have been made to create materials that use the photovoltaic effect, the creation 

of voltage or electric current in a material upon exposure to light.  The photovoltaic effect 

is very similar to the photoelectric effect but differs in process.  In the photoelectric 

effect, electrons are emitted from the surface of a material due to the absorption of 

electromagnetic radiation.  In the photovoltaic effect, electrons are transferred from the 

valance band to the conduction band within a given material, resulting in the buildup of 

voltage between two electrodes.
1
  Some of these attempts have been successful and have 

been commercialized, however these devices are not inexpensive by any means.  For 

example, using 41,000 square inches of silicon based solar panels on the roof of a 

“typical home” in America would cost about $16,000 to yield about 350 milliwatt hours 

per day.
2 

This is assuming that the sun has a maximum exposure time of 5 hours to the 

solar panel when the panels are generating their maximum power.  This cost then doubles 

for extra equipment for when the sun is not shinning.  This brings the cost to $32,000 

before use.
2
 This cost far exceeds the typical American’s expendable income. 

Due to the fundamental interest in the photophysics and photochemistry of 



 2 

excited states in organic molecules, this is gives reason as to why photo-induced electron 

transfer has been so extensively investigated.  Obtaining the right configuration of 

organic molecules and the theories found in physical chemistry pertaining to photo 

induced effects, a cost effective device could be created to aid in solving the impending 

energy crisis. 

Within this literature review several aspects of organic-based photovoltaics will 

be discussed under two main categories: Organic photovoltaic cells and improving 

organic photovoltaics.  Within the first category, information pertaining to what organic 

photovoltaic cells are and the different types of OPVs will be given.  In the second 

category, information covering the performance measures, Factors, and Equation will be 

shown, as well as the incorporation of poly-(3-hexylthiophene) (P3HT) silsesquioxane 

(SSQ) nanoparticles (NP) in organic photovoltaic (OPV) cells. 

 

I. Organic Photovoltaic Cells 

What Are OPVs 

As introduced earlier, a photovoltaic device could help to solve an impending 

energy crisis cost efficiently.  OPVs are a combination of organic materials and 

photovoltaic cells.  An organic photovoltaic cell is a specialized semiconductor diode that 

converts visible light into direct current (DC) electricity.  Some OPVs can also convert 

infrared (IR) and/or ultraviolet (UV) radiation into DC as well.
3 

A common characteristic 

of both the small molecules and polymers used in OPVs is they all have large conjugated 

systems.  A conjugated system is usually created when carbon atoms are covalently 

bonded to one another alternating in single and double bonds to each other, this can also 
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be seen as the chemical reactions of hydrocarbons. The hydrocarbons’ electrons, in the pz 

orbitals, delocalize and form a delocalized bonding π orbital and a π* antibonding orbital.  

The delocalized π orbital is the highest occupied molecular orbital (HOMO), and the π* 

orbital is the lowest unoccupied molecular orbital (LUMO). The separation between 

HOMO and LUMO is considered to be the band gap of organic electronic materials. The 

band gap typically has a range of 1-4 electron volts (eV).
3
 

R. N. Marks et al. created the first example of an OPV in 1994.
4
 The single layer 

device structure of this OPV cell was comprised of a transparent electrode/organic 

photosensitive semiconductor/electrode.
3
 He used a 50-320 nm thickness of poly(p-

phenylene vinylene) (PPV) sandwiched between indium tin oxide (ITO) glass and a low 

work function cathode.
3
 A work function is the minimum energy needed to remove an 

electron from a solid, usually a metal, to a point immediately outside the solid surface.
3
 

The reported quantum efficiencies for this device were around 0.1% when subjected to a 

light intensity of 0.1 mW/cm
2
.
3
 Although the efficiency was low, this allowed for the 

advancement of polymer based OPVs. 

The discovery of conducting polymers and the ability to dope these polymers over 

a broad range of materials—from insulators to metals—has resulted in the creation of a 

new class of materials.  These materials combine the electronic and optical properties of 

semiconductors and metals, along with the attractive mechanical properties and 

processing advantages of polymers.  Moreover, the ability to control the energy gap and 

electronegativity through molecular design has made it possible to synthesize conducting 

polymers with a range of ionization potentials and electron affinities.  The extended π-

orbitals of conjugated polymers result in a quasi-one-dimensional electronic structure 

http://en.wikipedia.org/wiki/Electron
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with associated novel nonlinear excitations.
5
 

When these materials absorb a photon, an excited state is generated and confined 

to a molecule or a region of a polymer chain.
6
 The excited state can be regarded as an 

electron-hole pair bound together by a Coulombic force forming an electrically neutral 

quasiparticle called an excition.
6
 In OPVs, excitons are broken up into free electrons-hole 

pairs by effective fields.  Forming a heterojunction between two dissimilar materials sets 

up the effective fields.  A heterojunction is the boundary between two different 

semiconductor materials, usually with a negligible discontinuity in the crystal structure.
7
  

From here, effective fields divide excitons by causing the electron to fall from the 

conduction band of the electron donor to the conduction band of the electron acceptor.  It 

is necessary that the acceptor material have a conduction band edge that is lower than that 

of the donor material.
8 - 9

 

Different Types of OPVs 

 The simplest organic photovoltaic cell is the single layer OPV.  It takes the most 

basic form of various OPVs.  The cell is made up of three components, indium tin oxide 

(ITO) coated glass [electrode 1], the organic electronic material, and a layer of aluminum, 

magnesium, or calcium [electrode 2].  They are typically arranged by having the high 

work function metal on top (ITO), followed the organic electronic material in the middle 

and a layer of the low work function metal (Al, Mg, or Ca) on the bottom.
10

 This 

structure can be seen in Figure 1.1.  

 

 

 

 

 

http://en.wikipedia.org/wiki/Coulomb%27s_law
http://en.wikipedia.org/wiki/Quasiparticle
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Figure 1.1: The schematic diagram of the single layer organic photovoltaic cell. 

 

 

The difference of the work function between the two conducting electrodes 

creates an electric field in the organic electronic material.  When the active organic layer 

is struck by a photon, the material absorbs it.  Electrons in the material will be excited to 

LUMO, leaving a hole in the HOMO forming excitons.  When the exciton falls from the 

excited state to the ground state, the electron-hole pair dissociates.
11

 A hole is the 

conceptual and mathematical description for the lack of an electron where one could 

exist. The potential created by the different work functions helps to separate the exciton 

pairs, drawing electrons to the positive electrode and holes to the negative electrode.  The 

current and voltage that are generated from completing this process can then be used to 

perform work. Heterojunction—based cells that rely on effective fields are more efficient 

than cells that rely on electric fields.
11 

The results of the single layer OPV show that they have low quantum efficiencies 

(<1%) and low power conversion efficiencies (<0.1%).
10

 A major problem with this 

configuration is the electric field created from the difference between the two conductive 

Electrode 1 
(ITO, Metal) 

Organic Electronic Material 
(Small molecule, Polymer) 

Electrode 2 
(Al, Mg, Ca) 

http://en.wikipedia.org/wiki/Work_function
http://en.wikipedia.org/wiki/Exciton
http://en.wikipedia.org/wiki/Electrode
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electrodes is rarely sufficient to divide the photogenerated excitons.  As a result, the 

electrons recombine with the holes before they are able to reach their intended electrode. 

 To improve upon the single layer OPV, a second organic electronic layer could be 

added in conjunction with the first organic layer.  This would create a bilayer OPV as 

shown in Figure 1.2.  

 

 

 

 

 

 

 

Figure 1.2: Device configuration of a bilayer organic photovoltaic cell. 

 

 

This cell uses the same electrodes, but utilizes the differences between the two 

organic materials by taking advantage of the electron affinities and ionization energies.  

The layer with higher electron affinity and ionization potential is the electron acceptor, 

and the second layer is the electron donor.  This generates electrostatic forces at the 

boundary between the two layers.  The materials for the bilayer OPV must be chosen so 

that the properties of the materials have unequal band gaps to generate an electric field 

strong enough to divide excitons more efficiently than in the single layer OPVs.
6
   

The diffusion length of excitons is the average length a carrier moves between 

division and recombination.  In organic electronic materials this is typically on the order 

of 3 - 40 nm.
12

  In order for most of the excitons to diffuse to the interface of the polymer 

Electrode 2 
(Al, Mg, Ca) 

Electron Acceptor 

Electron Donor 

Electrode 1 
(ITO, Metal) 
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layers and disperse into charge carriers, the thickness of the polymer should be also 

within the same range of the diffusion length.  However, the typical polymer layer needs 

to be at least 100 nm thick in order to absorb enough light.
6
 At such a large thickness, 

only a small fraction of the excitons can reach the heterojunction interface. 

The polymer thickness and the small diffusion length of the excitions need to be 

optimized to improve the efficiency of the bilayer OPV.  This can be achieved by 

combining the electron donor and acceptor, forming a polymer blend, shown in Figure 

1.3, called a dispersed (bulk) heterojunction.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Device configuration of a bulk heterojunction organic photovoltaic cell. 

 

 

This allows for the polymer blend length to become similar to the exciton 

diffusion length.  This would allow the excitons generated in either material to reach the 

interface where excitons can break efficiently.  This heterojunction has an increased 

efficiency compared to the bilayer OPV by about 3% shown from experiments of Halls et 

al. and Yu G. et al.
13-14  

The slight disadvantage to this OPV configuration is the 

consequence of electrons or holes becoming trapped in specific ‘islands’ active layer 

without making their way to the electrode.  This creates the absence of an electron, or the 

Electrode 1 
(ITO, Metal) 

 

Electrode 2 
(Al, Mg, Ca) 

 
Dispersed Heterojuction  
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absence of a hole, in the material that needs to be filled by the next exciton that diffuses 

in range of this ‘island’.  This slows down the charge separation leading to lower device 

efficiencies. 

Several advances have been made to improve upon the design of the electron 

donor and acceptor layers to make the OPV more efficient.
15-16

 One example of this 

improvement is the graded heterojunction OPV.  In this case the cell similar to bulk 

heterojunction, but the layering is gradual.  The graded heterojunction uses the 

advantages of the bulk heterojunction, the short electron travel distance, and the bilayer, 

with its advantage of the charge gradient.
17

 Another example is the controlled growth 

heterojunction.  This provides better control over positions of the donor-acceptor 

materials, resulting in much higher power conversion efficiency than the bulk 

heterojunction.
18

 

 
II. Improving Organic Photovoltaic Performance 

Performance Measures, Factors, and Equations 

Organic photovoltaic cells are relatively cheap and cost effective.  The power 

conversion efficiency (PCE) is the performance measure of OPVs denoted with η, which 

measures the amount of energy converted to electric current relative to the total energy 

incident upon the cell.
19

 The PCE of improved organic photovoltaic cells must be higher 

than the current power conversion efficiency of OPVs, which has been reported to be 

~8%.
15

  A PCE of at least 10% must be achieved before OPVs can be considered viable 

and produced commercially.
19 

In order to achieve a PCE of 10% or more, three parameters must be manipulated: 
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absorption, charge separation, and charge transport.  Absorption is the percentage of light 

that is absorbed by the active layer.  This is primarily affected by the band-gap and 

thickness of the polymer, but it is also affected by the absorption in other layers, 

reflection off the cell, and scattering within the cell.  Charge separation occurs when 

excitons are created; electrons and holes must be separated from each other to prevent 

recombination and the loss of energy in the form of light or heat. Charge separation is 

influenced by the energy levels of the n-type and p-type semiconductor materials.  N-type 

materials are capable of providing an extra electron to the host material and p-type 

materials are capable of accepting an electron from the host material.  The morphology of 

the active layer also plays a significant role.
20

  Since excitons can only diffuse a short 

distance, the morphology must be such that there is an n/p interface within that short 

distance for charge separation to occur successfully.
21

 Charge transport occurs when 

charge carriers are separated within the active layer.  They must be transported out of the 

active layer to the circuit contacts. The effectiveness of this process is determined by the 

mobility of these materials (that determines how effectively charge can be propagate 

through them), and by the ability of a charge to find a contiguous path from its current 

location to the appropriate electrode (i.e. anode for electrons and cathode for holes). 

The formula for calculating PCE is  

h =
JscVocFF

Pin
 

where Jsc is the short-circuit current density (when maximum current is flowing and there 

is no voltage difference across the circuit), Voc is the open-circuit voltage (when there is 

no current flowing - a break in the circuit), and FF is the fill-factor (the actual power 
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relative to the theoretical power produced by the cell).  Pin is the incident solar radiation.  

This value is generally fixed at 100 mW/cm
2
 when used in a solar simulator.  The solar 

radiation on the ground is about 1000 W/m
2
.
22

  

By improving these three components, the power conversion efficiency of OPV 

cells can be improved. Jsc is largely affected by the band-gap, carrier mobility, and film 

formation properties of the active layer.  Voc is primarily affected by the material band-

gap and the device structure, can be improved upon directly by optimizing the film 

layering, as seen in the bulk heterojunction, and device construction and design.
23

 The 

last component, FF, is particularly difficult to predict and design, because the relative 

mobilities of the electrons and holes can be difficult to predict depending upon the 

separation efficiency of the active layer. 

 

Incorporation of P3HT in OPVs 

Finding an active layer that will separate the excitons efficiently is a major 

component of the device design.  There are several different active layers that have been 

used with one chemical species, as well as a ratio of multiple polymer species.  Some of 

the polymer species that are currently being used are Buckminsterfullerene (C60), [6,6]-

phenyl-C61-butyric acid methyl ester (PCBM), poly[2-methoxy-5-(2’-ethylhexyloxy)-p-

phenylene vinylene] (MEH-PPV), poly[2-methoxy-5-(3'-7'-dimethyloctyloxy)-1,4-

phenylenevinylene] (MDMO-PPV), and poly(3-octylthiophene) (P3OT).
22 

Poly(3-hexylthiophene) (P3HT) exhibits very promising results for its ability to 

be used as an active layer.  This polymer gained its noteworthy status in 2000, when Alan 

Heeger, Alan MacDiarmid, and Hideki Shirakawa were awarded the Nobel Prize in 
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Chemistry for “the discovery and development of conductive polymers." The most 

notable property of these materials is their electrical conductivity.  This results from the 

delocalization of electrons along the polymer backbone yielding the term “synthetic 

metals”.   

Through my research with poly(3-hexylthiophenes), the results have shown an 

unprecedented PCE of about 3.8% using a 1:2 ratio of P3HT–functionalized 

nanoparticles:PCBM. The advantage of these 3-dimensional nanoparticles over bulk 

P3HT introduced by Krebs group
24

 is allowing for self-assembly in the device and 

avoiding unordered assembly and broken-conjugated networks which can lower the 

power conversion efficiency of photovoltaic cells.  The PCE reported for their device 

using bulk P3HT was 0.3%, which was almost a thirteen-fold decrease.
24

   

In my work, the synthesis method was developed to create functionalized 

spherical nanoparticles with a silicon-oxygen network using the modified Stöber 

method.
25

 These networks are used for guiding the nanoparticles into ordered groups and 

create conjugated networks that would allow for the flow of electrons from the active 

layer to the opposite electrodes. The research of these findings has been submitted to the 

Journal of Chemistry of Materials. 
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CHAPTER 2 

 

 

RESEARCH OBJECTIVE AND PROJECT GOALS 

 

 

 

Objective: 

 

To create functionalized nanoparticles derived from poly(3-hexylthiophene) as active 

ligands for organic photovoltaic cells.  Two methods are used to create polythiophene 

functionalized silonxane nanoparticles; the “grafting to” method using the modified 

Stöber Method and the “grafting from” method using Grignard Metathesis.
26

 

 

Goals:  

 Preparation of P3HT-functionalozed siloxane nanoparticles using: 

o Method 1: “Grafting To” Method by the modified Stöber Method 

o Method 2: “Grafting From” Method by Grignard Metathesis 

 Characterization and photophysical properties 

 Photovoltaic performance 

 

Method and Approach 

 The Stöber Method is a synthesis method for creating silica nanoparticles.
25

 The 

method uses a solution of ammonium hydroxide and absolute ethanol followed by the 

drop wise addition of the precursor tetraethoxysilane.  The synthesis can proceed for 3-30 

hours through hydrolysis-condensation reactions, leading to the formation of a spherical
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nanoparticles that have a network of Si-O-Si bonds with hydroxyl functional groups on 

the surface.  The modified Stöber Method uses the same process, but with the addition of

a second precursor that contains organo-triethoxysilane group.
27

 The second precursor is 

incorporated in the formation of the Si-O-Si network of the nanoparticle. 

 The advantages of using the modified Stöber method, over the regular Stöber 

method, are the functionalized precursor is directly incorporated into both the peripheral 

and core of the nanoparticle instead of functionalizing the nanoparticle through other 

experimental processes.  There are a higher number of functionalized ligands directly 

incorporated into the nanoparticle, inside and out, instead of attaching ligands only to the 

surface of the silica nanoparticles.
27
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CHAPTER 3 

 

 

EXPERIMENTAL METHODS 

 

 

 

Materials. 2,5-dibromo-3-hexylthiophene, 5-bromo-2-thiophene carboxylic acid, tert-

butylmagnesium chloride [
t
BuMgCl] (1.6 M in THF), 2-hydroxyethylacrylate, 4-dimethyl 

amino pyridine (DMAP), N,N’-dicyclohexylcarbodiimide (DCC), chloroplatinic acid 

hexahydrate, dichloromethane (DCM), and anhydrous tetrahydrofuran were obtained 

from Aldrich chemicals. Ammonium hydroxide (28%) was obtained from Fischer 

Scientific. Triethoxysilane, tetraethoxysilane, dichloro[bis(1,3-

diphenylphosphino)propane] nickel(II) [Ni(dppp)2Cl2] and 3-aminopropyltriethoxysilane 

were purchased from Alfar Aesar and used as received.  Unless otherwise specified, all 

chemicals were used as received.    

 

Characterization. Proton NMR spectra were recorded on a 500 MHz Jeol using 

chloroform-d (CDCl3) as the solvent. FTIR spectra were measured using a Perkin-Elmer 

Spectrum One FT-IR spectrometer equipped with a universal ATR sampling accessory. 

Elemental analysis was conducted at the Advanced Materials Institute at Western 

Kentucky University. Transmission electron microscopy (TEM) observations were 

performed on a 100CX JEOL at 80 keV.  Thermogravimetric analysis was performed at 

Thermal Analysis Laboratory at Western Kentucky University. The samples were



 15 

analyzed by a TA Q5000TGA.  The samples were held isothermally at room temperature 

for 30 min and then heated from room temperature to 650C at 10C/min in nitrogen. The 

purge gas was heated at 10C/min to 800C.  The photophysical properties in solution 

were performed on fluorescence spectrometer (Perkin Elemer LS 55) and UV-visible 

spectrometer (Perkin Elemer, Lambda 35). 

 

General procedure for the preparation of poly(3-hexylthiophene) (P3HT) 

2, 5-dibromo-3-hexylthiophene (5.000 g, 15.332 mmol) was added to a three-neck round 

bottom flask and sealed with a water-jacket condenser and septum.  The flask was 

flushed with argon and anhydrous THF (30 mL) was injected.  
t
BuMgCl (15.33 mL, 

15.33 mmol) was injected slowly and drop wise.  This mixture was raised to 80°C using 

an oil bath and refluxed for 2 hours under an argon atmosphere resulting in a yellow 

solution.  This solution was then cooled to room temperature and Ni(dppp)Cl2 (0.138 g, 

0.255 mmol) was added at once and the flask was flushed with argon.  The reaction 

continued for 30 minutes.  The reaction turned blood red.  Then Ni(dppp)Cl2 (0.069 g, 

0.128 mmol) was added again and continued for another 30 minutes. The reaction was 

then quenched with 5 drops of methanol and precipitated in methanol (50 mL).  The 

purple precipitate was filtered out using a Büchner funnel and washed with hexane until 

the filtrate became clear. Then the purple solid was dried under vacuum oven to yield 

1.90 g of P3HT (Yield = 38.0%).  
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Carboxylic acid terminated poly(3-hexylthiophene), 3 

Poly(3-hexylthiophene) (1.140 g, 0.950 mmol) was added to a three-neck round bottom 

flask and sealed with a water-jacket condenser and septum.  The flask was flushed with 

argon and anhydrous THF (30 mL) was injected.  
t
BuMgCl (1.6 mL, 1.627 mmol) was 

injected slowly and drop wise over a 70 minute period.  This mixture was raised to 80°C 

using an oil bath and refluxed for 2 hours under an argon atmosphere resulting in a 

yellow solution.  This solution was then cooled to room temperature and Ni(dppp)Cl2 

(0.013 g, 0.024 mmol) was added at once and the flask was flushed with argon.  Then a 

dry solution of 5-bromo-2-thiophene carboxylic acid (0.337 g, 1.627 mmol) in anhydrous 

THF (5 mL) was injected into the flask and stirred for 45 minutes at room temperature 

resulting in a purple mixture.  The reaction was quenched with methanol (3 mL) and 

precipitated in methanol (50 mL).  The precipitate was filtered out using a Büchner 

funnel.  The resulting purple solid was dried thoroughly using a vacuum oven at room 

temperature (1.535 g, Yield = 78.2%). 
1
H-NMR in CDCl3 {, ppm}: 7.44 (s (weak, br), 

1H), 7.29 (s, (weak, br), 1H), 6.97 (s, 97H), 6.82(s (weak), 1H, terminal H), 2.80 (s (br), 

180H), 1.77-1.34 (m, 900H), 0.91 (s, 323H); FT-IR stretchings (cm
-1

): 3354-3000 (-OH 

from carboxylic acid), 2921- 2854 (alkyl C-H), 1694 (carbonyl, weak), 1604-1509 

(aromatic C-C), 1449 and 819 (S-C). Molecular weight (MW) of the polymer was 

determined by 
1
H-NMR spectrum with respect to terminal hydrogen of P3HT polymer 

chain end; MW = 16,200 g/mol. 

 

Carboxyethylacrylate chain end-functionalized P3HT, 4: Carboxylic acid-terminated 

P3HT {poly(3-hexylthiophene) with 2-thiophene carboxylic acid endcap} (1.04 g, 0.175 
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mmol), 2-hydroxyethyl acrylate (0.120 mL, 1.049 mmol), DCC (0.345 g, 1.673 mmol), 

and a catalytic amount of DMAP (0.015 g) were combined in a single-necked round 

bottom flask and flushed with argon.  Anhydrous THF (30 mL) was then injected 

creating a purple solution and the reaction stirred for 16 hours at room temperature under 

an inert gas atmosphere.  The reaction was then quenched with methanol (3 mL) and 

precipitated in methanol (50 mL).  The mixture was filtered using a Büchner funnel and 

washed with hexane until a clear was observed going into the filtrate.  The resulting dark 

purple solid thoroughly dried in a vacuum oven (1.400 g, Yield = 87.6%). 
1
H-NMR in 

CDCl3 {, ppm}: 7.44 (s (weak, br), 1H), 7.28 (s, (weak, br), 1H), 6.97 (s, 105H), 6.82(s 

(weak), 1H, terminal H), 2.79 (s (br), 211H), 1.69-1.33 (m, 1000H), 0.94 (s, 381H); FT-

IR stretchings (cm
-1

): 2922- 2854 (alkyl C-H), 1694 (carbonyl, weak), 1604-1511 

(aromatic C-C), 1449 and 820 (S-C). 

  

Poly(3-hexylthiophene) carboxy triethoxysilane, (P3HT-acrylate silane precursor), 5: 

Poly(3-hexylthiophene) carboxy acrylate (0.700 g) was added into a three-neck round 

bottom flask and sealed with septum.  The flask was flushed with argon and anhydrous 

THF (30 mL) was injected.  Triethoxysilane (0.120 mL, 0.672 mmol) was slowly injected 

drop wise into the flask.  A dry 2 mol% solution of chloroplatinic acid hexahydrate 

(0.104 g, 0.200 mmol) in anhydrous ethanol (10 mL) was slowly added to the reaction 

vessel.  The reaction stirred for 16 hours at room temperature under an inert gas 

atmosphere.  The solution was quenched with methanol (5 mL) resulting in a purple 

precipitate and solution mixture.  The solution was further precipitated out using 

methanol (50 mL).  This liquid-solid mixture was filtered using a Büchner funnel and 
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washed with hexane until a clear was observed going into the filtrate.  The resulting solid 

was dark purple and thoroughly dried in a vacuum oven (0.770 g, Yield = 84.25%).  
1
H-

NMR in CDCl3 {, ppm}: 7.43 (s,weak, br, 1H), 7.29 (s, (weak, br), 1H), 6.97 (s, 92H), 

6.82(s (weak), 1H, terminal H), 3.64 (s, weak, 3H), 2.80 (s (br), 188H), 1.80-1.34 (m, 

997H), 0.91 (s, 331H); FT-IR stretchings (cm
-1

): 3368 (OH from trace amount of 

methanol wash), 2922- 2855 (alkyl C-H), 1696 (ester carbonyl from acrylate), 1636- 

1512 (aromatic C-C), 1452 and 817 (S-C), 1157 (Si-C), 1068 (Si-O-) and 815.86. 

 

General procedure for the preparation of P3HT-Acrylate-SSQ nanoparticles, 6: 

Anhydrous ethanol (200 proof, 20 mL), ammonium hydroxide (28%, 5 mL), and 

tetraethoxysilane (0.098 g, 0.47 mmol) were added at once into a one-necked round 

bottom flask resulting in a clear solution.  This solution was allowed to stir until a milky, 

white color appeared.  A previously prepared solution (by sonication) of poly(3-

hexylthiophene) carboxy acrylate triethoxysilane (0.100 g) and anhydrous THF (5 mL) 

was added at once into the reaction vessel turning the solution color dark purple.  The 

reaction was continued for 20 hours.  The solution was centrifuged yielding a clear, 

colorless supernatant and a purple precipitate.  The supernatant was decanted and saved.  

The precipitate was allowed to dry in the fume hood until a purple powder was observed.  

The procedure resulted in 260 nm average size particles confirmed by TEM. FT-IR 

stretchings (cm
-1

): 3243 (OH from hydrolyzed silanol groups), 2923-2855 (alkyl C-H), 

1696 (ester carbonyl from acrylate), 1636-1512 (aromatic C-C), 1437 and 813 (S-C), 

1040 (Si-O-Si). 
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2-Bromo-3-thiophene carboxyacrylate: 2-Bromo-3-thiophene carboxylic acid (2.508 g, 

12.114 mmol), 2-hydroxyethyl acrylate (1.39 mL, 12.077 mmol), DCC (3.739 g, 18.121 

mmol), DMAP (19 mg), were combined into a three-neck round bottom flask, sealed with 

an adapter for argon flow and septum, and flushed with argon.  Anhydrous THF (50 mL) 

was then injected into the flask resulting in a milky, white solution.  The reaction was 

continued overnight (10-12 hours).  The resulted white precipitate was filtered.  The clear 

solution was mixed with 70 mL of deionized ice water and transferred into a separatory 

funnel.  DCM (15 mL) was added to the funnel and inverted.  Two phases appeared and 

the bottom DCM phase was removed.  This was performed until three extractions were 

completed.  The extractions were collected together and concentrated under vacuum to 

minimum volume using a rotovap.  The clear solution became a yellowish oil upon 

concentration where it later solidified at room temperature.
 1

H-NMR in CDCl3 {, ppm}: 

7.35-7.26 (d, 1H), 6.46-6.43 (d, 1H), 6.18-6.11 (dd, 1H), 5.88-5.85(d, 1H), 4.31-4.29 (t, 

4H). 

 

2-Bromo-3-thiophene carboxyacrylate silane precursor: 2-bromo-3-thiophene 

carboxyacrylate (1.00 g, 3.277 mmol) was added to a one-neck round bottom flask and 

flushed with argon.  Anhydrous THF (30 mL) was injected and the mixture was allowed 

to stir for 5 minutes until it dissolved.  A dry solution of 2.0-mol% chloroplatinic acid 

hexahydrate (0.104 g, 0.200 mmol) in anhydrous ethanol (10 mL) slowly added (or 

injected) drop wise to the reaction vessel.  15 minutes after the solution was added 

triethoxysilane (0.80 mL, 3.604 mmol) was added (or injected) slowly to the reaction 

vessel.  The reaction was continued for 16 hours resulting in a cloudy, milky yellow 
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color.  The reaction was quenched with methanol (5 mL) precipitated methanol (50 mL) 

was used for precipitating the product.  No precipitation occurred with the addition of 

methanol.  The solution was concentrated under vacuum to minimum volume using a 

rotovap.  The resulting solution solidified into a white-yellow powder.
 1

H-NMR in CDCl3 

{, ppm}: 7.27-7.26 (d, 1H), 6.94-6.93 (d, 1H), 4.03-4.02 (q, 6H), 3.91- 3.88 (t, 2H), 

3.53-3.52 (t, 2H), 2.03-2.01 (t, 2H), 1.19-1.18 (t, 9H). 

 

Thiophene Monomer Functionalized NP: Anhydrous ethanol (200 proof, 50 mL), 

ammonium hydroxide (28%, 3 mL), and tetraethoxysilane (0.098 g, 0.47 mmol) were 

added at once into a one-necked round bottom flask resulting in a clear solution.  This 

solution was allowed to stir until a milky, white color appeared.  A previously prepared 

solution (by sonication) of 2-bromo-3-thiophene carboxyacrylate triethoxysilane (0.100 

g) and anhydrous THF (5 mL) was or injected at once into the reaction vessel.  The 

reaction was continued for 20 hours.  The cloudy, milky white solution was centrifuged 

yielding a clear, milky white supernatant and a white precipitate.  The supernatant was 

decanted and saved.  The precipitate was allowed to dry in the fume hood until a white 

powder was observed. Particle size distribution was examined under TEM yielding an 

average particle size of 90 – 99 nm. 

 

Grafting P3HT from Monomer Fucnctionalized Nanoparticle Surface: 2-Bromo-3-

thiophene carboxyacrylate nanoparticle (0.024 g) was added to a three-neck round bottom 

flask and flushed with argon and sealed with a water-jacket condenser and septum.  

Anhydrous THF (10 mL) and tert-butylmagnesium chloride (0.33mL) were then injected 
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into the reaction vessel resulting in a clear yellow solution.  This mixture was raised to 

80°C using an oil bath and refluxed for 2 hours under an argon atmosphere.  After 1 hour, 

2,5-Dibromo-3-hexylthiophene (0.33 mL) was added to the reaction vessel and the 

reaction continued to reflux for an additional hour.  This solution was then cooled to 

room temperature and Ni(dppp)Cl2 (0.002 g) was added at once.  The system was flushed 

with argon and stirred for 30 minutes.  An additional portion of Ni(dppp)Cl2 (0.002 g) 

was added and stirred another 30 minutes.  This resulted a cloudy, peach colored 

solution.  The reaction was quenched with 5mL of methanol and then centrifuged.  The 

supernatant was saved and the precipitate was allowed to dry in the fume hood.  Grafted 

particles were characterized on the TEM shown in Figure 4.7.  FT-IR: stretchings (cm
-1

): 

3342 (OH from hydrolyzed silanol groups), 2924-2852 (alkyl C-H), 1634-1520 (aromatic 

C-C), 1436 and 845 (S-C), 1260 Si-C, 1180-1121 (Si-O-Si). 
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CHAPTER 4 

 

 

RESULTS AND DISCUSSION 

 

 

 

Poly(3-hexylthiophene)-functionalized silsesquioxane nanoparticles were 

produced through a series of experiments using two different approaches: a “grafting to” 

approach using a modified Stöber method and a “grafting from” approach using Grignard 

Metathesis.
16

  

 

I. Synthesis 

Synthesis of P3HT-SSQ using the “grafting to” method: 

 

The initial molecule used for the “grafting to” method was 2,5-dibromo-3-

hexylthiophene, which was used in a Grignard Metathesis/Kumada Coupling reaction to 

yield poly(3-hexylthiophene).  This product was then end-capped with 5-bromo-2-

thiophenecarboxylic acid in a Grignard Metathesis/Kumada Coupling reaction to yield 

poly(3-hexylthiophene) with the carboxylic acid group at the chain end.  An esterification 

reaction was then performed using DCC coupling with 2-hydroxethylacrylate to create 

poly(3-hexylthiophene) carboxyacrylate.  The product was used in hydrosilylation 

reaction to yield poly(3-hexylthiophene) carboxyacrylate triethoxysilane precursor.  The 

condensation of the silane precursor using a modified Stöber method yield the desired 

final product of poly(3-hexylthiophene)- functionalized nanoparticles.
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Scheme 4.1: Preparation of P3HT SSQ nanoparticles using the modified Stöber Method 

with the poly(3-hexylthiophene) carboxyacrylate triethoxysilane precursor. 

 

 

Four trails were performed using the “grafting to” approach.   Table 4.1 shows the 

experimental conditions and the particle size distribution.   

Table 4.1: Experiment number and reaction conditions for creating P3HT nanoparticles.   

*P3HT Silane used for each trial = 0.016136 mmol. 
 

P3HT-NPs 

Trials 

28% NH4OH 

(mL) 
Silane:TEOS TEOS (mmol) 

Particle Size 

Distribution (nm) 
% Yield 

1 5 1:30 0.48 260 65% 

2 5 1:30 0.48 99 and 108 60% 

3 10 1:30 0.48 117 and 126 65% 

4 5 1:30 0.48 36-54 and 90 60% 

Precursor 
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As shown in the Table 4.1, a constant amount of P3HT Silane is used in all of 

these trails.  Trail one shows the reaction conditions for the first trial of functionalized 

nanoparticles.  Using a 4:1 ratio of ethanol (EtOH):tetrahydrofuran (THF) the reaction 

yield was about 65%. The transmission electron microscope (TEM) was confirmed the 

particle size distribution with an average particle size of 260 nm. 

 In trial two, all of the reaction conditions were kept constant and the EtOH:THF 

ratio was doubled.  This resulted an averaged particle size of 104 nm particles, which was 

a substantial decease in particle size distribution from trail one. 

 Trial three maintained the same EtOH:THF ratio as trail two and doubled the 

concentration of ammonium hydroxide (NH4OH).  The observed yield increased to 65% 

and the average particle size increased by 18 nm.  This increase in particle size is not 

favorable for light absorption as will be seen in the photophysical properties later. 

 Trial four was performed to see if a smaller particle size could be achieved.  The 

reaction conditions for trial four went back to the basic conditions of trial one and tripled 

the EtOH:THF concentration.  The reaction yield was about 60% and the average particle 

size by TEM analysis were between 36–54 nm and 90 nm. 

 

 

Synthesis of P3HT-SSQ using the “grafting from” method: 

 

In the “grafting from” method, the first step was creating a bromine 

functionalized silsesquioxane nanoparticles as an initiated monomer for the 

polymerization of 2,5-dibromo-3-hexylthiophene to yield P3HT-graft silsesquioxane 

nanopartilces. Starting from 2-bromo-3-thiophene carboxylic acid, 2-bromo-3-thiophene 

carboxyacrylate was prepared upon esterification with 2-hydroxethylacrylate in the 
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presence of DCC.  Then the hydrosilylation reaction was carried out with triethoxysilane 

in the presence of platinum catalyst to yield 2-bromo-3-carboxyacrylate triethoxysilane 

precursor, which was used to create bromine functionalized silsesquioxane nanoparticles. 

These initiator functionalized nanoparticles were reacted with 2,5-dobromo-3-

hexylthiophene using Grignard Metathesis to prepare P3HT-graft-nanoparticles in 

considerable good yield (Scheme 2). However, compare to “grafting to method”, the 

surface functionalized grafting from method yield above 20% of free polymer (ungraft 

P3HT). 
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Scheme 4.2: Preparation of P3HT SSQ nanoparticles using Grignard Metathesis. 

 

 

Three trails were performed using the “grafting from” approach.  Table 4.2 shows 

the experimental conditions. 

 

 

 

 

Precursor 
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 Table 4.2: Reaction conditions for creating P3HT nanoparticles. 

*Thiophene Monomer Silane used for trials 1 and 2 = 0.21862 mmol. 

*Thiophene Monomer Silane used for trail 3 = 0.43725 mmol 

 

 

 These trails correspond to the third experimental step in the reaction series where 

the modified Stöber method is used to create ungrafted nanoparticles.  As shown in Table 

4.2, a constant amount of thiophene monomer silane was used in trails 1-2 and it was 

doubled in trail three. Trail one shows the reaction conditions for the first trial of the 

thiophene monomer nanoparticles.  Using a 10:1 ratio of EtOH:THF the reaction yield 

was about 12% and the average particle size observed using the TEM was 94 nm.  The 

particles are of good size for incorporation into device fabrication, but a smaller and more 

uniform average size would be more desirable.  Trail two is a reproduction of trail one to 

try and reproduce the results.  A higher yield of 15% was achieved, but the average 

particle size could not be maintained at 94 nm. 

 All the reaction conditions were doubled in trail three while maintaining the 

solvent ratio of EtOH:THF of 10:1.  The nanoparticles tend to stay in the solution rather 

than precipitation out from the solution. The TEM images revealed the particle size in the 

range of 63-130 nm.   The particle size distribution was considerably wide. 

 

 

 

 

 

 

 

P3HT-NPs 

Trials 

28% NH4OH 

(mL) 
Silane:TEOS TEOS (mmol) 

Particle Size 

Distribution (nm) 
% Yield 

1 3 1:2.2 0.48 90 – 99 12% 

2 3 1:2.2 0.48 N/A 15% 

3 6 1:2.2 0.96 63 – 130 N/A 
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II. Characterization 

 As shown in Figure 4.1 and 4.2, TEM images were taken from trails 1 and 2? Not 

4 to confirm the grafted P3HT on to nanoparticles. 

 
The morphology of the nanoparticles is nearly a perfect sphere.  The images show 

a zoomed in portion of a droplet of product, allowing the product to air-dry on a 200 nm 

mesh carbon coated grid first, where the spheres do not overlap, or overlap by much, and 

come into relatively close contact with one another.  This is very useful information that 

can be used in device creation to begin to understand how the nanoparticles will interact 

with each other. 

 These polymer-graft nanoparticles were characterized by FT-IR spectroscopy and 

the spectrum is shown in Figure 4.3.  

Figure 4.1: Trail 1        Figure 4.2: Trail 4 

P3HT-SSQ nanoparticles        P3HT-SSQ nanoparticles 

(Scale bar 200 nm)          (Scale bar 100 nm) 
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Figure 4.3: IR analysis of the “grafting to” P3HT-SSQ Nanoparticles. 

 

The characteristic peak at 816.43 cm
-1

 confirms an aromatic sulfur-carbon bond (S—C) 

of the thiophene ring.  The peak at 1083.66 cm
-1 

confirms the presence of silicon-oxygen 

network (Si—O—Si) from the nanoparticle core.  The stretchings from aromatic carbon-

carbon bonds of the thiophene rings at 1452.45 cm
-1

further supports the attachment of 

thiophenes to the nanoparticles. The alkyl stretching from hexyl linkers of thiophene 

rings can be found at 2854.08 cm
-1

 - 2922.61 cm
-1

.  

The solution phase photophysical properties of these nanoparticles were studied to 

confirm the optical behavior of these polymer graft nanoparticles. Figure 4.4 shows the 

UV-visible spectra of two different sizes of P3HT-nanoparticles in chloroform solution. 

The nanoparticle with 50 nm sizes showed a broad absorption band with λmax at 445 nm, 

which agrees with the absorption spectra obtained for the P3HT-silane monomer 
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absorption.  The larger nanoparticles (350 nm) show a boarding and a slight shift of λmax 

at 445 nm.  This slight spectral boarding may be due to the different packing pattern of 

the P3HT polymer chains in the siloxane matrix.
 28

 

 

 
 

Figure 4.4: UV-vis of P3HT-SSQ NPs in a chloroform solution. 

 

 

 
 

Figure 4.5: Fluorescence emission spectra of P3HT-SSQ NPs in chloroform solution. 
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Figure 4.5 shows the photoluminescence (PL) behavior of polymer-functionalized 

nanoparticles in solution. The PL emission of P3HT-NPs in solution exhibits bright 

yellow fluorescence at 580 nm with a shoulder peak around 630 nm.  This follows the 

spectral pattern of P3HT-silane precursor.  The PL emission spectrum of the 90 nm 

P3HT-NPs does not follow this pattern however.  This emission spectrum displays a 

broad peak around 580 nm. 

 For the “grafting from” method, the polymer graft nanoparticles were examined 

under TEM and shown in Figure 4.6-4.7.  

  

The morphology of polymer-grafted nanoparticles is clearly shows the polymer 

layer with uneven edges on the nanoparticle’s surface. The “webbing” between the 

nanoparticles was free polymer resulted from typical Grignard metathesis. However, 

further characterization is needed to confirm the density of polymer-graft from 

nanoparticle’s surface. 

 

 

Figure 4.6: Trail 3           Figure 4.7: Trial 3 

TEM image of bare nanoparticles TEM image of P3HT-graft-SSQ 

nanoparticles 

Procedure (a) Procedure (b) 

(Scale bar-100 nm)       (Scale bar-100 nm) 
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III. Photovoltaic Performance 

 

The photovoltaic performance of P3HT-functionalized nanoparticles obtained 

from “grafting to” method was evaluated using the following device configuration 

(Figure 4.8). 

 
Figure 4.8: The device components and layers of the OPV starting from the bottom.  

ITO/PEDOT.PSS/ Active layer/LiF-Al 

 
 
Device Preparation:  

 
Model bulk heterojunction solar cell devices were prepared on glass/ITO 

substrates. The substrates were subsequently cleaned in 2-propanol and acetone in 

ultrasonic bath for 10 minutes each and a thin layer of PEDOT:PSS (purchased from 

Aldrich) with a thickness of  ~70-80 nm was spin coated as a hole transporting layer on 

top of ITO under nitrogen atmosphere. The substrates were heated at 100C in a vacuum 

oven for an hour. As a first step, the active layer of P3HT-NPs:PCBM with 1:1 ratio 

dissolved in chlorobenzene (15 mg/mL concentration of each compound for the 1:1 

blend) was spin coated at a rotational speed of 1000 rpm to give a film thickness of 80-

100 nm. The casting of the active layer on the substrate was carried out inside a glove 

ITO Coated Glass 

P3HT-SSQ NPs/PCBM 
(1:1) 

Al 

LiF 

PEDOT.PSS 
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box under nitrogen atmosphere. The substrates were transported into vacuum evaporator 

and a layer of LiF (~4 nm) and Al (~200 nm) was thermally evaporated on top of the 

active layer with a diameter of 2 x 6 mm of coating area through a mask. The final 

devices were annealed inside the glove box at different temperatures for ten minutes 

followed by transfered to a glass chamber under stream of nitrogen gas and sealed the 

chamber for device characterization. The testing of the devices was performed using a 

solar simulator with an emission spectrum close to AM 1.5G and intensity of 100 

mW/m
2
. The IV curves of the devices were measured using a Keithley 2400 sourcemeter 

controlled by a PC.  The fill factor (FF) and power conversion efficiency (PCE) were 

calculated manually using following two equations.  

FF =
JmVm

JscVoc
 PCE =

JscVocFF

Pin
, where Pin is the intensity of light. 

 

 

Device Characterization: 

 

 
 

Figure 4.9: Current Density vs. Voltage with PCEs at dark, before annealing, and after 

annealing at 50˚C using voltages from -1.0 to 1.0 mV. 
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Using the device configuration shown in Figure 4.8, the P3HT-SSQ nanoparticles 

used were found to yield a PCE of about 2.16% with the best test device yielding a PCE 

of 2.46%.  The VOC used in this performance test was found to be 0.83 V When 

comparing the performance of these nanoparticles to the P3HT-silica nanoparticles found 

in the literature
16

, a PCE of 1.8—2.3% was reported.  When comparing the PCE of the 

best test device from the lab compared to the best test device found from this literature 

source, a 3.36% increase in efficiency was seen.  The VOC of this test device was found to 

be 0.60—0.62 V.  This is a 0.23—0.21 V decrease from the best test device made in the 

lab.
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CHAPTER 5 

 

 

CONCLUSION 

 

 

 

 Two different types of novel fluorescent siloxane nanoparticles were successfully 

prepared using the modified Stöber Method and Grignard Metathesis.  By varying the 

reaction conditions, different polymer-grafts nanoparticles were obtained. The 

morphology of these functionalized nanoparticles were examined using TEM. The 

particles were further characterized by IR, UV-Vis, and fluorescence spectroscopy. The 

photovoltaics performance of P3HT-nanoparticles was evaluated and we were able to 

improve the power conversion efficiency up to 2.16% with the device configuration of 

ITO/PEDOT:PSS/P3HT-NPs:PCBM/LiF/Al.  The device efficiency obtained for P3HT-

graft nanoparticles is about two-folds higher than the P3HT-functionalized hairy silica 

nanoparticles published recently.
16 

The future work of this project will focus on 

optimizing the conditions to achieve higher power conversion of ~5%, which will be 

compete with the commercially available organic- based photovoltaic devices. 
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