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ABSTRACT 

 

 

 

 

In recent years, bioethanol has received worldwide interest as a bioenergy source. This 

interest has stimulated the production of substantial quantities of ethanol annually. 

However, the inability to produce bioethanol under sterile conditions plagues the 

industry, resulting in frequent microbial contamination. Bacterial contamination is one of 

the more challenging problems facing the bioethanol industry because contaminants 

drastically lower ethanol yield. Conventional methods of antibiotic application to 

eradicate bacterial contaminants are expensive and prohibitive. A more sustainable 

approach to control bacterial contamination of industrial ethanol fermentation systems is 

to use bacteriophages (phage). The goal of this research was to create a cocktail of phages 

capable of infecting and eliminating bacterial contaminants that hinder the production of 

bioethanol. I isolated, purified, and characterized the common bacterial contaminants in 

an industrial bioethanol fermenter and beerwell and demonstrated that bacteriophage 

could be induced from some of these cultures.  Further research is needed to determine if 

virulent mutants of these phages can be generated.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

Fossil fuels are limited in supply, expensive to extract, and contribute to pollution and 

climate change. The United States is heavily dependent on foreign oil, importing more 

than 50% of the oil it consumes.
1
 In an effort to decrease the United States’ dependence 

on foreign oil and the pollution associated with its use, many politicians and 

environmental scientists have promoted the production of ethanol fuel as a viable and 

sustainable alternative to gasoline.
2
 Ethanol burns much more cleanly, and it is cheaper to 

produce. Cellulosic ethanol production reduces emissions by 95% compared to gasoline 

production.
1
 Furthermore, cellulosic ethanol is one of the most promising options 

available to reduce transportation greenhouse gas emissions. 

 In recent years, the fuel-ethanol industry has experienced rapid growth, with 10.6 

billion gallons of ethanol produced in 2009. It is estimated that 60 billion gallons/year 

will be needed by 2030 in the United States alone.
3
 A major problem plaguing the 

industry, however, is the inability to produce fuel-ethanol under closed conditions and the 

substrates utilized for fermentation are not sterile.
4
 As a result, it is not feasible to 

aseptically produce bioethanol. Because of this limitation, chronic and acute microbial 

contaminations are common and expected. Bacterial contaminations in bioethanol 

production may reduce ethanol yield by 27%.
5-6

 Eradicating bacterial contaminants in 

fermentation systems often requires production shutdowns for extensive cleaning or 
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expensive prophylactic antibiotic treatments.
5,7 

Developing methods for long-term 

suppression of microbial contamination is a major challenge in fuel-ethanol production. 

There are numerous reasons why bacterial contaminants are detrimental to 

bioethanol production. The majority of the chronic contaminants are believed to compete 

for sugars that are utilized by yeast during fermentation.
5-8

 Additionally, these microbes 

reduce the amount of essential micronutrients within the fermenting environment.
6-7

 

Furthermore, many bacterial contaminants often produce inhibitory byproducts, such as 

lactic acid and acetic acid, which inevitably leads to the inhibition of yeast growth and 

“stuck” fermentations—a condition where the yeast become dormant before fermentation 

has completed.
5-7, 9

 These acids suppress yeast growth by lowering the pH below the 

optimal range for the conversion of sugars to ethanol. 
9
 

  Among the bacteria that contaminate the mash (the organic fermentable 

material), the fermenters, and the beerwells, lactic acid bacteria are considered to be the 

most prevalent due to their rapid growth.
9-12

 Pediococcus species are the second most 

prevalent. Specifically, it has been reported that the Lactobacillus species L. fermentum is 

the most abundant microbial isolate from commercial bioethanol systems.
9-11

 Lactobacilli 

flourish in the commercial fermentation environments because they are well-adapted for 

survival and rapid growth under high-ethanol, low-pH, and low-oxygen conditions. For 

an extensive list of common microbial contaminants in fuel-ethanol production, see Table 

1. 
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Table 1.1: Bacterial and yeast contaminants found in fuel-ethanol fermentations. 
Source: Beckner, M., Ivey, M.L. and Phister, T.G. (2011), Microbial contamination of 

fuel ethanol fermentations. Letters in Applied Microbiology, 53: 387–394. 

 

 

To prevent the reduction of biofuel yields by bacterial contaminants, various 

approaches have been utilized to control their growth. Compounds such as 3,4,4’-

trichlorocarbanilide, hydrogen peroxide (H2O2), and potassium metabisulfite are 

commonly used for this purpose. These agents can disrupt the structural integrity of the 

bacterial cell membrane (3,4,4’-trichlorocarbanilide), produce cytotoxic oxygen radicals  

that inactivate critical proteins (H2O2), or mutate DNA (H2O2 and potassium 

metabisulfite). However, bacterial contaminants are most often controlled by using 

commercially available antibiotics. 
7,11,12 

The most common antibiotics utilized by 
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fermenter facilities are virginiamycin, penicillin, and erythromycin.
7,11,12

 Both 

virginiamycin and erythromycin inhibit protein production in bacterial cells by binding to 

the bacterial 50S ribosomal subunit.
7,11,12

 Antibiotic binding to this subunit inhibits 

peptidyl transferase activity and interferes with the translocation of the ribosome during 

translation.
7,11,12

 Penicillin is effective against Gram-positive bacteria and works by 

weakening the peptidoglycan cell wall to the point where osmotic pressure causes 

cytolysis.
7,11,12

 Treatment with antibiotics often requires repeated addition  at each cycle 

of fermentation. However, it has been reported that several Lactobacillus species isolated 

from dry-grind ethanol plants have become resistant to virginiamycin.
12

 The emergence 

of multidrug resistant bacterial contaminants has also been documented.
7,12 

The potential for residual antibiotics in distillers’ grains is a significant concern.  

These byproducts are generated by the fermentation process and are often recycled—in 

the form of forage or fertilizer.
9,11,12

 Any remaining antibiotics in this waste may lead to 

the emergence, multiplication, and spread of resistant organisms, capable of threatening 

the safety of human health.
9,11,12

 Therefore, it is crucial to develop a method to control 

lactic acid bacteria and other prevalent contaminants during bioethanol production 

without the relying on antibiotics.  

The long-term goal of this research is to develop a new, less expensive, and 

sustainable approach to control bacterial contaminations within commercial ethanol 

fermentation systems.  Bacteriophages (phages) are viruses that infect bacteria and are 

the most numerous biological entities on Earth. The activity of these natural parasites 

may be harnessed as an environmentally-friendly, inexpensive alternative to antibiotics. 

Very few studies have been performed to determine if bacteriophages can be used to 
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eradicate contaminant bacteria in bioethanol production. The use of phages to specifically 

eradicate lactic-acid bacteria in fermentation systems has been particularly under 

studied.
8 

There are several advantages of using bacteriophages to control bacterial 

populations. Bacteriophages are species-specific and do not directly infect human cells. 

In contrast to antibiotics, phages are self-replicating in environments where a suitable 

host exists. Specifically, when a phage infects a host bacterium, it uses the host cell 

machinery to reproduce. Once new phage particles have been assembled, the host cell is 

lysed, and the phages are released and go on to repeat the infection cycle. Additionally, 

the use of phage to remove or control bacterial contamination does not exacerbate the 

problem of antibiotic resistance. 

To prevent or treat an active bacterial infection in a fermentation reaction, a 

cocktail of phages that attack different contaminants could be added at the source of the 

infection, such as the fermentable grains or the continuous/batch reactor. Ideally, the 

cocktail would be added in sufficient amounts to infect and lyse the contaminating 

bacteria. Reducing the number of contaminants should prevent the formation of the acidic 

environment responsible for inhibiting yeast growth. 

To investigate the potential of utilizing bacteriophages as an alternative to 

antibiotics in the bioethanol industry, a series of experiments were conducted using 

samples obtained from an ethanol production facility located in Hopkinsville, Kentucky 

(Figure 1.1). To identify bacteriophages that may be used to eradicate the prevailing 

contaminants in the bioethanol fermenters, the bacterial hosts had to be identified. This 
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identification was required because bacteriophages are species-specific and have a 

narrow host range. Therefore, I collected raw sample specimens from a fermenter and 

beerwell from a bioethanol reactor and isolated the predominate bacterial species. These 

isolates were initially characterized by gram staining and light microscopy. This was 

followed by whole colony polymerase chain reactions (PCR) to precisely identify the 

contaminants at the genus and species level.  

 
 
 

Figure 1.1: Commonwealth Agri-Energy fuel ethanol plant. Source: Brame, David. 

"Integrated Agriculture." Commonwealth Agri-Energy. Inter-Quest. Web. 9 Jan 2014. 

<http://www.commonwealthagrienergy.com/>. 

 

 

Transmission electron microscopy (TEM) was used to screen the raw samples for 

the presence of bacteriophages. Lytic phages are the most desirable since they destroy 

their host at the end of the infection cycle. Lysogenic phages are less desirable because 

they can integrate into the host chromosome and enter a dormant state. When this occurs, 

the host continues to multiply. However, lysogenic phages can be genetically 

manipulated to adopt the lytic cycle, or lytic mutants could be selected. Alternatively, it 
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may be possible to use lytic phages that have been characterized by other laboratories. I 

identified one lysogenic bacteriophage and three prevalent contaminants from the 

Commonwealth Agri-Energy fuel ethanol plant located in Hopkinsville, KY. 
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CHAPTER 2 

 

 

BACTERIOPHAGE BIOLOGY: AN OVERVIEW 

 

 

Bacteriophages are viruses that infect bacteria and are so named because they destroy 

their bacterial hosts. The term "bacteriophage"—literally "bacteria-eater"—is derived 

from the Greek word "phagein," meaning "to eat." These bacterial viruses were 

independently discovered by British scientist Frederick Twort in 1915 and Felix 

d’Herelle in 1917, and were termed “filterable infectious agents” and “invisible 

antagonists” of bacterial cells. 

Bacteriophages are genetically diverse and are the most prevalent biological 

entities on the planet.
13

 It is estimated that there is a global population of at least 10
31

 

bacteriophages, and less than one percent of the phages observed by electron microscopy, 

over 5400 to date, have been grown in culture. Scientists currently recognize 1 order, 13 

families, and 31 genera of bacteriophages.
13

  

Bacteriophages have a variety of structures, but there are four basic bacteriophage 

shapes: binary, icosahedral, helical, and pleomorphic.
13

 All bacteriophages contain a 

capsid (head) structure, which houses the genetic material, and may vary considerably in 

size and shape from one bacteriophage to the next. Additionally, a significant portion of 

bacteriophages have tail structures that vary widely in length and diameter. The tail 

structure is a hollow tube, where the genome of the phage enters the host cell during the 
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beginning stages of infection. Figure 2.1 depicts examples of the diversity of 

bacteriophages morphology.  

 

 

Figure 2.1: Electron micrographs of various bacteriophage morphologies. Electron 

microscope images of selected phages. Each row shows three examples of the 

morphological family indicated in the left margin. Each percentage corresponds to the 

proportion of phages in the collection belonging to each family. The upper left corners 

are marked with the name and morphotype of the phage in each picture. Source: Ashfield 

et al. "Applied and Environmental Microbiology." High Diversity and Novel Species of 

Pseudomonas aeruginosa Bacteriophages. 79.12 (2012): 4510-4515. Print. 

The genome of most phages is comprised of double-stranded DNA and ranges in 

size from 20 to 500 kilobases. Generally, the length of the phage’s genome is reflected in 

the diameter of the capsid. Bacteriophages genomes tend to be compact, and like most 
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viruses, they rely on the host cell to provide the metabolic pathways, replication, 

translation, and transcriptional machinery needed for propagation. 

Many bacteriophages possess two alternative lifestyles: the lytic cycle or the 

lysogenic cycle. Bacterial viruses that undergo the lytic cycle are named “lytic” phages 

and phages that undergo the lysogenic cycle are termed “temperate” or “lysogenic” 

phages. Figure 2.2 provides a depiction of the two lifecycles and their differences. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Bacteriophage lifecycles. Source: Campbell, Allan. "Nature Reviews 

Genetics." Future of bacteriophage biology. 4.1 (2003): 471-477. Print. 
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In both cycles, a bacteriophage adsorbs to a receptor, usually a protein, on the 

surface of the host cell. Receptors include pili, glycoproteins, flagella, 

lipopolysaccharides, or oligosaccharides.
13

 Some bacteriophages may bind to multiple 

receptors. This attachment, often termed “adsorption,” is mediated by specialized 

structures on the bacteriophage, typically located on the tail fibers.
13

 The successful 

adsorption of a bacteriophage to the host surface receptor often results in a 

conformational change of the bacteriophage tail fibers and the bacterial surface receptor. 

In some phages, this conformational change results in the contraction of the 

bacteriophage tail and subsequent penetration of the host cell wall and cell membrane. 

After adsorption, the bacteriophage genome is injected into the host cell through the tail 

sheath. Bacteriophages that lack a tail—and a substantial proportion with non-contractile 

tails—often utilize cell wall and cell membrane degrading enzymes, such as lysozyme 

that can attack the cell wall. The genomic material of the bacterial virus then enters the 

host cell. The mechanisms for genome entry are largely unknown. 

Once the genomic DNA of the bacteriophage is inside the host cell, the genome 

circularizes rapidly, or alternatively, it modifies its ends to protect them from host 

bacterial nucleases. Furthermore, as the infecting bacteriophages' genome enters the cell, 

host RNA polymerases immediately recognize the viral DNA promoters and begins to 

transcribe what are known as “early genes.”
13

 Because the host bacterial cells lack a 

nuclear membrane, transcription of these early genes is coupled with translation. 

Examples of genes that are expressed at the beginning of bacteriophage infection are 

repair enzymes that repair in the bacterial cell wall and proteins that deactivate host 

nucleases that could destroy the infectious viral DNA.
13
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After the expression of early genes, the bacteriophage genome is copied multiple 

times, along with the transcription and translation of phage genes that will comprise the 

capsid, tail fibers, and other necessary components of the bacteriophage’s structure—

these components are encoded by the phage “late genes.”
13

 Additionally, genes that may 

be involved in lysing the bacterial cell may be transcribed and translated. As soon as all 

bacteriophage structural proteins have been produced, progeny bacteriophages assemble, 

and a copy of the phage genome is packaged into the bacterial virus. Bacteriophages 

encode enzymes, such as endolysins, muramidases, and virolysins, which hydrolyze 

specific bonds in the cell wall of the bacterial host. These enzymes weaken the cell wall 

by hydrolyzing critical stabilizing bonds. The cells eventually lyse thus allowing the 

progeny virus to escape and initiate a new infection. Figure 2.3 depicts the steps of a 

detailed lytic infection of bacteriophage T4, a prototypical lytic phage. 
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Figure 2.3 The lytic cycle of bacteriophage T4. Source: Abedon, S.T. and Calendar, 

R.L. The Bacteriophages, Second Edition. Oxford University Press, 2005. 

 

Lysogenic, or temperate bacteriophages, undergo a drastically different lifecycle 

when compared to lytic viruses. Similar to lytic phages, lysogenic bacteriophages follow 

the same initial steps during infection. However, instead of killing the host directly via 
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lysis, the bacteriophage becomes dormant. Most lysogenic bacteriophages, such as phage 

λ, exist in their dormant state by integrating into a specific region of the host 

chromosome. This recombination event occurs at the attachment sites (attB (the bacterial 

attachment site) and attP (the phage attachment site)). Alternatively, some phage 

circularize their genome and exists as a plasmid, such as phage P1.
13

 In addition, some 

phage integrate randomly via a transposase-mediated mechanism.
13

 This mechanism 

occurs in transposable phages, such as bacteriophages Mu and D3112, specific to the 

Pseudomonas bacterial genus.
14-16

 The integrated form of the bacteriophage is termed a 

“prophage.” Specifically, soon after penetration, the phage genome integrates into the 

host chromosome, and because of this integration, it is replicated along with the cell each 

time the cell copies its chromosomal DNA. In many bacteriophages, such as phage λ and 

P22, virtually all viral genes are repressed in the prophage state.  Some exceptions 

include the gene that encodes the phage repressor and some prophage encoded toxin 

genes (i.e. diphtheria toxin).  

If the repressor is inactivated, the bacteriophage DNA is excised from the 

bacterial chromosome and the lytic cycle ensues. New virus particles are produced that 

are released upon lysis of the host cell. Derepression of the prophage can occur at a low 

spontaneous rate.  However, derepression often occurs in response to genomic or cellular 

damage.
13

 Bacterial cells undergo an SOS response to repair the damaged DNA. This 

SOS response leads to the inactivation of the bacteriophage repressor protein, and entry 

into the lytic cycle. This response allows the phage to escape its dying host.   Between 20 

and 200 new virus particles can be produced by each infectious cycle of most 

bacteriophages that have double stranded DNA genomes. 
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 The destructive nature of bacteriophages towards bacteria is a property that has 

great potential for human health. For example, one of the discoverers of bacteriophages, 

Felix d’Herelle, actively researched and promoted the idea that phages could be utilized 

to fight bacterial infectious diseases.
13

 Specifically, in his research, he hypothesized that 

the viral-induced lysis of bacteria could be used  to cure patients suffering from many 

diseases, specifically typhoid, bubonic plague, and dysentery.
13

 Using phages, he 

conducted trials to control an epidemic of chicken typhoid and buffalo pasteurelosis.
13

 

The overall results suggested that bacteriophage-treated chicken and buffalo populations 

suffered fewer deaths and shorter epidemics than untreated populations. These successful 

studies motivated d’Herelle to conduct human trials, using prepared bacteriophage lysates 

to treat humans suffering from dysentery and bubonic plague with all patients recovering 

rapidly with bacteriophage treatment.
13

 Although promising, bacteriophage therapy was 

overshadowed by the discovery of antibiotics. However, the development of antibiotic 

resistance has revived interest in utilizing bacteriophages to treat bacterial infections. 

Figure 2.4 provides an example of the efficacy of topical bacteriophage cocktails in 

fighting an external multidrug-resistant Staphylococcus aureus infection. 

 
Figure 2.4 Bacteriophages in PhagoBioDerm™ help clear a wound from multidrug-

resistant S. aureus. Source: Markoishvili, K., et al (2002), A novel sustained-release 

matrix based on biodegradable poly(ester amide)s and impregnated with bacteriophages 

and an antibiotic shows promise in management of infected venous stasis ulcers and other 

poorly healing wounds. International Journal of Dermatology, 41: 453–458. 
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CHAPTER 3 

 

 

AN INTRODUCTION TO BIOETHANOL FERMENTATION 

 

Bioethanol (fermentation ethanol) is produced from biomass feedstocks, such as corn, 

and accounts for more than 90% of all ethanol production in the United States.
17

 In 

addition to its principal use in fuel, byproducts from this process are used in the beverage, 

fodder, forage, and the dry-ice industry.
17

 In fact, to meet government-mandated fuel 

requirements to assist in the reduction of greenhouse gases, 7.3 billion gallons of 

bioethanol were added to gasoline in the United States in 2009.
17

 Fuel-ethanol today is 

produced by utilizing a process almost indistinguishable from beer brewing. In this 

process, a significant quantity of starch-producing crops is converted to sugars that are 

fermented by yeasts into ethanol via glycolysis (Figure 3.1). Upon completion of this 

cycle, the fermented ethanol is distilled into its final form: biofuel. 

At the biochemical level (Figure 3.1), ethanol is formed from pyruvate, an end 

product of glycolysis. Each step of glycolysis and ethanol fermentation is catalyzed by 

enzymes. The first step of ethanolic fermentation is the decarboxylation of pyruvate to 

form acetaldehyde.  This reaction is catalyzed by pyruvate decarboxylase, which utilizes 

thiamine pyrophosphate, a coenzyme derived from the vitamin thiamine (B1).
19

 The 

second step of ethanolic fermentation is the reduction of acetaldehyde to ethanol by 

NADH. This reaction is catalyzed by alcohol dehydrogenase, regenerating NAD
+
. The 
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regeneration of NAD
+
 completes this sequence of metabolic reactions in a cyclic 

process. The net result of this anaerobic process is shown by the following chemical 

equation, using glucose as the carbon source: 

Glucose + 2 Pi + 2 ADP + 2 H+ + 2NAD+  2 ethanol + 2 CO2 + 2 ATP + 2 H2O + 2NADH 

The NADH generated by the oxidation of glyceraldehyde-3-phosphate in 

glycolysis, in preparation for its conversion into pyruvate, is consumed in the conversion 

of glucose into ethanol.
19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Biochemical pathway of glycolysis and ethanol Fermentation. The 

glycolytic pathway begins with D-glucose and involves a series of reactions catalyzed by 

enzymes to yield two molecules of pyruvate. Fermentation follows, beginning with the 

pyruvate molecules, to yield two molecules of ethanol. Source: Jeffries, Thomas. "Nature 

Biotechnology." Ethanol fermentation on the move. 23.1 (2005): 40-41. Print.  
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In addition to starch-producing crops, bioethanol may also be produced from 

cellulosic biomass (grasses, trees, and agricultural residues). Biofuel from this source is 

produced by first utilizing pre-treatment and hydrolysis procedures to extract sugars from 

the biomass in their monosaccharide form.
17

 After this treatment, the monosaccharide 

forms of the extracted sugars are available for fermentation by yeast. It should be noted 

that producing bioethanol from cellulosic biomass is significantly more expensive than 

producing bioethanol from starch crops.
17

 However, the United States government 

recently spearheaded a biofuels initiative motivated by the goal of reducing the cost of 

cellulosic bioethanol production.
17

 Currently, scientists and environmentalists are 

working on ways to improve the efficiency and economics of the cellulosic bioethanol 

production process. 

Bioethanol is most often produced on the industrial scale in a batch-style 

progression—using either a wet-mill or dry-mill process. In dry milling, corn is collected 

from surrounding agricultural areas. The kernels and additional starchy grains are mashed 

and ground into fine flour, often referred to "meal."
18

 The meal is further processed 

without separating the mixed components of the grains, becoming liquefied upon the 

addition of water to form a murky "mash."
18

 Ammonia is used to adjust the pH and also 

serves as a nutrient for the yeast. In addition, enzymes are added to convert the grains and 

corn starch into glucose, which is readily fermented by yeast cells.
18

 

After this initial treatment, the mash is subjected to a high-temperature, high-

pressure oven in order to reduce microbial levels that may hinder the fermentation of 

sugars into bioethanol by yeasts. Next, the mash is partially cooled and transferred to 
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large fermenters, where yeast culture is added to convert sugars to ethanol and carbon 

dioxide (CO2). This process generally takes 40 to 50 hours, depending on the amount of 

yeast used to initiate fermentation as well as the mash-sugar concentration. While this 

process occurs, the mash is continually agitated and cooled to aid the activity of the 

yeast.
18

 After fermentation, the resulting impure ethanol is transferred to columns where 

it is distilled—a process in which most of the water is separated by taking advantage of 

boiling point differences. The remaining stillage is removed by centrifugation, after 

which the ethanol is approximately 190 proof, and is subsequently dehydrated to 

approximately 200 proof utilizing a molecular sieve system.
18

 Figure 3.2 on the following 

page depicts the dry-mill process.  
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Figure 3.2 The ethanol production process—dry milling. Grains are ground into meal, 

mixed with water to form a mash, and treated to make simple sugars. The mash is then 

processed in a cooker, cooled, and fermented. The solution is distilled to separate ethanol 

and then dehydrated in a sieve system to produce bioethanol. CO2 is collected after 

fermentation, and after distillation, the solution is treated to make feed. Source: Dinneen, 

Bob. N.P. Web. 8 Jan 2014. <http://www.ethanolrfa.org/pages/how-ethanol-is-made>. 
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Upon completion of fermentation (for both the wet and dry mill process), many 

recyclable co-products are produced. After distillation, the remaining silage is placed in a 

centrifuge to separate the coarse grain from the solubles. The solubles are then 

concentrated by evaporation, which creates condensed distillers solubles (CDS), most 

commonly known as "syrup." The CDS is further processed to produce nutritious 

livestock feed. Additionally, the carbon dioxide released during ethanolic fermentation of 

the sugars is captured, solidified, and sold for use in carbonating soft drinks and 

manufacturing dry ice. The fuel-ethanol industry supplies approximately 40 percent of 

the carbon dioxide for the North American merchant market.
18 

In the wet mill process, the grain is soaked, or steeped, in dilute sulfurous acid for 

two days to catalyze the separation of the grains into its component parts: starch, fiber, 

germ, and protein.
18

 This slurried corn is then developed by passing it through a series of 

grinders to isolate the corn germ, upon which the corn oil may be extracted.
18

 The 

remaining corn starch and corn fibers, such as cellulose, are separated further using 

separation techniques such as centrifugation. 

The steeping ethanolic mixture is then evaporated in order to concentrate it, and 

contaminants such as gluten, protein, and fibers are separated by filtration and dried to 

produce a variety of co-products. The starch and excess water from the wet-mill mash is 

fermented into ethanol, as described above. 
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Figure 3.3 The ethanol production process—wet milling. Grain is initially steeped in 

dilute sulfurous acid to separate the grain into its many components. The resulting slurry 

is then ground to separate the corn germ and fiber to obtain corn oil or feed product. The 

gluten and starch are segregated using centrifugal methods to create meal, bioethanol, or 

corn syrup. Source: Dinneen, Bob. N.P. Web. 8 Jan 2014. 

<http://www.ethanolrfa.org/pages/how-ethanol-is-made>.  
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CHAPTER 4 

 

 

MATERIALS AND METHODS 

 

 

4.1 Sample Processing for Bacteriophage and Contaminant Isolation 

Fermenter and a beerwell samples were obtained from a dry-mill bioethanol 

production facility in Hopkinsville, KY. The samples were collected into sterile 500mL 

bottles (Fisher Cat. No. 02-897-10), and were immediately placed on ice in a cooler. 

These samples, shown in Figure 5.1, contained large particles of debris and residue 

originating from the various fermentation process steps. Because of the substantial 

amount of debris, which interfered with downstream protocols, both samples were 

filtered using sterilized cheese-cloth to remove macroscopic particles. Approximately 

8mL of the filtered samples were collected in 10mL conical tubes (Fisher Cat. No. 05-

539-5)—two tubes each for both the fermenter and the beerwell samples.  

A filtered sample from each source was centrifuged at 4 °C for 20 minutes at 

157xg. This low speed centrifugation was performed to remove additional large debris 

and to facilitate the recovery of bacterial contaminants. The other two samples were 

centrifuged at 4°C for 15 minutes at maximum-speed, 3030xg. These samples were spun 

at maximum-speed to not only remove remaining macroscopic particles, but also to 

separate bacteriophage, if present, from any contaminating bacteria in hopes of being able 

to visualize bacteriophage by electron microscopy.  
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Immediately following centrifugation, approximately 8mL of the cleared supernatant 

from each sample was collected. Two milliliters of glycerol were added to the cleared 

supernatant from each sample prior to freezing at -80 °C. 

4.2 Recovery of Bacterial Contaminants from fermentation samples 

To isolate bacterial contaminants, aliquots of the samples from the low speed 

centrifugation were spread plated on de Man, Regosa, Sharpe agar (Thermo Scientific 

Cat. No. R01585) plates supplemented with 10 mg/mL cycloheximide (Sigma-Aldrich 

Cat. No. C1988-1G) (MRS/CHX). Because the concentration of contaminants in each 

source was unknown, aliquots ranging from 10 to 30 µL in increments of 10 µL were 

plated on individual plates.  Because the aliquots of sample used were too small to be 

spread evenly on agar plates, each aliquot of sample was mixed with 5mL of MRS top 

agar and poured onto MRS/CHX plates. MRS agar is selective for Lactobacillus, 

Lactococcus, and Pediococcus growth—the most commonly cited contaminants of 

industrial fermentation systems as stated previously. Additionally, cycloheximide was 

included to prevent the growth of yeast.  

All plates were placed in an anaerobic BioBag® chamber (Becton-Dickinson Cat. No. 

261215) and were allowed to incubate overnight at 37°C. Independent colonies with 

different morphologies were picked and streaked for purification by transferring them to 

separate MRS/CHX plates via an inoculating loop. These plates were also incubated in 

BioBag® anaerobic chambers for 24 hours at 37°C.  

Isolates were purified three times by streaking on the surface of MRS agar plates 

(standard streak plate method). After the third purification, the isolates were inoculated 
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into 10mL MRS broth (Thermo Scientific Cat. No. R061428) and allowed to grow 

overnight at 37 °C with shaking. A subculture was made from each purified strain 

growing in the MRS broth to allow long-term maintenance of each cell line. Subcultures 

were prepared by transferring 50 µL overnight culture to 10mL of sterile MRS broth 

incubating overnight at 37 °C with shaking.  Each subculture was centrifuged for 10 

minutes at maximum-speed, 3030xg. The supernatant was removed, and the bacterial 

pellet was re-suspended in 5mL of 10 mM MgSO4.  This allowed for short term storage 

of cells at 4°C for a maximum of two weeks. 

4.3 Identification of Bacterial Contaminants by PCR 

Polymerase chain reaction (PCR), shown in Figure 4.2, is a method used to amplify 

DNA. Specificity is achieved by complementary base pairing between the target 

sequence and the oligonucleotide primer.  The bacterial contaminants in this study were 

identified at the species level using whole colony polymerase chain reactions (PCR). 

Primers specific for Lactobacillus, Pediococcus, and Lactococcus (ordered from 

Integrated DNA Technologies) were chosen because these bacteria are among the most 

common contaminants of bioethanol production facilities. Tables 4.1-4.3 show the primer 

pairs used for species identification. 
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Figure 4.2 The polymerase chain reaction. Template is added to a solution of 

dNTPs, polymerase, and primers, which define the region to be amplified. The solution is 

subjected to cyclic temperature changes. By heating to roughly 95°C, the template DNA 

denatures. Upon cooling, the primers anneal to their complimentary regions. Polymerase 

recognizes the primers and synthesizes a new strand, yielding two new molecules of 

DNA. This is repeated multiple times for amplification of the target. Source: N.p. Web. 

15 Jan 2014. <http://universe-review.ca/R11-16-DNAsequencing.htm>. 

 

The identification of the bacterial contaminants at the species level was possible 

because the primers were complementary to unique regions of the 16S, 16S-23S rRNA 

intergeneic spacer region (ISR), and 23S genes.
20-22

 In addition to highly conserved 

sequences, the 16S rRNA, 16S-23S ISR, and 23S rRNA genes contain hypervariable 

regions that can provide species-specific signatures that are useful for bacterial 

identification. Because of the high degree of specificity and accuracy of PCR, traditional 

phenotypic methods for microbial identification that rely heavily on differences in 

morphology, enzymatic activities, and metabolic capabilities were not used. The 16S 

rRNA genes were amplified in the Lactococcus isolates, and the 23S rRNA genes and 
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16S-23S ISR were amplified in the Pediococcus and Lactobacillus isolates.  The 16S 

rRNA gene is sufficient to differentiate species of Lactococcus.
20

 However, in the case of 

closely related species of Lactobacillus and Pediococcus, 16S rRNA probes or primers 

have not been used due to little variation of the 16S rRNA sequence.
21

 The sequence of 

the 16S-23S rRNA ISR and 23S rRNA genes exhibits greater variation than that of the 16 

rRNA structural gene in either species and hence is more suitable for designing species-

specific probes to identify closely related species.
21,22

 

 
 

Table 4.1: Oligonucleotide primers used to identify Lactococcus contaminants. 

Source: Pu, Z.Y. Dobos, M., Limsowtin, G.K.Y. and Powell, I.B. (2002), Integrated 

polymerase chain reaction-based procedures for the detection and identification of 

species and subspecies of the Gram-positive bacterial genus Lactococcus. Journal of 

Applied Microbiology, 93: 353–361. 
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Table 4.2: Oligonucleotide primers used to identify Lactobacillus contaminants. 

Source: Song, Y.-L., Kato, N., Liu, C.-X., Matsumiya, Y., Kato, H. and Watanabe, K. 

(2000), Rapid identification of 11 human intestinal Lactobacillus species by multiplex 

PCR assays using group- and species-specific primers derived from the 16S–23S rRNA 

intergenic spacer region and its flanking 23S rRNA. FEMS Microbiology Letters, 

187: 167–173. 
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Table 4.3: Oligonucleotide primers used to identify Pediococcus contaminants. 

Source: Pfannebecker, J., Frohlich J. (2008) Use of a species-specific multiplex PCR for 

the identification of pediococci. International Journal of Food Microbiology, 128: 288-

296. 

 

Whole colony PCR is a type of polymerase chain reaction that does not require 

purified template DNA. Instead, this type of PCR uses the bacterial cells directly. The 

intense heat of the denaturation step destroys the bacterial cell wall and plasma 

membrane and enables the primers to access the targeted DNA for amplification. 

Each PCR performed was carried out in a 0.2mL microcentrifuge tube, containing 

an aliquot of a master-mix, consisting of the ingredients listed below. Master Mix, per 

reaction:  

 16.5 µL of PCR mix (a solution containing 330μL of 10X PCR buffer B (Fisher 

Cat. No. FB 600050), 6μL of each dNTP (CTP-Fisher Cat. No. BP 2592250; ATP-Fisher 
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Cat. No. BP 2590250; GTP-Fisher Cat. No. BP 2591250; TTP-Fisher Cat. No. 

BP2593250), (100mM final concentration), 330μL of 25mM MgCl2, 316μL of npH2O) 

 30.0 µL of npH2O water 

 0.5 µL of Taq Polymerase (5000units/mL; Fisher Cat. No. FB-6000-15) 

 1 µL of forward and reverse primer (100pmol/μL) 

The final volume of this mixture was 49 µL. One microliter of MgSO4 suspended 

bacterial cells, from step 4.2, was added and placed into a PCR machine. Each primer 

pair required different cycle conditions, which are shown in Tables 4.4 and 4.5.  

After each PCR, the reaction products were separated by gel electrophoresis (see 

Section 4.4) and stained with 0.5 μg/mL ethidium bromide (Sigma-Aldrich Cat. No. 

E7637-1G). Ethidium bromide is a chemical that fluoresces when bound to DNA and 

exposed to UV light. By examining size of the amplicon, the identity of the unknown 

bacterial isolate could be determined. A positive result was obtained when a PCR product 

corresponding to the predicted size was detected. Predicted product sizes for each set of 

primers used are shown in Tables 4.6-4.8. 
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Genera Denaturation Annealing Extension Number 

of Cycles 

Final 

Extension 

Lactobacillus* 95
o
C for 20s 55

o
C for 

2min 

(Included 

in 

Annealing 

step) 

35 Cycles N/A 

Pediococcus Initial: 95
o
C for 15min 72

o
C for 

10min 
94

o
C for 30s 69 °C 

decreasing 

by 

0.3
o
C/0.15s 

for 60s 

72
o
C for 

60s 

Conditions 

for: first 

10 cycles 

94
o
C for 30s 66

o
C for 

60s 

72
o
 for 60s Conditions 

for: next 

22 cycles 

Lactococcus 94
o
C for 30s 45

o
C for 

30s 

72
o
C for 

30s 

35 Cycles N/A 

Table 4.4: PCR cycle conditions for tested genera. 

 

Lactobacilli can be broadly grouped based on phylogenetic relatedness.
21

 In this 

study, the unknowns were initially sorted into phylogenetically related groups using the 

primers listed in Table 4.6. If the appropriate sized PCR product was produced, a second 

PCR reaction was run to unequivocally identify the species. Reactions utilized to 

categorize unknown contaminants into groups required different cycle conditions than the 

reactions used for identification at the species level. This approach reduced the number of 

PCR reactions needed to identify Lactobacillus contaminants. The cycle conditions used 

for species identification are listed in Table 4.5, where cycle conditions listed in Table 

4.4 were used for initial grouping.  
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PCR Group Denaturation Annealing/Extension Number of 

Cycles 

Final 

Extension 

I 95
o
C for 20s 68

o
C for 2min 35 Cycles 74

o
C for 5min 

II 95
o
C for 20s 65

o
C for 2min 35 Cycles 74

o
C for 5min 

III 95
o
C for 20s 62

o
C for 2min 35 Cycles 74

o
C for 5min 

IV 95
o
C for 20s 60

o
C for 2min 35 Cycles 74

o
C for 5min 

Table 4.5: Species-specific PCR Cycle Conditions for Lactobacillus. 
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Table 4.6: Predicted sizes of amplicons produced by each set of primers used in 

whole-colony PCR reactions. Each 3 letter abbreviation for the species-specific primer 

pairs corresponds to the species name in the Lactobacillus genus (i.e. “Lfer” corresponds 

to Lactobacillus fermentum). Source: Song, Y.-L., Kato, N., Liu, C.-X., Matsumiya, Y., 

Kato, H. and Watanabe, K. (2000), Rapid identification of 11 human 

intestinal Lactobacillus species by multiplex PCR assays using group- and species-

specific primers derived from the 16S–23S rRNA intergenic spacer region and its 

flanking 23S rRNA. FEMS Microbiology Letters, 187: 167–173. 

Species-Specific Primer Pairs 

(Forward/Reverse) 

Expected Product Size 

(bp) 

1RL/LacreR 238 

1RL/LgR 482 

1RL/PiplarR 860 

LacF/LacreR 163 

CreF/LacreR 165 

Table 4.7: Predicted sizes of amplicons produced by Lactococcus specific primer 

pairs sets used in whole-colony PCRs reactions. To determine the species that 

correspond to each primer pair, please consult Table 4.1. Source: Pu, Z.Y. Dobos, M., 

Limsowtin, G.K.Y. and Powell, I.B. (2002), Integrated polymerase chain reaction-based 

procedures for the detection and identification of species and subspecies of the Gram-

positive bacterial genus Lactococcus. Journal of Applied Microbiology, 93: 353–361. 
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Species-Specific Primer Pairs 

(Forward/Reverse) 

Expected Product Size 

(bp) 

PDA23S_F/ P23S_R 2244 

PST23S_F/ P23S_R 1840 

PPE23S_F/ P23S_R 1647 

PPA23S_F/ P23S_R 1517 

PCE23S_F/ P23S_R 866 

PIN23S_F/P23S_R 711 

PCL23S_F/ P23S_R 620 

PAC23S_F/ P23S_R 213 

Table 4.8: Predicted sizes of amplicons produced by Pediococcus specific primer 

pairs used in whole-colony PCR reactions. Each 3 letter abbreviation for the species-

specific primer pairs corresponds to the genus and species name (i.e. “PPE” corresponds 

to Pediococcus pentosaceus).  Source: Pu, Z.Y. Dobos, M., Limsowtin, G.K.Y. and 

Powell, I.B. (2002), Integrated polymerase chain reaction-based procedures for the 

detection and identification of species and subspecies of the Gram-positive bacterial 

genus Lactococcus. Journal of Applied Microbiology, 93: 353–361. 

 

4.4 Agarose Gel-Electrophoresis 

  

A 2.0% or 2.5% (mass/volume) gel was created by mixing agarose (Fisher Cat. No. 

BP160-100) with 1X tris-acetate-ethylenediaminetetraacetic acid (TAE) buffer [diluted 

from a 50X stock made of 242 g of Tris Base (Fisher Cat. No. BP1521) 57.1 mL of 

glacial acetic acid (Fisher Cat. No. BP2401C), 100mL of 0.5 M EDTA (Fisher Cat. No.  

BP2482) and 37.2 g of Na2EDTA·2H2O (Fisher Cat. No. BP120500), pH adjusted to 7.8 

with acetic acid]. This mixture was heated until the agarose completely dissolved. The 

molten agarose was allowed to cool to 55 °C before pouring. After cooling, 25 mL of the 

molten agar was poured into a mold containing a 10 well comb and was allowed to 

solidify. The agarose gel and mold were immersed in a 1X TAE in an appropriate gel 
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electrophoresis apparatus (Fisher Cat. No. FB-SB-710 or FB-SB R-1316). The DNA 

ladders used included a 100 bp ladder (Axygen Cat.No. M-DNA-100BP), exACTGene 

100bp DNA Ladder (Fisher Cat. No. BP2571100), and/or the low range ladder (Fisher 

Cat. No. BP2578100). 

After the DNA was loaded into the wells, an electrical current was applied (10V/cm) 

for up to 1.25 hours. Because DNA is a negatively charged molecule, it migrates to the 

cathode. Smaller DNA molecules move more quickly their larger counterparts. DNA 

fragments were stained with a 0.5 μg/mL solution of ethidium bromide for 10 minutes, 

and visualized by exposing the gel to UV light. Species identification was verified when 

products that correspond to the predicted amplicon size were observed. 

4.5 Gram-Staining of Bacterial Isolates 

Purified bacterial isolates were Gram-stained using commercial reagents and the 

manufacturer’s protocol. The Gram stain is a differential stain because of the 

fundamental differences in the cell architecture of gram-positive and gram-negative 

bacteria. Gram-positive bacteria have a thick, multilayered peptidoglycan cell wall, and 

lack an outer membrane. These cells appear purple when gram-stained. Gram-negative 

bacteria have a thin, single-layered peptidoglycan cell wall and possess both an inner and 

outer membrane. These cells appear red when gram-stained. Knowledge of an unknown’s 

gram reaction provided useful information. However, this technique was abandoned in 

favor of whole colony PCR, which can rapidly identify bacterial species.  

The gram stain procedure is as follows: 
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• Escherichia coli and Micrococcus luteus cells were smeared onto a glass slide and 

served as gram-negative and gram-positive controls, respectively.  

• Unknown cells were smeared onto a different area of the slide. 

• The cells were heat-fixed onto the slide by gently heating with a Bunsen burner until the 

slide was warm to the touch.  

• Flood slide with crystal violet solution for one minute.  

• Rinse with distilled water.  

• Flood slide with Gram’s iodine solution for one minute.  

• Rinse with distilled water.  

• Decolorize with concentrated ethanol for one to five seconds.  

• Rinse off with distilled water.  

• Flood slide with safranin for 30 seconds.  

• Rinsewith distilled water. 

• Blot dry using bibulous paper  

• Immerse in oil and view via light microscopy. 

 

4.6 Induction of Resident Prophages  

Two different protocols were used to detect phages. After collecting the raw samples 

from the beerwell and fermenter, they were filtered and purified as described earlier (see 

Section 4.1). A 5 mL aliquot of filtered sample was centrifuged to remove additional 

debris and bacterial cells, and 2 mL of supernatant were transferred to 5 mL syringes that 

were attached to 0.22 µm filters (Fisher Cat. No. 09 -719G). After filtration, the samples 

were centrifuged at 14.8 rpms for one hour at 4˚C. After centrifugation, the supernatant 

was placed in 100 µL of phage buffer, and was examined for the presence of phage by 

electron microscopy (discussed below). 
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To determine if lysogenic bacteriophage were present, the purified bacterial isolates 

were grown in the presence of mitomycin C (Fisher Cat. No. BP2531-2). This drug 

induces the bacterial SOS response which often leads to the derepression of resident 

prophage. 

For mitomycin C induction, 5 mL of overnight cells were centrifuged and suspended 

in 5 mL of 10mM MgSO4. This suspension was used to inoculate 5mL of MRS broth and 

this subculture was incubated overnight at 37 °C with shaking. The following day, the 

cells were subcultured again by diluting 50 µL of the overnight culture into 5 mL of new 

MRS broth. Two controls were also created. One contained uninoculated media, the other 

contained 50 µL of the overnight culture. These cultures were incubated for 1.5 hours at 

37˚C, with shaking, in a screw-capped tube. Following this, 5µL of 2 mg/mL stock of 

mitomycin C was added to the subculture. The controls were incubated with the drug-

treated culture and were used to compare the relative cell density throughout the 

incubation period. All cultures were incubated for 5 hours at 37 °C then examined for 

signs of cell lysis. Two 1.5 ml aliquots were removed from the drug-treated culture and 

transferred to separate microcentrifuge tubes. One tube was treated with 100 microliters 

of chloroform the other was untreated. After vortexing for 30 seconds to ensure thorough 

mixing, the samples were centrifuged for 5 minutes at 13,400 rpms at 4 °C. The 

supernatant (lysate) was transferred to fresh tubes and examined by electron microscopy. 

Electron Microscopy: 

To prepare lysates for electron microscopy examination, 10µL of lysate (from the 

mitomycin C induction or from extended centrifugation of the filtered raw fermenter and 
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beerwell samples, see Section 4.1) was placed onto a Formvar-coated EM grid and 

allowed to incubate for two minutes. After incubation, the sample-side of the grid was 

washed twice by pipetting 10μL of sterile water onto the grid, allowing the grid to 

incubate for two minutes, and wicking off the excess water using filter paper. The grid 

was then stained using the following method, wicking off the material between each step: 

phage buffer (10 seconds), deionized water (10 seconds), 1% uranyl acetate (1 minute), 

1% uranyl acetate (1 minute). The grid was allowed to dry and was then loaded onto the 

TEM and visualized. 
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CHAPTER 5 

 

 

       RESULTS 

 

 

5.1 Sample Collection and Processing. 

Industrial production of ethanol is adversely impacted by the presence of 

contaminating bacteria that compete with the yeast for fermentable sugars and vital 

micronutrients.  An essential first step in this research was to identify the common 

contaminants present in an industrial fermentation system.  To accomplish this, we 

obtained fermenter and beerwell samples from an ethanol production facility in 

Hopkinsville, KY.  Because the raw samples (depicted in Figure 5.1) contained large 

particles of debris, they were filtered through sterilized cheese-cloth. These filtered 

samples were subsequently centrifuged at different speeds to remove any remaining 

macroscopic particles and to separate bacteriophage, if present, from any contaminating 

bacteria. Different amounts of processed specimen were plated on MRS agar plates 

(described in Section 4.2) to select for common contaminants such as Lactobacillus 

fermentum and Lactococcus lactis. Plates were incubated overnight at 37°C in anaerobic 

BioBag ® chambers. 

Five different colony morphologies were detected after overnight growth. Figure 5.2 

shows the growth on MRS plates. The increasing numbers of contaminant bacteria on the 
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MRS plates with increasing volume of sample plated is evident. Individual isolates were 

purified by the streak plate technique (Section 5.2). 

Figure 5.1 Raw fermenter and beerwell samples. These raw samples were collected 

from Commonwealth Agri-Energy, Located in Hopkinsville, Kentucky, Samples were 

immediately stored on ice upon retrieval, and were processed using the methods 

described in Section 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 5.2: Aliquots from processed fermenter sample (Top) and processed 

beerwell sample (Bottom) were plated on MRS agar supplemented with cyclohexamide 

and incubated overnight at 37 °C. 
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5.2 Purification of Bacterial Isolates 

Seven colonies with different morphologies were purified three times by the streak-

plate method, as described in Section 4.2. During the streaking process, some candidates 

that initially appeared unique were found to be more similar to other isolates. The reason 

for this change is not known, but it is likely that high density of bacteria on the primary 

isolation plates could have influenced the observed phenotype. After purification, only 

five unique bacterial morphotypes remained. Examples of the streak plate purification are 

shown in Figure 5.3.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Purification of bacterial isolates by the streak plating method.   

 

5.3 Gram-Staining  

Gram-stains, described in Section 4.5, were performed for preliminary 

characterization of the newly isolated unknowns. Gram-stains were not performed on all 

bacterial isolates because this characterization method was replaced by whole-colony 

PCR for rapid species identification. Nevertheless, two gram-stains were performed, and 
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these two isolates were determined to be a gram-positive bacillus (Figures 5.3) and a 

gram-positive coccus (Figure 5.4).  

Figures 5.4: Gram-stain of Lactobacillus paracasei cells 

 

Figure 5.5: Gram-Stain of Pediococcus pentosceus cells 
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5.4 Bacterial Identification by PCR  

Three different sets of oligonucleotide primers were used to identify the five 

microbial contaminants isolated from the fermenter and beerwell samples from the fuel-

ethanol facility. These published primer-sets were designed to identify all species of 

Lactococcus, Lactobacillus, and Pediococcus, by amplifying species-specific 16S rRNA 

or 23S rRNA gene sequences (see Section 4.3). A unique PCR product of expected size 

was generated if the primer pair matched the sequence of the unknown bacterial isolate. 

The predicted sizes of the amplicons produced by each set of primers are listed in Tables 

4.6, 4.7 and 4.8. 

All PCR products were analyzed by standard agarose gel electrophoresis, using either 

2.0% or 2.5% gels.  Of the five microbial species isolated from the ethanol production 

facility, three were identified at the species level: Lactobacillus fermentum, Lactobacillus 

paracasei, and Pediococcus pentasaceus. These bacterial species, when amplified with 

primer sets LU-5/Lpar-4, PPE23S_F/P23S_R, and Lfer-3/Lfer-4 created amplicons of the 

expected size (312bp, 1647bp, and 192bp, shown in Figures 5.6-5.8, respectively). The 

identity of the two other isolates could not be determined with any of the primer pairs 

used in this study. One of these unknowns produced small white colonies and was 

collected from the beerwell. The other produced characteristic small grey colonies, was 

unable to grow in MRS broth, and was isolated from fermenter samples. These isolates 

may be an Enterococcus species, which are also common contaminants in fuel-ethanol 

production (see Table 1.1).  
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Negative results were obtained when no product was generated or if the product was 

the incorrect size Figures 5.6-5.8 are gel images showing the positive identification of 

Lactobacillus fermentum, Lactobacillus paracasei, and Pediococcus pentasaceus.  

 

 

 

Figure 5.6: PCR amplification products using group primers (Left) and species-

specific primers (Right) to identify Lactobacillus paracasei. Gel 1 (Left): Lane 1—

Low Ladder Fischer (50bp-2kb), Lane 2—Amplification products using LU-3/Lac-2 

(expected product size: 350bp), Lane 3—Amplification products using LU-1/Lac-2 

(expected product size: 300bp), Lane 4—Amplification products using LU-5/Lac-2 

(expected product size: 400bp), Lane 5—Amplification products using Ldel-7/Lac-2 

(expected product size: 450bp), Lane 6—Amplification products using LU-3/LU-5/LU-

1/Lac-2 (expected product size: 400bp), Lane 7—Blank, Lane 8—Low Ladder Fischer 

(50bp-2kb). Gel 2: (Right), Lane 1—Axygen 100bp Ladder DNA marker (100bp-3kb), 

Lane 2—Amplification products using Lpar-4/LU-5 (expected product size: 312bp), Lane 

3—Amplification products using Lpar4/LU-5 (expected product size: 312bp), Lane 4—

RhaII/LU-5 (expected product size: 113bp), Lane 5—Axygen Ladder DNA marker 

(100bp-3kb). Boxed bands are amplified products that match expected sizes.  
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Figure 5.7: PCR amplification products using species-specific primers to identify 

Pediococcus pentosaceus. Lane 1—Axygen 100bp Ladder DNA marker (100bp-3kb), 

Lane 2—Amplification products using PDA23S_F/ P23S_R 2 (expected product size: 

2244bp), Lane 3—Amplification products using PST23S_F/ P23S_R 2 (expected product 

size: 1840bp), Lane 4—Amplification products using PPE23S_F/ P23S_R 2 (expected 

product size: 1647bp), Lane 5—Amplification products using PPA23S_F/ P23S_R 2 

(expected product size: 1517bp), Lane 6—Amplification products using 

PCE23S_F/P23S_R 2 (expected product size: 866bp), Lane 7—Amplification products 

using PAC23S_F/ P23S_R 2 (expected product size: 213bp), Lane 8—Amplification 

products using PIN23S_F/P23S_R 2 (expected product size: 711bp), Lane 9—Blank 2 

(expected product size: N/A), Lane 10—Axygen 100bp Ladder DNA marker (100bp-

3kb). The boxed band is the amplified product that matches its expected size. 
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Figure 5.8: PCR amplification products using group primers (Top) and species-

specific primers (Bottom) to identify Lactobacillus fermentum. Note: the concentration 

of the gel and the high (100V), may have affected the migration of the amplification 

products causing the discrepancy in their apparent size.  Top: Lane 1—exACTGene 

100bp DNA Ladder (25bp-1kb), Lanes 2-5—Amplification products using LU-3/Lac-2 

(expected product size: 350bp), Lanes 6-9—Amplification products using LU-3/Lac-2 

LU-1/Lac-2 (expected product size: 300bp), Lane 10—exACTGene 100bp DNA Ladder 

(25bp-1kb). Bottom: Lane 1—exACTGene 100bp DNA Ladder (25bp-1kb), Lanes 2-5—

Amplification products using LU-3/Lac-2 Lfer-3/Lfer-4 (expected product size: 192bp) 

Boxed bands are amplified products that match expected sizes.  
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5.5 Detecting the Presence of Bacteriophages 

My results show that the Hopkinsville ethanol production facility contains bacterial 

contaminants that are known to impact ethanol production efficiency.  The next step was 

to determine if I could find bacteriophages that would specifically attack these common 

hosts. Determining whether or not bacteriophages are present in the fermenting 

environment is a critical step before cocktails for eliminating the contaminants can be 

formulated. Phages may be present extracellularly or they may exist as a prophage, 

integrated into the bacterial host’s chromosome. The presence of phage particles in the 

fermenter samples suggest that the contaminating bacteria may be lysogens which 

periodically release phages either spontaneously or through induction events. The 

presence of lysogenic phage may lower the efficacy of a phage cocktail due to the 

phenomenon of immunity. Resident prophages synthesize repressor proteins that 

effectively block secondary infections by the same phage. Therefore, lysogenic cells are 

said to be immune to infection by any phage that possesses the same type of repressor 

and thus the same a repressor-binding sites. 

Because temperate phages can adopt two different lifestyles, it was necessary to 

search for phages located extracellulary and those that have integrated into the 

chromosome of their host. To look for free phages, the clarified supernatants from the 

fermenter and beerwell samples (Section 4.1), were examined using a transmission 

electron microscope (TEM). For each sample, 10µL of clarified supernatant was placed 

on an EM grid and stained with uranyl acetate. No particles were observed when viewed 

by TEM, although the entire grid was searched. These results suggest that either the 
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samples do not contain free phages or that the concentration of released phage may have 

been far too low to be detected by this approach. 

5.6 Induction of Resident Prophage 

To determine if the bacteria isolated from the fermenter and beerwell samples contain 

prophages, I attempted to induce their production by treating the cells with mitomycin C.  

Mitomycin C is a potent DNA cross-linker, which blocks bacterial DNA replication and 

leads to cell death. The cells sense this damage and respond by turning on the expression 

of the SOS regulon.  In many cases, this also results in the derepression of resident 

prophages by inactivating the phage repressor protein. These viruses enter the lytic cycle, 

and eventually lyse the cell to release the progeny virions. 

Only one mitomycin C treated isolate yielded bacteriophage. The culture of 

Lactobacillus paracasei, appeared turbid during the first few hours of incubation but then 

cleared after 5 hours of incubation.  The drastic reduction in turbidity is a characteristic 

sign of cell lysis. The cell debris was removed by centrifugation and the supernatant was 

transferred to a sterile tube.  An EM grid was prepared using the clarified lysate and 

examined under the TEM. Phage particles were easily identified in this sample. Although 

capsid morphology, and tail length were similar, we do not know if the phage population 

is homogeneous because many phages have similar morphologies. These results suggest 

that the Lactobacillus paracasei contaminant harbors lysogenic bacterial virus(es). The 

electron micrograph of the bacteriophages is shown in Figure 5.9. 
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Figure 5.9: Bacteriophages induced from Lactobacillus paracasei. 
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CHAPTER 6 

 

 

DISCUSSION 

 

 

Bacterial contamination continues to have a negative impact on the bioethanol 

industry. Conventional methods for treating such contamination and its associated 

complications are not sustainable due to inhibitory costs and the development of 

resistence. The goal of this research was to identify and develop a sustainable alternative 

to antibiotics and chemical biocides that are currently used to control microbial 

contamination in biofuel facilities. Bacteriophages are strong candidates as alternatives to 

antibiotics in the control of bacterial contaminations in fuel-ethanol fermentations. 

Bacteriophages have several advantages over antibiotics. Specifically, bacteriophages are 

capable of self-replicating where a suitable host exists due to their lifecycle. Each 

productive infection results in substantial amplification of the lytic agent and hundreds of 

progeny phage are produced. This amplification drastically increases the concentration of 

phage in the vicinity of the host contaminant bacteria. Additionally, bacteriophages do 

not harm human or animal populations due to their selective toxicity against their small 

bacterial host range. Furthermore, the selective pressure of an added phage population 

does not increase the probability of developing resistance to antibiotics. 

Bacteria can readily develop resistance to antibiotics but they also can develop 

resistance against bacteriophage. For example, a mutation in in the bacteriophage 

receptor could prevent adsorption and entry. A common approach to overcome this type 
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of phage resistance is to use a collection of bacteriophage that target different receptors 

on the target host. Thus, if a contaminant acquires a mutation in a receptor protein 

rendering it resistant to infection by a particular phage, other phages in the cocktail that 

utilize different receptors may still be able to infect it. Due to the relatively low mutation 

rate of bacteria, it is unlikely that a bacterial host will acquire multiple mutations to 

become resistant to all phages in a cocktail simultaneously. 

An essential first step in using bacteriophages to combat bacterial contaminants in 

bioethanol production is to identify the culprits. Only after this information is known can 

an appropriate cocktail of bacteriophages be formulated. I isolated and cultured five 

different bacterial species from fermenter and beerwell samples obtained from a 

bioethanol facility. Of these five different bacterial species, three were positively 

identified using whole-colony PCR and gel electrophoresis. The identity of two other 

isolates remains undetermined: one unknown produced small white colonies and was 

collected from the beerwell and the other produced characteristic small grey colonies, 

was unable to grow in MRS broth, and was isolated from fermenter samples. Both 

contaminants were minor constituents of the observed contaminant population. These 

isolates may belong to the Enterococcus genus, which are also common contaminants in 

fuel-ethanol production. Primer sets which amplify the species-specific 16S rRNA region 

of each species belonging to the Enterococcus genus may be designed and tested with 

these unknown isolates to determine if these contaminants belong to this genus. 

Contaminants identified at the species level included members of the genera 

Lactobacillus and Pediococcus. Further research must be conducted to identify additional 

bacterial contaminants. Only two samples were analyzed and this small sample size may 
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introduce significant sampling error. In addition, samples should be collected at different 

times during contaminant blooms in order to determine which populations persist in 

fermenters and beerwells. Moreover, our protocol selected for the growth of only 

Lactococcus, Pediococcus, and Lactobacillus populations. This selective medium 

prevented the growth, and therefore, characterization of other microbial contaminants 

which may be prevalent in fermenters. Different culture conditions supplemented with 

different nutrients may result in the growth of new communities of bacteria. Therefore, it 

may be beneficial to plate future samples initially on nutrient rich media supplemented 

with CHX to evaluate the diversity of microbiota that are prevalent in bioethanol 

facilities. This information will help to identify phage that target the predominant 

contaminating species. 

The fermenter contained significantly greater numbers of contaminating bacteria than 

the beerwell (Figure 5.2). This suggests that the application of bacteriophage in the 

fermenting vats of the Hopkinsville bioethanol facility would be more effective than 

applying a phage cocktail to the beerwell due to the potential for a more significant 

reduction of contaminants. Nevertheless, the addition of phage to the beerwell may still 

be beneficial since bacteria were also recovered from this location. The addition of 

bacteriophage early in the bioethanol production cycle may be particularly valuable.  

Reducing or preventing the growth of bacteria that naturally contaminate the grains, will 

reduce their negative impact on yeast growth. 

Phages that target the majority of the contaminating bacterial species must be used in 

sufficient amounts to ensure efficient host cell killing. Although naturally lytic 

bacteriophages are ideal as biocontrol agents, it may be possible to genetically engineer 



  53 
 

the temperate bacteriophages to exclusively undergo the lytic cycle. Bacteriophages may 

also be obtained from research laboratories that have shown effective lytic activity 

against similar bacterial species. Collecting a variety of phages will broaden the scope of 

target receptors that can be harnessed for host cell infection, ultimately reducing the 

chance of the development of phage resistance of target contaminants.  

Alternatively, instead of using bacteriophages that strictly lyse infected bacteria and 

release progeny phage to scout for new hosts, where bacteria quickly evolve to becoming 

resistant to infection, genetically modified viruses that weaken their hosts to become 

more susceptible to antibiotics may be used.
23

 Lu and Collins genetically engineered a 

phage called M13, which does not lyse infected cells, to produce a bacterial protein called 

lexA3. This protein impairs a bacterium's ability to repair damaged DNA by blocking the 

induction if SOS functions in the cell.
23

 When the modified M13 phage infects its host, 

Escherichia coli, it produces lexA3, which renders the bacterium more vulnerable to 

DNA-damaging drugs.
23

 Collectively, it was discovered that the phage increased the 

ability of the antibiotic ofloxacin to kill E. coli grown in culture, even when the bacteria 

were resistant to the antibiotic.
23

 The findings suggest that this type of phage therapy 

could rejuvenate antibiotics that have been deemed no longer effective, and this research 

may be extended to cases to eliminate prevalent antibiotic resistant bacteria in bioethanol 

facilities.  

Another alternative approach for using bacteriophages to kill bacterial contaminants 

in bioethanol production was recently published in the Journal of Biotechnology and 

Biofuels.
24

 Instead of using whole bacteriophages, the investigators used the cell-lysing 

capabilities of bacteriophage encoded enzymes. This study was conducted by the United 
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States Department of Agriculture, and successfully demonstrated that phage endolysins 

are effective in significantly reducing the number of Lactobacillus—a common 

contaminant in the bioethanol industry.
24

 Endolysins are hydrolytic enzymes produced by 

bacterial viruses during the late stages of infection. The endolysins were isolated from 

streptococcal phages and lactobacillus phages. Specifically, the Lambda Sa2 lysin was 

isolated from a streptococcal phage, and the lysins LysA, LysA2, and LysgaY were 

isolated from a variety of lactobacillus phages.
24

 These enzymes are responsible for 

degrading peptidoglycan—a critical component of the bacterial cell wall. Peptidoglycan 

is composed of an intricate structure comprised of a sugar backbone with two 

components: alternating units of N-acetyl glucosamine and N-acetyl muramic acid. 

Forming the cell wall, peptidoglycan maintains the structural integrity of the cell, 

reinforces the plasma membrane, and counteracts the osmotic pressure of the cytoplasm. 

Endolysins create a myriad of holes in the peptidoglycan wall in order to lyse the cell. 

These holes weaken the integrity of the cell wall and the intracellular osmotic pressure 

causes the wall to rupture. This type of cell death is called osmolysis.  A single lysin 

enzyme is sufficient to cleave an adequate number of bonds to destabilize the bacterial 

cell wall.
24 

Although these lytic enzymes are normally produced inside the phage-infected cell, 

and therefore degrade the cell wall internally, many studies have shown that treating 

bacterial cells externally with lysins is just as lethal.
25-28

 Consequently, many 

bacteriophage lysins are being utilized to control bacterial populations. Externally applied 

lysins have proven to be highly effective when applied to gram-positive cells because 
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they lack an outer membrane, the presence of which prevents access of the lysins to the 

peptidoglycan wall of gram negative bacteria. 

The investigators from the Department of Agriculture isolated, purified, and screened 

four different phage lysins for their ability to lyse Lactobacillus strains collected from 

fuel ethanol fermenters.
24

 The endolysins demonstrated strong lytic activity towards the 

majority of strains of Lactobacillus tested, and maintained optimal activity under 

fermentation conditions (pH 5.5 and in the presence of 5% ethanol), reducing 

contaminant numbers by many orders of magnitude. Therefore, these lytic enzymes have 

potential to control unwanted lactobacilli contaminations in fermentation systems and 

merit further testing in fuel ethanol fermenters as either additives or expressed in 

genetically modified, fermenting yeast. 

Although phage-encoded lysins are capable of significantly reducing contaminants in 

bioethanol facilities, the expense associated with these proteolytic enzymes may be 

greater than that of a phage cocktail. This is because exploiting the activities of these 

enzymes requires a substantial initial investment that encompasses cloning, expressing, 

and purifying these proteins for their use. However, growing and maintaining phage 

stocks entails fewer steps and less initial investment. Determining which methods are 

work best and are the most cost effective will require additional study.   

The long-term goal of this research is to develop a new, less expensive, and more 

sustainable approach to control bacterial contaminations of industrial ethanol 

fermentation systems. Knowing where the application of phage is most effective will help 

ethanol fuel industries eradicate the greatest number of bacterial contaminants and avoid 
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unnecessary or ineffective applications of a phage cocktail. This study has shown that for 

Hopkinsville’s Agri-Energy® Bioethanol production facility, contaminations in the 

fermenter are more prevalent in the fermenter than the beerwell. Three common 

contaminants were identified in the Hopkinsville bioethanol facility—Lactobacillus 

fermentum, Lactobacillus paracasei, and Pediococcus pentosaceus. Two other bacterial 

contaminants remain unidentified. In addition, I found that bacteriophage are already 

present in the fermenting environment. Because bacteriophages are natural parasites, 

scientists continue to investigate the variety of contexts where bacteriophages are 

applicable to harness their capabilities to revitalize their use as antimicrobials in 

industrial and clinical settings. This preliminary study suggests that bacteriophages may 

be utilized as efficient alternatives to antibiotics in eradicating bacterial contaminants in 

fermenters, and this diverse group of microorganisms remains a viable biocontrol agent 

in the bioethanol industry, and may have other useful applications where microbial 

contaminants are a problem. 
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