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ABSTRACT 

 

 

 

 

Poly-3-hexylthiophene functionalized silsesquioxane nanorods (P3HT-NRs) were 

prepared by direct hydrolysis and condensation of P3HT-silane precursor using the 

modified Stöber method. The silane precursor was stirred in a mixture of two solvents in 

the presence of a base under room temperature for three different reaction times. The 

size, shape, and morphology of these novel nanostructures were visualized using the 

transmission electron microscope (TEM) and scanning electron microscope (SEM). The 

composition of the P3HT-NRs was confirmed by FTIR and its silane by proton NMR. 

Future work will focus on evaluating photovoltaic performance of these nanorods as a 

donor for organic photovoltaics. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

The harnessing of solar energy has been achieved using a wide range of 

technologies such as: artificial photosynthesis, solar heating, and photovoltaics among 

many others.
 [1][2]

 The artificial photosynthesis utilizes the photoelectric effect where as 

the photovoltaics utilizes the photovoltaic effect. The difference between the two effects 

is that, in photoelectric electrons are emitted from the surface of the material due to the 

absorption of the electromagnetic spectrum, where as in photovoltaic the electrons are 

transferred from the valence band to the conduction band of the material. 
[3]

 Today, solar 

energy offers mankind with infinite energy resource that is relatively abundant around the 

globe. Its availability is considered to be greater in countries closer to the equator that 

have sunlight all year round, hence the solar energy can be greatly utilized. 
[1]

  

The advantages and unlimited access of solar energy has led to a total global 

capacity of 139 gigawatts (GW), while Germany being the largest producer it has the 

capability of subsidizing 6% to its national energy demand. 
[4]

 The challenges faced in 

lowering the electricity costs has led to the research of utilizing organic elements for 

organic photovoltaic solar cells (OPVs) as an alternative to the silicon based solar cells. 

The organic based solar cells are the future focus for making: cheaper, recyclable, low 

cost solar panels to surpass the power conversion efficiency of the silicon based.  

By utilizing the renewable resources, there will be a cost reduction in electricity 
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as well as achieving sustainable energy. 
[5]

 Upon achieving a power conversion efficiency 

of approximately more than 10%, there are still questions about its efficiency limitations, 

long-term reliability, and its lifetime performance that need to be addressed. 
[6]

 

My research goal is to prepare novel nanostructures that will serve as a donor 

material for the active layer, which will to improve the power conversion efficiency of 

the organic-based solar cells. This thesis will serve as mode to better understand my 

research and the work I have done towards achieving this goal. The thesis is organized as 

follows: In the first part, a general introduction will be given on organic photovoltaics 

(OPVs), and different types of OPVs. In the second part, the incorporation of poly-3-

hexylthiophene nanorods (P3HT-NRs) into organic photovoltaic (OPV) cells will be 

discussed for future performance evaluation.  

I. Organic Photovoltaic (OPV) Cells 

As previously discussed, OPVs help subsidize the high costs of energy, and 

creating sustainable energy. The solar cells consist of a thin film conjugated organic 

polymers that absorb light and transfer charge in order to produce electricity. The 

conjugated system formed in the OPVs is due to the alternating single and double bonds 

on the covalently bonded carbon atoms. 
[7]

   

Due to the conjugated system of the organic polymers, a delocalized   orbital and 

   antibonding orbital are formed due to the pz orbital. Where the delocalized   orbital is 

the highest occupied molecular orbital (HOMO), and    antibonding orbital is the lowest 

unoccupied molecular orbital (LUMO). The charge difference of the electron between the 
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HOMO and LUMO create a band gap that typically ranges from 1-4 electron volts (eV). 

[7]
 

The first silicon solar cell was publically demonstrated in 1954 by the three 

scientists; Chaplain, Fuller and Pearson at Bell laboratories. 
[8][9]

 They got the idea from a 

French scientist: Edmond Becquerel, who was the first inventor of the photovoltaic cell in 

1839. 
[8][9]

 Later in 1994 R. N. Marks et al. created the first OPV cell that consisted of 

poly(p-phenylene vinylene) (PPV) with a thickness between the range of 50-320 nm, 

which was sandwiched between indium tin oxide (ITO) glass and a cathode (Al, Mg or 

Ca). 
[10]

 Upon exposure to light with an intensity of 0.1 mW/cm
2
, the efficiency of the 

device came to around 1%. 
[10]

 Despite the low power conversion efficiency, the solar cell 

development has really advanced over the years with new materials being synthesized to 

improve the efficiency. The ability to control the bad gap and electronegativity through 

the molecular designs of materials has led to the synthesis of conducting polymers with 

better electron affinities. 
[11] 

 

Typically, when these materials absorb a photon, the generated excited state is 

confined to a molecule or a region of a polymer chain. The excited state can be regarded 

as an electron-hole pair bound together by electrostatic force, otherwise referred to as 

excitons. 
[12][13]

 In OPVs, the excitons are broken up into free electron-hole pairs by 

effective fields, forming a heterojunction between two different semiconductor materials. 

[14]
 These electric fields split the exciton by causing the electron to fall from the 

conduction band of the electron donor to the conduction band of the electron acceptor. 
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Therefore, it is crucial that the acceptor material has a conduction band edge that is lower 

than that of the donor material. 
[15][16]

 

 

II. Types of OPVs 

The single layer OPV is one of the simplest types of organic photovoltaic cell. 

The cell comprises of three components; indium tin oxide (ITO) glass [electrode 1], 

organic electronic material, and a layer of magnesium, aluminum or calcium [electrode 

2]. For the cell to function, the organic electronic material is sandwiched between the top 

and bottom layer. The top layer is the high work function metal (ITO coated glass), while 

the bottom layer is the low work function metal such as (Mg, Al, Ca). 
[17]

 A schematic 

representation of the basic structure is illustrated in Figure 1.1. 

 

Figure 1.1: A schematic representation of a single layer organic photovoltaic cell. 

The difference in work function between the two electrodes generates an electric 

field in the organic electronic material. Therefore, when the active organic layer is struck 

Electrode 1 

(ITO, Metal) 

Organic Electronic Material 

(Small molecule, Polymer) 

Electrode 2 

(Mg, Al, Ca) 
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by a photon the electrons will be excited to the LUMO leaving a hole in the HOMO. The 

exciting of the electrons from LUMO to HOMO results in the formation of the excitons, 

which then leads to the dissociation of the electron-hole pair as the excition falls from the 

excited state to the ground state. 
[18]

 The potential created by the two different electrodes 

helps separate the exciton pairs, pulling the electrons to the positive electrode and holes 

to the negative electrode. The single layer OPV has shown low quantum efficiencies 

(<1%) and low power conversion efficiency [PCE] (<0.1%). A problem with the single 

layer OPV is that the electric created from the difference between the two conductive 

electrodes is insufficient in diving the excitons, hence as a result the electrons recombine 

with the holes before reaching the electrode. 
[17]

  

To overcome the issue of the single layer OPV, an addition if a second organic 

layer in conjunction with the first organic layer creating a bilayer OPV is depicted in 

Figure 1.2. 

 

Figure 1.2: A schematic representation of a bilayer organic photovoltaic cell. 

Electrode 1 

(ITO, Metal) 

Electron Acceptor 

Electrode 2 

(Mg, Al, Ca) 

Electron Donor 
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 A bilayer cell utilizes the same electrodes as the single layer cell; the only 

difference is that the cell utilizes the electrostatic force generated between the two 

organic materials that have different electron affinities and ionization energies. The layer 

with the high electron affinity and ionization energy is the electron acceptor, while the 

other layer is the electron donor. It is due to the unequal band gap between the two 

materials that generates a strong electric filed to efficiently split the excitons. 
[12]

  

There is a slight improvement in terms of; quantum efficiency of 6% with a PCE 

of 1%, but the diffusion length of the excitons in organic electronic material is about 3-

40nm. 
[19]

 To have most of the excitons diffuse to the interface of the polymer layers and 

split into charge carries the diffusion length should be same as the thickness of the 

polymer layer. A typical polymer layer is 100 nm thick for it to actually absorb enough 

light; therefore at this large thickness only a small fraction of the excitons can reach the 

heterojucntion. 
[12] 

 

To overcome the issue of thickness and diffusion length of the excitons, a 

combination of the electron donor and electron acceptor, forming a polymer blend is 

implemented. The combination of the electron donor and electron acceptor, forming a 

polymer blend is called a bulk heterojucntion OPV; depicted in Figure 1.3. 
[20][21]

 The 

combination of the electron donor and electron acceptor allows the polymer blend length 

and the exciton diffusion length to be similar; hence the generated excitons can reach the 

interface and split efficiently. 
[20]
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Figure 1.3: A schematic representation of Bulk heterojucntion OPV cell. 

The disadvantage in this kind of OPV configuration is that the electrons get 

trapped in the active layer, hence not making it to the electrodes. It is more like spaghetti 

and meatballs; that is the electrons have a hard time getting through to the electrodes. 

Numerous advances have been made to minimize the trapping of the electron, and to 

increase the power conversion efficiencies. An example is the controlled growth 

heterojunction that provides better control over the positions of the donor-acceptor 

materials, and eventually leading to higher power conversion efficiency. 
[22]

 

To date numerous donor and acceptor materials for organic based solar cells have 

been synthesized; most of which have been incorporated into the active layer of the cell. 

The most commonly used donor and acceptor materials are Poly (3-hexylthiophene) 

(P3HT) and phenyl-C61-butyric acid methyl ester (PCBM). The blend of two materials 

Electrode 1 

(ITO, Metal) 

 

Electrode 2 

(Mg, Al, Ca) 

Dispersed Heterojunction 
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can achieve a high PCE of approximately 3.5 to 5.0%. 
[25]

 Figure 1.4 shows some of the 

donor materials that have been synthesized for their application in the active layer blend.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Despite the synthesis of these donor materials there are still limitations in 

controlling the morphology, and the ability to transport the hole to the electrode. Figure 

1.5 shows some of the acceptor materials available and tested in the active layer of the 

OPVs along with the donor materials shown previously in Figure 1.4. Considering the 

several donor and acceptor materials, not a single combination of the material as an 

active layer is able to obtain over 3% PCE except for P3HT/PCBM and 

PCPDTBT/PCBM. 
[26]

  

Figure 1.4: Chemical Structure of Donor materials for Organic solar cell. 
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The combination of P3HT (donor material) and PCBM (acceptor material) in the 

active layer has potential of obtaining a higher PCE than its current achievement if about 

3-5%. 
[27]

 The use of P3HT as an electron donor in polymer:fullerene BHJ have shown 

PCE of up 5%, therefore being able to control the morphology of P3HT derivatives such 

as P3HT NRs will lead to higher PCE for OPVs. 
[27]

 Rathnayake et al., have recently 

synthesized P3HT nanoparticles using the modified Stöber method as a donor material 

for the for OPVs. 
[29]

 The Stöber method, named after Werner Stöber, is used for 

producing silica nanoparticles. He was the first to synthesize spherical silica particles 

through the hydrolysis alkyl silicates and condensation of silicic acid in solution, in the 

presence of a morphological catalyst. 
[23][24]

 Later, the Stöber method was slightly 

Figure 1.5: Chemical Structure of Acceptor materials for Organic solar cell. 
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modified by Unger’s group to prepare silica sphere in which they utilized 

cetyltrimethylammonium bromide; since then it has been known as the modified Stöber 

method. [24]

Rathnayake et al., evaluated the photovoltaic performance of P3HT nanoparticles 

with PCBM in a 1:1 blend ratio, which resulted in a PCE of 2.5%. 
[29]

 Therefore, there is 

potential in increasing the PCE of OPVs by having P3HT derivatives in the active layer 

along with PCBM. Therefore, considering the potential of P3HT nanoparticles my 

research goal is to synthesize P3HT nanorods as a donor for OPVs to achieve high PCE 

for sustainable energy.
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CHAPTER 2 

 

 

RESEARCH OBJECTIVE AND PROJECT GOALS 

 

 

Objective: 

To create functionalized nanorods derived from poly-3-hexylthiophene as an active donor 

for organic photovoltaic cells. This donor material comprising of a low band gap, and the 

ability to control the morphology will be able to provide a higher PCE. The 

functionalized silsesquioxane P3HT-NRs will be synthesized using the modified Stöber 

method. 
[23]

 

 

Goals: 

 Preparation of P3HT-NRs 

 Characterization of the P3HT-NRs 

 Evaluating photovoltaic performance 

 

Method and Approach 

P3HT being the most common compound used for solar cell devices is due to its 

function as a donor. The P3HT-NRs will be synthesized using the modified Stöber 

method; a direct hydrolysis and condensation of organotrialkoxysilanes in the presence of 

catalytic amount of base. 
[23][24]

 The synthesis proceeds for 24-72 hours trough a 

hydrolysis and condensation reaction leading nanorods formation containing Si-O-Si 
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network.     

P3HT nanorods will be prepared by following the modified Stöber method in the 

presence of a base under two separate conditions. Three different concentrations will be 

used in each method. One method will run under stirring condition and the other non-

stirring condition to compare the morphology of nanostructures. These materials will be 

characterized using NMR, IR, TEM, and SEM. The chemistry of this modified Stöber 

method to prepare P3HT-functionalized silsesquioxane nanorods will be discussed in 

detail in the Results and Discussion section.  

Subsequent synthetic methods will be used to prepare the silane precursor, P3HT-

SiMe(OC2H5)2 from 2,5-dibromo-3-hexylthiophene. P3HT will be prepared using the 

Grignard metathesis and Kumuda coupling 
[30][31]

 followed by carboxylation of chain end 

to P3HT-COOH through Steglich esterification. 
[28]

 The P3HT-COOH will be coupled 

with 3-aminopropylmethyldiethoxysilane to yield P3HT-silane, which will be hydrolyzed 

with a base (ammonium hydroxide) in a solvent mixture of Chloroform and anhydrous 

ethanol to yield the P3HT-NRs. To produce these nanostructures the mixture will stir for 

24, 48 and 72 hours at room temperature.  
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CHAPTER 3 

 

 

EXPERIMENTAL METHODS 

 

 

Materials: 2,5-dibromo-3-hexylthiophene, tert-Butylmagnesium chloride (
t
BuMgCl) 

(1.6 M in THF), n-Butyllithium (1.6 M in Hexane), 4-(Dimethylamino) pyridine 

(DMAP), N,N’-dicyclohexylcarbodiimide (DCC), anhydrous tetrahydrofuran, 

dichloro[Bis(1,3-diphenylphosphino)propane] nickel(II) (Ni(dppp)Cl2), chloroform-d, 

anhydrous ethanol, and chloroform were purchased from Sigma-Aldrich. Ammonium 

hrdroxide (28%) was purchased from Fischer Scientific. 3-

aminopropylmethyldiethoxysilane was purchased from Alfar Aesar.  All the chemicals 

were used as purchased from the vendors, unless otherwise specified.  

 

Characterization: Proton NMR spectra were recorded on a 500 MHz Jeol using 

chloroform-d (CDCl3) as the solvent. FTIR spectra were measured using Perkin-Elmer 

Spectrum One FT-IR spectrometer equipped with a universal ATR sampling accessory. 

Transmission electron microscope (TEM) observations were performed on a JEOL 

1400CX at 80 keV.  

 

General procedure for the preparation on ploy-3-hexylthiophene (P3HT): 2,5-

dibromo-3-hexylthiophene (482 mg, 14.78 mmol) was added in a 100 mL three-neck 

round bottom flask and sealed with a water condenser and septa. The flask was then 
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flushed with argon and anhydrous THF (30 mL) was injected. 
t
BuMgCl (14.78 mL, 14.78 

mmol) was then injected drop wise into the flask and the mixture was raised to 80  

using an oil bath and refluxed for 2 hours under argon while stirring. Upon addition of 

t
BuMgCl a resulting yellow solution was observed. The solution was then cooled to room 

temperature and Ni(dppp)Cl2 (133 mg, 0.246 mmol) was added and flushed under argon, 

and a deep red/purple coloration was observed. The reaction was stirred for 30 minutes. 

Then a second addition of Ni(dppp)Cl2 (66 mg, 0.123 mmol) was added and let to stir for 

30 minutes. The reaction was then quenched with 5 drops of methanol and transferred 

into a beaker-containing methanol (50 mL). The deep red/purple precipitate was then 

filtered out using a Büchner funnel and washed with hexane till a clear filtrate was 

observed. The deep red/purple solid was then dried under vacuum oven to yield 1.8405 

grams of P3HT (Yield = 38.2%). 
1
H-NMR in CDCl3 {   ppm}: 7.44 (s (weak), 1H, 

terminal H), 6.97 (s 23H), 6.82 (s (weak, Br), 1H), 2.80 (s (Br), 43H), 1.70-1.33 (m 

(200H), 0.91 (s, 79H). Molecular weight (MW) of the polymer was determined by 
1
H-

NMR spectrum with the respect to terminal hydrogen of P3HT polymer chain end and 

calculated MW = 3905.41 g/mol. 

 

Carboxylic acid terminated poyl-3-hexylthiophene: P3HT (500 mg, 0.128 mmol) was 

added to a 50 mL three neck round bottom flask, sealed with a water condenser and septa. 

The flask was then flushed with argon and anhydrous THF (30 mL) was injected. The 

flask was then lowered into a dewar flask and cooled to -78  using dry ice and acetone. 
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n-BuLi (0.09 mL) was then injected into the flask drop wise and let to stir for one hour. 

The solution was then warmed to room temperature and bubbled with CO2 for 30 minutes 

and stirred for 30 minutes. CO2 was bubbled again for another 30 minutes and stirred for 

30 minutes. The reaction was the quenched with 1.5 mL of 15% HCL and the precipitate 

was transferred into a beaker containing methanol (30 mL). The precipitate was then 

filtered out using a Büchner funnel and washed with hexane till a clear filtrate was 

observed. The solid was then dried under vacuum oven to yield 0.40g of P3HT-COOH 

(Yield = 56.4%). 
1
H-NMR in CDCl3 {   ppm}: 7.45 (s (weak), 1H), 6.97 (s 30H), 6.82 (s 

(weak, Br), 1H, terminal H), 2.80 (s (Br), 64H), 1.70-1.33 (m (338H), 0.91 (s, 112H); FT-

IR stretching’s (cm
-1

): 3370-3000 (-OH from carboxylic acid), 2923-2854 (alkyl C-H), 

1700 (carbonyl, weak), 1625-1509 (aromatic C-C), 819 (S-C). Molecular weight (MW) 

of the polymer was determined by 
1
H-NMR spectrum with the respect to terminal 

hydrogen of P3HT polymer chain end and calculated MW = 5034.50 g/mol. 

 

Poly-3-hexylthiophene carboxy diethoxymethylsilane (P3HT silane precursor): 

Carboxylic acid terminated P3HT (300 mg, 0.0596 mmol), DCC (25 mg), DMAP (20 

mg), were all added to a single necked round bottom flask and flushed with argon. 

Anhydrous THF (30 mL) was then injected into the flask and a purple solution was 

observed. 3-aminopropylmethyldiethoxysilane (0.05 mL, 40 mg, 0.0655 mmol) was 

injected into the flask and the reaction was let to stir for 24 hours under inert atmosphere. 

The reaction was then quenched with hexane (5 drops), and precipitated in hexane (15 
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mL). The dark red/purple precipitate was then filtered out using a Büchner funnel. The 

dark red/purple solid was then dried under vacuum oven to yield 0.14g of P3HT (Yield = 

41.0%). 
1
H-NMR in CDCl3 {   ppm}: 7.04 (s (weak), 1H), 6.97 (s 19H), 6.82 (s (weak, 

Br), 1H, terminal H), 2.80 (s (Br), 41H), 1.70-1.34 (m (171H), 0.91 (s, 75H); FT-IR 

stretching’s (cm
-1

): 3100-3000 (-NH), 2923-2854 (alkyl C-H), 1694 (carbonyl, weak), 

1625-1510 (aromatic C-C), 1375-1248 (Si-C), 804 (S-C). Molecular weight (MW) of the 

polymer was determined by 
1
H-NMR spectrum with the respect to terminal hydrogen of 

P3HT polymer chain end and calculated MW = 5207.83 g/mol. 

 

Typical procedure for the preparation of P3HT-Nanorods: In a vial P3HT silane 

precursor (20 mg) was dissolved in chloroform (4 mL), anhydrous ethanol (200 proof, 4 

mL) was added through the wall, followed by ammonium hydroxide (28%, 0.6 mL) 

through the wall. A resulting purple mixture was observed and the reaction was let to stir 

for 24 hours at room temperature. A spot of the sample was then spotted on a carbon 

coated copper grid, and the solution was then centrifuged yielding a yellowish 

supernatant and a purple precipitate. The supernatant was decanted and stored in a vial, 

while the precipitate was let to dry in the vacuum oven. An average size of 600 nm was 

confirmed for the P3HT-NRs from the TEM.   
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CHAPTER 4 

 

 

RESULTS AND DISCUSSION 

 

 

 P3HT functionalized silsesquioxane nanorods were synthesized following the 

reaction mechanism depicted in scheme 4.1. An approach taken to synthesize these 

nanostructures was through a modified Stöber method. 
[23][24] 

 

 

I. Synthesis and structural characterization 

The starting molecule, 2,5-dibromo-3-hexylthipohene is used in a Grignard 

Metathesis followed by Kumuda coupling reaction to yield poly-3-hexylthiophene. 
[30][31]

 

The Grignard metathesis (GRIM) method is used to synthesis a Grignard monomer of the 

Scheme 4.1: Preparation of P3HT Nanorods using the modified stöber method with 

the poly-3-hexylthiophene diethoxysilane precursor. 
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starting material in the presence of t-BuMgCl reagent. 
[30]

 The Grignard monomer in the 

presence of Ni catalyst undergoes cross coupling reaction to form carbon-carbon bonds. 

[31]
 2,5-dibromo-3-hexylthiophene dissolved in THF refluxed for 2 hours at 80 , after 

the addition of t-BuMgCl and followed by the addition of Ni(dppp)Cl2 catalyst for cross 

coupling of the Grignard monomer with the halogen terminated thiophene to yield 

poly(3-hexylthiophene). The reaction was then quenched and washed with methanol. 

After washing with methanol followed by washing with hexane, the solid was collected 

and let to dry in the vacuum oven. The synthesized P3HT was characterized using proton 

NMR, where the number of repeated thiophene units at 6.98 ppm was determined with 

respect to the terminal hydrogen at 7.40 ppm. The molecular weight of P3HT was 

determined to be approximately 3905.41 g/mol. 

The P3HT was then carboxylated in the presence of n-BuLi at approximately -

78  for an hour. Once at room temperature, it was bubbled twice with carbon dioxide for 

30 minutes and stirred for 30 minutes to yield poly-3-hexylthiophene with a carboxylic 

group at the chain end. The product was then quenched with 1.5 mL of 15% HCL, 

followed by washing with methanol and hexane to remove any impurities. The solid was 

collected and let to dry in vacuum oven over night. The FTIR confirms the successful 

carboxylation of P3HT from the hydroxyl functional group streachings at 3370 – 3000 

cm
-1

. P3HT-COOH was also characterized using proton NMR, where the number of 

repeated thiophene units at 6.98 ppm was determined with respect to the terminal 

hydrogen at 7.40 ppm. The molecular weight of P3HT was determined to be 
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approximately 5034.50 g/mol. 

The carboxylated P3HT was then coupled with 3-

aminopropylmethyldiethoxysilane in the presence of DCC and DMAP using Steglich 

esterification 
[28]

 to yield ploy-3-hexylthiophene diethoxysilane precursor. The product 

product was then washed twice with hexane and solid was collected. The FTIR confirms 

the successful esterification of P3HT-COOH to P3HT-Si by detecting the presence of the 

C-Si peak at 1377 cm
-1

. The peak confirms the presence of the carbon silicon bond. The 

solid was also characterized using proton NMR, where the number of repeated thiophene 

units at 6.98 ppm is determined with respect to the terminal hydrogen at 7.40 ppm. The 

molecular weight of P3HT is determined to be approximately 5207.83 g/mol.  

The direct hydrolysis and condensation of the silane precursor using the modified 

Stöber method is used to yield distinctive nanostructures based on the different base 

concentration. The stirring and non-stirring condition was implemented in the synthetic 

method for these novel nanostructures, to determine the best-suited condition. The data 

obtained from the trial reactions determined that the stirring condition is more favorable 

for synthesizing these novel nanostructures.  

Numerous trials were run using the modified Stöber method for the synthesis of 

P3HT NRs. The experimental conditions, morphology and particle size distribution data 

for the trials are reported in Table 4.1.   
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Table 4.1: Experimental conditions, morphology and particle size distribution of P3HT 

Nanostructures synthesis. 

P3HT-

NRs 

Trials 

P3HT 

Silane 

precursor 

(mmol) 

NH4OH (aq) 

(mmol) 

Morphology of Nano 

structures 

Nanostructures 

size distribution 

1 1.32 x 10
-3

 8.64 Mostly Nano rods, 

with few nanoparticles 
950   50 nm 

2 3.84 x 10
-3

 11.52 Nanoparticles 200   30 nm 

3 3.84 x 10
-3

 14.4 Nano ribbons 1.7   0.2 um 

4 3.84 x 10
-3

 8.64 Nanorods 850   30 nm 

5 7.43 x 10
-3 

8.64 Nanorods 480   20 nm 

6 7.43 x 10
-3

 11.52 Nanoparticles 100   20 nm 

7 7.43 x 10
-3

 14.4 No rods - 

8 1.86 x 10
-2 

50mg 

8.64 Nanorods 2   0.5 um 

9  

(48 hrs) 

1.86 x 10
-2 

 

8.64 Nanoparticles 150   20 nm 

10  

(72 hrs) 

1.86 x 10
-2 

 

8.64 Nanoparticles  0.2   0.01 um 

11 3.84 x 10
-3

 8.64 Nanorods 900   20 nm 

12  

(48 hrs) 

3.84 x 10
-3

 11.52 Nanoparticles  90   10 nm 

 

As shown in Table 4.1, the moles of P3HT silane used are not the same for all 

trials as the molecular weight for the silane precursor varied from 2700 to 10000 g/mol. 

The synthesized P3HT was compared to the commercial P3HT in the preparation of the 

P3HT-NRs, but the commercial P3HT did not show any nanorods, as the molecular 
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weight is around 45000 g/mol that is 4.5 times higher than the lab synthesized P3HT.  

Trial one shows the reaction conditions for the first functionalized nanorods, 

where a 1:1 ratio of ethanol to chloroform was used, along with 8.64 mmol ammonium 

hydroxide to help control the morphology of the nanostructures. The reaction was run for 

24 hours under room temperature, and stirring condition. The sizes of the nanorods were 

confirmed using TEM to be approximately 700 nm. The nanorods were present in the 

supernatant rather than the solid after centrifugation. There were some nanoparticles 

present both in the supernatant and the solid. 

In trial two, the ratio of chloroform to ethanol was kept constant and the 

concentration of ammonium hydroxide was reduced to 11.52 M. This resulted in the 

formation of the nanoparticles with an average particle size of 200 nm. The reaction was 

run for 24 hours under room temperature, and stirring condition. After centrifugation the 

nanoparticles were present in the solid. This was confirmed by dissolving the solid in 

ethanol and chloroform. 

For trial three the ratio of chloroform to ethanol was the same but ammonium 

hydroxide concentration was 14.4 M. The reaction was run for 24 hours under room 

temperature, and stirring condition. This resulted in the formation of few nanoparticles 

and nanoribbons.  

The nanostructures for Trials 2 and 4 from Table 4.1 are shown in Figures 4.4 and 

4.5 respectively. From the TEM images we can evaluate that the change in the number of 

moles NH4OH yielded both the nanoparticles and nanoribbons. The same number of 
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moles was used for trials 5 through 7, which were run under room temperature and non-

stirring condition. The number of moles of ammonium hydroxide base for the three trials 

was varied from 8.64, 11.52, and 14.4 mmol. The number of moles for NH4OH used for 

the trials 5, 6, and 7 was 8.64, 11.52, and 14.4 mmol respectively. The TEM images are 

shown in Figures 4.6 though 4.8.  

 

II. Morphology 

 As shown in Figure 4.1 and 4.2, the TEM images confirm the successful 

formation of the P3HT-NRs. The images are for trials 1 and 4 from Table 4.1.  

 

The composition of P3HT-NRs was 

confirmed by FTIR and as shown in Figure 4.3, it confirms the composition of the P3HT-

NRs with Si-O-Si present at 1072 cm
-1

 and C-Si at 1377 cm
-1

.  

Figure 4.1: Trial 1, P3HT Nanorods 
(Scale bar 500 nm) 

Figure 4.2: Trial 4, P3HT Nanorods 
(Scale bar 100 nm) 
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Figure 4.3: FTIR showing the composition of P3HT-NRs. 

 

Figure 2.4: Trial 2, P3HT Nanoparticles 
(Scale bar 200 nm) 

Figure 4.5: Trial 3, P3HT Nanoribbons 
(Scale bar 1 um) 
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Figure 8.6: Trial 5, P3HT Nanorods 
(Scale bar 1 um) 

Figure 7.7: Trial 6, P3HT Nanoparticles 
(Scale bar 200 nm) 

Figure 6.8: Trial 7, P3HT fibers 
(Scale bar 500 nm) 

Figure 5.9: Trial 8, P3HT Nanorods 
(Scale bar 1 um) 

  
Figure 4.10: Trial 9, P3HT Nanoparticles 
(Scale bar 600 nm) 

Figure 3.11: Trial 10, P3HT Nanoparticles 
(Scale bar 1 um) 
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 From the data in Table 4.1 we can conclude that the the nanorods were synthesized at 24 hour reaction, under stirring condition in the presence of 8.64 mmoles of ammonium hydroxide. The nanorods that were synthesized were present in the supernatant after centrifugation, therefore the next focus would be to have the 

nanorods in the solid rather than the supernatant. 

 

 

  
Figure 10.12: Trial 11, P3HT Nanorods 
(Scale bar 600 nm) 

Figure 9.13: Trial 12, P3HT Nanoparticles 
(Scale bar 600 nm) 
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CHAPTER 5 

 

 

CONCLUSION 

 

 

 P3HT nanorods were successfully prepared using the modified Stöber Method. 

Different polymer nanostructures were obtained by varying the reaction conditions. The 

morphologies of these functionalized nanorods were examined using TEM and SEM. The 

nanorods were further characterized by FTIR. From the characterization of the nanorods, 

it is evident that that the nanorods have been successfully synthesized, but there are some 

limitations that need to be addressed for future work. Some of the limitations include; 

morphology control, stability of the donor material, and its lifetime. The future work of 

this project will focus on optimizing the conditions to achieve higher power conversion 

efficiency and more stable morphology that will surpass the limitations of its long-term 

performance and efficiency. Upon completion of the project having addressed all the 

limitations, we hope that the cheaper and recyclable solar panels will help reduce the cost 

of OPVs and be affordable to the community. In the long run this may help reduce the 

energy cost and produce green energy technology. 
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