
Western Kentucky University
TopSCHOLAR®
Honors College Capstone Experience/Thesis
Projects Honors College at WKU

Fall 2007

Back-up Server for Computer Science Department
Victoria Gaylord
Western Kentucky University, victora.gaylord@wku.edu

Follow this and additional works at: http://digitalcommons.wku.edu/stu_hon_theses
Part of the Data Storage Systems Commons, Other Computer Engineering Commons, Other

Computer Sciences Commons, and the Systems Architecture Commons

This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Honors College Capstone Experience/
Thesis Projects by an authorized administrator of TopSCHOLAR®. For more information, please contact connie.foster@wku.edu.

Recommended Citation
Gaylord, Victoria, "Back-up Server for Computer Science Department" (2007). Honors College Capstone Experience/Thesis Projects.
Paper 116.
http://digitalcommons.wku.edu/stu_hon_theses/116

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by TopSCHOLAR

https://core.ac.uk/display/43645606?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.wku.edu?utm_source=digitalcommons.wku.edu%2Fstu_hon_theses%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/stu_hon_theses?utm_source=digitalcommons.wku.edu%2Fstu_hon_theses%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/stu_hon_theses?utm_source=digitalcommons.wku.edu%2Fstu_hon_theses%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/honors_prog?utm_source=digitalcommons.wku.edu%2Fstu_hon_theses%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wku.edu/stu_hon_theses?utm_source=digitalcommons.wku.edu%2Fstu_hon_theses%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=digitalcommons.wku.edu%2Fstu_hon_theses%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.wku.edu%2Fstu_hon_theses%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.wku.edu%2Fstu_hon_theses%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.wku.edu%2Fstu_hon_theses%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.wku.edu%2Fstu_hon_theses%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages

 1

Introduction

Before this project was initiated, the responsibility of file preservation lay in each

individual faculty member. Some opted to maintain a backup of important information,

but others chanced that their data would remain safe. This latter method of data storage

placed valuable research data, reports, papers, and other information at risk from hard

drives failing due to viruses, hardware malfunctions, and other technological problems.

Furthermore, a computer, functioning flawlessly, is susceptible to vandalism; a strong

example given, on April 23, 2006, when a part of Cherry Hall was destroyed by fire.

Professors lost years of work because of ruined hard drives and no secondary backup.

The back-up server I helped to set up offers a solution to this critical problem by

providing a means of redundantly storing information in a secure location.

The server runs a program called Bacula on a Unix operating system. Bacula makes

nightly incremental backups, and it completes a full backup of all hard drives once a

month – all of which are stored on tapes. Bacula makes no discrepancy between

operating systems on the client machines. It was designed to support all major operating

systems (Unix, Windows, Linux, Mac, etc), a major factor in the decision to use Bacula.

Because of the value of the information kept on the server, a firewall script was written,

using IPTables, to protect the server from network attacks. The server is tailored

specifically for the Computer Science Department, but it can be accommodated for other

networks.

There are three major sections to this project: hardware specifications, securing the

server, and customizing Bacula to meet the department’s needs.

Hardware

The server consists of the following specifications:

• Intel Pentium IV processor at 2.5 GHz

• 1 gigabyte RAM

• 200 gigabyte RAID 1 hard drive (The data is still salvageable in case of a hard

drive failure.)

Securing the Server and Data Storage

In preserving information, it is vital to protect the server from security threats and

technological failures. Though it is impossible to completely secure the server, fail-safes

have been added that will help to guard it. There are three methods that have been used

to protect it: the design of the firewall, the design of the backup schedule, and provisions

made in Bacula itself.

 2

Firewall (Full Document in Appendix A)

The firewall was written using IPTables script. This script provides mechanisms for

controlling the flow and type of traffic to and from the server by specifying

accepted/rejected ports, IP addresses, packets, etc.

Note: Because of security reasons, it is not possible to include all details in the IPTables

script.

The IPTables script begins by refusing to allow any data to be accepted by, or forwarded

through, the server. However, there are no restrictions on output because, in preventing

access to the server, the server is then protected from being used to send rogue

information out to other computers. (This was a design decision on my part. The most

common IPTables script sets OUTPUT to DROP.) The following three rules

implementing this are listed below:

iptables -P INPUT DROP

iptables -P FORWARD DROP

iptables -P OUTPUT ACCEPT

The rest of the commands in the script are the exceptions to the first two explicit rules.

(In essence, the exceptions “poke holes” in the script that allow certain traffic into the

server.)

The second most important part of the firewall is its recognition of IP addresses known to

be spoofed and would most likely be used with malicious intent. (Spoofing an IP address

fools a computer into believing that it is a legitimate connection and then tricks it into

opening itself to a dangerous host.) If such an IP number is used, the firewall would

automatically block it from the server and record its actions in a log for administrative

review. Below is one such example (Bauer 84):

iptables -A INPUT -s 255.0.0.0/8 -j LOG --log-prefix "Spoofed source IP!"

iptables -A INPUT -s 255.0.0.0/8 -j DROP

Other IPs that the firewall will block and log are 10.0.0.0/8, 172.16.0.0/12, and

192.0.0.0/8. These IPs are not deliverable over the Internet, so if the server encounters

them, it is safe to assume that these are spoofed (Bauer 84).

The server is also protected from someone or something exploiting its own IP address,

which then could be used to create a feed-back loop and flood the server with its own

packets, causing it to crash. (For security reasons, the server’s IP address has been

omitted from this report.)

iptables -A INPUT -s XXX.XXX.XXX.XXX -j LOG --log-prefix "Tried to use host IP!"

 3

iptables -A INPUT -s XXX.XXX.XXX.XXX -j DROP

As with the spoofed IP addresses, this incident will be recorded into the logs for later

review (Bauer 85).

There is another situation where the firewall must guard the server against attack: the

TCP half-scan, more commonly known as a stealth scan. It takes advantage of the TCP

three-way handshake by sending a rogue packet masquerading as a SYN-packet to a

computer and then using the SYN-ACK reply to open a connection. This connection

gives the attacker a back door into the system. This particular method is referred to as a

stealth scan because these activities are not logged by the host system until the attacking

machine sends a SYN-ACK reply, which is not done until it is finished exploiting the

host (IBM Security Service Website). To protect the server from this, the following rule

was implemented (Bauer 85):

IPTABLES –A INPUT –p tcp ! --syn –m state --state NEW –j LOG --log-prefix “Stealth

scan attempt?”

IPTABLES –A INPUT –p tcp ! --syn –m state --state NEW –j DROP

This rule forces the firewall to ensure that packets coming in are actually SYN packets.

For general added security, a more specific forwarding rule was added to the firewall that

will force the it to log and drop all incoming packets destined anywhere but to the server:

iptables –A FORWARD –j LOG --log-prefix “Attempted FORWARD?:”

iptables –A FORWARD –j DROP

The final important sections of the firewall are the exceptions that open incoming and

outgoing ports. (A port is a number at the beginning of a data packet that directs the

packet to a specific process running on the computer.) Recall that the default setting is to

allow nothing into the server. Again, for security purposes, the ports have been omitted

from the following example.

iptables -A INPUT -p tcp -j ACCEPT --dport XXXX -m state --state NEW

iptables -A OUTPUT -p udp --dport XXXX -m state --state NEW -j ACCEPT

Back-up Scheduling

There are three types of backups that Bacula can perform.

1. Full: all information on client machines is backed up

2. Differential: all files that have been altered since last full backup are backed up

3. Incremental: all files that have been altered since the last incremental back up are

backed up

 4

In order to have an efficient back-up system, it is important to have more than one copy

of the information downloaded from client computers. The scheduling policy is left to

the administrator’s discretion. For the Computer Science Department, Bacula is

scheduled to run incremental backups six days a week. Once a month, it will perform a

full backup of the client machines. There is also a differential backup completed every

week except for the time when it performs a full backup. Multiple tapes are then stored,

and they are rotated out on a four-month (120 days) basis or when full. For further

redundancy, Bacula’s catalog, which maintains an index of the files stored, is copied to

tape at the end of each back-up session. This method ensures that if any or all of a tape is

destroyed, there is still a chance, depending on the backup date of the file, that data can

be restored.

Bacula’s Security Provisions

The backup process is initiated by the server. It contacts the client machines using the IP

addresses listed in its director-configuration file and waits for the client to answer. Both

Bacula and the client machines have a password that must match before backup can

begin. (These passwords are stored within the daemons so that only the machines ever

see them and the user is not responsible for knowing them, adding further security.) If

passwords do not match, Bacula will refuse the connection. Also, if the client does not

answer within a specified time (23-30 minutes), then Bacula will move on to the next

client.

Customizing Bacula (Configuration Files in Appendix B)

Why Bacula?

Bacula is incredibly flexible. It supports a number of back-up devices, including tape

drives, DVDs, CDs, and hard drive storage. It is also easy to add and remove clients,

which is important because it is common for departmental personnel to change offices,

transfer, and to hire new personnel. From a hardware perspective, new computers are

also being cycled in as old ones are removed. Bacula allows an administrator to update

the client’s information (usually only the IP address) without the need to configure a new

client in the daemon files. Bacula also works across all operating systems while

occupying a very tiny portion of space in the client’s computer. It also requires minimal

user intervention, which helps reduce the possibility of a user-created error. (These two

reasons in particular were the two most important reasons for selecting Bacula to handle

the back-up jobs.) Finally, Bacula is freeware, making it easier to tailor the software

specifically to the administrator’s needs.

Listed in Bacula’s documentation (36) are some other advantages over other systems. A

sample few include:

• Automatic pruning of the database thus simplifying database administration.

• Bacula has a built in job-scheduler.

• Bacula handles multi-volume backups.

 5

An Overview of Bacula

Bacula is divided into five main parts: the Director Daemon, the Console, the Catalog,

the Storage Daemon, and the File Daemon. (A daemon is Unix terminology for a process

running in the background.) Below is a brief list of the terminology used frequently in

this document. (Bacula: The Network Back-up Solution 28-31)

File Daemon (also known as the Client Service or File Service): runs on the client

computer to be backed up. It streams data from the client machine to the server as

the server requests it.

Note: The server is also a client in this particular case because its files are also

backed up. Therefore, the File Daemon also resides on the server.

Storage Daemon: the code that writes the attributes and data to a storage Volume

(usually a tape or disk).

Catalog: used to store summary information about the Jobs, Clients, and Files that

were backed up and on what Volume or Volumes. For this server, MySQL was

used.

Console: allows the user to interact with the Director Daemon.

Director Daemon: the main Bacula server daemon that schedules and directs all

Bacula operations.

The following is a basic diagram of the parts of Bacula and their relationships to each

other (Bacula: The Network Back-up Solution 33).

 6

Before continuing, it is important to define key terms used in Bacula. To do this, I have

included a diagram that includes the necessary definitions for convenient reference

(Bacula: The Network Back-up Solution 27).

 7

The Console

The Console, accessed by the command bconsole, allows the user, or, in this particular

case, the administrator, to interact with the Director. Though it does have a GUI

interface, one was not installed for this case. Instead, bconsole is called through the Unix

prompt. However, it should be noted that Bacula also provides a means for the client

machines to use bconsole, but it was decided not to install it on the client machines. It

has numerous commands, but some of the more common ones used include

• run – run a job immediately

• messages – display messages from the Director Daemon

• status – status of clients and daemons

• reload – reload configuration files

• restore – restore an archived file from the tape to the client machine (more

about this later)

The Catalog

The Catalog is kept in a MySQL database and is updated every time Bacula runs a back-

up job. By default, it is kept on the hard drive, but for an added redundancy, the catalog

is also written to tape at the end of each run. The Catalog is vital to the restore process

because Bacula uses it to find the most recent backup of a particular file, which could be

at any place on a tape or on any tape. Bacula cannot function without it.

The File Daemon

As stated above, the File Daemon is installed on all client machines. The Director

Daemon contacts the File Daemon and must have the same password as the File Daemon.

(The password is different for each File Daemon.) The File Daemon is relatively simple

in configuring as shown below. (Comments denoted by “#”.) Again, for security reasons,

actual names and passwords have been omitted.

Director

{

 #name of the director permitted to contact the client machine

 Name = NameoftheDirector

 #Director Daemon must match this password for a connection

 Password = ClientPassword

}

FileDaemon

{

 #name of the File Daemon on the client machine

 Name = FileDaemonName

 #Port number that Bacula uses to communicate with Client

 FDport = 1234

 8

 #client listens for Director Daemon

 WorkingDirectory = /bacula/working

 Pid Directory = /bacula/working

}

Messages

{

 #All messages except those regarding skipped files will be

 #sent back to the director.

 Name = Standard

 director = NameoftheDirector = all, !skipped

}

An important note: when installing a File Daemon on a Windows machine, remember to

open the Windows firewall to the port number listed in Bacula. Otherwise, the firewall

will block the Director from contacting the Client machine.

The Storage Daemon

By default, the Storage Daemon is set to handle many types of storage devices. Because

of the volume of data expected to be handled, it was determined that a tape drive would

be most appropriate for the Computer Science Department. Though somewhat slow to

read and write as compared to most types of storage media, tapes are cost-efficient, easy

to store, and can hold large amounts of data. A sample configuration is included, but

actual names and passwords have been omitted. (Comments denoted by a “#”.) The code

was modified from the Bacula Documentation (184-186).

Storage

{

 Name = NameofStorageDaemon

 #Port number Director uses to communicate with Storage Daemon

 SDPort = 1234

 #Storage Daemon listens for Director Daemon

 WorkingDirectory = "/root/bacula/bin/working"

 Pid Directory = "/root/bacula/bin/working"

 #Number of Jobs that can be written at once

 Maximum Concurrent Jobs = 20

}

Director

{

 Name = NameoftheDirector

 Password = PasswordtoContactStorageDaemon

}

Restricted Director, used by tray-monitor to get the

status of the storage daemon

Director

{

 9

 Name = NameofRestrictedDirector

 Password = PasswordtoContactStorageDaemon

 #permitted to check status

 Monitor = yes

}

#Tape Drive

Device {

 Name = NameofTapeDrive

 Media Type = DLT

 Archive Device = /dev/nst0

 # when device opened, read it

 AutomaticMount = yes;

 AlwaysOpen = yes;

 #If yes, this supports removable media – CDs, tapes, etc

 RemovableMedia = yes;

 # If Yes, the archive device is assumed to be a random access

 # medium which supports the lseek facility (DVD, USB, and

 # fixed files)

 RandomAccess = no;

 #dummy directory – see below

 Spool Directory = "/tmp"

}

The Spool Directory is too important for a mere comment. This directory on the server’s

hard drive holds the data before streaming the files to the tape drive. This method keeps

that tape moving smoothly rather than constantly stopping and starting (saving wear and

tear on the tape), which would happen otherwise. Another function of the directory is to

hold a record of the jobs yet to be completed in the event that the server is unable to

follow its back-up schedule. This was tested successfully when a full tape was not

replaced for nearly four days and the server hung up that entire time. Once the tape was

replaced, Bacula then performed the four-days worth of jobs in succession and resumed

its schedule that night.

The Director

The Director Daemon is the boss of the system. It communicates with all other daemons

and coordinates the backup process. It is responsible for knowing its clients, the back-up

schedule, what messages to send and to where, the storage device(s) used, etc. Because

of this, it is also the most complex and took the longest to set up. It was also modified

several times because of the number of design decisions required, and the most efficient

use of Bacula could not be determined until it was put in action.

Note: By default, much of the Director’s configuration file was already complete. Only

that which needed to be modified or added is included in this report. As with the other

daemons, any sensitive information has been omitted from this document.

 10

Before any clients can be added, the Director itself must be named and defined.

Director {

 #name the director

 Name = NameoftheDirector

 #where director listens for connections

 DIRport = 1234

 QueryFile = "/root/bacula/bin/query.sql"

 #director listens for other daemons

 WorkingDirectory = "/root/bacula/bin/working"

 PidDirectory = "/root/bacula/bin/working"

 #number of jobs Director can run at once

 Maximum Concurrent Jobs = 1

 #Console password

 Password = "Console Password"

 Messages = Daemon

 }

The JobDefs resource is the default settings for the job. By defining this, only the

exceptions to this default need to be defined later on. In other words, it saves typing.

JobDefs {

 #Name of JobDefs

 Name = "DefaultJob"

 #Type of Job

 Type = Backup

 #Type of Backup – Differential, Incremental, Full

 Level = Incremental

 #Director – remember that the server is also a client

 Client = NameoftheDirector

 #FileSet knows the files to be backed up

 FileSet = "Full Set"

 #Name of Schedule to be used

 Schedule = "WeeklyCycle"

 #by Default, it was set to write to file, but it was changed to

 #a removable device

 Storage = DLT

 #What messages to send and to where

 Messages = Standard

 #Name of pool to use – the default defined by Bacula sufficed

 11

 Pool = Default

 Priority = 10

}

List of files to be backed up

FileSet {

 Name = "Full Set"

 Include {

 Options {

 signature = MD5

 }

Defining an appropriate back-up schedule is essential. If back-ups are performed too far

apart, then the most current file modifications will most likely not be up-to-date when a

restore is needed. If backups are too close together, then storage space will be wasted

with too many redundant files. Some factors to take into account when deciding an

appropriate schedule include

• how often the client machines are used – The more often files are modified,

the greater the likelihood that the files backed up will be out of date

• how many clients exist – If there are many clients, it may become necessary to

space the back-up jobs out over multiple days

• amount of data to be stored – A tape has limited space, and if it runs out of

space, someone must be there to change the tape. If a tape is full, Bacula will

continue to spool data to the hard drive (until full) until the tape is changed.

• when back-ups can take place – Bacula cannot back up files actively being

modified, so a design decision was made to run the back-up jobs at night

when computers will be dormant.

• likelihood that a restore will have to be performed – Naturally, the most recent

data will be the most desirable.

After taking all of these factors into consideration, the backup schedule looked like this:

#times are based on a 24-hour clock

Schedule {

 Name = "WeeklyCycle"

 Run = Full 1st sun at 23:05

 Run = Differential 2nd-5th sun at 23:05

 Run = Incremental mon-sat at 23:05

}

How often catalog is backed up.

It starts after the WeeklyCycle.

Schedule {

 Name = "WeeklyCycleAfterBackup"

 Run = Full sun-sat at 23:10

}

The Client has three parts: Client, Job, and FileSet. While Client and Job must be

defined for each client, there is a default FileSet that will back up the My Documents

 12

folder. If the Client has other folders that need to be backed up, then a separate FileSet

will have to be defined for that client.

Client {

 #Name of File Daemon to contact

 Name = FileDaemonName

 #IP address to contact File Daemon

 Address = XXX.X.X.XXX

 #Port to connect

 FDPort = 1234

 #Catalog to store information about files stored

 Catalog = MyCatalog

 #Password on Director Daemon must match File Daemon or

 #connection is refused

 Password = "Client Password"

 #How long file records stay in catalog

 File Retention = 30d

 #How long job records stay in catalog

 Job Retention = 180d

 #Catalog will remove old file and job records if past retention

 #period

 AutoPrune = yes

}

Job {

 #Name of the Job

 Name = "NameofJob"

 #Type of job

 Type = Backup

 #which client job is for

 Client = FileDaemonName

 #what files to back up

 FileSet = "This Set"

 #When job will be performed

 Schedule = "WeeklyCycle"

 #Storage Device to copy files

 Storage = DLT

 #Default is Standard; for convenience this was changed – more

 #about this later

 Messages = TheseMessages

 13

 #Type of pool

 Pool = Default

 #done so restore will know which tape holds file

 Write Bootstrap = "/root/bacula/bin/working/Client2.bsr"

 #write to disk and then to tape – saves wear and tear on tape

 SpoolData = yes

}

For most of the clients, the default FileSet was not used. Rather, each client had their

own unique FileSet. However, rather than list the files to be included and excluded

within the FileSet, it was easier to create a separate file with the list of files. In this way,

there would be no need to search the Director configuration files to make any later

changes, but instead one would only have to go to a separate file and make the changes

there.

FileSet {

 #Name of FileSet

 Name = "This Set"

 #Files to back up

 Include {

 Options {

 signature = MD5

 }

 #directory to find list of files to be backed up

 File = "<filesets/incclient1"

 }

 #Files to be ignored

 Exclude {

 #director to find list of files to be ignored

 File = "<filesets/execclient1"

 }

}

In the two files, incclient1 and excclient2, the files to be included and excluded

(respectfully) are listed.

incclient1.txt

C:/Documents and Settings

execclient1.txt

C:/Documents and Settings/wkuuser/My Documents/thisfile

C:/Documents and Settings/wkuuser/My Documents/thatfile

An excellent example of Bacula’s flexibility is in the Messages resource. Each client can

have its own variation of Messages without having to use the default. This way, the

administrator can determine who should be e-mailed about warnings, errors, etc. Also,

the administrator can determine which messages from the director should be included in

 14

the e-mail. On one hand, an e-mail may be generated for everything that goes right and

wrong with the back-up job, or very little messages at all. In a design decision, it was

determined that, as well as the administrator, the client user should be aware of any

problems occurring during the job. That way, the user will be aware that the most recent

modification of files is not on tape and any restore would retrieve an earlier version of

their file. However, if the job terminated successfully and there were no errors or

warnings, then there will be no e-mail generated. For our implementation, the e-mails

were most often generated from errors resulting from faculty shutting down their

computers at night. If the computers were not on, then the server would be unable to

reach the client. An e-mail would be sent to the faculty member notifying them that their

files were not backed up during the last session.

Messages {

 #Message Name

 Name = TheseMessages

 #mailcommand - used to specify exactly HOW to send the mail

 #uses bsmtp Unix commands

 #client

 mailcommand = "/root/bacula/bin/bsmtp -h localhost -f

 \"\(Bacula\) john.smith@wku.edu\" -s \"Bacula: %t %e of %c %l\"

 %r"

 #administrator

 operatorcommand = "/root/bacula/bin/bsmtp -h localhost -f

 \"\(Bacula\) bacula.administrator@wku.edu\" -s \"Bacula:

Intervention

 needed for %j\" %r"

 #send e-mail in case of error, but not files skipped,

 #saved normally, general information, or that terminated

 #normally

 #send the message to the email addresses that are given as a

 #comma separated list in the address field.

 mail = john.smith@wku.edu, bacula.administrator@wku.edu = all,

!skipped, !saved, !info, !terminate

 #Volume mount or intervention requests from the Storage daemon

 operator = root@localhost = mount

 console = all, !skipped, !saved

 append = "/root/bacula/bin/working/log" = all, !skipped

}

Finally, the Director Daemon must also know about the storage device(s). This is

relatively simple as shown in the code below.

Storage {

 #Name of Storage Device

 Name = DLT

 #Address to contact storage device – done through director

 Address = XXX.XX.XX.XXX

 15

 #Port to listen

 SDPort = 4567

 #password for Storage daemon

 Password = "StoragePassword"

 #must be same as MediaType in Storage daemon

 Device = DLT

 Media Type = DLT

 #Autochanger device? Yes/no

 Autochanger = no

}

Tape Rotation

Because the tapes can hold a large amount of data (80 GB uncompressed) and the number

of client machines is still minimal, tapes are rotated out only when they become full.

However, on a larger system, or when the number of clients using the server or backup

jobs increase, the rotation scheme may have to be changed. It could be possible to use a

separate tape for incremental, differential, and full, or put separate clients on separate

tapes. In a case where many tapes are required, Bacula also supports an auto-changer,

but one was not needed for the Computer Science Department. A good indication of

when to reconsider the tape rotation scheme is when the back-up schedule changes.

Tape Expiration

Tapes are set to expire within one year of their initialization. This time frame can be

changed in the Director Configuration. However, this does not mean that a tape cannot

be reused. When using an expired tape, it must be reinitialized, and then new data can be

written.

Restore

There is very little point in having a back-up system if the files cannot be restored. It is

for this that the Catalog is so vital because the restore uses the Catalog to find the

location of the files. If anything happened to the Catalog, restore could not function.

(Fortunately, the Catalog is also backed up at the end of every nightly session.)

In order for restore to work, there must be a Job defined in the Director configuration

files that defines the restore command. Only one Restore need be defined regardless of

the number of clients. A default version is given, so only one change needed to be made.

Job {

 Name = "RestoreFiles"

 Type = Restore

 Client=csbackup-fd

 FileSet="Full Set"

 16

 #Changed Storage from "File" to "DLT" - name of tape drive

 Storage = DLT

 Pool = Default

 Messages = Standard

 Where = /tmp/bacula-restores

}

To run a restore, the restore command is entered under the bconsole command prompt.

There are twelve different ways to find the file, through date written, clients, filename,

the catalog, etc. Once the correct file is found, Bacula will ask for the tape holding that

file to be mounted, and then it will proceed to restore the file to a temporary directory on

the client machine. It WILL NOT overwrite the file of that same name on the client

machine. Also Bacula WILL NOT discriminate between the client asking for the restore

and the client from which the file was originally copied. This means that Client1’s files

can be sent to Client2. However, because the client machines were not given the power

to do their own restores, only the administrator can perform a restore from the server.

This adds security to the saved data by preventing one client’s files from being sent to

another client’s machine

Note: Fortunately, there has not been a need to use the restore command, but before

faculty machines were added to the back-up system, restores were completed on test

machines to make sure that the information was restored correctly. There were no

problems and every restore was successful.

Website to Check Server’s Progress

Aside from the e-mails and server messages, there is a third way to not only check

Bacula’s progress but to also obtain a graphical representation of data written. On the

next page are some screen shots of the website.

 17

 18

Recent Upgrade / Future Improvements

Between the time when Bacula had been installed on the server and the present, a major

upgrade was released. Though there was serious concern about how an upgrade would

affect the configuration files and the backup schedule, I am pleased to report that

upgrading was relatively easy. Once the new version was downloaded and installed the

catalog and the File Daemon on the client machines also had to be upgraded, but the

configuration files were untouched and the next backup went smoothly.

Problems

There was one problem that could not be resolved. On the rare occasion when there was

a glitch in the Internet connection, Bacula would stall on a client rather than moving on to

the next client when it could not establish a connection. Waiting time should have been

between 23 and 30 minutes, but if something happened to the connection, it would

become hung up for nearly ten hours before finally moving on, pushing the other jobs

into the morning when other client machines were in use. Upon checking into various

blogs, it is not an uncommon problem but has yet to be fixed by the Bacula designers.

Conclusion

The server has now been running successfully for over a year, and Bacula has proven to

be an efficient means of backing-up data. Though it has required several “tweaks” after

initially establishing it on the server, the adjustments were usually minor and easy to

implement. The learning curve is probably the most frustrating to overcome, but

understanding the vocabulary helps to reach it faster. Bacula is also a work in progress,

and while minor updates are a frequent occurrence, major updates are not, which is a

great advantage for those who have other jobs other than acting as a system

administrator. Though it has not functioned flawlessly, it has functioned efficiently, and

the Computer Science Department now has a safeguard for its computers.

	Western Kentucky University
	TopSCHOLAR®
	Fall 2007

	Back-up Server for Computer Science Department
	Victoria Gaylord
	Recommended Citation

