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A Partial Differential Equation (PDE) based model combining surface

electromigration and wetting is developed for the analysis of the morphological

instability of mono-crystalline metal films in a high temperature environment

typical to operational conditions of microelectronic interconnects. The atomic

mobility and surface energy of such films are anisotropic, and the model accounts

for these material properties. The goal of modeling is to describe and understand

the time-evolution of the shape of film surface. I will present the formulation of a

nonlinear parabolic PDE problem for the height function h(x, t) of the film in the

horizontal electric field, followed by the results of the linear stability analyses and

computations of fully nonlinear evolution equation.
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CHAPTER 1

INTRODUCTION

Electromigration is the mass transport of a metal due to the momentum

transfer between conducting electrons and diffusing metal atoms. Although the

phenomenon of electromigration has been known for over 100 years, it became of

practical interest in 1966 when the first integrated circuits became commercially

available. It is considered a key factor in determining the reliability of integrated

circuits.

For example, nanoscale contacts manufactured from thin Ag films wetting

the Si(100) substrate are described in [2]. The gap between contacts can be

cyclically opened and closed. To open the contact, the electromigration current is

applied at the low temperature of the contact (80 K), which enables the induced

surface mass flow of atoms across the narrow bridge connecting the anode and the

cathode until the bridge breaks. To close the contact, the natural surface diffusion

of atoms across the gap is enabled by heating the film to the room temperature and

simultaneously passing the current. See the middle and the right panels of Figure

1.0.1. Wetting in this context means the existence of an intermolecular attractive

force acting between the atoms on the film surface and the substrate atoms, due to

the very small thickness of the film (several tens of nanometers or less) [2].

Another application is the fabrication of structures on surfaces (called

quantum wires) by inducing and tailoring surface instability through

electromigration, see the left panel of Figure 1.0.1.
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Figure 1.0.1. Left: Horizontal electric field results in the crystal surface
faceting. The long ridges with triangular cross-section, formed by two adja-
cent facets, are the quantum wires. The figure shows the side view of such
surface [10] as the size of the wires increases due to coarsening. Middle:
A gap of around 5 nm is shown after the electromigration current has been
applied [2]. Right: Ag structures that barely touch, but are still connected
by a bridge several nanometers wide, can be made [2].

1.1. Problem Statement

Following [3] and [4], we concentrate on the case of the horizontal electric

field, incorporating the effects of substrate wetting by the film, anisotropy of the

diffusional mobility M(θ), and weak anisotropy of the surface energy γ(θ), where θ

is the angle that the unit normal to the film surface makes with the vertical

coordinate axis z. E stands for the electric field, x is the horizontal axis, z is the

vertical axis, n is the normal vector, θ is the angle between the normal vector and

the z-axis, Eloc is the local electric field, j is the atom flux vector, and h(x, t) is the

equation of the curve representing the film surface. (The curve h(x, t) is termed the

film surface in the following, despite being a one-dimensional object.) Figure 1.1.1

(a) depicts the electric field being oriented in the opposite direction. This forces the

atoms downhill, making the surface more planar. Figure 1.1.1 (b) depicts a situation
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Figure 1.1.1. Sketch of the metal film surface h(x, t) in the horizon-
tal, constant electric field E. Eloc is the projection of E on the surface.
The atom flux j on the surface is in the direction opposite to the di-
rection of Eloc. (a) Eloc = −E cos(θ), (b) Eloc = E cos(θ).

in which the electric field is oriented in a manner that the atoms at the incline move

uphill from the trough to the crest and therefore the surface becomes less planar.

Assuming no surface overhangs (none is expected if the field is horizontal),

the key governing equation is the PDE (10) from [3] for the (non-negative) height

function of the film h(x, t):

ht = B [M (hx) (1 + h2
x)

−1/2
µx]

x
+A [M (hx) (1 + h2

x)
−1/2]

x
. (1.1.1)

In equation (1.1.1), A,B are positive parameters;

M (hx) =
1 + β cos2 [N(arctan(hx) + φ)]

1 + β cos2 [Nφ] , β,N,φ = const.; (1.1.2)

(Notice that the denominator of the fraction is a constant value for given physical

values of β,N and φ.)
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µ(x, t) is the surface chemical potential:

µ = (γ + γθθ)κ + (γh − hxγhθ) cos θ, cos θ = (1 + h2
x)

−1/2
, κ = −hxx (1 + h2

x)
−3/2

;

(1.1.3)

γ(x, t) is the anisotropic film surface energy (tension):

γ(h, θ) = 1 + εγ cos 4θ + (G − 1 − εγ cos 4θ) e−h, θ = arctan (hx) , (1.1.4)

where G,0 ≤ εγ < 1/30 are the parameters. G is the ratio of the substrate energy to

the mean value of the film surface energy, and εγ is the strength of anisotropy. This

anisotropy (dependence on orientation, i.e., the angle θ) is the new effect that was

not accounted for in [3], and which makes the nonlinear equation structure more

complex and analysis significantly more difficult.

Eq. (1.1.1) is the fourth-order, nonlinear parabolic PDE. The prototype

linear fourth-order parabolic PDE is

ht = α1hxxxx + α2hxx, α1, α2 < 0. (1.1.5)

This equation has the trivial solution h(x, t) = h0 = const. In the physical context,

this solution corresponds to a film of height = const. for all x, t, that is a film with

planar stationary surface. We call such solution an equilibrium surface. The key

issue is whether the equilibrium is stable or unstable with respect to small

perturbations ξ(x, t). For Eq. (1.1.5), this can be settled by substituting

h = h0 + ξ(x, t) and then assuming ξ(x, t) has a single Fourier mode:

ξ(x, t) = ξ0eωteikx, where ξ0 = const., ω, and k are the amplitude, the growth rate,

4



and the wavenumber, respectively. (The wavelength, or the spatial period, is

λ = 2π/k.) Then one obtains the expression for the perturbation growth rate as a

function of the wavenumber, the so-called dispersion relation:

ω(k) = −α2k
2 + α1k

4. (1.1.6)

For small k, the first term is dominant in this expression, for large k it is the second

term. Because α2 < 0, perturbations with small wavenumbers (large wavelengths)

grow (ω(k) > 0); because α1 < 0, perturbations with large wavenumbers (small

wavelengths) decay (ω(k) < 0). This is reflected in the shape of the graph of the

function ω(k), see Figure 1.1.2(a), and correspondingly the instability is termed the

long-wavelength instability. All perturbations with wavenumbers in the interval

0 < k < kc grow, and all perturbation with wavenumbers > kc decay. kc is termed the

instability cut-off wavenumber. The surface is unstable with respect to

long-wavelength perturbations, and it is stable with respect to small-wavelength

perturbations. In practice, the perturbation (induced, for instance, by thermal

noise) is not a single Fourier mode, however most perturbations can be represented

by a superposition of Fourier modes. Thus some modes grow and some decay.

Among the unstable modes, there is a mode with the largest growth rate, ωmax.

This most dangerous mode will dominate over other modes shortly after the surface

is destabilized, resulting in a surface deformation having the form

h(x, t) = h0 + ξ0eωmaxt coskmaxx. Here, kmax is the wavenumber for which ω = ωmax,

i.e., the maximum of ω(k) on the interval 0 < k < kc. In other words, kmax is the

positive solution of dω/dk = 0.
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It is easy to show that for Eq. (1.1.6) kmax = kc√
2
. First, we set the rhs of Eq.

(1.1.6) to zero and solve for k, that is:

ω(k) = −α2k
2 + α1k

4 = 0⇒ k2(−α2 + α1k
2) = 0⇒ k = 0 or k = ±

√
α2

α1

.

We only consider positive solution, so we obtain kc =
√

α2

α1
.

To determine kmax, we solve dω/dk = 0 for k, that is:

−2α2k + 4α1k
3 = 0⇒ 2k(−α2 + 2α1k

2) = 0⇒ k = 0 or k = ±
√

α2

2α1

.

kmax is the positive solution. Thus, kmax =
√

α2

2α1
=
√

α2

α1

1√
2
= kc√

2
.

k

w

HaL

kckmax
0

wmax

k

w

HbL

0

Figure 1.1.2. Two cases of the typical growth rate ω(k). (a) Long-
wave instability; (b) ω(k) < 0, ∀k: stability.

Notice that the parameter α1 in Eq. (1.1.5) cannot be positive. (Otherwise,

the short-wavelength perturbations will grow, which is not physically permissible,

since in this case the surface is always unstable - such perturbations are always

present in the spectrum. However, instability does not always emerge and most

material surfaces remain planar. Mathematically, Eq. (1.1.5) in the case of α1 > 0 is

ill-posed; despite its higher order (fourth vs. second) it is similar to the (ill-posed)
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backward heat equation ht = −hxx.) However, the parameter α2 may be positive for

some physical parameters values. Then ω(k) is negative for all k (Figure 1.1.2 (b)),

meaning that all perturbations decay and the surface restores its initial planar

shape.

Equations such as (1.1.1) are nonlinear, thus the growth of the most

dangerous mode will not continue forever. Nonlinear terms in the equation will

damp growth, which usually results in a stationary, nontrivial solution which has

the spatial form resembling the large-amplitude cosine curve. Determination of the

stability of Eq. (1.1.1) and the form of the stationary solution are the goals of this

Thesis.
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CHAPTER 2

LINEAR STABILITY ANALYSIS

2.1. Linearization of The Problem

Toward our goal of determining stability of the film surface with respect to

small perturbations, we first linearize M (hx) about hx = 0, i.e., we write

M (hx) =M(0) +M ′(0)hx, where M(0) and M ′(0) will be later calculated from Eq.

(1.1.2) for given β,N and φ (see [3]). Then:

∂M (hx)
∂x

= ∂M (hx)
∂hx

hxx =M ′(0)hxx, (2.1.1)

and Eq. (1.1.1) takes the form:

ht = BM ′(0)hxx (1 + h2
x)

−1/2
µx +B (M(0) +M ′(0)hx) [(1 + h2

x)
−1/2

µx]
x

(2.1.2)

+AM ′(0)hxx (1 + h2
x)

−1/2 +A (M(0) +M ′(0)hx) [(1 + h2
x)

−1/2]
x
.

In order to calculate µx in Eq. (2.1.2), we first find γθθ, γh, γhθ using Eq.

(1.1.4). Next, we substitute these functions in Eq. (1.1.3), use the trigonometric

identities

cos 4θ = 8 [cos4 θ − cos2 θ] + 1, sin 4θ = 4 sin θ cos θ[2 cos2 θ − 1]

(where cos θ = (1 + h2
x)

−1/2
, sin θ = hx (1 + h2

x)
−1/2

) and finally obtain µ(x, t) in

terms of hx, h2
x, hxx, etc.

8



Then, we plug µ(x, t) into Eq. (2.1.2) and perform the remaining

differentiations. This results in the fourth-order, nonlinear PDE for h(x, t) in the

form:

ht = F (hx, hxx, hxxx, hxxxx, hxxh2
x, ...). (2.1.3)

We wish to obtain a simpler PDE, whose solutions have the characteristics

similar to Eq. (2.1.3). To this end, anticipating a long-wave instability of Eq.

(2.1.3), we introduce the stretched coordinate X through the transformation

x =X/ρ, where ρ≪ 1. It follows that

hx = ρhX , hxx = ρ2hXX , hxxx = ρ3hXXX , hxxxx = ρ4hXXXX .

We introduce these substitutions into the RHS of Eq. (2.1.3) and then set

ρi = 0, i ≥ 5. Lastly, we collect the coefficients of ρj, j = 0,1,2,3,4. and obtain the

simplified nonlinear PDE:

ht = (α1 + β1e
−h)hxxxx + (α2 + β2e

−h)hxx + (α5 + β5e
−h)hxxh2

x, (2.1.4)

where

9



α1 = −BM(0) (1 − 15εγ) ,

α2 = AM’(0),

α5 = −1.5AM’(0),

β1 = −BM(0) (15εγ +G − 1) ,

β2 = BM(0) (−εγ +G − 1) ,

β5 = −BM(0) (80εγ − 29εγ + 5G − 5) .

(2.1.5)

Notice that we keep the original notation for the independent variable, x (not X).

We will solve Eq. (2.1.4) in Chapter 3 using Method of Lines, subject to the

following IC and BCs:

h(x,0) = 1 + δ cos(kmaxx), u(0, t) = u( 2π

kmax

, t) , u′(0, t) = u′ ( 2π

kmax

, t) . (2.1.6)

To linearize, first take h = h0 + ξ(x, t) (where h0 is the film thickness as

deposited on the substrate and ξ(x, t) is the small perturbation) and substitute

with all derivatives of h = h0 + ξ(x, t) into Eq. (2.1.4). Linearizing, we omit all

nonlinear contributions, such as the terms proportional to ξ2, ξξx, etc.

Finally, in the resulting linear PDE for ξ we assume ξ(x, t) = eω(k)teikx, where

ω is the growth rate and k is the wavenumber and derive the function ω(k):

ω(k) = − [BM(0)(G − 1 − εγ)e−h0 +AM ′(0)]k2−BM(0) [(G − 1 + 15εγ)e−h0 + 1 − 15εγ]k4.

(2.1.7)

10



Physical Parameters Typical Values Range Physical Meaning

B 8 Fixed Nominal Atomic Diffusivity

M(0) 1 Fixed Atomic Mobility on the Horizontal Surface

h0 1 0 ≤ h0 ≤ 20 Initial Height of the Film (same for ∀x)

A 72 10 ≤ A ≤ 10000 Strength of the Electric Field

G 2 0 ≤ G ≤ 3.5 Ratio of Substrate to Film Surface Energy

M ′
(0) -3 -10 ≤ M ′

(0) ≤ 0 Derivative of Atomic Mobility

εγ 0 0 ≤εγ≤
1
30

Anisotropy Strength

Table 2.1.1. The physical parameter values used in our study.

2.2. Analysis of The Equation (2.1.7)

The goal of the analysis in this section is the determination of how the

physical parameters of the problem affect surface stability or instablity.

As was explained in section 1.1, if ω(k) < 0 ∀ k, then the surface is stable

with respect to perturbations of any wavenumber (Figure 1.1.2 (b)). When this

condition does not hold, then the surface is a long-wave unstable (Figure 1.1.2 (a)).

The degree of instability is measured by the width of the domain under the

dispersion curve ω(k). That is, the larger kc is, the greater is the instability.

The short-wavelength cut-off wavenumber kc can be determined by solving

ω(k)=0 for k, retaining the positive solution:

kc =
¿
ÁÁÀ Aeh0M ′(0) +BM(0)[G − 1 − εγ]

BM(0)[1 −G − 15εγ + (15εγ − 1)eh0] . (2.2.1)

The film stability decreases with increasing h0, and this trend saturates

around h0 = 5.12 nm (Figure 2.2.1 (a)). This is because the film wets the substrate

and thus the attractive, cohesive force between the film surface molecules and the

substrate molecules is stronger for thinner films (smaller h0). Increasing the electric

11



field strength A also makes the film less stable (the direction of the field and the

sign of M ′(0) are chosen such that their combination promotes instability, as in the

experiments) but increasing G makes it more stable, since the substrate energy

provides stabilizing effect (Figures 2.2.1 (b)-(c)). The stability of the film decreases

with increasing ∣M ′(0)∣ and εγ (Figures 2.2.1 (d)-(e)).

The most dangerous perturbation (one that destabilizes the surface faster) is

one with the max growth rate ωmax. To find its wavenumber, we solve ∂ω(k)
∂k = 0 for k

and retain the positive solution kmax. This solution is kmax = kc√
2
, where kc is given

in Eq. 2.2.1. Then, ωmax = ω(kmax):

ωmax =
1

4

[Aeh0M ′(0) +BM(0)(G − 1) −BM(0)εγ] 2

BM(0)eh0 [G − 1 + 15εγ + (1 − 15εγ)eh0]
. (2.2.2)

The wavelength of the most dangerous perturbation is λmax = 2π
kmax

.

12
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Figure 2.2.1. Characterization of the film linear stability. (a) kc vs. h0, A = 70, G = 2,
M ′ = −3, εγ = 0. (b) kc vs. A, h0 = 1, G = 2, M ′ = −3, εγ = 0. (c) kc vs. G, A = 70, h0 = 1,
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M ′ = −3 where kc is the instability cut-off wavenumber. ωmax in the right panel is plotted for the
same parameters values.
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CHAPTER 3

METHOD OF LINES

3.1. Introduction to Method of Lines

The numerical method of lines is a technique for solving partial differential

equations by discretizing in all but one dimension, and then integrating the

semi-discrete problem as a system of Ordinary Differential Equations (ODEs). A

significant advantage of the method is that it allows us to use the sophisticated

general-purpose methods and software that have been developed for numerically

integrating ODEs. For the PDEs to which the method of lines is applicable, the

method typically proves to be quite efficient.

It is necessary that the PDE problem be well posed as an initial value

(Cauchy) problem in at least one dimension, since the ODE integrators used are

initial value problem solvers. This rules out purely elliptic equations such as

Laplace’s equation, but leaves a large class of evolution equations that can be

solved. This class encompasses the equations with smooth solutions in time-space,

such as parabolic PDEs. Sophisticated adaptive Method of Lines (MOL) methods

were developed for some hyperbolic equations [9], [11].

As a basic illustrative example of a MOL solution [6], we consider the heat

equation

ut = αuxx, α > 0, (3.1.1)

where

14



● u dependent variable (dependent on x and t),

● t independent variable representing time,

● x independent variable representing one dimension of three-dimensional

space,

● α real positive constant.

Before we consider a solution to Eq. (3.1.1), we must specify some auxiliary

conditions to complete the statement of the PDE problem. The number of required

auxiliary conditions is determined by the highest order derivative in each

independent variable. Since Eq. (3.1.1) is first order in t and second order in x , it

requires one auxiliary condition in t and two auxiliary conditions in x. t is termed

an initial value variable and therefore requires one initial condition (IC). x is termed

a boundary value variable and therefore requires two boundary conditions (BCs).

As examples of auxiliary conditions for Eq. (3.1.1), an IC could be

u(x, t = 0) = u0(x), (3.1.2)

where u0 is a given function of x, and two BCs could be

u(x = x0, t) = ub (3.1.3)

and

∂u(x = xf , t)
∂x

= 0, (3.1.4)

where ub is a given boundary (constant) value of u for all t.

Three types of BCs are:
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● If the dependent variable is specified, as in BC (3.1.3), the BC is termed

Dirichlet.

● If the derivative of the dependent variable is specified, as in BC (3.1.4), the

BC is termed Neumann.

● If both the dependent variable and its derivative appear in the BC, it is

termed BCs of the third type or Robin BCs or Mixed BCs.

In MOL, a PDE for two variables is first discretized in one variable (x or t).

In the case of Eq. (3.1.1), it is convenient to discretize the spatial variable x.

First, we need an approximation at x = xi of the second derivative uxx. A

commonly used second order, central approximation is

uxx ≈
ui+1 − 2ui + ui−1

∆x2
, (3.1.5)

where i is the grid point index, ∆x = xi+1 − xi = (xf − x0) /N is the size of a

subinterval, N is the number of subintervals, and ui = u (xi). Substituting Eq.

(3.1.5) into Eq. (3.1.1) gives a system of approximating ODEs

u′i = α
ui+1 − 2ui + ui−1

∆x2
, i = 0,1, . . . ,N. (3.1.6)

Eq. (3.1.6) are then integrated subject to IC (3.1.2) and BCs (3.1.3) and

(3.1.4). This integration in t can be done by the explicit Euler method, the implicit

Euler method, or any other higher order integration method for initial value ODEs.
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Before proceeding with the integration of eqs. (3.1.6), we must include BCs

(3.1.3) and (3.1.4). The Dirichlet BC at x = x0 , Eq. (3.1.3), is merely

u0 = ub, (3.1.7)

and therefore the ODE of eqs. (3.1.6) for i=0 is not required and the ODE for i=1

becomes

u′1 = α
u2 − 2u1 + ub

∆x2
. (3.1.8)

At i=N , we have equations

u′N = αuN+1 − 2uN + uN−1

∆x2
. (3.1.9)

Note that uN+1 is outside the grid in x. But we must assign a value to uN+1 if Eq.

(3.1.9) is to be integrated. Since this requirement occurs at the boundary point

i=N, we obtain this value by approximating BC (3.1.4) using the centered FD

approximation, that is

ux ≈
ui+1 − ui−1

2∆x
, (3.1.10)

and we obtain

ux ≈
uN+1 − uN−1

2∆x
= 0 (3.1.11)

or

uN+1 = uN−1. (3.1.12)
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3.2. Examples

Example 3.2.1. Consider the Heat equation with IC, BCs (Dirichlet) and α

as below:

ut = αuxx, (3.2.1)

u(x,0) = f(x), u(0, t) = ub, u(L, t) = uf . (3.2.2)

Recall Eq. (3.1.6) that reads:

u′i = α
ui+1 − 2ui + ui−1

∆x2
, i = 0,1, . . . ,N where ∆x = L

N
.

For example, for N=6 we get the system of ODEs below. Note that we need

not evaluate u at x = x0 = 0 and x = x6 = L since u0 and uN are given as boundary

conditions. Thus, we can eliminate the first and the last equation. Also, u0 = ub and

u6 = uf are boundary conditions. Therefore, we have 5 equations and 5 unknowns

where ub and uf are (constant) BCs.
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u′0 = α
u−1 − 2u0 + u1

∆x2

u′1 = α
u0 − 2u1 + u2

∆x2

u′2 = α
u1 − 2u2 + u3

∆x2

u′3 = α
u2 − 2u3 + u4

∆x2

u′4 = α
u3 − 2u4 + u5

∆x2

u′5 = α
u4 − 2u5 + u6

∆x2

u′6 = α
u5 − 2u6 + u7

∆x2

Ô⇒

u′1 = α
u0 − 2u1 + u2

∆x2

u′2 = α
u1 − 2u2 + u3

∆x2

u′3 = α
u2 − 2u3 + u4

∆x2

u′4 = α
u3 − 2u4 + u5

∆x2

u′5 = α
u4 − 2u5 + u6

∆x2

Ô⇒

u′1 = α
ub − 2u1 + u2

∆x2

u′2 = α
u1 − 2u2 + u3

∆x2

u′3 = α
u2 − 2u3 + u4

∆x2

u′4 = α
u3 − 2u4 + u5

∆x2

u′5 = α
u4 − 2u5 + uf

∆x2

(3.2.3)

The last ODE system in Eq. (3.2.3) can be written as

⇀
u
′

= α

∆x2A
⇀
u + α

∆x2

⇀

b, (3.2.4)

where

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−2 1 0 0 0

1 −2 1 0 0

0 1 −2 1 0

0 0 1 −2 1

0 0 0 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,
⇀
u
′

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

u′1

u′2

u′3

u′4

u′5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,
⇀
u =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

u1

u2

u3

u4

u5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and
⇀

b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ub

0

0

0

uf

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Exact solution of Eq. (3.2.1) and Eq. (3.2.2) is given in [5] page 125 as:
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u(x, t) =
∞

∑
n=1

Cn sin(πnx
L

) e−
π2αn2t
L2 , (3.2.5)

where Cn is

Cn =
2

L ∫
L

0
f(x) sin(πnx

L
) dx. (3.2.6)

For L = 1, α = 1/20 and u(x,0) = f(x) = sin(πxL )

Cn =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1, n = 1

0, n ≥ 2

Therefore, the exact solution of Eq. (3.2.1) and Eq. (3.2.2) is

u(x, t) = sin (πx) e−π
2t
20 . (3.2.7)

We used the NDSolve command in Mathematica to solve ODE system of (3.2.4) for

L=1, α = 1/20, ub = 0, uf = 0, N=100 and compared with exact solution. See Figure

3.2.1 for comparison and Figure 3.2.2 for error. For the basic Mathematica code see

appendix.

Figure 3.2.1. This figure shows comparison of solutions for Example
3.2.1. (a) Analytical solution, (b) MOL solution, N=100 (c) Analytical
and MOL solution match, because the two solutions overlap.
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Figure 3.2.2. This figure shows the entire curve difference (absolute
error) of Example 3.2.1. Comparison of the analytical solution with
MOL solution. (a) N=100, (b) N=300.

Example 3.2.2. Consider the PDE with IC and BCs (Periodic) as below:

ut = −Buxxxx, (3.2.8)

u(x,0) = 1 +B cos(kx), u(0, t) = u(2π, t), u′(0, t) = u′(2π, t). (3.2.9)

Eq. (3.2.8) is approximated as:

u′i = −B
ui+2 − 4ui+1 + 6ui − 4ui−1 + ui−2

∆x4
, i = 0,1, ...,N. (3.2.10)

For example, for N=6 we get the system of ODEs below. Note that some points are

outside of our grid. These points are called ghost points. First and last equations

have two ghost points and second and fifth equations have one ghost point each.

Since BCs are periodic, we replace them with values that are in the grid. See Figure
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3.2.3.

u′0 = −B
u−2 − 4u−1 + 6u0 − 4u1 + u2

∆x4

u′1 = −B
u−1 − 4u0 + 6u1 − 4u2 + u3

∆x4

u′2 = −B
u0 − 4u1 + 6u2 − 4u3 + u4

∆x4

u′3 = −B
u1 − 4u2 + 6u3 − 4u4 + u5

∆x4

u′4 = −B
u2 − 4u3 + 6u4 − 4u5 + u6

∆x4

u′5 = −B
u3 − 4u4 + 6u5 − 4u6 + u7

∆x4

u′6 = −B
u4 − 4u5 + 6u6 − 4u7 + u8

∆x4

Ô⇒

u′0 = −B
6u0 − 4u1 + u2 + u4 − 4u5

∆x4

u′1 = −B
−4u0 + 6u1 − 4u2 + u3 + u5

∆x4

u′2 = −B
u0 − 4u1 + 6u2 − 4u3 + u4

∆x4

u′3 = −B
u1 − 4u2 + 6u3 − 4u4 + u5

∆x4

u′4 = −B
u2 − 4u3 + 6u4 − 4u5 + u6

∆x4

u′5 = −B
u1 + u3 − 4u4 + 6u5 − 4u6

∆x4

u′6 = −B
−4u1 + u2 + u4 − 4u5 + 6u6

∆x4

(3.2.11)

i=0 i=1

i= N-2 i= N-1i= -1i= -2 i= N

i= N+1 i= N+2i=2

Ghost points

Ghost points

Figure 3.2.3. Periodic BCs. uN+1 = u1, uN+2 = u2, u−1 =
uN−1, u−2 = uN − 2.

The last ODE system in Eq. (3.2.11) can be written as

⇀
u
′

= −B
∆x4A

⇀
u, (3.2.12)
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where A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

6 −4 1 0 1 −4 0

−4 6 −4 1 0 1 0

1 −4 6 −4 1 0 0

0 1 −4 6 −4 1 0

0 0 1 −4 6 −4 1

0 1 0 1 −4 6 −4

0 −4 1 0 1 −4 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,
⇀
u
′

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

u′0

u′1

u′2

u′3

u′4

u′5

u′6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and
⇀
u =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

u0

u1

u2

u3

u4

u5

u6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Exact solution of Eq. (3.2.8) and Eq. (3.2.9) is given in [8] as:

u(x, t) = 1 +Be−k4t cos(kx), ∀k > 0 (3.2.13)

where k is the wavenumber.

We used the NDSolve command in Mathematica to solve ODE system of

(3.2.12) for k=1, B=1, N=100 and compared with exact solution. See Figure 3.2.4

for comparison and Figure 3.2.5 for error. For the basic Mathematica code see

appendix.
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Figure 3.2.4. This figure shows comparison of solutions for Example
3.2.2. (a) Analytical solution, k=1, B=1 (b) MOL solution, N=100 (c)
Analytical and MOL solutions match, because the two solutions over-
lap.

Figure 3.2.5. This figure shows the entire curve difference (absolute
error) for Example 3.2.2. Comparison analytical with MOL. (a) N=100,
(b) N=300.

3.3. Analysis of The Simplified Nonlinear PDE

In this chapter PDE (2.1.4) is solved numerically using MOL, subject to

periodic boundary conditions. Such BCs are used since the goal of the numerical

study is to model evolution of a finite section of a periodic, laterally infinite surface,

as in Figure 1.0.1 (left panel). Evolution of a perturbation having the wavelength

λmax = 2π/kmax from the linear stability analysis will be computed on the interval

0 ≤ x ≤ λmax, until the steady-state solution emerges. Properties of this solution

(amplitude, etc.) are studied as a function of the physical parameters: A, G, M ′(0),

εγ.

ht = (α1 + β1e
−h)hxxxx + (α2 + β2e

−h)hxx + (α5 + β5e
−h)hxxh2

x, (3.3.1)
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h(x,0) = 1 + δ cos(kmaxx), u(0, t) = u( 2π

kmax

, t) , u′(0, t) = u′ ( 2π

kmax

, t) . (3.3.2)

where δ = 10−2 and

α1 = −BM(0) (1 − 15εγ) ,

α2 = AM’(0),

α5 = −1.5AM’(0),

β1 = −BM(0) (15εγ +G − 1) ,

β2 = BM(0) (−εγ +G − 1) ,

β5 = −BM(0) (80εγ − 29εγ + 5G − 5) .

(3.3.3)

Since x ∈ [0, 2π
kmax

], where kmax =
√

α2

2α1
and as such it is a function of the physical

parameters, every time we change a value of a parameter, the length of the

computational domain changes. This is inconvenient, thus we transform it to a fixed

interval x ∈ [0,2π], as follows.

Let

ξ = kmaxxÔ⇒
d

dx
= kmax

d

dξ
,

T = k4
maxtÔ⇒

d

dt
= k4

max

d

dT
.

By applying these transformations to Eq. (3.3.1), we get

k4
maxhT = (α1 + β1e

−h)k4
maxhξξξξ + (α2 + β2e

−h)k2
maxhξξ + (α5 + β5e

−h)k2
maxhξξk

2
maxh

2
ξ

or

hT = (α1 + β1e
−h)hξξξξ + (α2 + β2e

−h)k−2
maxhξξ + (α5 + β5e

−h)hξξh2
ξ .
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Going back to the original notation, that is replacing T by t and ξ by x we obtain a

simplified non-linear PDE for the height function h(x, t) of the thin film, with

periodic BCs:

ht = (α1 + β1e
−h)hxxxx + (α2 + β2e

−h)k−2
maxhxx + (α5 + β5e

−h)hxxh2
x, (3.3.4)

h(x,0) = 1 + δ cos(x), u(0, t) = u(2π, t), u′(0, t) = u′(2π, t). (3.3.5)

Recall that kmax =
√

α2

2α1
. Below are the first, second and fourth order

centered finite difference approximations of the spatial derivatives:

hx ≈
hi+1 − hi−1

2∆x
,

hxx ≈
hi+1 − 2hi + hi−1

∆x2
,

hxxxx ≈
hi+2 − 4hi+1 + 6hi − 4hi−1 + hi−2

∆x4
.

(3.3.6)

Eq. (3.3.6) is substituted into Eq. (3.3.4), and then the system of ODEs is

solved using the NDSolve command in Mathematica for δ = 10−2, typical parameter

values and N=100. See Figure 3.3.1 for comparison and Figure 3.3.2 for error. For

the basic Mathematica code see appendix.

Figure 3.3.1. This figure shows comparison of solutions. (a) NDSolve
command solution of Mathematica, (b) MOL solution of Eq. (3.3.4)
and Eq. (3.3.5), for δ = 10−2, typical parameter values and N=100 (c)
NDSolve and MOL solution match, because the two solutions overlap.
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Figure 3.3.2. This figure shows the entire curve difference (absolute
error) for Eq. (3.3.4) and Eq. (3.3.5). Comparison NDSolve with MOL,
for δ = 10−2, typical parameter values (a) N=100, (b) N=300.

We plotted the first 30 profile shapes for A = 1000 and the typical values of

the other parameters to see how h(x, t) evolves in time. As it can be seen (Figure

(3.3.3)) the amplitude increases with time and profile lines approach each other,

meaning that the solution approaches the steady state solution.

Figure 3.3.3. Evolution of the graph h(x,t) in time.

We plotted the last profile curve and cosine curve on the same screen. Our

result shows that they differ, meaning that the last profile curve is not cosine curve

anymore (Figure (3.3.4)).
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Figure 3.3.4. Last profile curve (solid line) vs cosine curve (dashed line).

We analyzed stability of the surface by solving Eq. (3.3.4) and Eq. (3.3.2)

for the typical values of all parameters, except one parameter, and measured

amplitude for ten different values of non-fixed parameter (Figure 3.3.5 (a)).

Our results show that the amplitude of the last profile curve decreases with

increasing A and ∣M ′(0)∣ but never reaches δ = 10−2 which is the initial amplitude

(Figures 3.3.5 (a) and (c)). That means surface is unstable with increasing

parameter values of A and ∣M ′(0)∣. The amplitude of the last profile curve does not

change with increasing G and slightly changes (decreases) with increasing εγ, but

amplitudes are still greater than initial amplitude δ = 10−2 (Figures 3.3.5 (b) and

(d)). Thus, the surface is unstable with increasing parameter values of G and εγ.

28



0 2000 4000 6000 8000 10 000

0.10

0.15

0.20

A

A
m

p
li

tu
d
e

HaL

0 2000 4000 6000 8000 10 000

0.04

0.06

0.08

0.10

A

M
ax

0 2000 4000 6000 8000 10 000

-0.10

-0.08

-0.06

-0.04

A

M
in

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

G

A
m

p
li

tu
d
e

HbL

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

G

M
ax

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

G

M
in

-10 -8 -6 -4 -2 0

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M'

A
m

p
li

tu
d
e

HcL

-10 -8 -6 -4 -2 0

0.2

0.3

0.4

0.5

0.6

0.7

M'

M
ax

-10 -8 -6 -4 -2 0

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

M'

M
in

0.000 0.005 0.010 0.015 0.020 0.025 0.030
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

eg

A
m

p
li

tu
d
e

HdL

0.000 0.005 0.010 0.015 0.020 0.025 0.030
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

eg

M
ax

0.000 0.005 0.010 0.015 0.020 0.025 0.030
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

eg

M
in

Figure 3.3.5. Left: Amplitude vs physical parameters. Middle:
Max value vs physical parameters. Right: Min value vs physical pa-
rameters.

29



CHAPTER 4

CONCLUSION AND FUTURE WORK

In Introduction, we gave a brief definition and showed some applications of

surface electromigration.

In Chapter 2, we simplified a fourth-order nonlinear PDE model of surface

electromigration in the horizontal electric field, and we used a small perturbation

around the initial film thickness to linearize the model to get the growth rate

function. We then analyzed the growth rate function for different physical

parameters to understand how surface stability is affected by physical parameters.

Our results show that the film stability decreases with increasing h0 and the electric

field strength A, but the film stability increases with increasing G. The stability of

the film decreases with increasing ∣M ′(0)∣ and εγ.

In Chapter 3, we used Method of Lines (MOL) to solve the simplified

nonlinear PDE numerically and discussed how the physical parameters affect the

surface stability. Our results show that the amplitude of the last profile curve

decreases with increasing A and ∣M ′(0)∣ but never reaches δ = 10−2, which is the

initial amplitude. That means the surface is unstable with increasing parameter

values of A and ∣M ′(0)∣. The amplitude of the last profile curve does not change

with increasing G and slightly changes (decreases) with increasing εγ, but the

amplitudes are still greater than the initial amplitude δ = 10−2. Thus, the surface is

unstable with increasing parameter values of G and εγ.

Our numerical studies are on the domain x ∈ [0,2π], and we used cosine

curve with the small initial amplitude δ = 10−2 to perturb the initial height. Future
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work would be to extend the domain to several wavelengths and for initial condition

use a curve with a small random amplitude. In such a setup, coarsening of the

initial perturbation can be studied and the predictions can be made about the

pattern formation on the surface.
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APPENDIX

γ@h_, θ_D := 1 + εγ Cos@4 θ D + HG − 1 − εγ Cos@4 θ DL ã−h

µ = Hγ@h, θD + D@γ@h, θD, θ, θDL K−h''@xD I1 + h'@xD2M −3
2 O +

HD@γ@h, θD, hD − m ∗ h'@xD ∗ D@γ@h, θD, h, θDL I1 + h'@xD2M −1
2 ê.

:ã−h → ã−h@xD, Cos@4 θD −> 8 KKI1 + h'@xD2M −1
2 O4

− KI1 + h'@xD2M −1
2 O2O + 1 ,

Sin@4 θD −> 4 h′@xD I1 + h′@xD2M −1
2 I1 + h′@xD2M −1

2 K2 KI1 + h′@xD2M −1
2 O2

− 1O>;

µ = Simplify @µD;

w1 = Simplify @D@µ, xDD;

rhs1 = Simplify BB ∗ Mp ∗ h''@xD I1 + h'@xD2M −1
2 ∗ w1F;

w2 = Simplify BDBKI1 + h'@xD2M −1
2 O ∗ D@µ, xD, xFF;

rhs2 = Simplify @B ∗ HM + Mp ∗ h'@xDL ∗ w2D;

rhs3 = Simplify BA ∗ Mp ∗ h''@xD ∗ KI1 + h'@xD2M −1
2 OF;

w3 = DBKI1 + h'@xD2M −1
2 O, xF;

rhs4 = Simplify @A ∗ HM + Mp ∗ h'@xDL ∗ w3D;

rhs = Simplify @rhs1 + rhs2 + rhs3 + rhs4D;

rhs = rhs ê. 9h'@xD → ρ ∗ h'@xD, h''@xD → ρ 2 ∗ h''@xD, h'''@xD → ρ 3 ∗ h'''@xD, h''''@xD → ρ 4 ∗ h''''@xD=;

t1 =
− A ρ 3 h′@xD HM + Mp ρ h′@xDL h′′@xD

I1 + ρ 2 h′@xD2M3ê2
; t2 =

A Mp ρ 2 h′′@xD
1 + ρ 2 h′@xD2

; t3 =
1

I1 + ρ 2 h′@xD2M5
;

t4 =
1

I1 + ρ 2 h′@xD2M6
;

s1 = Series B − A ρ 3 h′@xD HM + Mp ρ h′@xDL h′′@xD
I1 + ρ 2 h′@xD2M3ê2

, 8ρ , 0, 4<F êê Normal ;

s2 = Series B A Mp ρ 2 h′′@xD
1 + ρ 2 h′@xD2

, 8ρ , 0, 4<F êê Normal ; s3 = Series B 1

I1 + ρ 2 h′@xD2M5
, 8ρ , 0, 4<F êê Normal ;

s4 = Series B 1

I1 + ρ 2 h′@xD2M6
, 8ρ , 0, 4<F êê Normal ;

rhs = Expand @rhs ê. 8t1 → s1, t2 → s2, t3 → s3, t4 → s4<D;

Collect Arhs, TableAρi, 8i, 2, 17<EE;

rhs = rhs ê. TableAρi → 0, 8i, 5, 17<E;

rhs = rhs ê. ρ → 1;

Collect Arhs, 9h′′@xD, h′′@xD h′@xD2, hH4L@xD=E;

Figure 4.0.1. Basic Mathematica code for the nonlinear PDE, part 1.
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rhs = rhs ê. 9ρ → 1, ã−h@xD → ã−h0 H1 − ξ@xDL=;

rhs = rhs ê. 8h'@xD → ξ '@xD, h''@xD → ξ ''@xD, D@h@xD, 8x, 3<D −> D@ξ@xD, 8x, 3<D,
D@h@xD, 8x, 4<D −> D@ξ@xD, 8x, 4<D<;

rhs = Simplify @rhsD;

rhs = Expand @rhsD;

rhs = rhs ê. TableAξ@xDi → 0, 8i, 1, 4<E;

rhs = rhs ê. TableAξ '@xDi → 0, 8i, 1, 4<E;

rhs = rhs ê. TableAξ ''@xDi → 0, 8i, 2, 4<E;

rhs = rhs ê. 9ξ ''@xD → ãωt HI kL2 ãI k x, ξ ''''@xD → ãωt HI kL4 ãI k x=;

lhs = ω@kD ∗ ãä k x+ωt;

ω@kD = Simplify B rhs

ãä k x+ωt
F;

ω@kD = Expand @ω@kDD;

ω@kD = Collect Aω@kD, 9k2, k4=E;

Figure 4.0.2. Basic Mathematica code for growth rate function, part 2.

n = 100; h =
1

n
; α =

1

20
; L = 1; bc1 = 0; bc2 = 0;

U@t_D = Table@ui@tD, 8i, 0, n<D;

initc = ThreadBU@0D � TableBSin@π iD, :i, 0., 1,
1 − 0

n
>FF;

initc = Delete@initc, 881<, 8n + 1<<D;

A =
α

h2
SparseArray@8Band@81, 1<, 8n + 1, n + 1<D → −2, Band@81, 2<, 8n, n<D → 1, Band@83, 2<, 8n + 1, n + 1<D → 1<,

8n + 1, n + 1<D;

b = SparseArray@882, 1< → bc1, 8n, 1< → bc2<, 8n + 1, 1<D;

F = Flatten@A.U@tD + bD;

system = Thread@D@U@tD, tD � Flatten@FDD;

system = Delete@system, 881<, 8n + 1<<D;

sol = NDSolve@8system, initc<, Delete@U@tD, 881<, 8n + 1<<D, 8t, 0, 4<D;

p1 = ParametricPlot3D@Evaluate@Table@8i h, t, First@ui@tD ê. solD<, 8i, 1, n − 1<DD, 8t, 0, 4<,
BoxRatios → 84, 4, 2<, BoxStyle → 8Dashed<, ColorFunction → Hue, PlotStyle → 8Opacity@0.3D<,
ViewPoint → 82.20414, −2.08663, 1.49591<, ImageSize → 8230.951, 158.571<,
AxesLabel → 8Style@x, MediumD, Style@t, MediumD, Style@u, MediumD<, LabelStyle → Directive@SmallD,
PlotLabel → "HbL", PlotRange → AllD;

u@x_, t_D := SinB π x

L
F ã

− α π2 t
L2

p2 = Plot3D@u@x, tD, 8x, 0, 1<, 8t, 0, 4<, BoxStyle → 8Dashed<, ViewPoint → 82.20414, −2.08663, 1.49591<,
ImageSize → 8230.951, 158.571<, BoxStyle → 8Dashed<,
AxesLabel → 8Style@x, MediumD, Style@t, MediumD, Style@u, MediumD<, LabelStyle → Directive@SmallD,
PlotLabel → "HaL", PlotRange → AllD;

p3 = Show@8p2, p1<, PlotLabel → "HcL"D;

GraphicsGrid@88p2, p1, p3<<, Spacings → 8Scaled@.3D, Scaled@0.01D<D

Figure 4.0.3. Basic Mathematica code for Example 3.2.1.
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n = 100; h =
1

n
; α =

1

20
; L = 1; bc1 = 0; bc2 = 0;

U@t_D = Table@ui@tD, 8i, 0, n<D;

initc = ThreadBU@0D � TableBSin@π iD, :i, 0., 1,
1 − 0

n
>FF;

initc = Delete@initc, 881<, 8n + 1<<D;

A =
α

h2
SparseArray@8Band@81, 1<, 8n + 1, n + 1<D → −2, Band@81, 2<, 8n, n<D → 1, Band@83, 2<, 8n + 1, n + 1<D → 1<,

8n + 1, n + 1<D;

b = SparseArray@882, 1< → bc1, 8n, 1< → bc2<, 8n + 1, 1<D;

F = Flatten@A.U@tD + bD;

system = Thread@D@U@tD, tD � Flatten@FDD;

system = Delete@system, 881<, 8n + 1<<D;

sol = NDSolve@8system, initc<, U@tD, 8t, 0, 4<D;

u@x_, t_D := SinB π x

L
F ã

− α π2 t
L2

p1 = ParametricPlot3D@Evaluate@Table@8i ∗ h, t, Abs@First@ui@tD ê. solD − u@i ∗ h, tDD<, 8i, 1, n − 1<DD,
8t, 0, 4<, BoxStyle → Dashed, PlotRange → All, BoxRatios → 82, 2, 1<, ColorFunction → Hue,
PlotStyle → 8Opacity@0.3D<, ViewPoint → 82.20414, −2.08663, 1.49591<, ImageSize → 8230.951, 158.571<,
AxesLabel → 8Style@x, MediumD, Style@t, MediumD, Style@u, MediumD<, PlotLabel → "HaL", PlotRange → AllD

Figure 4.0.4. Basic Mathematica code for Example 3.2.1 (error (a)).

B = 1; k = 1;

f@x_, t_D := 1 + B ∗ ã−k4∗t ∗ Cos@k ∗ xD;

p1 = Plot3D@f@x, tD, 8x, 0, 2 ∗ π<, 8t, 0, 4<, PlotRange → All, BoxStyle → Dashed, PlotLabel → "HaL",
AxesLabel → 8Style@x, MediumD, Style@t, MediumD, Style@u, MediumD<, PlotRange → All,
ViewPoint → 82.20414, −2.08663, 1.49591<, ImageSize → 8230.951, 158.571<D

n = 100; L = 2. ∗ π; h =
L

n
;

U@t_D = Table@ui@tD, 8i, 0, n<D;

initc = ThreadBU@0D � TableB1 + B Cos@k iD, :i, 0, 2 π,
2. π − 0

n
>FF;

A =
−1

h4
SparseArray@8Band@81, 1<D → 6, Band@82, 1<D → −4, Band@81, 2<D → −4, Band@83, 1<D → 1,

Band@81, 3<D → 1, 81, 3< → 1, 81, n< → −4, 81, n − 1< → 1 , 82, n< → 1 , 8n, 2< → 1, 8n, n − 1< → 1 ,
8n, n − 1< → 1, 8n + 1, 2< → −4, 8n + 1, 3< → 1 <, 8n + 1, n + 1<D;

system = Thread@D@U@tD, tD � Flatten@A.U@tDDD;

sol = NDSolve@8system, initc<, U@tD, 8t, 0, 4<, MaxSteps → 20 000D;

p2 = ParametricPlot3D@Evaluate@Table@8i h, t, First@ui@tD ê. solD<, 8i, 0, n<DD, 8t, 0, 4<,
BoxRatios → 84, 4, 2<, PlotRange → All, ColorFunction → Hue, PlotStyle → 8Opacity@0.3D<,
BoxStyle → Dashed, PlotLabel → "HbL",
AxesLabel → 8Style@x, MediumD, Style@t, MediumD, Style@u, MediumD<, PlotRange → All,
ViewPoint → 82.20414, −2.08663, 1.49591<, ImageSize → 8230.951, 158.571<D

p3 = Show@p1, p2, PlotLabel → "HcL"D
GraphicsGrid@88p1, p2, p3<<, Spacings → 8Scaled@.3D, Scaled@0.1D<D

Figure 4.0.5. Basic Mathematica code for Example 3.2.2.
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B = 1; k = 1;

f@x_, t_D := 1 + B ∗ ã−k4∗t ∗ Cos@k ∗ xD;

p1 = Plot3D@f@x, tD, 8x, 0, 2 ∗ π<, 8t, 0, 4<, PlotRange → All, PlotRange → All,
ViewPoint → 82.20414, −2.08663, 1.49591<, ImageSize → 8230.951, 158.571<D

n = 100; L = 2. ∗ π; h =
L

n
;

U@t_D = Table@ui@tD, 8i, 0, n<D;

initc = ThreadBU@0D � TableB1 + B Cos@k iD, :i, 0, 2 π,
2. π − 0

n
>FF;

A =
−1

h4
SparseArray@8Band@81, 1<D → 6, Band@82, 1<D → −4, Band@81, 2<D → −4, Band@83, 1<D → 1,

Band@81, 3<D → 1, 81, 3< → 1, 81, n< → −4, 81, n − 1< → 1 , 82, n< → 1 , 8n, 2< → 1, 8n, n − 1< → 1 ,
8n, n − 1< → 1, 8n + 1, 2< → −4, 8n + 1, 3< → 1 <, 8n + 1, n + 1<D;

system = Thread@D@U@tD, tD � Flatten@A.U@tDDD;

sol = NDSolve@8system, initc<, U@tD, 8t, 0, 4<, MaxSteps → 20 000D;

p1 = ParametricPlot3D@Evaluate@Table@8i ∗ h, t, Abs@First@ui@tD ê. solD − f@i ∗ h, tDD<, 8i, 0, n<DD,
8t, 0, 4<, PlotRange → All, BoxRatios → 82, 2, 1<, ColorFunction → Hue, PlotStyle → 8Opacity@0.3D<,
BoxStyle → Dashed, PlotLabel → "HaL",
AxesLabel → 8Style@x, MediumD, Style@t, MediumD, Style@u, MediumD<, PlotRange → All,
ViewPoint → 82.20414, −2.08663, 1.49591<, ImageSize → 8230.951, 158.571<D

Figure 4.0.6. Basic Mathematica code for Example 3.2.2 (error (a)).
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ht = Ia1 hH4L @xD + b1 „-h@xD hH4L @xDM +
a2 h¢¢@xD

k2
max

+
b2 „-h@xD h¢¢@xD

k2
max

+ Ia5 h¢¢@xD h¢@xD2 + b5 „-h@xD h¢¢@xD h¢@xD2 M ;

B = 8; M = 1 ; A = 72; Mp = −3 ; εγ = 0; G = 2; m = 1; α1 = −B ∗ M ∗ H1 − 15 ∗ εγL; α2 = A ∗ Mp; α5 = −1.5 ∗ A ∗ Mp;
β1 = −B ∗ M ∗ HG − 1 + 15 ∗ εγL; β2 = B ∗ M ∗ HG − 1 − εγL; β5 = −B ∗ M ∗ H−5 + 5 G − 29 ∗ εγ + 80 ∗ m ∗ εγL;

w = kmax = NB α2

2 α1
F;

n = 100; L = N@2 ∗ πD; h =
L

n
; k = 1; δ = 10−2;

U@t_D = Table@ui@tD, 8i, 0, n<D; V@t_D = TableAã−ui@tD, 8i, 0, n<E;

initc = ThreadBU@0D � TableB1 + δ Cos@k iD, :i, 0., 2 π,
2 π − 0

n
>FF;

A =
1

h4

SparseArray@8Band@81, 1<D → 6, Band@82, 1<D → −4, Band@81, 2<D → −4, Band@83, 1<D → 1,
Band@81, 3<D → 1, 81, 3< → 1, 81, n − 1< → 1, 81, n< → −4 , 82, n< → 1 , 8n, 2< → 1, 8n, n − 1< → 1 ,
8n + 1, n − 1< → 1, 8n + 1, 2< → −4, 8n + 1, 3< → 1 <, 8n + 1, n + 1<D.U@tD;

A1 = α1 A;

A2 = Thread@Times@V@tD, β1 ADD;

B =
1

h2
SparseArray@8Band@81, 1<D → −2, Band@82, 1<D → 1, Band@81, 2<D → 1, 81, n< → 1 , 8n + 1, 2< → 1 <,

8n + 1, n + 1<D.U@tD;

B1 =
α2

w2
B;

B2 = ThreadBTimesBV@tD,
β2

w2
BFF;

F =
1

2 h
SparseArray@8Band@82, 1<D → −1, Band@81, 2<D → 1, 81, n< → −1 , 8n + 1, 2< → 1 <, 8n + 1, n + 1<D.U@tD;

F1 = ThreadATimesAα5 B, F2EE;

F2 = ThreadATimesAV@tD, β5 B, F2EE;

system = Thread@D@U@tD, tD � Flatten@A1 + A2 + B1 + B2 + F1 + F2DD;

sol1 = NDSolve@8system, initc<, U@tD, 8t, 0, 4<, MaxSteps → 50 000D;

p1 = ParametricPlot3D@Evaluate@Table@8i h, t, First@ui@tD ê. sol1D<, 8i, 0, n<DD, 8t, 0, 4<,
BoxRatios → 84, 4, 2<, PlotRange → All, ColorFunction → Hue, PlotStyle → 8Opacity@0.3D<,
BoxStyle → Dashed, ViewPoint → 83.13682, −1.13812, 0.561281<,
AxesLabel → 8Style@x, MediumD, Style@t, MediumD, Style@u, MediumD<, LabelStyle → Directive@SmallD,
PlotLabel → "HbL", PlotRange → AllD

ht = Iα1 + β1 ã−h@xDM hH4L@xD + Iα2 + β2 ã−h@xDM h′′@xD +
α5 + β5 ã−h@xD

w2
h′′@xD h′@xD2 ;

sol2 =
NDSolveB

:D@u@x, tD, tD == Iα1 + β1 ã−u@x,tDM D@u@x, tD, 8x, 4<D +
α2 + β2 ã−u@x,tD

w2
D@u@x, tD, 8x, 2<D +

Iα5 + β5 ã−u@x,tDM D@u@x, tD, 8x, 2<D HD@u@x, tD, xDL2, u@x, 0D == 1 + δ Cos@k xD, u@0, tD == u@2 π, tD,

HD@u@x, tD, xD ê. x → 0L == HD@u@x, tD, xD ê. x → 2 πL>, u, 8x, 0, 2 π<, 8t, 0, 4<, MaxSteps → 50 000F;

p2 = Plot3D@Evaluate@u@x, tD ê. sol2D, 8x, 0, 2 π<, 8t, 0, 4<, PlotRange → All, BoxStyle → Dashed,
ViewPoint → 83.13682, −1.13812, 0.561281<, BoxRatios → 84, 4, 2<,
AxesLabel → 8Style@x, MediumD, Style@t, MediumD, Style@u, MediumD<, LabelStyle → Directive@SmallD,
PlotLabel → "HaL", PlotRange → AllD

p3 = Show@8p1, p2<, PlotLabel → "HcL"D
GraphicsGrid@88p2, p1, p3<<, Spacings → 8Scaled@.3D, Scaled@0.01D<D
error =

ParametricPlot3D@Evaluate@Table@Abs@8i ∗ h, t, First@ui@tD ê. sol1D − u@i ∗ h, tD ê. sol2<D, 8i, 0, n<DD,
8t, 0, 4<, PlotRange → All, BoxRatios → 82, 2, 1<, ColorFunction → Hue, PlotStyle → 8Opacity@0.3D<,
BoxStyle → Dashed, ViewPoint → 83.13682, −1.13812, 0.561281<, BoxRatios → 84, 4, 2<,
AxesLabel → 8Style@x, MediumD, Style@t, MediumD, Style@u, MediumD<, LabelStyle → Directive@SmallD,
PlotRange → AllD

Figure 4.0.7. Basic Mathematica code for the simplified-nonlinear
PDE and for error.
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